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Abstract. This lecture explores conditions under which there is identi�-
cation of the impact on an outcome of exogenous variation in a variable which is
endogenous when data are gathered. The starting point is the Cowles Commis-
sion linear simultaneous equations model. The parametric and additive error re-
strictions of that model are successively relaxed and modi�cations to covariation,
order and rank conditions that maintain identi�ability are presented. Eventually
a just-identifying, non-falsi�able model permitting nonseparablity of latent vari-
ates and devoid of parametric restrictions is obtained. The model requires the
endogenous variable to be continuously distributed. It is shown that relaxing this
restriction results in loss of point identi�cation but set identi�cation is possible
if an additional covariation restriction is introduced. Relaxing other restrictions
presents signi�cant challenges.

1. Introduction

Econometric models comprise restrictions on the economic processes, or structures,
that are admitted as potential generators of data. These restrictions serve a number
of purposes.

Some restrictions enable inference to be conducted; examples are restrictions on
existence of moments. Some restrictions are imposed to enable modest amounts of
data to be used to obtain tolerably accurate estimates; examples are functional form
and index restrictions. These restrictions are often testable.

At the core of all econometric models are the restrictions which permit economic
interpretation to be given to the results of econometric analysis. These are the
restrictions that give a model identifying power. It is important to know what these
restrictions are because in some cases they are not testable and econometric inference
must be predicated on their truth until new types of data can be obtained. With
knowledge of a minimal set of identifying conditions one can assess the extent to
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bene�tted greatly from discussions with James Heckman, Hidehiko Ichimura, Roger Koenker, Tony
Lancaster, Valérie Lechene, Chuck Manski, Lars Nesheim, Whitney Newey, Richard Spady and Elie
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which a model has foundation in economic propositions and the extent to which it
relies on restrictions without economic provenance.1

This lecture explores the nature of weak identifying restrictions for models which
posit a relationship between an outcome and a list of variables amongst which one is
endogenous.2

This was the problem studied in the 1930�s and 1940�s by the pioneers of econo-
metrics whose work came to be associated with the Cowles Commission for Research
in Economics. The Cowles analysis was largely concerned with a linear simultaneous
equations model of the relationships amongst economic magnitudes.3 Koopmans,
Rubin and Leipnik (1950) considered a structural equation like this one:

Y1 = 
Y2 +X
0� + U1

in which Y2 may co-vary with the unobserved U1, setting out the order and rank
conditions for the identi�ability of the coe¢ cients, 
 and �. The order condition
requires that the stctural function is insensitive to certain variations in X. The rank
condition requires that amongst such variations there are some which do perturb the
value of Y2.

In this linear model the value of the coe¢ cient 
 measures the sensitivity of the
outcome Y1 to ceteris paribus variation in Y2. This lecture explores identifying con-
ditions for such measures of sensitivity to ceteris paribus variation in an endogenous
variable under successively weaker conditions on the form of the structural equation.4

First parametric restrictions are removed giving a structural equation of the fol-
lowing form:

Y1 = h(Y2; X) + U1

and then the �error-additivity�restriction is also removed yielding:

Y1 = h(Y2; X; U1):

The measure of ceteris paribus sensitivity to Y2 must be adjusted as this is done.
I will focus throughout on �nite partial di¤erence measures, for example in the non-
additive error model

� = h(ys2; x; u1)� h(yt2; x; u1)

where ys2 and y
t
2 are two values of Y2, and x and u1 are values of X and U1 common

to both components. In the linear model the �nite partial di¤erence measure is:

� = 
(ys2 � yt2)
1Rhoerig (1988) makes a persuasive case for studying nonparametric identi�cation conditions.
2Much of what follows applies when there is more than one endogenous variable in the structural

equation of interest. The single endogenous variable case is treated here in order to simplify the
exposition.

3There were notable exceptions; see Hurwicz (1950) in which the construction used here was
created speci�cally to allow nonparametric identi�cation to be studied. See also Koopmans and
Reiersøl (1950) which studies identi�cation in factor analysis problems and draws on Hurwicz (1950),
and Reiersøl (1950) which studies identi�cation in measurement error models.

