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Abstract

This paper proposes a test for Lorenz dominance. Given independent samples
of income or other welfare related variable, we propose a test of the null hypothesis
that the Lorenz curve for one population is dominated by the Lorenz curve for a
second population. The test statistic is based on the standardized largest difference
between the empirical Lorenz curves for the two samples. The test is completely
nonparametric in the sense that no distributional assumptions are made and the test
is also consistent because it compares the Lorenz curves at all quantiles. We derive
the asymptotic distribution of the test statistic under the null hypothesis. Since the
limiting distribution of the test statistic is nonstandard, being dependent on the
underlying Lorenz curves, we propose the use of two computer based procedures
for conducting inference. The first is a simulation method that simulates p-values
from an approximation to the underlying limiting distribution of the statistic while
the second is based on the nonparametric bootstrap. In addition to providing a
theoretical justification for the proposed methods, we examine the performance of
the methods in a Monte Carlo study and with a comparison of the income based
Lorenz curves for the US and Canada over time.
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1 Introduction

A commonly used tool for the empirical analysis of economic inequality is the Lorenz

curve which gives the cumulative proportion of total income (or resources) by cumulative

proportion of the population when the population is ordered from poorest to richest.

When comparing income distributions, a fundamental concept is that of Lorenz dom-

inance. The Lorenz curve associated with an income distribution is said to (weakly)

dominate another if it is nowhere below the other. As has been shown by Atkinson

(1970), Lorenz domination translates into simple facts concerning the degree of egali-

tarianism associated with the respective income distributions. The income distribution

corresponding to the dominant Lorenz curve is more egalitarian. Moreover, it has been

shown by Atkinson (1970) that Lorenz dominance translates into the (partial) ranking

of income distributions based on the set of scale-free inequality indices that respect the

principle of transfers.1 An empirical method for directly inferring Lorenz dominance is

therefore very desirable.

The work of Beach and Davidson (1983) represented a key development in the use of

Lorenz curves for statistical inference in economics. They derived the sampling properties

of a subset of ordinates from the empirical Lorenz curve and presented the test statistic

for the null hypothesis that two separate Lorenz curves were equal. Note that this was a

test of Lorenz equality rather than Lorenz dominance. Bishop, Formby and Smith (1991a,

1991b) proposed a test of Lorenz dominance based on the covariance matrix derived by

Beach and Davidson (1983). Their approach involved pair-wise multiple comparisons of

the empirical Lorenz ordinates for two distributions. Lorenz dominance is inferred when

there is at least one positive significant difference and no negative significant difference

between the two subsets of Lorenz ordinates.

The aim of the current paper is to develop a flexible yet consistent test for Lorenz

dominance. The flexibility of our approach derives from the fact that we use empirical

1More formally, the set of inequality indices satisfying the principle of transfers is the class of indices
that are Schur-Concave (Dasgupta, Sen and Starrett, 1973). The set of scale-free Schur-concave in-
equality indices includes the Atkinson indices, the Gini coefficient and its extensions, and the coefficient
of variation: see Shorrocks and Foster (1987) for a detailed treatment.
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Lorenz curves, which can be obtained quite simply from the empirical distributions asso-

ciated with the two income samples (which are assumed to be independently drawn from

two possibly distinct populations). The empirical Lorenz curve is a fully nonparamet-

ric estimator of the true underlying Lorenz curve associated with the distribution and

was first analysed by Goldie (1977). Therefore, in contrast to the recent empirical work

of Basmann, Hayes and Slottje (1993) and Ryu and Slottje (1996), we do not rely on

functional form approximations to the Lorenz curve which are potentially inconsistent.

The second feature of our test is that it is consistent in the sense that it can detect any

violation of the null hypothesis of weak Lorenz dominance. This is achieved by comparing

the empirical Lorenz curves at all quantiles. The tests of Lorenz dominance proposed by

Bishop, Formby and Smith (1991a, 1991b) are based on estimates of a small number of

Lorenz curve ordinates (typically deciles).2 By restricting attention to a subset of Lorenz

curve ordinates, these tests do not use all the information available in a given sample and

are therefore potentially inconsistent. The test presented in this paper utilises all the

sample information and hence provides a consistent test of Lorenz dominance — our test

can be considered as analogous to tests of stochastic dominance proposed in McFadden

(1989) and further elaborated and extended by Barrett and Donald (2003). The fact

that the empirical Lorenz curves are piecewise linear and continuous implies that we can

compare the Lorenz curves at all points with a finite number of calculations. The main

difficulty with our test is that the limiting distribution of the proposed test statistic is

nonstandard and will generally depend on the underlying Lorenz curves. We propose

and compare two solutions to this difficulty. The first is to use a p-value simulation

method that is similar to that used in Hansen (1996). The second is based on the better

known bootstrap methods. We show that both methods can be justified theoretically

in the sense of providing asymptotically valid inferences concerning the null hypotheses.

Additionally, as shown in a Monte Carlo experiment, the tests work well with moderate

2The tests of Lorenz dominance implemented in Bishop, Formby and Smith (1991a, 1991b) was based
on nine ordinates (corresponding to population deciles) of the Lorenz curve. Althought it is feasible
to expand the set of Lorenz curve ordinates used for the test, for their method to be implemented it is
necessary to group the samples into a subset of quantiles.
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sample sizes. We also address the issue of computational demands that the two methods

impose.

The remainder of the paper is organized as follows. In Section 2 we state our testing

problem, review some results pertaining to the properties of empirical Lorenz curves,

propose a test statistic and provide a characterization of the limiting distributions of the

test statistics under the null hypothesis in terms of well known stochastic processes. In

Section 3 we consider the use of a simulation method due to Hansen (1996) for computing

p-values for the tests and give a theoretical justification for the method in the present

context. In Section 4 the non-parametric bootstrap approach to conducting inference

is presented and theoretically justified. Section 5 provides a brief Monte Carlo study

that examines how well the asymptotic arguments work in small samples. Finally, in

Section 6 we implement the tests by comparing the Lorenz curves for the distribution

of family income in the US and Canada over time and across countries. Our empirical

results provide strong evidence that inequality has significantly increased in the US over

the period 1978-1998. The evidence for Canada is less clear-cut but does suggest that

the 1990’s have seen an unambiguous increase in inequality. When comparing the Lorenz

curves across the two countries there is clear evidence to suggest that there is much less

inequality in Canada and that, if anything, the degree of dominance of the Canadian

Lorenz curve has grown over time. An Appendix deals with the issue of computing the

test statistics and shows that they can be computed quite simply using a finite number

of calculations.3

3The authors have written Gauss procedures that allow one to compute the test statistics and to
obtain p-values. These are available on request.

4



2 Asymptotic Properties of Lorenz Dominance Test

Statistics

2.1 Hypothesis Formulation

We are interested in comparing the Lorenz curves associated with the distributions of

income (or some other measure of welfare) in two different populations. We represent

the populations by their respective cumulative distribution functions(c.d.f.’s) F and G.

We make the following assumptions regarding these population c.d.f.’s.

Assumption 1 Assume that F and G are twice continuously differentiable with associ-

ated probability density functions given by f(y) = F 0(y), and g(y) = G0(y) where

0 < inf f(y) < sup f(y) <∞ and 0 < inf g(y) < sup g(y) <∞.

The Lorenz curves (at ordinate value p ∈ [0, 1]) for the respective populations are
defined by,

LF (p) =

RQF (p)
−∞ yf(y)dyR∞
−∞ yf(y)dy

and,

LG(p) =

RQG(p)
−∞ yg(y)dyR∞
−∞ yg(y)dy

where QF (p) = F−1(p) and QG(p) = G−1(p) are the respective quantile functions. Con-

venient alternative representations are,

LF (p) =

R p
0 QF (p)dy

µF

and,

LG(p) =

R p
0 QG(p)dy

µG

where µF and µG are the means for F and G respectively.

The hypotheses that we are interested in testing are:

HG
0 : LG(p) ≤ LF (p) for all p ∈ [0, 1]

HG
1 : LG(p) > LF (p) for some p ∈ [0, 1]
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Note that the null hypothesis is that the Lorenz curve for the population F is everywhere

at least as large as that for the population G. This will be referred to as Weak Lorenz

Dominance of LF over LG. The way that we have set up these hypotheses is consistent

with much of the literature on testing stochastic dominance (see McFadden (1989) for

instance). Note that the null hypothesis also includes the case where the Lorenz curves

coincide. As has been shown in Lambert (1993), this can only occur if F (z) = G(αz)

for some non-negative value of α. That is, multiplying all incomes in a population by

the same constant does not affect the Lorenz curve associated with the distribution. The

alternative hypothesis is true whenever the Lorenz curve for G is above that for F for

some point. Note also that we could just as well reverse the roles of F and G and test

similar hypotheses. This would allow one to determine whether a Lorenz curve dominated

another in a stronger sense. In particular if one considered the hypotheses,

HF
0 : LF (p) ≤ LG(p) for all p ∈ [0, 1]

HF
1 : LF (p) > LG(p) for some p ∈ [0, 1]

then the hypotheses HG
0 and HF

1 together imply the strong dominance of LF over LG

so that in principle one could use the tests to determine whether or not there is strong

dominance. Note also that the hypotheses HF
0 and HG

0 together imply that the Lorenz

curves are identical.

