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Abstract. Rational beliefs are expectations which though consistent with empirical observations, may
deviate from the true underlying probability measure under which data is generated. This probability measure
is not necessarily stationary, but is required to fulfill a weaker condition, called WAMS. In the first part of
this article we provide results on, as well as a decomposition of, WAMS measures and use this to demonstrate
that an agent that adopts a non-stationary rational belief is rationally overconfident. Next we turn to defining
various classes of WAMS stochastic processes which are suitable for equilibrium analysis. The most important
class consists of Markov processes on a continuous state space which do not have time invariant transitions
and are not stationary. To apply the theory to models of general equilibrium, we introduce the concept of a
sunspot rational beliefs structure which can be considered as the exogenously specified part of a state process
with rational beliefs. A part of the state space will be a set of sunspot variables which are not correlated
with fundamentals but will, in equilibrium, affect prices and other endogenous variables. In contrast with
the traditional approach, we do not assume that the true distribution of sunspots and fundamentals is known
but only that agents hold rational, but diverse beliefs about these variables. Equilibria with sunspot rational
belief structures have some desirable properties like anonymity and conditional rationality. In the final part
of this work we provide a simple example of the use of our results. We consider an infinite state space model
where agents make production decision before knowing prices. Under rational beliefs, unlike under rational
expectations, mistakes persist even though all agents make forecasts that are statistically consistent with
the equilibrium process. Due to the correlation of subjective beliefs brought about by the sunspots, the
equilibrium exhibits excess price volatility.
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1 Introduction

It has been observed that even very sophisticated economic agents form expectations which differ significantly

from each other (see f.i. Kurz, 2002 and Taylor, 1995). In many cases these diverse expectations cannot

be explained by diversity of information. The other possible source of diversity of expectations among

rational agents is different priors or different models of the underlying reality. The assumption that all agents

have rational expectations, which is today predominant in all branches of economic theory, is based on the

postulate that empirical observations eventually lead all agents to have the same underlying model. Thus in

the rational expectations framework only the first source of diverse opinions is left. This is unsatisfactory

for several reasons. Not only does it not square well with what we observe about agents’ expectations. At

a more fundamental level, it also ignores that (i) agents may be irrational and not use the available data in

a correct way (ii) even if agents are rational, convergence of the posteriors may be slow (i.e. learning takes

time) (iii) convergence may never happen in a non-stationary environment. In the rational beliefs framework

(originally defined in Kurz, 1994a) the focus is on the last aspect of the learning process. A rather mild form

of non-stationary named stability is postulated under which an empirical distribution of observable variables

can still be derived from data, but where, unlike in the stationary case, this empirical distribution does not

uniquely identify the true underlying probability distribution of the data. Agents form beliefs which are

rational in the sense that these beliefs could have been generated by the empirical distribution that everyone

observes. However, since the identification of the true distribution is not perfect, there is still left room for

diverse opinions.

Despite the strong assumptions that the economic environment is stable and that agents form rational

beliefs which are consistent with the empirical distribution, the behavior of the economy way be very different

from what would be the case, if agents had rational expectations. As a consequence, the assumption that

agents have rational beliefs may be used to explain a host of phenomena that have been declared ’puzzles’

in the framework of rational expectations (see f.i. Kurz and Beltratti, 1997, Kurz and Motolese, 2001). The

assumption may also be used to enhance our understanding of the role of money and monetary policy (Kurz,

2002, Motolese, 2003) or such phenomena as speculation (Wu and Guo, 2003). Finally, it may become a

vehicle for studying public policy problems which have hitherto been left unnoticed and which cannot even

be posed in rational expectations models (Nielsen, 2003).

The theory of rational beliefs is also connected to a growing literature of economics based on studies of

patterns of behavior and reasoning among individuals. One of the repeated observations of this literature

is that many economic agents are showing overconfidence in their own abilities (see f.i. Camerer, 1999 and

Daniel, Hirschleifer and Subrahmanyam, 1998). In the context of expectations we argue that when agents

employ non-stationary rational beliefs, they exhibit overconfidence since they assume an ability to make
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predictions that are more precise than what the empirical distribution would suggest. While the many

empirical studies and experiments of the behavioral economics literature has convincingly demonstrated that

agents’ beliefs are diverse (and hence mutually inconsistent), there seems as yet not to be agreement within

this literature about what kind of beliefs we should expect agents to hold. In particular, there is often a

weak link between what agents are assumed to believe and what they observe1. In contrast, the theory

of rational beliefs proposes, as a priori requirements on agents’ expectations, that they are consistent with

empirical observations while retaining the possibility that they may not be correct. Thus overconfidence is

in our framework always rational that is, based on a subjective model that cannot be rejected by data.

When agents have rational beliefs, in general these beliefs are diverse and consequently not all agents

if any, use the correct belief as a basis for their decisions. Many of the just cited articles using the theory

of rational beliefs employ another important aspect of that theory, namely that rational beliefs tend to be

more volatile than rational expectations. If the volatility of the individual beliefs are somehow correlated

across agents (below we postulate that such correlation may be realized via sunspots) this volatility shows

up in macro data, for instance in prices. This ’endogenous’ volatility is added to the volatility stemming

from aggregate exogenous shocks and the end result is an economy with excess volatility as compared to the

situation where only exogenous shocks were the source of randomness.

As with rational expectations, the rational beliefs theory postulates that everything learnable has already

been learned. This is one important assumption that makes both of these models of expectations well suited

for general equilibrium analysis. A framework for proving existence of general equilibrium in models where

agents have diverse rational beliefs was formulated and put to use in Nielsen(1994) (see also Nielsen, 1996).

This framework, which has been used in numerous studies, sometimes in modified versions (see f.i., Kurz

and Schneider, 1996, Kurz and Wu, 1996 and Nielsen, 2003) has two components. One is a class of stable

but non-stationary stochastic processes ( SIDS or SSM processes as defined later). The other component

is a so called Rational Beliefs Structure (RBS). In a rational beliefs equilibrium (RBE) (defined in Kurz,

1994b) agents have expectations about endogenous and exogenous variables which are consistent with the

observed behavior of equilibrium values and these equilibrium values are in turn a consequence of the actions

of agents based on their rational beliefs. Rather than formulating the RBE as a fixed point in a space of

beliefs (stochastic processes) it is convenient to formulate a structure of fundamentals, that is exogenous

variables and rational beliefs (about fundamentals and beliefs), and then show the existence of a equilibrium

point for a function between fundamentals and endogenous variables. In the resulting equilibrium agents

have rational beliefs about exogenous as well as endogenous variables.

This idea is extended in two directions. In Nielsen(1994) both SIDS and SSM processes were considered.

1As an example, see Scheinkmann and Xiong(2003) who like us, assume that agents have the same information but interpret

it differently (i.e. in terms of different models).
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The latter are Markov chains with non-stationary transitions. However, their stability properties were only

proven for the case where the state space is countable. Here we extend the stability result to the case where the

state space is a measurable subset of a Euclidean space. The RBS of Nielsen(1996) had a conceptual weakness.

Because it is formulated for a finite number of agents each agent is necessarily ’big’ in such a framework,

causing the fluctuations in his belief to show up in macro data like prices. Firstly, this dependence between

own belief and prices should be detected empirically and this makes the assumption that agents take prices

’as given’ less plausible. Secondly but highly related, when agents form expectations about future prices,

which in an RBS are formulated as beliefs about future beliefs, they end up forming beliefs about their own

future beliefs. The present work can be seen as a justification for these simplifying assumptions made in the

earlier work. Here we work explicitly with a continuum of agents, so every individual is small (anonymous).

Furthermore, the aggregate fluctuations generated by beliefs is a result of agents subjectively conditioning

their beliefs on sunspots. This is done in a way such that the rationality of their beliefs is preserved. Also,

in the RBS formulated here the future beliefs of any individual agent contains no information about future

fluctuations in endogenous variables like prices. Another important aspect of this RBS is, that not only

do agents condition their beliefs on the publicly observed sunspots, they also form rational beliefs about

these sunspots. The dependence of prices on sunspots is in this way an imposed condition, and consequently

sunspot influence on prices may well arise in models where, if agents had rational expectations, this would

not be possible.

The present work considers most theoretical issues of relevance to rational beliefs. We present new results

on its mathematical foundation and on stochastic processes applicable to general equilibrium models with

rational beliefs as well as an example of how to apply the developed theory in a general equilibrium setting. As

a consequence, this paper is self-contained and can be read without any prior acquaintance with the literature

on rational beliefs. Section 2, to follow, starts out with a study of WAMS (or stable) probability measures

and, based on this, provides an elucidation and interpretation of the concept of rational beliefs. We then, in

Section 3, turn to presenting various results on the existence of classes of stochastic processes which are stable

but non-stationary. Most importantly we extend the concept of SSM processes to a continuous state space.