4Similar arguments give conditions under which there is identi�cation of sensitivity to variation
in non-endogenous variables when the structural function has endogenous variables amongst its
arguments.
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and in the nonlinear additive error model it is:

� = h(ys2; x)� h(yt2; x):

If � is identi�ed then the slope of a chord of the structural function, �=(ys2 � yt2), is
identi�ed as long as ys2 6= yt2. In the linear model this slope is the structural coe¢ cient

.

This focus on partial di¤erences simpli�es the argument, and something like it is
essential when there is discrete variation. Limiting arguments can be used to develop
conditions for identi�ability of a partial derivative under appropriate restrictions.

One purpose of this exercise is to understand the structure of identifying condi-
tions for this class of problems. We will see the rank, order and covariation condi-
tions of the Cowles analysis recurring, but modi�ed in sympathy with the problem
addressed.

Another purpose is to develop some understanding of the limits to identi�cation.
In the non-additive error case I propose a weakly restrictive model which is locally
just-identifying and non-falsi�able. Relaxing any of its restrictions results in loss of
identifying power.

I will �nish by considering the impact of relaxing two of the restrictions of this
nonseparable model. The �rst is a requirement that the endogenous variable be
continuously distributed; the second is a requirement that there be no more sources
of random variation than observed outcomes.

This lecture is named in honour of Bill Phillips. He understood the crucial role of
identi�cation in econometric work and made signi�cant contributions on the topic.
In his 1959 Biometrika paper �The estimation of parameters of systems of stochastic
di¤erential equation systems�he laid the groundwork for the analysis of the aliasing
problem, that is the problem of identifying features of continuous time structures
using discretely sampled data. In 1968 he published a paper5, that foreshadowed the
Lucas critique, highlighting the problems of identifying the impact of policy instru-
ments on economic outcomes using data obtained while policy makers manipulate
instruments attempting to achieve economic targets. It is truly an honour to have
this opportunity to address this meeting on the topic of identi�cation in the A.W.
Phillips lecture.

2. Identification

A data generating process, or structure, for variables W � fY;Xg comprises:

1. Functions which transform latent random variables U � fUkgKk=1 to produce
unique values of a list of observable variables, W � fWmgMm=1.

W = h(W;U)

2. a distribution function, FU , specifying the probability law for U .

5Phillips (1968). See also the discussion in Court (2000).
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This is the construction of Hurwicz (1950). Each structure comprises a particular
structural function, h and a particular distribution function, FU , and results in a
particular distribution function, FW , for observable variatesW . Data are informative
about FW and we wish to have knowledge of features of h or FU .

Many distinct structures fh; FUg may generate the same FW . Such structures
are termed observationally equivalent. Data are not informative about which of any
observationally equivalent structures generated the data and it is here that the identi-
�cation problem arises. Econometricmodels embody restrictions which render certain
structures inadmissible as generators of data.

Interest typically centres on some feature of a structure, a price elasticity of
demand, a measure of the returns to schooling and so forth. If within any set of
observationally equivalent structures admitted by a model there is no variation in
the value of a structural feature then the model identi�es the value of the structural
feature.6

The following proposition is helpful in determining the identifying power of a
model.

A model identi�es the value of a structural feature �(S) if there exists a
functional G such that in all structures admitted by the model and for all
values, a, of the structural feature:

�(S) = a) G(FSW ) = a

where FSW is the distribution of W implied by the structure S.7

If for some structural feature and model a functional G with this property can
be found then we are assured the model identi�es the value of the structural feature
and we know how to manipulate FW to obtain the value of � in the structure that
generated FW . Further, the analogue principle suggests the estimator: �̂ = G(F̂W ).8

In what follows the observable variables, W , are partitioned into two sets of
variables, Y , which are outcomes generated by the process of interest, and X, which
only appear as arguments of structural functions.