2.2 Properties of Lorenz Curve Estimators

Our aim is to make inferences regarding the hypotheses described in the previous section

based on samples drawn from the respective populations described by F and G. Our

assumption regarding the sampling procedure is the following.

Assumption 2: Assume the following,

(i) {Xi}Ni=1 is a random sample from F ,

(ii) {Yi}Mi=1 is a random sample (independent of the sample described in (i)) from G,
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(iii) the sampling scheme is such that as N,M →∞,
N

N +M
→ λ

where 0 < λ < 1.

The empirical distributions are respectively,

F̂N(z) =
1

N

NX
i=1

1(Xi ≤ z)

ĜM(z) =
1

M

MX
i=1

1(Yi ≤ z)

We can define the respective quantile functions as,

Q̂F (p) = inf{z : F̂N(z) ≥ p}
Q̂G(p) = inf{z : F̂N(z) ≥ p}

Then the empirical Lorenz curve (hereafter LC), at ordinate value p, can be defined in

terms of the quantile function by,

L̂F (p) =

R p
0 Q̂F (t)dt

µ̂F

L̂G(p) =

R p
0 Q̂G(t)dt

µ̂G

where µ̂F = X̄N and µ̂G = ȲM are the respective sample means. Note that the numerators

are the respective generalized Lorenz curves.

As is well known appropriately standardized empirical distribution functions (consid-

ered as elements of the function space4 D[a, b]) satisfy the following weak convergence

results:

√
N(F̂N − F ) ⇒ BF ◦ F

√
M(ĜM −G) ⇒ BG ◦G

These imply that for a given value of z ∈ [a, b],
4The space D[a, b] is the space of cadlag functions on [a, b].
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√
N(F̂N(z)− F (z)) ⇒ BF (F (z)) ∼ N(0, F (z)(1− F (z)))

√
M(ĜM(z)−G(z)) ⇒ BG(G(z)) ∼ N(0, G(z)(1−G(z)))

Our first result provides a characterization of the limiting properties of the empirical LC’s.

Note that since the LC is a scaled version of the quantile function then the standardized

empirical LC’s can be considered as members of the function space C[0, 1] since they are

piecewise linear and continuous. Before providing the result we define some notation.

For an arbitrary distribution function H (say) define, BH ◦ H as the Brownian Bridge

process composed of H. That is for a particular value of z (BH ◦ H)(z) ≡ BH(H(z))
where BH is the usual Brownian bridge for the population H. Also define the Gaussian

stochastic process, GH on [0, 1] to be such that for p ∈ [0, 1],

GH(p) = −
Z p

0

BH(t)
h(QH(t))

dt

and finally the process LH to be such that for p ∈ [0, 1],

LH(p) =
GH(p)
µH

− LH(p)

µH
GH(1)

A process such as LH will be referred to as a Lorenz process for the distribution H. The

following result shows that the normalized empirical Lorenz Curve processes have limits

that are of the form just given.

Lemma 1: Given our assumptions on F and G,

(i) for the F population we have that,

sup |L̂F (p)− LF (p)| a.s.→ 0

and in the space C[0, 1],

√
N(L̂F − LF )⇒ GF

µF
− LF

µF
GF (1) ≡ LF .

(ii) for the G population we have that,

sup |L̂G(p)− LG(p)| a.s.→ 0
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and in the space C[0, 1],

√
M(L̂G − LG)⇒ GG

µG
− LG

µG
GG(1) ≡ LG.

This result is simply a restatement of Lemma 3 of Barrett and Donald (2002). The

results contained in Lemma 1 are not new and date back to at least Goldie (1977), who

presented a full weak convergence result for the LC process under very weak conditions

— our assumptions are slightly stronger than required by Goldie (1977). Other results

concerning the empirical LC process include Gail and Gastwirth (1978) who derived an

asymptotic distribution result for a single ordinate of the normalized LC and Csörgó

(1983) who proved that the empirical LC process could be strongly approximated by

a sequence of Gaussian processes which are equal in distribution to that given in the

result. Beach and Davidson (1983) also presented this result for a vector of ordinates of

the Lorenz curve and showed how one could obtain estimates of its variance covariance

matrix without imposing distributional assumptions. An important difference in this

paper is that we wish to compare Lorenz curves at all points and not at an arbitrary

selected (and fixed) set of ordinate values.

2.3 Dominance Test Statistic and Asymptotic Properties

The test statistic that we propose for testing the null hypothesis that distribution F

weakly Lorenz dominates distribution G is:

ŜG =
µ

NM

N +M

¶1/2
sup
p
(L̂G(p)− L̂F (p))

and the natural decision rule for conducting the test has the form,

“reject HG
0 if ŜG > cl”

where cl is some critical value that will be discussed later. The following result charac-

terizes the properties of this test.
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Proposition 1: Given Assumptions 1 and 2 and that cl is a finite constant, then

(i) if HG
0 is true,

lim
N,M→∞

P (reject HG
0 ) ≤ P (sup

p
LG(p) > cl) = α(cl),

with equality holding when LF (p) = LG(p) for all p ∈ [0, 1],

(ii) if HG
0 is false,

lim
N,M→∞

P (reject HG
0 ) = 1.

The stumbling block to implementing the test as it stands is that the critical value will

generally depend on the LC for G. More particularly the distribution of LG(p) depends

on LG so that a critical value corresponding to one’s desired significance level cannot

generally be found without knowledge of LG. Note also that the test is consistent in the

sense that whenever the null is false the test rejects with probability that approaches one

as long as we use a finite critical value. We explore the actual decision rule further in

the next section. A similar result that is much simpler to prove is the following.

Corollary 1: Given Assumptions 1 and 2 and that cl is a finite constant, then

(i) if HF
0 is true,

lim
N,M→∞

P (reject HF
0 ) ≤ P (sup

p

√
λLG(p)−

√
1− λLF (p) > cl) = α(cl),

with equality holding when LF (p) = LG(p) for all p ∈ [0, 1],

(ii) if HF
0 is false,

lim
N,M→∞

P (reject HF
0 ) = 1.

The difference between the results in (i) of Proposition 1 and Corollary 1 is in the

nature of the random variable that appears in the limiting probability of rejection. Al-

though Corollary 1 is simpler to prove its characterization is more complicated, involving

the limiting Lorenz processes for both distributions. On the other hand the proof of
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Proposition 1 is more involved but results in a characterization that involves only the

Lorenz process for the G distribution. An implication of the simpler characterization in

Proposition 1 is that it will be computationally much easier to implement. In particular,

our approach to inference is computational and involves two methods of simulating the

process that appears in the limiting distribution. Because of the cost of the calculations

involved the result in Proposition 1 is also of practical importance because it means that

one can use roughly half as many calculations to conduct inference — one will only need to

simulate the Lorenz process for one population rather than for two as would be required

by the characterization in Corollary 1.

3 Simulating P-Values Using the Limiting Distribu-

tion

As noted in the previous section the difficulty in implementing the tests in practice arises

because the distribution of LG(p) will generally depend on LG(p). In this section we

consider the use of simulation or Monte Carlo methods for conducting inference with the

test, based on the methods of Hansen (1996), exploiting the fact that we can estimate

LG(p) consistently and that we have a characterization of the process LG(p). First we

provide a definition of a stochastic process that is essentially linearized version of the

empirical Lorenz Curve process corresponding to LG that has the same limiting behaviour

as
√
M(L̂G − LG). The random components of this process are,

Z̃G =
1√
M

MX
i=1

(Yi − µG)

B̃G(p) =
1√
M

MX
i=1

(1(Yi ≤ QG(p))− p)

C̃G(p) =
1√
M

MX
i=1

(Yi1(Yi ≤ QG(p))− E(Yi1(Yi ≤ QG(p)))

and we define the linearized version of
√
M(L̂G − LG) as,

L̃G,M(p) = − 1

µG
(QG(p)B̃G(p)− C̃G(p))− LG(p)

µG
Z̃G
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The function L̃G,M can be treated as belonging to l∞([0, 1]) — the space of bounded

functions on the unit interval, even though the function is actually an element of the much

smaller space D[0, 1]. The following result shows that the stochastic process converges

weakly (in l∞([0, 1])) to the (C[0, 1] function) LG(p).