Section 4 is devoted to a discussion of how we may formally model the assumption that individual agents

are anonymous, but still in the aggregate, cause fluctuations in endogenous variables via their beliefs. The

concept of Sunspot Rational Belief Structures with types is introduced and discussed by means of some simple

examples and then formally defined. Also we discuss the issue of conditional stability and rationality, an issue

that becomes relevant in the context of Markovian beliefs. We show that structural independence (defined

in Nielsen, 1994) is (almost) sufficient for rational beliefs to be conditionally rational. Section 5 applies the

developed framework to a simple general equilibrium model in the tradition of the cobweb model, where

agents make decisions about output before knowing market prices. Section 6 concludes. In the appendix we
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have collected certain proofs that we deemed to be similar to existing ones in the literature.

2 WAMS measures and rational beliefs

2.1 Preliminaries

The generic set of state variables is denoted S, a (Borel measurable) subset of <K . For any (Borel measurable)

set Y (in a topological space) we denote by B(Y ) the Borel σ-algebra for Y. T : S∞ → S∞ is the shift

transformation i.e. T (s1, s2, . . .) = (s2, s3, . . .) and letting ν be a probability measure on (S∞,B(S∞)),

(S∞,B(S∞), ν, T ) becomes a dynamical system. We often denote a sequence in S∞ by 〈s〉. For a given

measure, ν, Eν(·) denotes the expectation operator under ν. By δs we denote the Dirac measure at s ∈ S.

A set A ∈ B(S∞) is said to be invariant (T-invariant) if T−1A = A. We denote by I the set of invariant

sets in B(S∞). The dynamical system (S∞,B(S∞), ν, T ) is said to be ergodic if any invariant set has either

measure 1 or measure 0. Finally, let C(S∞) be the cylinders in B(S∞) and let Cd(S∞) be the d-dimensional

cylinders (in general, C(Y ∞) is the set of cylinders in Y ∞). By N , we denote the set of natural numbers and

1B, B ∈ B(S∞) is the indicator function, defined on S∞. Of the following definitions that of AMS is from

Gray and Kieffer(1980) while the other two are from Kurz(1994a):

Definition 1 Stability

The dynamical system (S∞,B(S∞), ν, T ) as well as the measure ν are said to be stable if for all cylinders

C ∈ C(S∞) :

lim
J→∞

1

J

J−1∑

j=0

1C(T j〈s〉) exists for ν-a.a. 〈s〉 ∈ S∞

Definition 2 WAMS and AMS

The dynamical system (S∞,B(S∞), ν, T ) as well as the measure ν are said to be Weakly Asymptotic Mean

Stationary (WAMS) if for all cylinders C, we have limJ→∞ 1
J

∑J−1
j=0 ν(T−jC) exists. If the convergence is for

all measurable sets the system is said to be AMS (Asymptotic Mean Stationary)

One can show that (S∞,B(S∞), ν, T ) is stable if and only if it is WAMS, (Proposition 2 of Kurz, 1994a).

One of the implications is straight forward: If the system is stable then for any cylinder C we have
1
J

∑J−1
j=0 ν(T−jC) =

∫ 1
J

∑J−1
j=0 1C(T j〈s〉)ν(d〈s〉) which converges by Lebesgue’s bounded convergence theorem.

The other implication is proved by using a suitably adjusted proof of Birkhoff’s ergodic theorem.

If (S∞,B(S∞), ν, T ) is WAMS there is an associated stationary measure ν s.t. ∀C ∈ C(S∞): limJ→∞
1
J

∑J−1
j=0 ν(T−jC) = ν(C) (Proposition 3, Kurz, 1994). This can easily be established by noting that for

each d, the set valued function νd defined on the σ-algebra Cd(S∞) by νd(C) = limJ→∞ 1
J

∑J−1
j=0 ν(T−jC) is

a probability measure (a consequence of the Vitali-Hahn-Saks Theorem) and that the sequence {νd}∞d=1 is
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consistent such that the Kolmogorov Extension Theorem implies the existence of a probability measure ν

on B(S∞) (which when restricted to Cd(S∞) is equal to νd). We always use a bar over a stable measure to

denote the associated stationary measure. Note, that when the system is stationary, ν̄ = ν .

The following example is worth having in mind, when one wants to understand the notion of stability and

prove results involving it.

Example 1

A sequence of probability measures {µn} and a probability measure µ, all on (the Borel subsets of) [0, 1),

and a countable generating field, F , s.t. µn(F ) → µ(F ), ∀F ∈ F , but for some A ∈ σ(F) = B([0, 1)), µn(A)

does not converge to µ(A).

Let µn = δ 1
n

and let µ = δ0. Note that then µn converges to µ in the topology of weak convergence. Finally,

let F = {∪N
n=1[qn

, q̄n) : N ∈ N , q
n
, q̄n are rationals in [0, 1)}. Then note that µn({0}) = 0 does not converge

to µ({0}) = 1

2.2 Decomposition of WAMS probability measures

Lemma 1

Suppose S is countable ( = {s1, s2, . . .}) and ν is WAMS. Let

Ad
N =

[
×d

n=1{sN , sN+1, sN+2, . . .}
]
× S∞, d ∈ N , N ∈ N

Then for ν a.a. 〈s〉 we have that

limJ→∞
1

J

J−1∑

j=0

1Ad
N
(T j〈s〉)

is well defined for all N and d and, calling this limit ad
N(〈s〉), that for all d, aN(〈s〉) → 0 as N →∞.

Proof: Since ν is WAMS, for ν a.a. 〈s〉 the limit is well defined for all N and d. Suppose, for some d that the

rest of the lemma did not hold. There would be a set B ∈ B(S∞) with ν(B) > 0 and ε > 0 s.t. for 〈s〉 ∈ B

we have ad
N(〈s〉) > ε,∀N .

ν(Ad
N) =

∫

S∞
lim sup

1

J

J−1∑

j=0

1Ad
N
(T j〈s〉)ν(d〈s〉) ≥

∫

B
lim sup

1

J

J−1∑

j=0

1Ad
N
(T j〈s〉)ν(ds) ≥ ν(B)ε, ∀N

But ν(Ad
N) → 0 as N →∞, a contradiction

The following proposition is an extension of Proposition 2 of Nielsen(1996).
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Proposition 1

Suppose S is countable (= {s1, s2, . . .} and that ν is WAMS. Then for ν a.a. 〈s〉 ∈ S∞ there is a stationary

probability measure, P〈s〉 on (S∞,B(S∞)) s.t.

1

J

J−1∑

j=0

1C(T j〈s〉) → P〈s〉(C), ∀C ∈ C(S∞) (1)

Proof: Let the field C̃d ⊂ Cd(S∞) consist of ∅, S∞ as well as all d-dimensional cylinders of the form Cd× S∞

where Cd ⊂ Sd is finite or cofinite. We have σ(C̃d) = Cd(S∞) and, since C̃d is countable, that for ν a.a. 〈s〉
there is a function P̃〈s〉 : ∪∞d=1C̃d → [0, 1] s.t.

1

J

J−1∑

j=0

1C(T j〈s〉) → P̃〈s〉(C),∀C ∈ ∪∞d=1C̃d (2)

We also have for ν a.a 〈s〉 that

{Cn} ↓ ∅ in C̃d ⇒ lim
n→∞ lim sup

J→∞

1

J

J−1∑

j=0

1Cn(T j〈s〉) = 0 (3)

The last claim is a consequence of Lemma 1 since if {Cn} ↓ ∅ with Cn 6= ∅,∀n we have for all N that ∃n
s.t. n > n ⇒ Cn ⊂ Ad

N . It follows that for ν a.a. 〈s〉, P̃〈s〉(Cn) → 0 if {Cn} ↓ ∅ in C̃d. Because of this and

since P̃〈s〉 is obviously finitely additive it is then also countably additive on C̃d. Thus there is for each d a

unique extension of P̃〈s〉 restricted to C̃d to a probability measure, P d
〈s〉 on Cd(S∞) (Caratheodory’s Extension

Theorem). Since the resulting sequence, {P d
〈s〉}∞d=1 is consistent we have by Kolmogorov’s extension theorem

that there is a probability measure P〈s〉 on (S∞,B(S∞)) that is consistent with {P d
〈s〉}∞d=1.

Let C ∈ C(S∞). There are Cn ↓ C and Cn ↑ C, with Cn, Cn ∈ ∪∞d=1C̃d, ∀n. Thus

P〈s〉(Cn) ≥ lim sup
1

J

J−1∑

j=0

1C(T j〈s〉) ≥ lim inf
1

J

J−1∑

j=0

1C(T j〈s〉) ≥ P〈s〉(Cn), ∀n (4)

and by continuity from above and below in the limit, as n →∞ all inequalities in ( 4 ) hold as equalities

For this countable case we call a sequence 〈s〉, for which there is convergence to P 〈s〉 for all cylinders C,

ν-typical.

When the state space is not countable there will in general not be convergence of the empirical frequency

for all cylinders. In order to derive a probability measure, P〈s〉 which, like in the countable case, is based on

the empirical frequencies of a countable set of cylinders we introduce the notion of a so called standard field2.

2In Gray(1987) standard fields are uses to generate an empirical distribution for AMS measures. The concept of standard

fields originates with Christensen(1974).
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Definition 3 Standard Field

A field F ⊂ B(S∞). is said to be standard if there is a sequence {Fn} of finite fields s.t.