3. Linear models

The classical Cowles analysis9 focussed on linear structural equations, for example:

Y1 = 
Y2 +X
0� + U1

6 If variation across admissible observationally equivalent structures in the value of a structural
feature is limited to a set of values then the model set identi�es the value of the structural feature.

7The result is easily shown to be true. Suppose admissible S and S0 have �(S) = a and �(S0) = a0

and are observationally equivalent. Then, if G exists, G(FSW ) = a and G(FS
0

W ) = a
0 but observational

equivalence implies FSW = FS
0

W and therefore a = a0. Thus if a functional with the stated property
exists there can be no variation in �(S) across observationally equivalent structures. See Chesher
(2002a) for a formal statement and proof.

8See Manski (1988). Whether or not consistent estimation is feasible will depend on properties
of the functional G and on the properties of F̂W .

9See for example Koopmans, Rubin and Leipnik (1950).
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and imposed the restriction that E[Y2jx] exists10 and the marginal covariation con-
dition

E[U1jx] = c1
where c1 is invariant with respect to x.11

Under these conditions there is the following.12

E[Y1jx] = 
E[Y2jx] + x0� + c1

If there exist values of X: fxs; xtg such that x0s� = x0t�, which is an order
condition, then:

E[Y1jxs]� E[Y1jxt] = 

�
ys2 � yt2

�
where ys2 and y

t
2 are the following conditional expectations of Y2.

ys2 � E[Y2jxs] yt2 � E[Y2jxt]

If the rank condition
ys2 6= yt2

is satis�ed then 
 is identi�ed because


 =
E[Y1jxs]� E[Y1jxt]

ys2 � yt2

The Wald (1940) estimator is an analogue estimator built on this identifying
correspondence.13

4. Nonlinear model with an additive latent variable

Now consider models that permit h to be a nonlinear function of Y2 but which retain
the additive error restriction.14

Y1 = h(Y2; X) + U1 (1)

Suppose E[Y2jx] exists and equals g(x). Then:

Y2 = g(X) + U2

10 In the Cowles analysis there was a linear reduced form equation Y2 = X 0�+U2 and the restriction
E[Y2jx] = x0� but this is unnecessary in what follows, the existence of E[Y2jx] being su¢ cient.
11Here and later the notation E[Y2jx] signi�es E[Y2jX = x].
12The Cowles order and rank conditions ensure that E[Y2jx] and x0� are not linearly dependent

and this relationship then motivates the 2SLS estimator.
13 If there is another pair fx0s; x0tg satisfying the order condition with

E[Y2jxs] = E[Y2jx0s] E[Y2jxt] = E[Y2jx0t]

then 
 is overidenti�ed.
14 Identi�cation for parametrically restricted models of this sort was notably studied by Fisher

(1959, 1961, 1966), Wegge (1965), Rothenberg(1971) and Brown (1983). Parametric restrictions on
h are not necessary for identi�cation. Rhoerig (1988) and Newey, Powell and Vella (1999) study the
nonparametric case and Blundell and Powell (2003) survey results.
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where E[U2jx] = 0.
Consider the iterated covariation condition

E[U1jU2 = u2 \X = x] � E[U1ju2; x] = c1(u2)

the force of the restriction being that the conditional expectation exists and does not
depend on x. Note that this iterated covariation condition is neither stronger nor
weaker than the marginal covariation condition used in the linear model. This sort of
iterated covariation condition is helpful in the nonseparable model to be considered
shortly.

There is on substituting for Y2 in (1) and taking expectations conditional on
U2 = u2 and X = x:

E[Y1ju2; x] = h(g(x) + u2; x) + c1(u2):

Now impose the restriction that Y2 is continuously distributed. Then, with y2 �
g(x) + u2, conditioning on the event fX = x \ U2 = u2g is identical to conditioning
on the event fX = x \ Y2 = y2g and so there is, conditioning on Y2 and X:15

E[Y1jy2; x] = h(y2; x) + c1(y2 � g(x)).