Lemma 2: Given Assumptions 1 and 2, in the space l∞([0, 1]),

L̃G,M(p)⇒ LG(p).

The importance of the result lies in the fact that we can easily simulate copies of the

three (non-degenerate) random components B̃G, C̃G and Z̃G by replacing unknowns with

consistent estimates and by exploiting the multiplier Central Limit Theory exposited in

Van der Vaart and Wellner (1996). Moreover the processes can be constructed in such a

way as to be independent of the original random components but with identical limiting

distributions. To do this let {Ui}Ni=1 denote a sequence of i.i.d. N(0, 1) random variables
that are independent of the samples. For each value of p ∈ [0, 1] let,

Z̃∗G =
1√
M

MX
i=1

(Yi − µ̂G)Ui

B̃∗G(p) =
1√
M

MX
i=1

(1(Yi ≤ Q̂G(p))− p)Ui

C̃∗G(p) =
1√
M

MX
i=1

(Yi1(Yi ≤ Q̂G(p))− µ̂G(p)))Ui

and finally let,

L̃∗G(p) = −
1

µ̂G
(Q̂G(p)B̃

∗
G(p)− C̃∗G(p))−

L̂G(p)

µ̂G
Z̃∗G (1)

The following result is fundamental to proving that the approach is valid.

Lemma 3: Given Assumptions 1 and 2 random process L̃∗G converges (weakly in prob-

ability) to L0G where L0G has the same distribution as LG but is independent of

LG.
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Given the simulated process and its independence from the processes corresponding

to the samples we can simulate p-values for the test as,

p̂G = PU(sup
p

L̃∗G(p) > ŜG) (2)

where PU(.) is the probability function associated with the normal random variables

Ui and is conditional on the realized sample(s). Note that these p-values depend on

the sample sizes N and M although we have suppressed the dependence for notational

convenience. The following result provides a justification for the p-value approach.

Proposition 2: Given Assumptions 1, 2 and assuming that α < 1/2, a test for Lorenz

Dominance based on the rule,

“reject HG
0 if p̂G < α”

satisfies the following,

limP (reject HG
0 ) ≤ α if HG

0 is true

limP (reject HG
0 ) = 1 if HG

0 is false

This result is similar to part of the proof of Theorem 2 of Hansen (1996). The main

difference is that in our case we must deal with the fact that we have a one sided composite

null. The result implies that a test based on the decision rule “reject HG
0 if p̂G < α” will

reject a true null hypothesis with probability that is (asymptotically) no larger than α.

The probability will be (asymptotically) equal to α when in fact LF = LG (in which case

the inequalities in the statement of Proposition 1 hold with equality).

In order to compute the p-values in practice we must deal with the fact that the

probabilities in (??) and (2), the suprema that define the relevant random variables,

must be calculated. As suggested by Hansen (1996) we use Monte-Carlo methods to

approximate the probability and use a grid to approximate the suprema. Since these are
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under the control of the statistician one can make the approximations as accurate as one

wants given time and computing resources.

More specifically let {U r
i }Ni=1 denote the rth sample of Ui where we will let r = 1, ..., R

where R will denote the number of replications that will be used in the Monte Carlo

simulation. Select a grid of values on [0, 1] such as 0 = p0 < p1 < ... < pK = 1, where K

will denote the number of subintervals. Then at the pj values we let,

Z̃r
G =

1√
M

MX
i=1

(Yi − µ̂G)U
r
i

B̃r
G(pj) =

1√
M

MX
i=1

(1(Yi ≤ Q̂G(pj))− p)U r
i

C̃r
G(pj) =

1√
M

MX
i=1

(Yi1(Yi ≤ Q̂G(pj))− µ̂G(pj)))U
r
i

and we approximate the supremum for the rth sample by,

S̃r = max
j

L̃r
G(pj)

where,

L̃r
G(p) = −

1

µ̂G
(Q̂G(p)B̃

r
G(p)− C̃r

G(p))−
L̂G(p)

µ̂G
Z̃r
G

Then the p-values can be approximated by,

p̂G ' 1

R

RX
r=1

1(S̃r > ŜG).

As indicated by Hansen (1996), an appeal to the Central Limit Theorem suggests that

the error in approximating p̂j should have a standard error that is approximately no

larger than (4R)−1/2 so that if R = 1000 (or say 10,000) for instance the standard error

in this approximation is roughly 0.015 (or 0.005 when R = 10000) and much smaller in

cases where p̂j is close to zero.

4 Bootstrap Based Inference

A natural alternative to the p-value simulation method is to conduct inferences using

a form of the bootstrap. A possible advantage of this is that, although existence of a
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limiting distribution (for the test statistic) is generally needed, one does not necessarily

need to be able to characterize it in the way that we were able to in the previous section.

As in the previous section we rely on the result in Proposition 1 which helps greatly in

simplifying the number of calculations needed to bootstrap the statistic.

Because of the cost in implementing the bootstrap we allow for the possibility of using

only a subset of the observations to estimate the distribution of the object, suppLG(p).

The sample of observations from the G population was assumed to be a random sample,

so without loss of generality we can take the first k ≤M observations as being a random

selection from this sample.5 Let the sample from which we will resample be given by

Y = {Y1, ..., Yk}. For this particular sample we can define the following,

Ĝk(y) =
1

k

kX
i=1

1(Yi ≤ y)

Q̂G,k(p) = inf{z : Ĝk(z) ≥ p}

L̂G,k(p) =

R p
0 Q̂G,k(t)dt

µ̂G,k

which are the empirical c.d.f., quantile function and Lorenz curve respectively for the

sample Y . Note that µ̂G,k is the mean of the Y sample. In performing bootstrap compu-
tations we fix these objects, or in other words operate conditionally on Y . Let a random
sample (drawn with replacement) of size k from Y be given by Y ∗1 , ..., Y

∗
k . For each

random sample we can define,

Ĝ∗k(y) =
1

k

kX
i=1

1(Y ∗i ≤ y)

Q̂∗G,k(p) = inf{z : Ĝ∗k(z) ≥ p}

L̂∗G,k(p) =

R p
0 Q̂

∗
G,k(t)dt

µ̂∗G,k

where µ̂∗G,k is the mean of the randomly drawn sample. These objects are all random

variables conditionally on the original sample Y . Through Monte Carlo simulation (by
drawing many random samples from Y) we can obtain a good approximation to the

5Of course this assumes that no sorting has been done. If the data has been sorted then for the
arguments of this section to be valid we would need to randomly select (without replacement) k of the
original data points.

15



distribution of,

sup
p

√
k(L̂∗G,k(p)− L̂G,k(p))

and can use quantiles as critical values in conducting tests of Lorenz dominance. Equiv-

alently we can conduct inferences by rejecting the null when,

p̂G,k = P (sup
p

√
k(L̂∗G,k(p)− L̂G,k(p)) > ŜG|Y) < α

for some prespecified value of α. The p-value can be approximated by Monte Carlo as,

p̂G,k ' 1

R

RX
r=1

1(sup
p

√
k(L̂∗G,k,r(p)− L̂G,k(p)) > ŜF )

where L̂∗G,k,r(p) is the rth realization of a random sample from Y. The following result
provides a justification for this approach.

Proposition 3: Let Assumptions 1, 2 hold and assume that α < 1/2. Then if k → ∞
as N,M →∞ then a test for Lorenz Dominance based on the rule,

“reject HG
0 if p̂G,k < α”

satisfies the following,

limP (reject HG
0 ) ≤ α if HG

0 is true

limP (reject HG
0 ) = 1 if H

G
0 is false

5 Monte Carlo Results

In this section we consider a small scale Monte Carlo experiment in which we gauge the

extent to which the preceding asymptotic arguments hold in small samples. Of course

there are a whole host of possible specifications that one could employ in conducting an

investigation of the small sample properties of the procedures developed in this paper.

We consider a few cases that illustrate the properties of the test in a variety of situations

and consider both the size and power properties of the tests. We use distributions in the

log-normal family because they are easy to simulate and also because they have been
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used in empirical work on income distributions. We generate two sets of samples from

two (possibly different) distributions. In the first two cases we generate Xi and Yi as

(independent) log-normal random variables using the equations,

Xi = exp(σ1Z1i + µ1)

Yj = exp(σ2Z2j + µ2)

where the Z1i and Z2j are independent N(0, 1). In Case 1, µ1 = µ2 = 0.85 and σ1 = σ2 =

0.6. With this choice of parameters the two populations have the same distribution with

means equal to 2.8 and standard deviations equal to 1.8 — the ratio of the mean to the

standard deviation of 2.8/1.8 = 1.55 is similar to that found in actual income data. In

Case 1 the Lorenz curves for the two populations are identical and our interest is in the

size properties of the testing procedure. In this case the

The second case, Case 2, µ1 = 0.85, and σ1 = 0.6 while µ2 = 0.7 and σ2 = 0.5. In this

case the Lorenz curve for Y dominates the Lorenz curve for X — indeed the Lorenz curve

for Y lies above that for X everywhere except at the endpoints of the interval [0, 1]. This

case is illustrated in Figure 1. In this case we should expect that we do not reject the

hypothesis HG
0 but we should reject H

F
0 .
6 We consider tests of both of these hypotheses.