(i) Fn ↑ F
(ii) If {An} is a decreasing sequence of sets, where, for each n, An is a non-empty atom of Fn then ∩∞n=1An 6= ∅

Definition 4 Standard measurable space

A measurable space (Ω,B) is said to be standard if there is a standard field, F that generates B (i.e. σ(F) = B)

Definition 5 Countable extension property for a field

A field F in B is said to have the countable extension property if every non-negative, finitely additive set

function, P defined on F with P (Ω) = 1 is also countably additive

The following theorems are respectively Theorem 2.6.1 and Theorem 3.3.1 of Gray(1987)

Theorem 1

A field has the countable extension property if and only if it is standard

Theorem 2

If Ω is a complete, separable, metric space then (Ω,B(Ω)) is standard

It is a direct consequence of Lemma 2.3.1 of Gray(1987), that if S is a complete, separable, metric space

then there is a countable standard field F ⊂ C(S∞) such that σ(F) = B(S∞). Thus when S = <N and

(S∞,B(S∞), T, ν) is WAMS, the empirical distribution for a given realization 〈s〉 is derived by looking at the

frequencies of members of a countable standard generating field, F . Specifically, we have for ν a.a. 〈s〉 that

there is a set function P̃〈s〉 defined on F with P̃〈s〉(S∞) = 1, which is non-negative and finitely additive and

s.t.

limJ→∞
1

J

J−1∑

j=0

1C(T j〈s〉) = P̃〈s〉(C),∀C ∈ F (5)

Because F is standard, P̃〈s〉 is also countably additive and thus has a unique extension to a probability

measure P〈s〉 on B(S∞). Associated with a realization 〈s〉 is then the empirical distribution P〈s〉. The use of

the definite article here is justified by proposition 2 and its corollary to follow. Define for C ∈ B(S∞), AC =

{〈s〉 ∈ S∞ : 1
J

∑J−1
j=0 1C(T j〈s〉) converges as J →∞}.

Lemma 2

Suppose ν is WAMS and that for some B ∈ B(S∞) we have ν(B) > 0. Define ν̂ on B(S∞) by ν̂(A) = ν(A∩B)
ν(B)

.

Then ν̂ is WAMS.

Proof: ν̂ is WAMS iff ν̂(AC) = 1,∀C ∈ C(S∞). But since ν(AC) = 1, we have ν(AC∩B)
ν(B)

= 1
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Proposition 2

Suppose ν is WAMS and let F be a standard generating field consisting of cylinders. Let P〈s〉 be the empirical

distribution associated with F and 〈s〉. If C ∈ C(S∞) then for ν a.a. 〈s〉 ∈ S∞ : 1
J

∑J−1
j=0 1C(T j〈s〉) → P〈s〉(C).

Proof: Suppose not. There is then (w.l.o.g.) ε > 0 and B ∈ B(S∞) s.t. ν(B) > 0 and such that for 〈s〉 ∈ B

we have

lim
J→∞

1

J

J−1∑

j=0

1C(T j〈s〉)− P〈s〉(C) > ε (6)

Let ν̂ on B(S∞) be defined by ν̂(A) = ν(A∩B)
ν(B)

and by Lemma 2, ν̂ is WAMS. Consequently,

∫
lim sup

J→∞

1

J

J−1∑

j=0

1C(T j〈s〉)ν̂(d〈s〉) = ν̂(C),∀C ∈ C(S∞)

Also, P ≡ ∫
B P〈s〉ν̂(d〈s〉) is a probability measure (P (S∞) = 1, P is obviously finitely additive and if An ↓ ∅

then since P〈s〉(An) → 0 for all 〈s〉, we have P (An) → 0). Finally note that P and ν̂ agree for all F ∈ F ,

which implies that they are identical and this is in contradiction with ( 6 )

Corollary 1

If ν is WAMS and if C̃ is a countable set of cylinders, then there is for each 〈s〉 ∈ S∞ a probability measure

P〈s〉 such that for ν a.a. 〈s〉:
1

J

J−1∑

j=0

1C(T j〈s〉) → P〈s〉(C),∀C ∈ C̃

We next study the measures P〈s〉 in more detail. First we show that they are ergodic.

Lemma 3

Suppose that for C ∈ B(S∞) and ν a.a. 〈s〉

1

J

J−1∑

j=0

1C(T j〈s〉) → β. Then
1

J

J−1∑

j=0

ν((T−jC) ∩ C) → βν(C)

Proof: 1
J

∑J−1
j=0 ν((T−jC) ∩ C) = 1

J

∑J−1
j=0

∫
C 1C(T j〈s〉)ν(d〈s〉) =

∫
C

1
J

∑J−1
j=0 1C(T j〈s〉)ν(d〈s〉) → ν(C)β

Proposition 3

Suppose that
1

J

J−1∑

j=0

1C(T j〈s〉) → P〈s〉(C), ∀C ∈ C̃

where C̃ is a generating field with the property that C ∈ C̃ ⇒ T−1C ∈ C̃. Then P〈s〉 is stationary and ergodic.

Proof:
1

J

J−1∑

j=0

1T−1C(T j〈s〉) =
1

J

J∑

j=1

1C(T j〈s〉) → P〈s〉(C),∀C ∈ C̃
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so we have P〈s〉(T−1C) = P〈s〉(C), ∀C ∈ C̃ which implies stationarity of P〈s〉.

By Lemma 6.7.4 of Gray(1987), P〈s〉 is ergodic if

1

J

J−1∑

j=0

P〈s〉(T
−jC ∩ C) → P〈s〉(C)2,∀C ∈ C̃ (7)

1
J

∑J−1
j=0 P〈s〉(T−jC ∩ C) = 1

J

∑J−1
j=0 limK→∞ 1

K

∑K−1
k=0 δ〈s〉(T−k((T−jC ∩ C)). By Lemma 3 we have

1

J

J−1∑

j=0

δ〈s〉(T
−k((T−jC)∩C)) =

1

J

J−1∑

j=0

δ〈s〉[(T
−j(T−kC))∩(T−kC)] → P〈s〉(T

−kC)δ〈s〉(T
−kC) = P〈s〉(C)δ〈s〉(T

−kC)

But limK→∞
∑K−1

k=1
1
K

P〈s〉(C)δ〈s〉(T−kC) = P〈s〉(C)2 so ( 7 ) holds

Note, that the assumption that C ∈ C̃ ⇒ T−1C ∈ C̃ is innocuous by Proposition 2.

Remark 1

The preceding propositions provide a strengthening of Proposition 4 of Kurz(1994), since we can use them

to conclude that for any WAMS system (S∞,B(S∞), µ, T ) we have for µ a.a. 〈s〉 an associated ergodic

stationary system (S∞,B(S∞), T, P〈s〉) that is derived from the empirical frequencies generated by 〈s〉
The following proposition shows the equivalent of Birkhoff’s Ergodic Theorem for WAMS probability

measures.

Proposition 4

Let ν be WAMS and C ∈ C(S∞). There is a version of the conditional probability, ν(C|I), s.t. for ν a.a. 〈s〉:
1

J

J−1∑

j=0

1C(T j〈s〉) → ν(C|I)(〈s〉)

Proof: Define the function P (C) on S∞ by:

P (C)(〈s〉) = limJ→∞ 1
J

∑J−1
j=0 1C(T j〈s〉) if this limit exists, P (C)(〈s〉) = ν(C) else.

Then for ν a.a. 〈s〉: 1
J

∑J−1
j=0 1C(T j〈s〉) → P (C)(〈s〉). Also for any interval (a, b] with rational endpoints

(there are countably many such) {〈s〉 : P (C)(〈s〉) ∈ (a, b]} ∈ I, so P (C) is measurable I. By Birkhoff’s

Ergodic Theorem, for ν a.a. 〈s〉 : 1
J

∑J−1
j=0 1C(T j〈s〉) → ν(C|I)(〈s〉). We conclude that P (C) is a version of

ν(C|I)(〈s〉)
We next report a result on the relationship between ν and ν.

Proposition 5

If ν is WAMS and ergodic, ν is ergodic.

Proof: By Kurz(1994) Corollary to Proposition 3, if ν is ergodic we have limJ→∞ 1
J

∑J
j=0 1C(T j〈s〉) = ν(C)

for ν a.a. 〈s〉. In other words, P〈s〉 = ν for ν a.a. 〈s〉. But P〈s〉 is ergodic

An implication in the other direction does not hold (Example 2, below). To see this (and for other

purposes) it is useful to consider the smallest invariant sets in S∞.
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Definition 6

Let 〈s〉 ∈ S∞. Define I〈s〉 ≡ ∪∞j=0 ∪∞k=0 T−k(T j〈s〉)

Lemma 4

I〈s〉 is invariant.

Proof: For every j, T−1(∪∞k=0T
−k(T j〈s〉) = ∪∞k=1T

−k(T j〈s〉) ⊂ ∪∞k=0T
−k(T j〈s〉) ⊂ I〈s〉. So T−1I〈s〉 ⊂ I〈s〉

That I〈s〉 ⊂ T−1I〈s〉 follows from the fact that for each j, T j〈s〉 ∈ T−1(T j+1〈s〉) ⊂ T−1I〈s〉

Let S be countable and let P be the set of stationary and ergodic probability measures on (S∞,B(S∞)).