Now consider identi�cation of the partial di¤erence h(ys2; x) � h(yt2; x) at two
values, ys2 and y

t
2 of Y2 and some value x of X. For two values of X, fxs; xtg, de�ne

the following conditional expectations of Y2.

ys2 � g(xs) yt2 � g(xt)

There is

E[Y1jys2; xs] = h(ys2; xs) + c1(0)

E[Y1jyt2; xt] = h(yt2; xt) + c1(0)

and if there is the order restriction that for r 2 fs; tg

h(yr2; xs) = h(y
r
2; xt) (2)

then for x 2 fxs; xtg

E[Y1jys2; xs]� E[Y1jyt2; xt] = h(ys2; x)� h(yt2; x):

If the �rank�condition ys2 6= yt2 holds then the model identi�es the sensitivity of
h to variation in Y2, and in particular the slope of a chord of the structural function:

h(ys2; x)� h(yt2; x)
ys2 � yt2

:

15 If there are restrictions which ensure that h(y2; x) and c1(y2�g(x)) are not functionally dependent
this relationship motivates analogue estimators obtained by estimating the regression of Y1 on Y2,
X and Y2�E[Y2jx], with Y2�E[Y2jx] replaced by the residual from an estimate of the regression of
Y2 on X. In the linear model this delivers the 2SLS estimator.
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If the rank condition does not hold then the identi�ed partial di¤erence is trivially
zero.

The requirement that E[Y2jx] exists is inessential. Write

Y2 = g(X;U2)

where U2 is normalised uniformly distributed on (0; 1) independent of X and g is an
increasing function of U2. Let QAjB(pjb) denote the p-quantile of random variable A
given variables B = b. By de�nition:

g(X;U2) � QY2jX(U2jX)

that is g(X;U2) is the U2-quantile function of Y2 given X.16 The condition

E[U1ju2; x] = c1(u2)

is maintained but note that the interpretation of u2 has altered.
As long as Y2 is continuously distributed (that is g is strictly increasing in U2)

there is
E[Y1jy2; x] = h(y2; x) + c1(u2) (3)

where u2 satis�es
y2 = g(x; u2)

from which it follows that
u2 = FY2jX(y2jx).

Substituting for u2 in (3) there is:17

E[Y1jy2; x] = h(y2; x) + c1(FY2jX(y2jx)):

Turning to identi�cation of partial di¤erences, if fxs; xtg satisfy the order condi-
tion (2) and if fys2; yt2g satisfy

FY2jX(y
s
2jxs) = FY2jX(y

t
2jxt) = u2 (4)

there is, as before, for x 2 fxs; xtg:

E[Y1jys2; xs]� E[Y1jyt2; xt] = h(ys2; x)� h(yt2; x)

and so identi�cation of the �pure e¤ect�of Y2 on the structural function h as long as
the rank condition ys2 6= yt2 is satis�ed.

In preparation for the nonseparable error case to be considered next, note that
(4) implies that ys2 and y

t
2 are both u2-quantiles of Y2 given X.

16The probabilty of Y2 � QY2jX(u2jx) given X = x is u2 which is equal to the probability of
U2 � u2 given that U2 is uniformly distributed on (0; 1).
17 If there are restrictions which ensure that h(y2; x) and c1(FY2jX(y2jx)) are not functionally

dependent this relationship motivates analogue estimators obtained by estimating the nonparametric
additive regression of Y1 on Y2, X and FY2jX(Y2jX) with the conditional distribution function FY2jX
replaced by an estimator.
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5. Nonlinear model with a non-additive latent variable

The conditions of the model used in the Cowles analysis have been substantially
relaxed; all parametric restrictions have been removed. Now the �additive latent
variable� restriction is relaxed and the structural equation is allowed to take the
following form.18

Y1 = h(Y2; X; U1)

This allows the possibility of rich e¤ects for Y2 on h. The sensitivity of h to
variation in Y2 can now be stochastic since it can depend on U1. In a policy context,
interventions that �exogenously�change Y2 are now permitted to have e¤ects which
depend on the value of U1 - the e¤ects of interventions can have non-degenerate
probability distributions.