Note also that in this case we should expect that the test will reject HG
0 less often than

the nominal size of the test because of the inequality in Proposition 1.

In the final case, Case 3, we generate X as before but now generate Y as a mixture

of log-normal random variables. In particular,

Yi = 1(Ui ≥ 0.2) exp(σ2Z2j + µ2) + 1(Ui < 0.2) exp(σ3Z2j + µ3)

where Ui is a uniform [0, 1] random variable, Z2j and Z3j are independent standard normal

random variables and where µ2 = 0.6, and σ2 = 0.2 while µ3 = 1.8 and σ3 = 0.3. In

this case we have crossing Lorenz curves as illustrated in Figure 2. Neither Lorenz curve

dominates the other and we should expect the both HG
0 and HF

0 to be rejected.

6Recall the distribution function for Xi is denoted F and the distribution function for Yi is denoted
G.
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In performing the test of Lorenz Dominance we use the decision rule,

“reject HG
0 if p̂G < α”

where p̂G is the simulated p-value for the test statistic T̂G . For all of the experiments

we used sample sizes of N = M = 50 and N = M = 500. The number of replications

was set to 1000 in the case with N =M = 50 and 500 in the case where the sample sizes

were N =M = 500.

In using the p-value simulation method we set the number of gridpoints at K = 100

and we used R = 100 replications in computing the p-value for each statistic. For the

bootstrap method we used bootstrap sample sizes equal to k = 50 in the N = M =

50 case and k = 100, 200 and 500 in the case where N = M = 500. As in the p-

value simulation method we used R = 100 replications to approximate the p-value in

each Monte Carlo simulation. The results for the Monte Carlo simulations are reported

in Tables I-III. The tables all report the proportion of times that the respective null

hypothesis was rejected for three different nominal significance levels α.
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HG
0 HF

0

Nominal Size Nominal Size
Sample Size Method 0.1 0.05 0.01 0.1 0.05 0.01

50 S 0.149 0.097 0.051 0.162 0.116 0.041
B50 0.158 0.099 0.048 0.130 0.089 0.038

500 S 0.118 0.072 0.016 0.120 0.062 0.018
B100 0.130 0.084 0.032 0.124 0.062 0.026
B200 0.134 0.076 0.028 0.128 0.068 0.016
B500 0.132 0.078 0.016 0.146 0.072 0.020

Table I: Monte Carlo Results:Case 1

HG
0 HF

0

Nominal Size Nominal Size
Sample Size Method 0.1 0.05 0.01 0.1 0.05 0.01

50 S 0.471 0.364 0187 0.028 0.014 0.006
B50 0.472 0.374 0.222 0.021 0.013 0.002

500 S 0.990 0.972 0.836 0.000 0.000 0.000
B100 0.982 0.956 0.832 0.000 0.000 0.000
B200 0.984 0.962 0.852 0.000 0.000 0.000
B500 0.988 0.968 0.842 0.000 0.000 0.000

Table II: Monte Carlo Results:Case 2

HG
0 HF

0

Nominal Size Nominal Size
Sample Size Method 0.1 0.05 0.01 0.1 0.05 0.01

50 S 0.074 0.030 0.004 0.489 0.384 0.212
B50 0.062 0.017 0.004 0.480 0.367 0.198

500 S 0.872 0.602 0.118 0.988 0.984 0.896
B100 0.798 0.430 0.060 0.990 0.984 0.904
B200 0.834 0.474 0.064 0.992 0.984 0.922
B500 0.952 0.710 0.170 0.996 0.980 0.884

Table III: Monte Carlo Results:Case 3

19



Several features of the tests are of note. The tests tend to over-reject in small samples

although the degree of over-rejection is not too severe. As would be expected, there is

some improvement as one moves to the larger sample size — this is most evident for the

p-value simulation method. For the bootstrap method the improvement is not as obvious

and it is suspected that because of the large number of pseudo random number used, that

some cycling may have occurred. This type of problem would be most likely to occur in

the case where the bootstrap sample size was 500. In terms of size the p-value simulation

test appears to be slightly better than the bootstrap, although one should bear in mind

the potential cycling in the case of the bootstrap. It should be noted that the sample

sizes considered are rather small compared to many empirical applications so that the

fact that the actual sizes of the test are close to the nominal size is encouraging.

In terms of power the tests appear to be quite similar. In case 2 the tests detect the

fact that the Lorenz curve for Y (which has distribution G) dominates that for X. As a

result the hypothesis HG
0 is rejected with high probability. It is interesting to note that

the hypothesis HF
0 is never rejected (in the large sample) in this case — this feature of the

test is related to the one sided composite nature of the null hypothesis and is similar to

the behavior of tests of one sided restrictions on parameters. In case 3, the neither curve

is dominant and so the tests reject both nulls with high probability in the large sample

case. In small samples the tests have a hard time detecting the failure of the hypothesis

HG
0 because the violation of this hypothesis is quite small (as seen in figure 2).

In terms of the bootstrap method one is interested in the impact of the choice of

bootstrap sample size on the performance of the tests. The results in Tables I-III indicate

that the choice of k does not seem to matter so that the computational savings afforded

by using only a subsample do not appear to be too great. This is a nice feature, especially

given the large sizes of samples typically used in income distribution studies.
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6 Empirical Example

In this section we implement the methods for the testing for Lorenz dominance relations

by examining the distribution of family income in the United States and Canada. The

data for Canada are from the Family Expenditure Survey (FAMEX) for years 1974, 1978,

1982, 1990 and 1996. We consider annual total family income, both before and after

taxes. The data for the United States are drawn from the March Demographic files of

the Current Population Survey (CPS) which record total family income before taxes for

the years 1978, 1988 and 1998.7 Sample sizes and summary statistics are reported in

Tables II and III for Canada and the US, respectively.8 The reported dollar amounts

are in 1998 US dollars. For Canada/US, the GDP/GNP implicit price deflator for

consumption is used as the inflation index, and the Canadian dollar values are converted

to US dollars using the 1990 OECD estimate of the purchasing power parity for final

private consumption goods which was 1.29 (OECD, 1993).9

Year before/after Sample Size Mean Median Std. Dev

1974 before 6408 33074 28894 22900
1978 before 8526 35535 32423 22098
1982 before 9999 37881 33914 24526
1990 before 4268 40326 35554 26926
1996 before 9739 38188 32714 26841
1974 after 6408 27945 25110 17471
1978 after 8526 29840 27813 16873
1982 after 9999 31696 28937 18573
1990 after 4268 31979 28912 19103
1996 after 9739 30708 27209 19393

Table IV: Canadian Summary Statistics

7For each CPS a random sample of approximately 8000 family records were selected for the analysis.
8The sample frame of the FAMEX varied across the surveys. To ensure the same population was

sampled in each year we restricted the analysis to households consisting of a single ‘economic family’
(individuals related by blood, marriage or adoption). The Canadian definition of an economic family is
equivalent to the family concept used in the CPS. Additionally, it is noted that observations with zero
or negative reported incomes were dropped from the analysis: these accounted for a very small number
of observations.