Suppressing reference to S we define for any P ∈ P

KP ≡ {〈s〉 ∈ S∞ :
1

J

J−1∑

j=0

1C(T j〈s〉) → P (C) as J →∞,∀C ∈ C(S∞)}

Then let IP = σ({KP : P ∈ P}). Since KP ∈ I, IP ⊂ I. When S is not countable we define for any

stationary and ergodic probability measure P on S∞ and for any countable (generating) set C̃ of cylinders,

KP (C̃) ≡ {〈s〉 ∈ S∞ :
1

J

J−1∑

j=0

1C(T j〈s〉) → P (C) as J →∞,∀C ∈ C̃}

KP (C̃) is invariant and defining I(P,C̃) = σ({KP (C̃) : P ∈ P}) we have I(P,C) ⊂ I.

Remark 2

(i) Suppose that for some 〈s〉 ∈ S∞, that T j〈s〉 = T k〈s〉 for some k > j and that T j〈s〉 6= T h〈s〉 for all

j < h < k. So T j+m〈s〉 = T k+m〈s〉, ∀m ≥ 0. In particular we have for n = 1 that

T j+m〈s〉 = T j+n(k−j)+m, ∀m ≥ 0 (8)

But if ( 8 ) holds for n, it also holds for n + 1, since T j+m〈s〉 = T j+n(k−j)+m〈s〉 = T k+n(k−j)+m〈s〉=
T j+(n+1)(k−j)+m〈s〉. As a consequence, the empirical measure P〈s〉 generated by 〈s〉 has a finite support

and

P〈s〉({sj+m, sj+m+1, . . .}) =
1

k − j
for m = 1, 2, . . . , k − j

This implies, on the other hand, that if P is any stationary and ergodic probability measure with a marginal

on S that either has a non-finite support or else is non-deterministic then we have for P a.a. 〈s〉 that

T j〈s〉 6= T k〈s〉 for j 6= k (9)

(ii) If ( 9 ) holds for 〈s〉 there is B ∈ B(S∞) s.t. lim sup 1
J

∑J−1
j=0 1B(T j〈s〉) > lim inf 1

J

∑J−1
j=0 1B(T j〈s〉). B can

be constructed as follows:

B = ∪∞k=1 ∪102k

j=102k−1 {T j〈s〉}

10



(iii) In the countable case, if (S∞,B(S∞), T, ν) is WAMS, then for ν a.a. 〈s〉, δ〈s〉 is WAMS (but in general

not AMS as was just demonstrated). This is in particular the case if the dynamical system is actually

stationary. Based on a particular realization 〈s〉 there is no way to see whether the dynamical system, that

〈s〉 is a realization of, is stationary, AMS or WAMS. In all cases the empirical frequency will converge for all

cylinders but not for all infinitely dimensional sets.

(iv) When S is not countable, in general, δ〈s〉 is not WAMS for a.a. 〈s〉. To see this take a WAMS, ergodic

probability measure µ for which µ1, the marginal of µ on S does not have a countable support. µ1 has at

most countably many atoms, let A ⊂ S be the set consisting of them. Let J ⊂ C1(S∞) be the countable set

of one-dimensional cylinders with rational endpoints and let H = {〈s〉 : 1
J

∑J−1
j=0 1E(T j〈s〉) → µ(E),∀E ∈ J },

so µ(H) = 1. Now let F ⊂ S \A be finite. There is for all ε > 0 a finite collection {En} in J s.t. ∪En ⊂ S \F

and P (∪En) > 1 − ε. Thus lim supJ→∞
1
J

∑J−1
j=0 1F×S∞(T j〈s〉) ≤ ε and consequently, since ε was arbitrary,

limJ→∞ 1
J

∑J−1
j=0 1F×S∞(T j〈s〉) = 0 for 〈s〉 ∈ H.

We can use this observation to construct for ν a.a. 〈s〉 a cylinder C such that 1
J

∑J−1
j=0 1C(T j〈s〉) does not

converge. Let J1 ∈ N be given and let C1 = {s1, s2, . . . , sJ1} ∪ A. There is J2 > J1 s.t.

1

J2

J2−1∑

j=0

1C1×S∞(T j〈s〉) <
1

4
(1− µ1(A))

There is then J3 > J2 s.t. if C3 = C1 ∪ {sJ2+1, . . . , sJ3} then

1

J3

J3−1∑

j=0

1C3×S∞(T j〈s〉) >
3

4
(1− µ1(A))

We can then pick J4 > J3 s.t.
1

J4

J4−1∑

j=0

1C3×S∞(T j〈s〉) <
1

4
(1− µ1(A))

and so on. Letting C = ∪Cj × S∞ we have the desired non convergence.

Note that also for the uncountable case are we unable to detect whether the underlying dynamical system

is stationary, AMS or just WAMS, since in all cases an empirical distribution can be derived, but there are

cylinders for which the empirical frequency does not converge.

(v) For any stationary and ergodic probability measure P , P (KP ) = 1, P (KP (C̃)) = 1 in the countable and

uncountable case respectively (see proof of Proposition 5).

Example 2 ν is not ergodic, but ν is.

Let S be countable and let 〈s′〉 ∈ KP where P is non-trivial, stationary and ergodic. By the previous

remark there is B ∈ B(S∞) s.t. 1
J

∑J−1
j=0 1B(T j〈s′〉) does not converge. However, for P a.a. 〈s〉 we have that

11



1
J

∑J−1
j=0 1B(T j〈s〉) does converge. So there is 〈s′′〉 ∈ KP s.t. I〈s′〉 6= I〈s′′〉. Then let ν ′ = λδ〈s′〉 + (1 − λ)δ〈s′′〉

with λ ∈ (0, 1). Since ν ′(I〈s′〉) = λ, ν ′ is not ergodic but ν ′ = P is ergodic3

Remark 3

Under the conditions of Example 2, we have δ〈s′〉(I〈s′〉) = 1. But, since P (T−k(T j〈s′〉)) = 0,∀k, j, we have

P (I〈s′〉) = 0. This observation should be compared with Lemma 6.3.1 of Gray(1987) which states that if

(S∞,B(S∞), T, ν) is AMS then ν(I) = ν(I), ∀I ∈ I.

Lemma 5

Let P be stationary and ergodic. If ν is a stationary measure with ν(KP ) = 1 (in the uncountable case,

ν(KP (C̃) = 1,where C̃ is a countable generating field), then ν = P .

Proof: For ν a.a. 〈s〉: 1
J

∑J−1
j=0 1C(T j〈s〉) → ν(C|I)〈s〉 (Birkhoff’s Ergodic Theorem). However we also have,

by definition of KP (KP (C̃)) that for all 〈s〉 ∈ KP (∈ KP (C)) that 1
J

∑J−1
j=0 1C(T j〈s〉) → P (C). Hence for all

cylinders C (all cylinders C ∈ C̃) we have ν(C|I)〈s〉 = P (C) for ν a.a. 〈s〉 and the result follows

Lemma 6

Suppose (S∞,B(S∞), T, ν) is WAMS and that ν ¿ ν. Then ν is AMS.

Proof: For B ∈ B(S∞) we have that for ν a.a. 〈s〉, 1
J

∑J−1
j=0 1B(T j〈s〉) converges. But then there is also

convergence for ν a.a. 〈s〉

Lemma 7

Suppose {να}α∈A is a collection of WAMS probability measures on (S∞,B(S∞)) and let ρ be a probability

measure on A. Then ν =
∫
A ναρ(dα) is a WAMS probability measure.

Proof: For a cylinder C, we have να(AC) = 1,∀α ∈ A, hence ν(AC) = 1 also

With the help of the results stated in this section it becomes easier to understand the relationship between

stationary, AMS and WAMS probability measures. Let us first consider the ergodic case. Concentrating on

the case where S is countable, a stationary ergodic probability measure P has support on KP . If µ is AMS

with support on KP then if µ(I) = 1 for some I ∈ I, P (I) = 1. We may still have P (B) = 0 and µ(B) = 1

for some measurable B ⊂ KP . But then (Corollary 6.3.2 of Gray, 1987)

lim
j→∞

µ(T−jB) = 0 (10)

If ν is ergodic, WAMS but not AMS with support on KP then there is (Lemma 6) some invariant set I ⊂ KP

s.t µ(I) = P (I) = 0 while ν(I) = 1, in particular ( 10 ) does not hold. In this sense, we say that the support

3In the following section we define probability measure (SIDS measures and SSM measures) that are WAMS, not AMS and

ergodic with support on some KP (C̃). Convex combinations of these will then be non-ergodic.
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of ν is smaller than that of µ and P . This can be phrased in another way: For any σ-algebra G ⊂ B(S∞), we

have that P (·|G)〈s〉 is a WAMS probability measure for P a.a. 〈s〉. The same kind of interpretation applies

to the case where S is not countable.