Now that U1 is embedded in the structural function expectation based covariation
conditions have no force without substantial restrictions on the structural function
h. But if the model requires that h varies monotonically with U1, a restriction of
course satis�ed in an additive latent variate model, then quantile based restrictions
have identifying power.

The discussion proceeds in terms of median restrictions, but restrictions on other
quantiles can be used. Let MA[b1; : : : ; bK ] denote the conditional median of random
variable A given B1 = b1; : : : ; BK = bK . As before there is the auxiliary equation

Y2 = g(X;U2)

with U2 normalised uniformly distributed on (0; 1) independent ofX and g normalised
increasing in U2.

Restrict h to be monotonically varying with U1, and normalise it to be increasing.
The equivariance of quantiles under monotone transformation19 implies

MY1 [u2; x] = h(g(x; u2); x;MU1 [u2; x])

in which both medians are conditioned on U2 = u2 and X = x. Add to the model
the following iterated quantile covariation condition.

MU1 [u2; x] = c1(u2)

where c1 does not depend on x.
Impose the restriction that Y2 is continuously distributed which implies that g is

strictly increasing in U2. Then, with y2 � g(x; u2), since conditioning on the event
fX = x\U2 = u2g is identical to conditioning on the event fX = x\Y2 = y2g, there
is the conditional median of Y1 given Y2 and X:

MY1 [y2; x] = h(y2; x; c1(u2))

18Roehrig (1988), Matzkin (2003) and Imbens and Newey (2003) consider identi�cation and es-
timation of structural features in this nonseparable case under the restriction that U1 and X are
statistically independent. In Matzkin (2003) the endogenous variable Y2 is absent. Rhoerig (1988)
unlike Imbens and Newey (2003) restricts attention to smooth structural functions.
19The equivariance property is that, if f is an increasing function of a random variable A then the

p-quantiles of f(A) and A satisfy: Qf(A)(p) = f(QA(p)).
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where the normalisation of U2 ensures that u2 � FY2jX(y2jx), conversely that y2 is
the u2-quantile of Y2 given X = x. In summary

MY1 [y2; x] = h(y2; x; c1(FY2jX(y2jx))):

Consider a value u2 2 (0; 1) and two values of X, fxs; xtg. De�ne ys2 and yt2, the
u2-quantiles of Y2 given X equal to respectively xs and xt,

ys2 � g(xs; u2) yt2 � g(xt; u2)

equivalently:
FY2jX(y

s
2jxs) = FY2jX(y

t
2jxt) = u2.

Under the "order" restriction that, for r 2 fs; tg

h(yr2; xs; c1(u2)) = h(y
r
2; xt; c1(u2))

there is for x 2 fxs; xtg

MY1 [y
s
2; xs]�MY1 [y

t
2; xt] = h(y

s
2; x; c1(u2))� h(yt2; x; c1(u2))

which identi�es the �pure� e¤ect of Y2 on h as long as the rank condition ys2 6= yt2
holds.

If this rank condition does hold then

MY1 [y
s
2; xs]�MY1 [y

t
2; xt]

ys2 � yt2
identi�es the slope of a chord of the structural function. This suggests a quantile
based version of the Wald (1940) estimator. Quantiles of Y1 other than the median
can be used giving identi�cation at other values of U1.20

The identifying conditions for sensitivity of a structural function of the Cowles
analysis have now been substantially reduced. Parametric restrictions have been
relaxed and the restriction of error-additivity has been removed.

The core conditions used in the Cowles analysis remain but with some modi�ca-
tion. Conditions on marginal distributions of latent variates have been replaced by
conditions on iterated conditional distributions. Conditions like the classical order
and rank conditions remain but these, like the covariation conditions, need only hold
local to the particular structural partial di¤erence and values of X of interest.

In the non-additive latent variate model the weak local conditions which identify
a particular partial di¤erence of a structural function are just-identifying and non-
falsi�able. Relaxation of any of the conditions results in a model without point
identifying power.