9The conversion of nominal values to constant US dollars is simply for descriptive purposes as income
shares and hence the Lorenz curve are unaffected by a common scaling of all incomes.
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Year before/after Sample Size Mean Median Std. Dev
1978 before 7896 32009 26586 24616
1988 before 7852 37064 28870 31175
1998 before 7879 44006 31000 48469

Table V: US Summary Statistics

The first series of comparisons examine changes in the Canadian distribution of family

income over time. Tables IV and V give results based on the p-value simulation method

and the bootstrap method respectively. In the case of the p-value simulation method

we chose a grid of 100 points on [0, 1] and performed 1000 replications to compute the

p-value. For the bootstrap method we chose k = 1000 and conducted inferences using a

random subsample drawn from the appropriate sample in order to perform the bootstrap

simulations. We also used 1000 draws to compute the approximate p-value. In terms

of the results the two methods gave essentially the same results, suggesting that either

method could be used in practice. Moreover, the bootstrap method was tried using

several different randomly selected subsamples with identical results.10

Because of the similarity of the two sets of results we focus on Table IV. The first

two columns of results in Tables IV are for the distribution of after-tax income, and the

last two columns relate to the before-tax income distribution. The test statistics reject

the hypothesis that the 1974 after-tax income distribution weakly Lorenz dominated

the 1982 distribution, whereas the converse is not rejected. The evidence therefore

shows that between 1974 and 1982 the Canadian distribution of after-tax family income

became unambiguously more equal. Comparing the distributions for 1982 and 1990

indicates that weak dominance is not rejected for either distribution, which together

implies that the Lorenz curves for these two years are not significantly different. This

result was replicated using the bootstrap method. Considering more recent trends, the

tests reveal that the 1990 after-tax income distribution strongly Lorenz dominated the

1996 distribution. Overall, the tests of Lorenz dominance reveal a clear trend toward

equality in the Canadian distribution of after-tax family income during the later part of

10The bootstrap simulations were also performed for k = 2000 as well as with the full sample. The
bootstrapped p-values were numerically very similar, and the inferences identical, to those reported for
k = 1000 in Table VII .
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the 1970’s, there was a period of relative stability during the course of the 1980’s while

the 1990’s have witnessed a clear increase in family after-tax income inequality.

The Lorenz dominance tests were replicated using the Canadian before-tax family in-

come. The inferences drawn from these tests generally coincide to those discussed above

for the after-tax distribution. The exception was that the1982 before-tax income distri-

bution was found to dominate the 1990 before tax distribution at conventional levels of

significance using both methods.11 The difference in the test results for the after-tax and

before-tax comparisons for 1982-1990 suggest that the Canadian tax system effectively re-

distributed income toward the bottom of the distribution over this period, counteracting

the trend toward greater inequality evident in the before-tax income distribution.

The next series of results relate to changes in the United States distribution of before-

tax family income. The p-values (for both methods) clearly show that there was a trend

toward greater inequality in family income between 1978 and 1988, and that this trend

continued throughout the decade from 1988 to 1998.

The final set of tests relate to a comparison of the Canadian and US family income

distribution at different points in time. In 1978 the Canadian distribution of family

income strongly Lorenz dominated the US distribution. Given the findings reported

above for trends in inequality within each country over the 1980’s, it is unsurprising

that the Canadian family income distribution in 1990 strongly Lorenz dominated the US

distribution for 1988. Although both countries experienced growing income inequality

over the 1990s, the 1996 Canadian distribution clearly remained more equal than the

1998 US family income distribution. Indeed, although not reported in the tables, the

magnitude of the test statistics indicate that the extent of the dominance of the Canadian

distribution over the US distribution has grown over time.

11With p-values of 0.072 and 0.60 for the simulation and bootstrap methods, respectively.
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after tax before tax

G F HG
0 HF

0 HG
0 HF

0

C1974 C1982 0.000 0.900 0.000 0.904
C1982 C1990 0.716 0.149 0.926 0.072
C1990 C1996 0.911 0.000 0.863 0.000
U1978 U1988 0.927 0.000
U1988 U1998 1.000 0.000
C1978 U1978 0.898 0.000
C1990 U1988 0.912 0.000
C1996 U1998 0.916 0.000

Table VI: p-values for Lorenz Dominance Tests
Simulation Method

after tax before tax

G F HG
0 HF

0 HG
0 HF

0

C1974 C1982 0.000 0.986 0.000 0.973
C1982 C1990 0.752 0.159 1.000 0.060
C1990 C1996 1.000 0.001 0.946 0.000
U1978 U1988 1.000 0.000
U1988 U1998 1.000 0.000
C1978 U1978 1.000 0.000
C1990 U1988 1.000 0.000
C1996 U1998 0.990 0.000

Table VII: p-values for Lorenz Dominance Tests
Bootstrap Method:k = 1000
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7 Conclusion

In this paper we have proposed a method of testing for Lorenz dominance based on inde-

pendent samples from two populations. The test is fully non—parametric and consistent

being based on global comparisons of the empirical Lorenz curves. Although the pro-

posed test statistic has a non-standard and case specific limiting distribution we were

able to show that asymptotically valid inferences could be drawn using simulation and

the bootstrap. The tests were shown to have a fairly good performance in quite small

samples and were illustrated in the context of an empirical example comparing Lorenz

curves for Canada and the US. Although Lorenz dominance relations only provide a

partial ordering of distributions, the empirical example illustrates that it is possible to

make many meaningful inferences regarding trends in inequality over time, and across

countries at point in time.
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Appendix A: Proofs of Results
Proof of Proposition 1: The proof is based on a characterization for the limiting

distribution and the application of an inequality. The result in Lemma 1 implies that,

sup
z
|(L̂G(p)− L̂F (p))− (LG(p)− LF (p))| a.s.→ 0 (3)

and,

T̂ =

s
NM

N +M
(L̂G − LG)−

s
NM

N +M
(L̂F − LF ) (4)

=

vuut N/M

N/M + 1

√
M(L̂G − LG)−

s
1

N/M + 1

√
M(L̂F − LF )

⇒ λ1/2LG − (1− λ)1/2LF

≡ T̄

Use the notation T̂ (p) for T̂ evaluated at the specific point p ∈ [0, 1]. An implication of
the weak convergence result is that for any γ, ε > 0 that there exists a δ > 0 such that

the following stochastic equicontinuity condition holds,

limP ( sup
|p1−p2|<δ

|T̂ (p1)− T̂1(p2)| > ε) < γ (5)

We first prove (i) and assume that LG(p) ≤ LF (p) for all p. Let the set of values for

which there is equality be equal to P ∗ so that for any p ∈ P ∗ we have that

T̂1(p) =
µ

NM

N +M

¶1/2
(L̂G(p)− L̂F (p))

because for such p, LG(p)−LF (p) = 0. It is easily seen that P
∗ is a compact set because

of Assumption 1. We aim to show that for c > 0,

P (ŜG > c)→ P ( sup
p∈P ∗

T̄ (p) > c) (6)

To show this we first note that,

ŜG =
µ

NM

N +M

¶1/2
sup
p
(L̂G(p)− L̂F (p))

≥ sup
p∈P∗

T̂ (p)

⇒ sup
p∈P∗

T̄ (p)
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because of the fact that P ∗ ⊂ P and using the Continuous Mapping Thorem (CMT).

Consequently,

lim supP (ŜG ≤ c) ≤ P ( sup
p∈P ∗

T̄ (p) ≤ c) (7)

Let p̂ denote any value of p that solves the problem,

sup
p
(L̂G(p)− L̂F (p))

and note that ẑ ∈ Z. We suppress the dependence of p̂ on N andM for ease of notation.

Then, for any non-empty P+ ⊂ P ∗ we have that,

ŜG =
µ

NM

N +M

¶1/2
(L̂G(p̂)− L̂F (p̂)) (8)

≤ sup
p∈P ∗

T̂ (p) +
µ

NM

N +M

¶1/2
(LG(p̂)− LF (p̂)) + T̂ (p̂)− inf

p∈P+
T̂ (p)

≤ sup
p∈P ∗

T̂ (p) + sup
p∈P+

(T̂ (p̂)− T̂ (p))

≤ sup
p∈P ∗

T̂ (p) + sup
p∈P+

|T̂ (p̂)− T̂ (p)|

where the second line follows from the fact that,µ
NM

N +M

¶1/2
inf
p∈P+

(L̂G(p)− L̂F (p)) ≤
µ

NM

N +M

¶1/2
sup
p∈P∗

(L̂G(p)− L̂F (p))

the third line follows from the fact that under the null hypothesis,

(LG(p)− LF (p)) ≤ 0

Now pick any ε∗ > 0. Let c0 and c00 be such that c0 < c < c00,

P ( sup
z∈Z∗

T̄ (p) ≤ c)− P ( sup
z∈Z∗

T̄ (p) ≤ c0) < ε∗ (9)

P ( sup
z∈Z∗

T̄ (p) ≤ c00)− P ( sup
z∈Z∗

T̄ (p) ≤ c) < ε∗ (10)

Let ε1 be a positive number such that 0 < ε1 < max{c00 − c, c − c0} and then pick a
δ > 0 such that (5) holds with ε = ε1 and γ = ε∗. Define the set P+ = P ∗ ∩ B(ẑ, δ)

where B(ẑ, δ) is a ball of radius δ around ẑ, and let AN,M denote the event that P+ is

nonempty. We first demonstrate that P (AN,M) → 1. Let Z̄∗δ = {z ∈ P : d(z, P ∗) ≥ δ}
where d(z, P ∗) = infz0∈P ∗ |z − z0| is a measure of the distance of the point z from the
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compact set P ∗. It is only necessary to consider the case that Z̄∗δ is nonempty because

otherwise P (AN,M) = 1 for all N,M.