In the non-ergodic case, and again considering the case where S is countable, a stationary probability

measure P can be interpreted as a combination of ergodic stationary measures namely P (·|IP) (by Lemma 5,

since these are all stationary and with support on KP ′ for some P ′) and similarly if ν is WAMS it is a

combination of WAMS measures, namely ν(·|IP) and a combination of ergodic WAMS measures, namely

ν(·|I) (this follows from Remark 2,(iii)). When S is not countable, P (·|IP) is still stationary, however

whether ν(·|IP) is WAMS, is an open question to this author. Certainly, ν(·|I) is in general not (Remark 2).

In any event, ν has a much ”smaller” support than P when P = ν and this is the crucial observation that

we use when interpreting rational beliefs, as defined below (Definition 7).

Below, we usually assume that the true probability measure ν and hence ν̄ is ergodic, implying that

ν(KP ′) = ν̄(KP ′) = 1, for some P ′ ∈ P . This is without loss of generality, since it just means that we

concentrate on that KP ′ to which the realization 〈s〉 belongs. In that case we have for any C ∈ C(S∞) :

limJ→∞ 1
J

∑J−1
j=0 1C(T j〈s〉) = ν̄(C) for ν-a.a. 〈s〉 (Kurz, 1994 Corollary to Proposition 3).

2.3 Rational beliefs

Whether the true probability measure ν is ergodic or not, agents are assumed to know the limit empirical

frequencies for many cylinders C and based on this information they get to know ν̄ (in the ergodic case,

else ν̄(·|I)〈s〉). The assumption that all agents know ν̄ is entirely the same as that of rational expectations

models (f.i. in Lucas, 1978). This can, in an environment where the relevant observable variables on which

agents form expectations are stable, and where consequently the empirical distribution exists, be justified as

an approximation. Thus we suggest, in line with many interpretations of the rational expectations hypothesis

that the knowledge about ν̄ is the result of a learning process which is not explicitly modelled. However,

in models like Lucas(1978) one more assumption, which is not even explicated, is made, namely that not

only is the true process of observable variables stationary but agents know this. Contrary to the assumption

just discussed, this one cannot be justified as something agents will learn in the limit. As Remark 2 showed,

there is no way to discern whether a system is stationary and not just stable4. When agents realize that the

system may not be stationary, they are faced with different possible interpretations of what they see in terms

of underlying statistical models. To know that some unknown dynamical system (S∞,B(S∞), ν, T ) generates

ν̄ is not the same as knowing ν . There are many possible stable dynamical systems that will generate the

4Of course, since in practice we only have a finite number of observations, we can never be absolutely sure, whether there is

convergence of the empirical frequency of a particular set B. However, note that if B is an infinite dimensional set, the empirical

frequency is not even defined when the number of observations is finite.
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same stationary measure.

Definition 7 Weakly Rational Belief.

A stable probability measure µ on (Ω,B) is said to be a Weakly Rational Belief for the stable dynamical

system (S∞,B(S∞), ν, T ) if µ̄ = ν̄

This definition is a slight modification of the definition of a rational belief given in Kurz(1994a) and in the

following we will not differentiate between the two notions and simply refer to weakly rational beliefs as

rational beliefs.

The true realization is 〈s〉 and what we basically assume, is that the agent knows to which of the subsets

KP (or KP (C̃) in the uncountable case), 〈s〉 belongs, say KP ′ . Any distribution µ, with µ(KP ′) = 1 is then

a rational belief.

Remark 4

(i) To understand this reasoning, consider the possibility (assuming S countable) that the agent chooses as his

belief, δ〈s′〉 where 〈s′〉 ∈ KP ′ . This is a very extreme rational belief, since it means that the agent is absolutely

certain about what is going to happen in the future. If the agent observes that (s1, s2, . . . , st) 6= (s′1, s
′
2, . . . , s

′
t)

for some date t, he concludes that his belief was wrong. However, he also knows that both sequences {s′q}∞q=t+1

and {sq}∞q=t+1 belong to {{sq}∞q=t+1 : (s1, . . . , st, st+1, st+2, . . .) ∈ KP ′}. Thus there is no logical reason for

him to think that {s′q}∞q=t+1 and {sq}∞q=t+1 would be different in the future, i.e. no logical reason for him to

change his belief as far as the future is concerned. The same reasoning would be applicable, would he have

a more diffuse belief on KP ′ like an SIDS process as defined below (Definition 8). Finally, note that as time

progresses it will be confirmed to the agent that 〈s〉 ∈ KP ′ , that is no new learning takes place. If, in contrast

the agent’s belief was wrong in the sense that he thought 〈s〉 ∈ KP ′′ (P ′ 6= P ′′), and had chosen some µ with

support on KP ′′ then, as the empirical frequencies would converge to P ′, he would learn that his belief was

mistaken and would, if he is rational, change it.

(ii) Infinity plays a crucial role in Definition 7. An agent may have any belief in the first n periods of his life

and still be rational in the long run5. This may be considered a problem, however it resembles the heuristics

used to explain the rational expectations assumption according to which agents cannot continue to have

mistaken beliefs, i.e. cannot be wrong in the long run. Furthermore, any statement about the properties of

a rational belief equilibrium is about what happens in the long run, typically based on the properties of the

empirical distribution of the equilibrium process.

(iii) If an agent picks a WAMS belief µ (for instance the belief δ〈s′〉 considered above) which is different from

P ′ he demonstrates rational overconfidence. This is most evident when this belief is not AMS (as is the case

5However, the concept of rational beliefs only define what beliefs agents can have. Which particular rational beliefs they

actually have is seen from the perspective of the theory an empirical issue.
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for the beliefs studied in this paper) since then the support of µ, Hµ ⊂ KP ′ has zero probability under P ′.

Despite, that there are no empirical reasons to think that the actual realization, 〈s〉 belongs to Hµ, the agent

is confident that it does. In other words, while his belief is consistent with observations, he thinks he knows

more than what can safely be extracted from these observations. In particular, he holds that his ability to

predict outperforms that of other agents (who employ other rational beliefs)6. On the other hand, adopting

P ′ (the empirical distribution) as one’s belief is a conservative strategy, since it implies that no subjective

model is used to interpret the data that has been observed

(iv) We would not claim that in reality agents know the empirical distribution perfectly well. Learning

certainly takes place all the time. But part of the problem that individual agents are faced with in reality is,

that they cannot assume that other agents use the same learning model as they do. The diversity of models

and the resulting uncertainty about the expectations of other agents is central to the theory of rational beliefs

(see Section 5 for more on this). To model how learning takes place in general equilibrium is an important

but also difficult task. Guidolin and Timmermann(2003) show how this may be accomplished, but one

shortcoming of their approach is the assumption of homogeneous learning models and common knowledge

about this homogeneity. One can only hope that the methods and insights from both the learning approach

and from the literature on rational beliefs will eventually be incorporated into one general model

3 SSM processes

SSM-processes were introduced in Nielsen(1994) for the case of a countable state space. They are a class

of Markov processes which are stable but not necessarily time homogeneous. The principle is the same as

for SIDS processes, in fact, a subset of SIDS processes, which we called SIDS(i.i.d.) processes7, are SSM

processes. The distribution of an SSM process is generated by an initial distribution and a sequence of

transition probabilities, the last being a typical realization of an i.i.d. process taking values in a countable

set of transition probabilities. To compare, let us formally define SIDS measures (introduced in Nielsen, 1994

and 1996).

Definition 8 SIDS measure.

An SIDS measure ν on (S∞,B(S∞)) is a probability measure s.t.

(a) ν = ⊗∞t=1Pt where ∀t, Pt is a probability measure on (S,B(S)) .

6The concept of rational overconfidence could, in principle, be employed in other contexts than that of rational beliefs. The

ingredients would be a set of probability distributions, one conservative, the rest ”bold” where all these are consistent with

the empirical distribution (empirical observations). Overconfident agents would then choose a bold distribution, while cautious

agents would choose the conservative distribution.
7Meaning that that the generating measure Q = ×∞j=1q where q is a probability measure on S.
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(b) Let P = ∪t{PT} and write it as P = {P 1, P 2, . . .}. Let Z : P → N with Z(P k) = k . Then there exists

an ergodic and stationary probability measure Q on (N∞,B(N∞)) s.t.

∀C ∈ B(N∞) :
1

J

J−1∑

j=0

1C(T j({Z(Pt)}∞t=1)) → Q(C) as J →∞ (11)

Q is then called the generating measure for ν

An SIDS measure is ergodic and stable (see Nielsen, 1996). The stationary measure ν̄ associated with

(S∞,B(S∞),ν,T ) is described by

∀D ∈ N , ∀C ∈ CD(S∞) : ν̄(C) =
∑

n(D)∈ND

(
⊗D

t=1P
nt

)
(CD)Q({n(D)} × N∞) (12)

where CD is the projection of C on SD and n(D) denotes a vector in ND. We also have that for Q-a.a. 〈n〉
that ⊗∞t=1Z

−1(nt) is an SIDS measure with the same associated stationary distribution as ν.

We provide a formal definition of SSM processes which is compatible with an uncountable state space.