To conclude I consider relaxing two of the identifying conditions: the restriction
that Y2 be continuously distributed and the restriction that there be no more sources
of random variation than outcomes. I consider additional conditions which can re-
cover identi�cation in these cases. These restrictions are of interest because they are
not met in many of the models employed in modern microeconometric practice.

20See Chesher (2002a, 2003a) for further results on identi�cation and Ma and Koenker (2004) and
Lee (2004) for related results on estimation.
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6. The continuous Y2 restriction

6.1. Non additive latent variable models. Consider the non-additive latent
variate model

Y1 = h(Y2; X; U1)

and the iterated conditional median restriction used before.

MU1 [u2; x] = c1(u2)

In the continuous Y2 case we are able to to use this covariation condition by
exploiting the fact that conditioning onX = x and U2 = u2 is identical to conditioning
on X = x and Y2 = y2 = g(x; u2). Keeping Y2 equal to y2 � QY2jX(u2jx) as x varies
holds U2 constant at the value u2 and focussing on conditional medians of Y1 given
Y2 = y2 and X = x ensures that U1 is held �xed at MU1 [u2]. Thus variation in x
results in a change in Y2 but not in U1 and, with an order condition ensuring h is
insensitive to the variation in x, point identi�cation of a partial di¤erence is achieved.

When Y2 is discrete this approach is not available; each value of Y2 is associated
with a sub-interval of (0; 1), an interval whose length is equal to the conditional prob-
ability of that value occurring given X = x.21 The result is loss of point identi�cation
of the value of the structural function at a particular value of U1 and without that
there is no possibility of point identi�cation of a partial di¤erence of the structural
function in each term of which U1 is equal to the same value.

The fact that U2 is restricted to an interval determined by the value of Y2 and
X suggests the possibility of set identi�cation. The argument is sketched now.22 To
keep the notation as uncluttered as possible the argument proceeds for the case in
which the latent variates U1 and U2 are distributed independently of X. Further, X
is excluded from the structural function. That ensures the order condition is satis�ed
but is, like full independence, a stronger restriction than is required.

With these additional restrictions there is now the structural function:

Y1 = h(Y2; U1)

and the auxiliary equation:
Y2 = g(X;U2)

with g normalised increasing in U2 which is normalised uniformly distributed on (0; 1).
The independence of (U1; U2) and X, now imposed, ensures that the conditional
median condition

MU1 [u2; x] = c1(u2)

is satis�ed. To further simplify notation it is assumed that the support of Y2 is
denumerable and h and g are normalised so that this is a subset of the positive
integers.

The model is now strengthened by requiring that the conditional quantiles of U1
given U2 are monotonic non-decreasing functions of the value of U2.23

21Recall U2 is normalised uniformly distributed on (0; 1).
22A full analysis in a less restrictive model than that considered here is given in Chesher (2003b).
23 If the quantile functions of U1 given U2 are non-increasing in U2 then the endpoints of the

intervals which follow are reversed.
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I now consider identi�cation of the partial di¤erence

h(m;MU1 [0:5])� h(n;MU1 [0:5])

which measures the e¤ect of changing Y2 from the value m to the value n when U1
is held constant at MU1 [0:5] that is at its conditional median given U2 is equal to its
median, that is 0:5.

Let x be such that the value m is the conditional median of Y2 given X = x.
When Y2 = m and X = x,

pm�1(x) < U2 � pm(x) (5)

where
pm�1(x) � P [Y2 � m� 1jx] pm(x) � P [Y2 � mjx]:

Since m is a conditional median,

pm�1(x) < 0:5 � pm(x): (6)

.
The following result is derived in Chesher (2003b): when the median of U1 given

U2 is constant over the interval (6) and equal to MU1 [pm�1(x)] then:

MY1 [m;x] = h(m;MU1 [pm�1(x)])

and when the median of U1 given U2 is constant over the interval (6) and equal to
MU1 [pm(x)] then:

MY1 [m;x] = h(m;MU1 [pm(x)]):

These are two polar cases given that the quantiles of U1 given U2 are non-decreasing
functions of the value of U2 and it follows that whatever the form of this non-
decreasing dependence:24

h(m;MU1 [pm�1(x)]) �MY1 [m;x] � h(m;MU1 [pm(x)]): (7)