It is easy to show that Z̄∗δ is a compact set. Consequently,

sup
z∈Z̄∗δ

(L̂G(p)− L̂F (p)) = −2η < 0 (11)

because of Assumption 1. Pick an arbitrary p∗ ∈ P ∗ and note that the event AN,M is

implied by the event,

sup
p∈P̄∗

δ

(L̂G(p)− L̂F (p)) < −η

(L̂G(p
∗)− L̂F (p

∗)) > η

so that,

P (AN,M) ≥ P ( sup
p∈P̄∗

δ

(L̂G(p)− L̂F (p)) < (L̂G(p
∗)− L̂F (p

∗)))

≥ P ({ sup
p∈P̄∗

δ

(L̂G(p)− L̂F (p)) < −η} ∩ {(L̂G(p
∗)− L̂F (p

∗)) > η})

≥ P ((L̂G(p
∗)− L̂F (p

∗)) > η)− P ( sup
p∈P̄ ∗δ

(L̂G(p)− L̂F (p)) > −η)

→ 1

using (??), (??), (??), (11) and CMT which implies that,

sup
p∈P̄∗δ

(L̂G(p)− L̂F (p)) = sup
p∈P̄ ∗δ

³
L̂G(p)− L̂F (p)− (LG(p)− LF (p)) + (LG(p)− LF (p))

´
≤ sup

p∈P̄ ∗δ
|(L̂G(p)− L̂F (p))− (LG(p)− LF (p))|+ sup

p∈P̄∗δ
((LG(p)− LF (p))

a.s.→ −2η

Then,

P (ŜG ≤ c) = P ({ŜG ≤ c} ∩AN,M) + P ({ŜG ≤ c} ∩ ĀN,M) (12)

≥ P ({ sup
p∈P∗

T̂ (p) + sup
p∈P+

|T̂ (p̂)− T̂ (p)| ≤ c} ∩AN,M) + P ({ŜG ≤ c} ∩ ĀN,M)

≥ P ({ sup
p∈P∗

T̂ (p) + sup
|p1−p2|<δ

|T̂ (p̂)− T̂ (p)| ≤ c} ∩AN,M) + P ({ŜG ≤ c} ∩ ĀN,M)

≥ P ( sup
p∈P∗

T̂ (p) + sup
|p1−p2|<δ

|T̂ (p̂)− T̂ (p)| ≤ c)− P (ĀN,M)

+ P ({ŜG ≤ c} ∩ ĀN,M)
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where the second line follows from the fact that in the event AN,M the inequality in (8)

holds and the third line follows from the fact that,

sup
p∈P+

|T̂ (p̂)− T̂ (p)| ≤ sup
|p1−p2|<δ

|T̂ (p1)− T̂ (p2)|

To show this we first note that, For the first term we use equation 25.12 of Billingsley

(1968). In particular we have that,

P ( sup
p∈P∗

T̂ (p) ≤ c0)− P ( sup
|p1−p2|<δ

|T̂ (p1)− T̂ (p2)| ≥ ε1) (13)

≤ P ( sup
p∈P∗

T̂ (p) + sup
|p1−p2|<δ

|T̂ (p1)− T̂ (p2)| ≤ c)

and,

P ( sup
p∈P ∗

T̂ (p) + sup
|p1−p2|<δ

|T̂ (p1)− T̂ (p2)| ≤ c) (14)

≤ P ( sup
p∈P ∗

T̂ (p) ≤ c00)− P ( sup
|p1−p2|<δ

|T̂ (p1)− T̂ (p2)| ≥ ε1).

Then we have that,

lim

Ã
P ( sup

p∈P ∗
T̂ (p) ≤ c0)− P ( sup

|p1−p2|<δ
|T̂ (p1)− T̂ (p2)| ≥ ε1)

!
> P ( sup

p∈P ∗
T̄ (p) ≤ c)− 2ε∗

and,

lim

Ã
P ( sup

p∈P ∗
T̂ (p) ≤ c00)− P ( sup

|p1−p2|<δ
|T̂ (p1)− T̂ (p2)| ≥ ε1)

!
< P ( sup

p∈P∗
T̄ (p) ≤ c) + 2ε∗

using (9), (10) and (5). Since ε∗ is arbitrary (13) and (14) imply that

limP ( sup
p∈P∗

T̂ (p) + sup
|p1−p2|<δ

|T̂ (p1)− T̂ (p2)| ≤ c) = P ( sup
p∈P ∗

T̄ (p) ≤ c) (15)

Note that for the third term in the last line of (12) we have that, because,

0 ≤ P ({ŜG ≤ c} ∩ ĀN,M)

≤ P (ĀN,M)

→ 0.
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using the fact that P (ĀN,M)→ 0. Then along with (12) and (15) we have that,

lim inf P (ŜG ≤ c) ≥ P ( sup
p∈P∗

T̄ (p) ≤ c)

Therefore using (7) we obtain the result that,

limP (ŜG ≤ c) = P ( sup
p∈P ∗

T̄ (p) ≤ c).

To show the result in (i) of Proposition 1 fix G and consider two the situations that are

consistent with the null hypothesis. The first is where the distribution generating the

other Lorenz curve is denoted F and satisfies LG(p) ≡ LF (p) for all p ∈ P. The second

situation involves the distribution F 0 which is such that LG(p) ≤ LF 0(p) for all p but

LG(p) ≡ LF 0(p) for all p ∈ P ∗ ⊂ P. Assume for simplicity of argument (and without loss

of generality — as will be demonstrated below) that the means of all three distributions

are identical and equal to one — that is, µG = µF = µF 0 = 1. It is clearly the case that,

T̄ 0 =
√
λLG −

√
1− λLF

d≡ LG

since LG
d≡ LF . Let,

T̄
0
=
√
λLG −

√
1− λLF 0

Note that the process LG can be written (using a change of variables) as,

LG(p)
d≡ −

Z QG(p)

yl
B(G(y))dy + LG(p)

Z yu

yl
B(G(y))dy

where we use the notation yl and yu for the smallest and largest income values in the G

population. Similarly, write,

LF 0(p)
d≡ −

Z QF 0 (p)

xl
B(F 0(x))dx+ LF 0(p)

Z xu

xl
B(F 0(x))dx

where we use the notation xl and xu for the smallest and largest income values in the F
0

population. Consider two points p1, p2 in the set P
∗ (with p1 ≤ p2) and let,

z1 = QG(p1)

z2 = QG(p2)
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Since Z p

0
QG(t)dt = LG(p) ≤ LF 0(p) =

Z p

0
QF 0(t)dt (16)

(and using continuity of the quantile functions) with equality at p1 and p2 then it must

be the case

z1 = QF 0(p1)

z2 = QF 0(p2)

Using the same arguments one can show that yl ≤ xl and yu ≥ xu. Then the covariance

kernel of the term IG(p) = − RQG(p)
yl

B(G(y))dy is given by,

E(IG(p1)IG(p2)) = (z2 − z1)
Z z1

−∞
G(t)dt (17)

+2
Z z1

−∞

Z s

−∞
G(t)dtds− (

Z z1

−∞
G(t)dt)(

Z z2

−∞
G(t)dt)

Also note that (using integration by parts),

E(IG(p1)IG(1)) = (yu − z1)
Z z1

−∞
G(t)dt (18)

+2
Z z1

−∞

Z s

−∞
G(t)dtds− (

Z z1

−∞
G(t)dt)(

Z yu

−∞
G(t)dt)

= (µG − z1)
Z z1

−∞
G(t)dt+ 2

Z z1

−∞

Z s

−∞
G(t)dtds

= (1− z1)
Z z1

−∞
G(t)dt+ 2

Z z1

−∞

Z s

−∞
G(t)dtds

where the last line follows from the fact that we have assumed that µG = 1. Finally note

that,

E(IG(1)IG(1)) = 2
Z yu

−∞

Z s

−∞
G(t)dtds− (

Z yu

−∞
G(t)dt)(

Z yu

−∞
G(t)dt) (19)

Since for the two points under consideration we have that,Z p1

0
QG(t)dt =

Z p1

0
QF 0(t)dtZ p2

0
QG(t)dt =

Z p2

0
QF 0(t)dt

then it is also the case that, Z z1

−∞
G(t)dt =

Z z1

−∞
F 0(t)dt (20)Z z2

−∞
G(t)dt =

Z z2

−∞
F 0(t)dt (21)
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by using integration by parts. Also note that since xu ≤ yu and F 0(t) = 1 on the range

[xu, yu] then we have (by integration by parts),Z yu

−∞
F 0(t)dt =

Z xu

−∞
F 0(t)dt+

Z yu

xu
1dt

= (xu − µF 0) + (yu − xu)