Whenever we have a sequence of transition probabilities {Πt}∞t=1 on a state space S and an initial distribution

µ, we let γ(µ, {Πt}∞t=1) denote the induced measure on (S∞,B(S∞)). If the Πt’s are all the same, equal

to Π, we simply write γ(µ, Π). If γ(µ, {Πt}∞t=1) is WAMS, the associated stationary measure is denoted

γ̄(µ, {Πt}∞t=1).

Definition 9 SSM Processes and Generating Measure

An SSM measure on the state space S is a probability measure µ on (S,B(S)) and a sequence {Πt}∞t=1 where

for each t, Πt : S × B(S) → < is a transition probability s.t.

(i) The Markov process with distribution γ(µ, {Πt}) is WAMS.

(ii) There is a probability measure q on P ≡ ∪∞t=1{Πt} s.t. for all cylinders C in P∞ we have that, letting

Q = ⊗∞t=1q,
1
J

∑J−1
j=0 1C(T j{Πt}∞t=1) → Q(C) as J → ∞. Q is then said to be the generating measure for µ.

The associated canonical stochastic process is then called an SSM process

We write the countable set P defined in condition (ii) as P = {Π1, Π2, . . .}. The following result was then

proved in Nielsen(1994):

Proposition 6

Suppose that the state space S is countable. Let P be a countable set of transition probabilities (matrices)

on S and q a probability measure on P . Suppose that there is an invariant ergodic measure, µ̄ for Π̄ =
∑∞

i=1 q({Πi})Πi. Let µ ¿ µ̄. Then for Q a.a. {Πt}∞t=1, γ(µ, {Πt}) is an SSM process

Another route to this result uses a Conditional Stability Theorem like the one introduced in Kurz and

Schneider(1996). We state and prove a slightly different version of that theorem.
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Proposition 7

Let S be countable and Y a topological space. Suppose that (S∞ × Y ∞,B(S∞ × Y ∞), T, ν) is a stable and

ergodic dynamical system. Let the sub algebra G ⊂ B(S∞ × Y ∞) consist of sets of the form G = S∞ × B,

where B ∈ B(Y ∞) and suppose that ν(·|G)(·) is a regular conditional probability. For given 〈s, y〉 ∈ S∞×Y ∞

let νS(·|G)(〈s, y〉) be the marginal of ν(·|G)(·)(〈s, y〉) on S∞. (a) For ν a.e. 〈s, y〉, νs(·|G)(〈s, y〉) is WAMS

with associated stationary measure equal to ν̄S (the marginal of ν̄ on S∞). (b) If Y is countable we have for

ν a.a. 〈s, y〉 that ν(·|G)〈s, y〉 is WAMS with associated stationary measure ν̄.

Proof: Let

KS = {〈s〉 :
1

J

J−1∑

j=0

1C(T j〈s〉) → ν̄(C),∀C ∈ C(S∞)}

and

K = {〈s, y〉 :
1

J

J−1∑

j=0

1C(T j〈s, y〉) → ν̄(C),∀C ∈ C((S × Y )∞)}

Then by Proposition 1, νS(KS) = 1 (since νS is stable) and if Y is countable, ν(K) = 1. Now suppose

there were a set B ∈ B(S∞ × Y ∞) s.t. ν(B) > 0 and s.t. for all 〈s, y〉 ∈ B : ν(KS × Y ∞|G)(〈s, y〉)
=νS(KS|G)(〈s, y〉) < 1. Since ν is stable and thus its marginal on S∞ is as well, 1 = ν(KS×Y ∞) =

∫
B ν(KS×

Y ∞|G)(〈s, y〉)dν(〈s, y〉) +
∫
(S∞×Y∞)\B ν(KS × Y ∞|G)(〈s, y〉)dν(〈s, y〉) and since ν(KS × Y ∞|G)(〈s, y〉) ≤ 1

uniformly, this would give a contradiction. Thus νS(KS|G)(〈s, y〉) = 1 for ν a.a. 〈s, y〉 which means that

νS(·|G)(〈s, y〉) is stable with associated stationary measure ν̄S. Using K in stead of KS, the same kind of

reasoning leads to (b) when Y is countable

Remark 5 How to obtain Proposition 6 from Proposition 7.

Let Y = P (from (ii) of Definition 9). Let the Markov transition on S × Y be Π((s, Πj), A × {Πi)) =

Πj(s, A)q(Πi) for all A ⊂ S (with a unique extension to all sets in B((S × Y )∞)). Let the initial distribution

be µ⊗ q. Then γ(µ⊗ q, Π) is stationary and ergodic and for Q a.a. {Πt} in P∞ we have γ(µ, {Πt}) is stable

and ergodic with associated stationary distribution equal to γ(µ̄, Π̄), which is the marginal of γ(µ̄⊗ q, Π̄) on

S∞ (see Proposition 10 for details)

As we shall demonstrate shortly, the result is not correct for S uncountable even when Y is finite. However the

conditions stated in Proposition 7 have their own relevance. In fact, in Kurz(1997) a situation is studied, where

the fluctuations in endogenous variables are partly the consequence of a series of regimes which never repeat

themselves. This may be interpreted as a situation where the set Y of generating variables is uncountable.

We now turn to demonstrating the limitations of the conditional stability approach. This is done by showing

that if S is uncountable, the conclusion of Proposition 7 need not hold.
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Example 3

Let Y = {1, 2} and let γ = ⊗∞t=1γ
1 where γ1({0}) = γ1({1}) = 1

2
. Then (Y ∞,B(Y ∞), T, γ) is a stationary

system and by the Ergodic Theorem we have for all B ∈ B(Y ∞) that for γ-a.a. 〈y〉 ∈ Y ∞, 1
J

∑J−1
j=1 1B(T j〈y〉) →

γ(B). We also have for γ-a.a. 〈y〉 ∈ Y ∞ that :

(i)
1

J

J−1∑

j=0

1C(T j〈y〉) → γ(C) for all C ∈ C(Y ∞) (Proposition 1)

(ii) ∃B ∈ B(Y ∞) s.t.
1

J

J−1∑

j=0

1B(T j〈y〉) does not converge (Remark 2)

Let S = [0, 1] and let E ∈ B(Y ∞) be the set of 〈y〉 s.t. either yn = 1,∀n or ∀k, ∃n > k, s.t. yn = 0. Then the

binary expansion τ(〈y〉) =
∑∞

n=1
yn

2n is a one-to-one map from Y ∞ onto S and is continuous (in the topology

of pointwise convergence on Y ∞ ). Now define the injective map f : E → S∞ by f(〈y〉)n = τ(T n−1〈y〉).
Also define the transition probability Π : E → P(S∞) by Π(〈y〉) = δf(〈y〉) (the Dirac measure at f(〈y〉)). To

establish that Π is a transition probability we need to show that it is measurable. We show continuity. Let

〈y〉k → 〈y〉 pointwise in E. So for any n, T n〈y〉k → T n〈y〉 pointwise that is f(〈y〉k)n+1 → f(〈y〉)n+1 for all

n. Finally, we know that when 〈s〉k → 〈s〉 we have δ〈s〉k → δ〈s〉 (in the topology of weak convergence). So

Π is indeed a transition probability. Let γE be the restriction of γ to E and note that since γ(E) = 1, γE is

a probability measure. Then γE together with Π induces a probability measure ν on (S∞ × E,B(S∞ × E))

(defined by ν(A × B) =
∫
B γE(d〈y〉)Π(〈y〉, A) ) s.t. if we let D = {〈s, y〉 ∈ S∞ × E : 〈s〉 = f(〈y〉)} then

ν(D) = 1 . For γE a.a. 〈y〉 we have that the probability measure Π(〈y〉) is not stable since we can construct

a cylinder C ∈ C(S∞) s.t. f(〈y〉) is not stable relative to C, that is 1
J

∑J−1
j=0 1C(T jf(〈y〉)) does not converge.