We seek an interval containing h(m;MU1 [0:5]) about which data are informative.
Consider two values of X, xm and xm�1, such that the following rank condition holds.

pm(xm) = 0:5 = pm�1(xm�1) (8)

The inequality (7) evaluated at each of these values of X in turn gives the following
inequalities.

h(m;MU1 [pm�1(xm)]) �MY1 [m;xm] � h(m;MU1 [pm(xm)])

h(m;MU1 [pm�1(xm�1)]) �MY1 [m;xm�1] � h(m;MU1 [pm(xm�1)])

24These inequalities are reversed if the quantiles of U1 given U2 are non-increasing functions of the
value of U2.
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The rank condition (8) ensures that the terms on the right hand side of the �rst of
these inequalities and on the left hand side of the second are equal to each other and
to h(m;MU1 [0:5]) which is the structural feature of interest. It follows that

MY1 [m;xm] � h(m;MU1 [0:5]) �MY1 [m;xm�1] (9)

and so there is set identi�cation of the value of h(m;MU1 [0:5]).
25

Finally consider identi�cation of the e¤ect on h of moving Y2 from the value m to
the value n with U1 held �xed at MU1 [0:5] Suppose there exist fxn�1; xng such that

pn(xn) = 0:5 = pn�1(xn�1) (10)

then arguing as above, there is the following interval identifying correspondence.

MY1 [n; xn] � h(n;MU1 [0:5]) �MY1 [n; xn�1] (11)

With the values of the structural function at Y2 2 fm;ng and U1 = MU1 [0:5]
interval identi�ed there is on combining (9) and (11) the following interval identifying
correspondence for the partial di¤erence of interest.

MY1(m;xm)�MY1(n; xn�1)

� h(m;MU1 [0:5])� h(n;MU1 [0:5]) �
MY1(m;xm�1)�MY1(n; xn)

The following points are discussed in greater detail in Chesher (2003b).

1. The argument above was conducted for the case in which identi�cation of a
partial di¤erence is required with U1 equal to MU1 [0:5], that is its iterated
conditional median. A similar argument applies if identi�cation is required
at the conditional �1-quantile of U1 given U2 is equal to its �2-quantile. The
values of X are chosen so that m and n are both the required �2-quantiles of
Y2 given X and the appropriate conditional �1-quantile of Y1 given Y2 and X
is employed.

2. The argument was conducted assuming that the quantile functions of U1 given
U2 are non-decreasing functions of the value of U2. If the quantile functions
of U1 given U2 are non-increasing functions of the value of U2 then the set
identifying inequality is reversed. Data are informative about the direction of
this dependence so the model only requires a (weak) monotonicity restriction
on the dependence of the quantiles of U1 on the value of U2.

3. It may not be possible to satisfy the equalities in the rank conditions (8) and
(10) when the support of X is sparse. The same set identifying inequality holds
if they are replaced by

pr(xr) � 0:5 � pr�1(xr�1)

for r 2 fm;ng.
25These inequalities are also reversed if the quantiles of U1 given U2 are non-increasing functions

of the value of U2.
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6.2. Additive latent variable models. In the non-additive latent variable model
relaxing the restriction that Y2 is continuously distributed results in loss of point iden-
ti�cation. As shown in the previous Section, set identi�cation can be achieved if the
dependence of U1 on U2 is restricted.

If the restriction that the latent variable in the structural function is additive
is imposed then, as long as a marginal covariation condition is maintained, point
identi�cation is feasible. This is because with discrete Y2 and an additive error the
structural function can be written as a linear function of endogenous variables and
the latent variate.

To see this restrict the support of discrete Y2 to be denumerable and normalise
so that Y2 2 f1; : : : ;Mg. Then the structural equation of interest

Y1 = h(Y2; X) + U1

can be rewritten as follows.