= yu − µF 0

=
Z yu

−∞
G(t)dt

It is known that (16) implies second order stochastic dominance so that,

Z z

−∞
G(t)dt ≥

Z z

−∞
F 0(t)dt (22)

for all z and that this implies third order stochastic dominance,

Z z

−∞

Z s

−∞
G(t)dtds ≥

Z z

−∞

Z s

−∞
F 0(t)dtds. (23)

Define the following constants,

c∗1 = 2
Z z1

−∞

Z s

−∞
G(t)dtds− 2

Z z1

−∞

Z s

−∞
F 0(t)dtds

c∗2 = 2
Z z2

z1

Z s

−∞
G(t)dtds− 2

Z z2

z1

Z s

−∞
F 0(t)dtds

c∗3 = 2
Z yu

z2

Z s

−∞
G(t)dtds− 2

Z yu

z2

Z s

−∞
F 0(t)dtds

and note that c∗j ≥ 0 using the fact noted in (22) and (23). Then we note that,

2
Z z2

−∞

Z s

−∞
G(t)dtds− 2

Z z2

−∞

Z s

−∞
F (t)dtds = c∗1 + c∗2

2
Z yu

−∞

Z s

−∞
G(t)dtds− 2

Z yu

−∞

Z s

−∞
F (t)dtds = c∗1 + c∗2 + c∗3

Now,

E((LG(p1)− LG(p2))
2) = E(IG(p1)2) + LG(p1)

2E(IG(1)2)− 2LG(p1)E(IG(p1)IG(1))
+E(IG(p2)2) + LG(p2)

2E(IG(1)2)− 2LG(p2)E(IG(p2)IG(1))
−2E(IG(p1)IG(p2)) + 2LG(p1)E(IG(p2)IG(1))
+2LG(p2)E(IG(p1)IG(1))− 2LG(p1)LG(p2)E(IG(1)2)
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and use the basic expressions in (17), (18), (19) to see that,

E(IG(p1)2) = E(IF 0(p1)2) + c∗1

E(IG(p1)IG(1)) = E(IF 0(p1)IF 0(1)) + c∗1

E(IG(p2)2) = E(IF 0(p1)2) + c∗1 + c∗2

E(IG(p2)IG(1)) = E(IF 0(p2)IF 0(1)) + c∗1 + c∗2

and,

E(IG(1)2) = E((−
Z yu

−∞
B(F 0(y))dy)2) + c∗1 + c∗2 + c∗3

= E(IF 0(1)2) + c∗1 + c∗2 + c∗3 + c∗4

where,

c∗4 = E((−
Z yu

−∞
B(F 0(y))dy)2)−E(IF 0(1)2)

= E((−
Z yu

−∞
B(F 0(y))dy)2)−E((−

Z xu

−∞
B(F 0(y))dy)2)

≥ 0

with the last line following from the fact that yu ≥ xu and the fact that the variance of

− R z−∞ B(F 0(y))dy is an increasing function of z. Then we have that,

E((LG(p1)− LG(p2))
2) = E(IF 0(p1)2) + c∗1 + LF 0(p1)

2(E(IF 0(1)2) + c∗1 + c∗2 + c∗3 + c∗4)

−2LF 0(p1)(E(IF 0(p1)IF 0(1)) + c∗1)

E(IF 0(p1)2) + c∗1 + c∗2 + LF 0(p2)
2(E(IF 0(1)2) + c∗1 + c∗2 + c∗3 + c∗4)

−2LF 0(p2)(E(IF 0(p2)IF 0(1)) + c∗1 + c∗2)

−2(E(IF 0(p1)IF 0(p2)) + c∗1) + 2LF 0(p1)(E(IF 0(p2)IF 0(1)) + c∗1 + c∗2)

+2LF 0(p2)(E(IG(p1)IG(1)) + c∗1)

−2LF 0(p1)LF 0(p2)(E(IF 0(1)2) + c∗1 + c∗2 + c∗3 + c∗4)

= E((LF 0(p1)− LF 0(p2))
2) + c∗1(LF 0(p2)− LF 0(p1))

2

+c∗2(1− (LF 0(p2)− LF 0(p1)))
2 + (c∗3 + c∗4)(LF 0(p2)− LF 0(p1))

2

≥ E((LF 0(p1)− LF 0(p2))
2)
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where the last inequality follows from the fact that all of the c∗j are non-negative. Then

consider,

E((T̄
0
(p2)− T̄

0
(p1))

2) = λE((LG(p2)− LG(p1))
2) + (1− λ)E((LF 0(p2)− LF 0(p1))

2)

≤ λE((LG(p2)− LG(p1))
2) + (1− λ)E((LG(p2)− LG(p1))

2)

= E((LG(p2)− LG(p1))
2)

= E((T̄ 0(p2)− T̄ 0(p1))
2)

Since the stochastic processes are separable, mean zero and Gaussian then Proposition

A.2.6 of Van der Vaart and Wellner (1996) (the Slepian, Fernique, Marcus and Shepp

inequality) implies that,

P ( sup
p∈P ∗

T̄ 0(p) > c) ≤ P ( sup
p∈P∗

T̄ 0(p) > c) ≤ P (sup
p∈P

T̄ 02 (p) > c)

for any c > 0 where the second inequality follows from the fact that P ∗ ⊂ P . But

P (supp∈P T̄
0(p) > c) is the asymptotic probability of rejection in the case where LF (p) ≡

LG(p) for all p ∈ P and so the result follows in the case where we have assumed that

µF 0 = µG = 1. Since the empirical and population Lorenz curves are invariant to scalar

multiplication of the variables one can consider the comparison of Lorenz curves for the

transformed variables,

Y ∗ =
Y

µG

X∗ =
X

µF 0

and the preceding arguments hold since the transformed variables have a mean of one.

Q.E.D.

Proof of Lemma 2: Clearly,

Z̃G =
1√
M

MX
i=1

(Yi − µG)⇒ GG(1).

The function B̃G whose value at p ∈ [0, 1] is given by,
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B̃G(p) =
1√
M

MX
i=1

(1(Yi ≤ QG(p))− p)

=
1√
M

MX
i=1

(1(G(Yi) ≤ p)− p)

For the third component we note that,

1

M

MX
i=1

Yi1(Yi ≤ QG(p)) = QG(p)Ĝ(QG(p))−
Z QG(p)

yl
Ĝ(y)dy

E(Yi1(Yi ≤ QG(p))) = QG(p)G(QG(p))−
Z QG(p)

yl
G(y)dy

Then we can write,

C̃G(p) = QG(p)
√
M(Ĝ(QG(p))−G(QG(p)))−

Z QG(p)

yl

√
M(Ĝ(y)−G(y))dy

Consequently we have that,

QG(p)B̃G(p)− C̃G(p) =
Z QG(p)

yl

√
M(Ĝ(y)−G(y))dy

⇒
Z QG(p)

yl
BG(G(y))dy

by CMT. Consequently we have that,

L̃G,M(p) ⇒ − 1

µG
(
Z QG(p)

yl
BG(G(y))dy)− LG(p)

µG
GG(1)

≡ 1

µG
GG(p)− LG(p)

µG
GG(1)

= LG(p)

where the second line follows using a change of variable and the last line follows from the

definition of LG(p) Q.E.D.

Proof of Lemma 3: First note that,

Z̃∗G =
1√
M

MX
i=1

(Yi − µ̂G)Ui =
1√
M

MX
i=1

(Yi − µG)Ui + (µ̂G − µG)
1√
M

MX
i=1

Ui
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The first term satisfies,
1√
M

MX
i=1

(Yi − µG)Ui ⇒ GG(1)

by the Lindeberg Levy Central Limit Theorem using the facts that

E((Yi − µG)Ui) = 0

E(((Yi − µG)
2U2

i ) = E((Yi − µG)
2)

using the independence of the Ui. For the second term we have by the Strong Law of

Large Numbers that, µ̂G − µG
a.s.→ 0. Therefore µ̂G − µG → 0 for almost all samples.

Condition on the sample and note that,

EU((µ̂G − µG)Ui) = 0

EU((µ̂G − µG)
2U2i ) = (µ̂G − µG)

2

→ 0

Therefore by the Markov inequality,

lim
M→∞

PU(|(µ̂G − µG)
1√
M

MX
i=1

Ui| > ε) = 0.