This is done as follows. We use that for γ-a.a. 〈y〉 we have that T j〈y〉 6= T j+n〈y〉 for all n > 0, which

means that (T jf(〈y〉))1 6= (T j+nf(〈y〉))1 for n > 0 (Remark 2). Then let K ⊂ [0, 1] be defined as follows:

K = ∪∞n=1 ∪102n+1

m=102n {(Tm〈s〉)1} where 〈s〉 = f(〈y〉) and let C = K × S∞. Then f(〈y〉) is not stable relative

to C. Note that C is the smallest 1-dimensional cylinder containing ∪∞n=1 ∪102n+1

m=102n {Tm〈s〉}. The preimage of

this last set under f is not a cylinder, which explains how this example works. The idea is to let the infinite

dimensional information contained in the sequence 〈y〉 be transformed into finite dimensional information as

in f(〈y〉)1 = τ(〈y〉). To complete the example, we show that ν is AMS and ergodic. So let F ∈ B(S∞ × E)

and let

KF =



〈s, y〉 ∈ S∞ × E :

1

J

J−1∑

j=0

1F (T j〈s, y〉) converge





Then to show that ν(KF ) = 1 we need only show that ν(KF ∩D) = 1. We show

〈s, y〉 ∈ KF ∩D iff 〈s, y〉 ∈ KF∩D ∩D (13)
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First note that 〈s, y〉 ∈ D ⇔ T j〈s, y〉 ∈ D, ∀j ∈ N0. It follows that if 〈s, y〉 ∈ D then T j〈s, y〉 ∈ F ⇒
T j〈s, y〉 ∈ F ∩D while, of course, T j〈s, y〉 ∈ F ∩D ⇒ T j〈s, y〉 ∈ F . Thus if 〈s, y〉 ∈ D then

1

J

J−1∑

j=0

1F (T j〈s, y〉) =
1

J

J−1∑

j=0

1F∩D(T j〈s, y〉)

from which ( 13 ) follows. Suppose T j〈y〉 ∈ ProjY (F ∩D). Then ∃〈s〉 ∈ S∞ s.t. (〈s〉, T j〈y〉) ∈ F ∩D. But if

(〈s〉, T j〈y〉) ∈ D then 〈s〉 = f(T j〈y〉). So T j〈f(〈y〉), y〉 = (f(T j〈y〉), T j〈y〉) ∈ F ∩D. We conclude that

T j〈f(〈y〉), y〉 ∈ F ∩D ⇔ T j〈y〉 ∈ ProjY∞(F ∩D)

So
1

J

J−1∑

j=0

1F∩D(T j〈f(〈y〉), y〉) =
1

J

J−1∑

j=0

1ProjY∞ (F∩D)
(T j〈y〉)

which converges for γE-a.a.〈y〉 and thus for ν-a.a. 〈s, y〉 ∈ D.

Finally, consider an invariant set, I. Then the projection, IE on E is also invariant, so either γE(IE) = 1

or γE(IE) = 0. In the first case, I = {〈f(〈y〉), y〉 : 〈y〉 ∈ IE}, so ν(I) = 1.

Remark a: νS∞ , the marginal of ν on S∞ is the distribution of a Markov chain {Xt} with initial distribution

being the uniform distribution on [0, 1] and deterministic transition π where, letting h(s) = τ(T (τ−1(s))),

π(s, {h(s)}) = 1. Suppose we consider the sub σ-algebra H ⊂ B(S∞) generated by all sets of the form

A1 × A2 × . . . × AN × S∞ where An ∈ {[0, 1
2
), [1

2
, 1]}, ∀n s.t. 1 ≤ n ≤ N . Thus H is defined by a finite

partition at any date. None the less, νS∞(·|H)〈s〉 = Π(f−1(〈s〉)) is not WAMS. Thus even when we condition

a stationary measure on a filtration consisting of finite σ-algebras, the result is not necessarily a WAMS

measure when the state space is not countable.

Remark b: There is in fact no probability measure, µ with support on f(E) (= KνS∞ ) that is WAMS but

not AMS. For if that were the case there would, for some non-cylinder set B ∈ B(S∞) ∩ f(E), be a set

A ∈ B(S∞) ∩ f(E) with µ(A) ≥ 0 s.t. for 〈s〉 ∈ A, 1
J

∑J−1
j=0 1B(T j(〈s〉) would not converge. But since there

is a one-to-one onto function H : [0, 1] → f(E), letting B1 = H−1(B) we would have 1
J

∑J−1
j=0 1B(T j〈s〉) =

1
J

∑J−1
j=0 1B1×S∞(T j〈s〉), ∀J , i.e. there would on A not be convergence for the cylinder B1×S∞ either, implying

that µ is not WAMS.

Remark c: The chain {Xt} is not positive recurrent: For any s ∈ [0, 1] let A = [0, 1] \ {s, h(s), h2(s), . . .}
and νS∞(A i.o. |s) = 0. Note that the chain is then not Harris (as defined in Definition 10 below).

Remark d: The chain is not indecomposable either: Let s 6= s′ be irrationals and let E = {s, h(s), h2(s), . . .}
and E ′ = {s′, h(s′), h2(s′), . . .}. Then E ∩ E ′ = ∅ and π(s, E) = 1,∀s ∈ E and π(s′, E ′) = 1, ∀s′ ∈ E ′

We next turn to study SSM processes when the state space is not countable. To follow are two preliminary

results.
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Proposition 8

(a) If γ(µ, {Πt}) is WAMS and if µ̃ ¿ µ then γ(µ̃, {Πt}) is WAMS.

(b) If γ(µ, Π) is WAMS it is AMS.

Proof: (a) The condition implies that γ(µ̃, {Πt}) ¿ γ(µ, {Πt}). If we take any cylinder C ∈ C(S∞) and let

AC =



〈s〉 :

1

N

N−1∑

j=0

1c(T
j〈s〉) converges





then γ(µ, {Πt})(AC) = 1 implying that γ(µ̃, {Πt})(AC) = 1.

(b) Let γ̄ be the stationary measure associated with γ(µ, Π). Define the probability measures PN , N ∈ N on

(S,B(S)) by

PN(A) =
1

J

J−1∑

j=0

∫

S
µ(ds)Πj(s, A) =

1

J

J−1∑

j=0

γ(µ, Π)(T−j(A× S∞)) for any A ∈ B(S)

Then PN(A) → γ̄1(A) where γ̄1 is the marginal of γ̄ on the first coordinate. Let B ∈ B(S∞) and note that

1

J

J−1∑

j=0

γ(µ, Π)(T−jB) =
1

J

J−1∑

j=0

∫

S
µ(ds)

∫

S
Πj(s, ds′)γ(δs′ , Π)(B)

γ(δs′ , Π)(B) is as a function of s′ measurable (Proposition V.2.1, Neveu, 1965) so the last expression makes

sense. This expression is in turn equal to
∫
S PN(ds)γ(δs′ , Π)(B) which converges to

∫
S γ̄1(ds)γ(δs′ , Π)(B)

Remark 6

γ̄(µ, Π)(B) =
∫
S γ̄1(ds)γ(δs, Π)(B). So γ̄1 is an invariant measure for Π and a necessary and sufficient

condition for an initial distribution µ to exist s.t. Γ(µ, Π) is AMS is that Π has an invariant distribution

We are, however, interested in processes which are WAMS but not AMS. The reason is that asymptotic

mean stationarity is too strong a condition to model beliefs which are in the long run diverse. Recall that

if µ is AMS then (Gray,1987 corollary 6.3.2) µ̄ asymptotically dominates µ in the sense that µ̄(B) = 0 ⇒
limj→∞ µ(T−jB) = 0. Thus eventually, any significant statistical deviation from µ̄ has probability zero.

Proposition 9

Suppose (S∞ × Y ∞,B(S∞ × Y ∞), T, ν) is a stable and ergodic dynamical system and that for ν-a.a. 〈s, y〉:

1

J

J−1∑

j=0

ν(T−jC|G)〈s, y〉 converges for all C ∈ C(S∞ × Y ∞) (14)

where G ⊂ B(S∞ × Y ∞) is a sub σ-algebra. Then for ν-a.a. 〈s, y〉 :

1

J

J−1∑

j=0

ν(T−jC|G)〈s, y〉 → ν̄(C), for all C ∈ C(S∞ × Y ∞)
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Proof: Let Ã be the set where ( 14 ) holds. There is a set of probability measures ν〈s,y〉 s.t. for 〈s, y〉 ∈ Ã:

1

J

J−1∑

j=0

ν(T−jC|G)〈s, y〉 → ν〈s,y〉(C), ∀C ∈ C(S∞ × Y ∞)

This follows from the Vitali-Hahn-Saks Theorem. Let C̃ ⊂ B(S∞ × Y ∞) be a countable generating set of

cylinders for B(S∞ × Y ∞) and

B∗ =



〈s, y〉 :

1

J

J−1∑

j=0

1c(T
j〈s, y〉) → ν(C),∀C ∈ C̃





Then, because of stability, µ(B∗) = 1. Since

ν(B∗) =
∫

S∞×Y∞
ν(B∗|G)(〈s, y〉)ν(d〈s, y〉)

it follows that ν(B∗|G)(〈s, y〉) = 1 for 〈s, y〉 ∈ C̃ for some C̃ s.t. ν(C̃) = 1. Consider a 〈s′, y′〉 ∈ Ã ∩ C̃. For

any C ∈ C̃ :

1

J

J−1∑

j=0

ν(T−jC|G)(〈s′, y′〉) =
1

J

J−1∑

j=0

∫

B∗
1C(T j〈s, y〉)ν(d〈s, y〉|G)(〈s′, y′〉) =

∫

B∗

1

J

J−1∑

j=0

(T j〈s, y〉)ν(d〈s, y〉|G)(〈s′, y′〉 → ν(C)

- the convergence following from Lebesgue’s bounded convergence theorem. So for 〈s, y〉 ∈ Ã∩ C̃ : ν〈s,y〉(C) =

ν(C), ∀C ∈ C̃, implying that ν〈s,y〉(B) = ν(B),∀B ∈ B(S∞ × Y ∞)

We use the concept of a Harris Chain to prove that there is a large class of Markov processes on a state

space S in <k which are stable but non-stationary. The following definition is taken from Durrett(1991):

Definition 10 Harris Chain.