Y1 =
MX
m=1


m(X)� 1[Y2 = m] + U1


m(X) � h(m;X)

1[Y2 = m] =

�
1 ; Y2 = m
0 ; Y2 6= m

This is a linear model for M endogenous binary indicators with an additive error. A
marginal covariation condition, E[U1jx] = c1, and suitable order and rank conditions
lead to a model which arguing along the lines of the Cowles analysis has identifying
power.26 And so we have come full circle for it was with that analysis that we started.

7. Concluding remarks

I have shown how successively weaker models can be shown to identify the sensitivity
of a structural function to variation in an endogenous variable. We started with
the linear model studied by the founders of econometrics. We arrived at a just-
identifying model involving no parametric restrictions allowing error nonseparability
and so a¤ording the possibility of estimation of the distributional impact of policy
interventions. People who use more restrictive models for problems in the class
addressed here can be assured that fundamental identifying power resides in a subset
of the restrictions of their model.

However, the restrictions are not trivial. Once the endogenous variable is discrete
the model I have proposed no longer secures point identi�cation but with a minor
strengthening of conditions set identi�cation can be achieved. Point identi�cation
seems to require very strong restrictions when there is a discrete endogenous variable
unless error-additivity is imposed.

The weakly restricting nonseparable model loses identifying power when other
conditions are relaxed. Of considerable interest from a microeconometric point of
26Das (2003) and Florens and Malavolti (2003) give results concerning estimation and inference

for this problem.
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view is the restriction limiting the number of stochastic unobservables to be no greater
than the number of observable outcomes.27

Many microeconometric models employed in practice admit structures with more
unobservables than outcomes. Leading examples are models permitting measurement
error in explanatory variables, panel data models with individual e¤ects, treatment
e¤ects models, and duration and other models permitting across individual hetero-
geneity in preferences such as are common in modern microeconometric practice.

Without very strong restrictions it seems impossible to identify the value of a
structural function at a particular value of its observable and latent arguments when
there are more latent variates than unobserved outcomes, and without that there can
be no possibility of identi�cation of a partial di¤erence of a structural function with
respect to observable variables.

One way to proceed is to give up the attempt - to focus instead on some aver-
age sensitivity with averaging taking place across the unobservables. This typically
requires the unpalatable restriction that latent variables and instruments be fully
statistically independent.28

An alternative way to proceed is to impose restrictions which require the struc-
tural feature of interest to be invariant with respect to latent variates. An index
restriction can achieve this purpose. Consider a structural function of the following
form

Y1 = h(�(Y2; X); U1; U2; : : : ; UM )

which depends on an index �(Y2; X) which is free of latent variates but with Y2
endogenous, that is jointly dependent with the latent U�s. Similar conditions to
those just considered lead to a model that identi�es the relative sensitivity of the
index � to variation in the endogenous Y2 and elements of X.29

Surveying applied microeconometric work one has the impression that researchers
are often not content to estimate measures of index relative sensitivity or average
structural functions. As a result there is frequent use of models whose identifying
power resides in very strong restrictions.

If very strong identi�cation conditions are required then one must have concern
for the robustness of the econometric inference which �ows from these models. Two
researchers addressing the same data can employ di¤erent sets of strong identifying
restrictions and produce di¤erent answers to what is essentially the same question.
The di¢ culty is that strong conditions often have dubious economic provenance and
then obtaining agreement on what identifying restrictions can be maintained may be
di¢ cult and progress of economic knowledge may then be hampered.30

How to weaken identi�cation conditions in the models employed in modern mi-
croeconometric practice is a challenging open research question.

27As noted by Hurwicz (1950) errors must be non-additive in this case. Otherewise they would
coalesce.
28See Imbens and Newey (2003) for results on nonparametric identi�cation and estimation of aver-

age structural functions. The treatment e¤ects literature contains examples of models and �average�
structural features in which identi�ng power resides in weaker mean independence restrictions.
29See Chesher (2002b) for an analysis in the context of heterogeneous duration models.
30Manski (2003) uses this argument to motivate the analysis of partial (set) identi�cation which

rests on core identifying restrictions on which many might agree.
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