Therefore for this particular sample we have that (conditionally) Z̃∗G ⇒ G0G(1). But this
holds for almost every sample so that unconditionally Z̃∗G

a.s.⇒ G0G(1). Next consider the
term,

Q̂G(p)B̃
∗
G(p)− C̃∗G(p) =

Z Q̂G(p)

yl

1√
M

MX
i=1

³
1(Yi ≤ Q̂G(p))− Ĝ(Q̂G(p))

´
Ui

= W0(p) +W1(p) +W2(p) +W3(p)

where we can write,

Wj(p) =
1√
M

MX
i=1

Uiŵji(p)

ŵ0(p) =
Z QG(p)

yl
(1(Yi ≤ QG(p))−G(QG(p))) dp

ŵ1i(p) =
Z Q̂G(p)

QG(p)
(1(Yi ≤ QG(p))−G(QG(p))) dp
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ŵ2i(p) =
Z Q̂G(p)

yl
(1(Yi ≤ Q̂G(p))− 1(Yi ≤ QG(p)))dp

ŵ3i(p) =
Z Q̂G(p)

yl

(Ĝ(Q̂G(p))−G(QG(p)))dp

noting that Ui is independent of ŵji. The following inequalities can be shown for each of

the last three terms,

sup
p
|ŵ1i(p)| ≤ sup

p
|Q̂G(p)−QG(p)|

sup
p
|ŵ2i(p)| ≤ sup

p
|Q̂G(p)−QG(p)|

sup
p
|ŵ1i(p)| ≤ ∆

Ã
sup
p
|Ĝ(y)−G(y)|+ sup

p
|Q̂G(p)−QG(p)|

!

for some positive finite constant. By Lemma 1 all of the terms on the right hand side

converge to zero almost surely. Consequently we have that for j = 1, 2, 3,

sup
p

Wj(p) = op(1)

for almost every sample using Markov inequality. Applying Corollary 2.9.3 of Van der

Vaart and Wellner (1996) to the term W0(p), we have the result,

Q̂G(p)B̃
∗
G(p)− C̃∗G(p)

a.s.⇒ G 0G(1)

which is an independent copy of GG(p). Combining results and using the CMT we have
that, L̃∗G

a.s.⇒ L0G. Q.E.D.
Proof of Proposition 2: Let, P̂M(t) be the c.d.f. of the process (conditional on the

original sample of Yi) generated by suppL0G(p). By Lemma 2 and the CMT we have that,

sup
p

L̃∗G(p)
a.s.⇒ sup

p
L0G(p) (24)

where the process suppL0G(p) is identical to (but independent of) the process suppLG(p).

Note that the median of the distribution of suppL0G(p) (denoted P̄ 0
G(t)) is strictly positive

and finite. By Tsirel’son (1975) P̄ 0(t) is absolutely continuous on (0,∞) and, moreover,
the (1 − α) quantile, denoted cG(α) is finite and positive for any fixed α < 1/2 using
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(for instance) Proposition A.2.7 of Van der Vaart and Wellner (1996). Note that event

{p̂G < α} is equivalent to the event that {ŜG > ĉ(α)} where,

ĉG(α) = inf{t : P̂M(t) > α}

Also note that ĉG(α)
a.s.→ cG(α) by (24) and the properties of P̄

0(t) noted above. Then,

P (reject HG
0 |HG

0 ) = P (ŜG > ĉG(α))

= P (ŜG > cG(α)) + (P (ŜG > ĉG(α))− P (ŜG > cG(α)))

Consider the second term in brackets and note that,

P (ŜG > ĉG(α))− P (ŜG > cG(α)) = P (ĉG(α) ≤ ŜG < cG(α))− P (cG(α) ≤ ŜG < ĉG(α))

Using Tsirel’son (1975) the distribution of suppL0G(p), say P̄ 0G(t), is absolutely continuous
on (0,∞), so that because cG(α) > 0 it is a continuity point of the distribution. Then for a
fixed (arbitrary) ε > 0, pick δ > 0 such that |cG(α)−c0| < δ implies |P̄ 0G(cG(α))−P̄ 0G(c0)| <
ε. Denote the events,

A1 = {ĉG(α) ≤ ŜG < cG(α)}
A1,δ = {cG(α)− δ ≤ ŜG < cG(α)}
A2 = {cG(α) ≤ ŜG < ĉG(α)}

A2,δ = {cG(α) ≤ ŜG < cG(α) + δ}
A3 = {ĉG(α) ∈ B(cG(α), δ))

where B(cG(α), δ) is the open ball around the point cG(α) with radius δ. Then we have,

P (A1) = P (A1 ∩ A3) + P (A1 ∩ Ā3)
≤ P (A1,δ) + P (Ā3)

→ P (cG(α)− δ ≤ sup
z∈Z∗

T̄G(z) < cG(α))

≤ ε
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and,

P (A2) = P (A2 ∩A3) + P (A2 ∩ Ā3)
≤ P (A2,δ) + P (Ā3)

→ P (c2(α) ≤ sup
p
L0G(p) < cG(α) + δ)

≤ ε

using the consistency of ĉG(α) and the convergence result for ŜG shown in Proposition

1. Consequently,

lim sup |P (ŜG > ĉG(α))− P (ŜG > cG(α))| ≤ 2ε

But ε was arbitrary so using the definition of cG(α) and the results shown in Proposition

1 we have that,

P (reject HG
0 |HG

0 ) → P (sup
p
(λ1/2LG − (1− λ)1/2LF ) > cG(α))

≤ P (sup
p
L0G(p) > cG(α))

= α

On the other hand Proposition 1(ii) and finiteness of cG(α) imply that limP (reject

HG
0 |HG

1 ) = 1. The result for the SD3 test follows similarly. Q.E.D.

Proof of Proposition 3: By Theorem 3.6.3 of Van der Vaart and Wellner (1996)

we have that,
√
k(Ĝ∗k − Ĝk)

p⇒ B∗G,s ◦G

provided that k → ∞ where the process B∗G,s ◦ G has the same distribution as BG ◦ G.
This convergence is in the sense that,

sup
h∈BL1

|EC(h(
√
k(Ĝ∗k − Ĝk)))− E(h(BG ◦G))| p→ 0

where BL1 is the space of bounded Lipschitz functions mapping C[0, 1] into [0, 1], and

where EC is the expectation given the sample Y. Define the functional ψ : D[yl, yu] →
C(0, 1), by

ψ(G)(p) =
Z p

0
QG(t)dt
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and note that ψ(G)(1) = µG. Using the definition in the text we can similarly define,

ψ(Ĝk)(p) =
Z p

0
Q̂G,k(t)dt

Using Assumptions 1 and 2, we have by Lemma 3.9.23 and Lemma 3.9.3 of Van der

Vaart and Wellner (1996) and the linearity of the functional ψ in QG that considered as

a functional of G, ψ is Hadamard differentiable at G with Hadamard derivative given by,

ψ0(θ) where,

ψ0(θ)(p) = −
Z p

0

θ(QG(t))

g(QG(t))
dt

Using this fact Theorem 3.9.11 of Van der Vaart and Wellner (1996) implies that,

√
k(ψ(Ĝ∗k)− ψ(Ĝk)

p⇒ ψ0(B∗G,s ◦G). (25)

The mapping that define the Lorenz curve has the form,

LG =
ψ(G)

ψ(G)(1)

so that,

LG(p) =
ψ(G)(p)

ψ(G)(1)
=

R p
0 QG(t)dtR 1
0 QG(t)dt

=

R p
0 QG(t)dt

µG

We will treat this mapping as being a functional such that, LG = λ(Θ1,Θ2) where Θ1 =

ψ(G) andΘ2 = ψ(G)(1). Considered as a functional λ(Θ1,Θ2) is Hadamard differentiable

with derivative,

λ0(θ1, θ2) =
1

Θ2
θ1 − Θ1

Θ2
2

θ2

provided that Θ2 > ε > 0 which holds under Assumption 1. To show this consider the

sequences Θ1t = Θ1 + tθ1t and Θ2t = Θ2 + tθ2t with t→ 0 (with t ∈ R) where θ1t is such

that θ1t → θ1 and Θ1t ∈ C(0, 1) and θ2t → θ2 and Θ2t > ε. Then,

Θ1t
Θ2t
− Θ1

Θ2

t
− λ0(θ1, θ2) =

θ1t − θ1
Θ2t

− tθ2tθ1
Θ2Θ2t

− Θ1(θ2t − θ2)

Θ2Θ2t
+

tΘ1θ2θ2t
Θ2
2Θ2t

Each term is easily seen to converge to zero uniformly so that Hadamard differentiability

holds. Using this fact, the result (25) and a further application of Theorem 3.9.11 of Van

der Vaart and Wellner (1996) gives the result that,

√
k(L̂∗G,k − L̂G,k)

p⇒ 1

µG
ψ0(B∗G,s ◦G)−

LG

µG
ψ0(B∗G,s ◦G)(1) ≡ LG,s

40



where, LG,s
d≡ LG. The remainder of the proof follows the proof of Proposition 2 (using

p⇒ instead of
a.s⇒ so that ĉG(α)

p→ cG(α). Q.E.D.
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