A time homogenous Markov chain {Zn} taking values in S and with transition Π is a Harris chain if there

are sets A, B ∈ B(S) and a function k : S × S → <, an ε > 0, and a probability measure ρ with ρ(B) = 1

s.t. :

(i) k(s, s′) > ε for (s, s′) ∈ A×B

(ii) If we let τA = inf{n ≥ 0 : Zn ∈ A} then P (τA < ∞|Z1 = s) > 0,∀s ∈ S

(iii) For s ∈ A and C ∈ B(S), with C ⊂ B, we have that Π(s, C) ≥ ∫
C k(s, s′)ρ(ds′)
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Proposition 10

Suppose that Π̄ on S is the transition probability of a Harris chain with ergodic and invariant distribution µ̄.

Suppose furthermore that {Π1, Π2, Π3, . . .} is a countable set of transition probabilities on S and q1, q2, q3, . . .

are non-negative numbers s.t.

(a)
∑∞

i=1 qiΠi = Π̄.

(b) ∃c > 0, s.t. ∀i ∈ N ,∀s ∈ S, ∀F ∈ B(S) : cΠ̄(s, F ) ≤ Πi(s, F ).

Then if we let q be a probability measure on N with q({i}) = qi and let Q = ⊗∞t=1q we have for Q a.a. 〈i〉
and for any µ̃ ¿ µ̄ that

γ(µ̃, {Πit}∞t=1)⊗ δ〈i〉

is a stable probability measure on ((S×N )∞,B((S×N )∞)) and that γ(µ̃, {Πit}∞t=1) is an SSM measure with

associated stationary measure γ(µ̄, Π̄).

Proof: Everywhere below we use regular versions of conditional probabilities. We consider the time homoge-

nous stationary and ergodic Markov process {Xt, Yt}∞t=1 on (S ×N )∞ with stationary distribution P defined

by: (X1, Y1) has distribution µ̄⊗ q and

P (Xt ∈ F, Yt ∈ G|Xt−1 = s, Yt−1 = i,Xt−2 = st−2, Yt−2 = it−2, . . . , X1 = s1, Y1 = i1} = q(G)Πi(s, F ) (15)

with unique extension to all of B(S ×N ) (To see that this process is indeed ergodic notice that if we let N ∗

be the support of q,
∫
E×N ∗ µ̄⊗ q(d(s, i))·q(N ∗)Πi(s, E) =

∫
E µ̄(ds)Π̄(s, E) < 1 unless µ̄(E) = 1).

Let PS∞ be the marginal of P on S∞. Then for any F ∈ B(S):

PS∞(Xt ∈ F |Xt−1 = st−1, Xt−2 = st−2, . . . , X1 = s1) = Π̄(st−1, F ) (16)

Note, that if {Yt} were a Markov chain say, this would not be correct. For a proof of ( 16 ) see Appendix A.

Let G = {S∞, ∅} × B(N∞). We want to show the following:

for P − a.a.〈s, i〉 : ∀C ∈ C((S ×N )∞) :
1

J

J−1∑

j=0

P (T−jC|G)〈s, i〉 converges (17)

To this end we define a transformed (canonical) Markov process {X̂t, Ŷt} on an enlarged state space, ((Ŝ ×
N )∞,B(Ŝ)∞×B(N∞)). Here Ŝ ≡ S∪{α}, α being an extra member added to S, and B(Ŝ) = B(S)∪{B∪{α} :

B ∈ B(S)}. Let µ̂ be an initial distribution on B(Ŝ) with µ̂({α}) = ε̂µ̄(A) and µ̂(F ) = µ̄(F ) − ρ(F )ε̂µ̄(A)

for F ∈ B(S) (that µ̂ is in fact a probability measure is shown in Appendix A). The stationary distribution

of {X̂t, Ŷt} is denoted P̂ .

We replace k with k̂ = ck and ε with ε̂ = cε and define in line with Durrett, the transformed transition

probabilities Π̂i, i = 1, 2, . . . on Ŝ × B(Ŝ).

(a) If s ∈ S \ A : Π̂i(s, C) = Πi(s, C), for C ∈ B(S).
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(b) If s ∈ A : Π̂i(s, {α}) = ε̂ and Π̂i(s, C) = Πi(s, C)− ε̂ρ(C), C ∈ B(S).

(c) Π̂i(α, D) =
∫

Π̂i(s,D)ρ(ds), D ∈ B(Ŝ).

Then P̂ ((X̂1, Ŷ1) ∈ G) = µ̂⊗ q(G) and Π̂i(s, F )q(G) =

P̂ ((X̂t, Ŷt) ∈ F ×G|(X̂t−1, Ŷt−1) = (s, i), (X̂t−2, Ŷt−2) = (st−2, it−2), . . . , (X̂1, Ŷ1) = (s1, i1))

If we let
¯̂
Π =

∑∞
i=1 qiΠ̂i, µ̂ = µ̂

¯̂
Π (see Appendix A) so, since

∫
(µ̂⊗q)(d(s, i))Π̂i(s, F )q(G) = q(G)

∫
µ̂(ds)

¯̂
Π(s, F )

the process is stationary and in fact also ergodic (also shown in Appendix A). Note that this implies that α

is positive recurrent under P̂ , since µ̂({α}) > 0.

We next define the function g : Ŝ × N → {0, 1} × N by g(s, i) = (1α(s), i) and let G : (Ŝ × N )∞ →
({0, 1}×N )∞ denote

∏∞
t=1 g. Note that the induced measure P̂ ◦G−1 on B(({0, 1}×N )∞) is stationary and

ergodic. Let

E∗ =



〈z, i〉 ∈ ({0, 1} × N )∞ :

1

J

J−1∑

j=0

1C(T j〈z, i〉) → P̂ ◦G−1(C), ∀C ∈ C(({0, 1} × N )∞)





Because of the stationarity of P̂ ◦G−1 we have that P̂ ◦G−1(E∗) = 1 (a consequence of Proposition 1). Let

E = G−1(E∗) and D = G−1(B({0, 1} × N )∞) . We now want to construct a useful representation of P̂ (·|D).

Let F × (Ŝ ×N )∞ ∈ Ck((Ŝ ×N )∞) be given. For any L ≥ k + 1, let

AL = {[(z1, y1), . . . , (zL, yL)] ∈ ({0, α} × N )L : z1 = α, zL−k+1 = α, zl 6= α, 1 < l < L− k + 1}

For any [(z1, y1), . . . , (zL, yL)] ∈ ∪L≥k+1AL and any 0 ≤ j ≤ L− k − 1, let K([(z1, y1), . . . , (zL, yL)]; j) =

P̂ (〈s, i〉 : zl = α ⇔ sl = α, il = yl, 1 ≤ l ≤ L, [(sj+1, ij+1), . . . , (sj+1+k, ij+1+k)] ∈ F )

P̂ (〈s, i〉 : zl = α ⇔ sl = α, il = yl, 1 ≤ l ≤ L, )

whenever the denominator is positive, 0 else. Consider a given 〈s′, i′〉 ∈ (Ŝ × N )∞ and j ≥ 0. If there are

t ≤ j + 1 s.t. s′t = α and t ≥ j + 2 s.t. st = α and s.t. s′t 6= α for t < t < t, then if P̂ (T−jC|D)〈s′, i′〉 > 0,

P̂
(
T−jC|D

)
〈s′, i′〉 =

P̂ (〈s, i〉 : st = α ⇔ s′t = α, it = i′t, t ≤ t̄ + k − 1, [(sj+1, ij+1), . . . , (sj+1+k, ij+1+k)] ∈ F )

P̂ (〈s, i〉 : st = α ⇔ s′t = α, it = i′t, t ≤ t̄ + k − 1)
=

P̂ (〈s, i〉 : st = α ⇔ s′t = α, it = i′t, t ≤ t ≤ t̄ + k − 1, [(sj+1, ij+1), . . . , (sj+1+k, ij+1+k)] ∈ F )

P̂ (〈s, i〉 : st = α ⇔ s′t = α, it = i′t, t ≤ t ≤ t̄ + k − 1)
=

P̂
(
〈s, i〉 : st = α ⇔ s′t+t−1 = α, it = i′t+t−1, 1 ≤ t ≤ t̄− t + k, [(sj−t+2, ij−t+2), .., (sj−t+k+2, ij−t+k+2)] ∈ F

)

P̂
(
〈s, i〉 : st = α ⇔ s′t+t−1 = α, it = i′t+t−1, 1 ≤ t ≤ t̄− t + k

) (18)
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where the second equality follows since the process is Markovian and the third is a consequence of stationarity.

Finally, ( 18 ) is equal to K([(1α(s′t)α, i′t), . . . , (1α(s′
t+k−1

)α, i′
t+k−1

)]; j − t + 1). If we for any L ≥ k + 1 and

any [z, i]L ∈ AL let

K([(z1, i1), . . . , (zL, iL)]) =
L−k−1∑

j=0

K([(z1, i1), . . . , (zL, iL)]; j)

we have
t−2∑

j=t−1

P̂ (T−jC|D)〈s′, i′〉 = K([(1α(s′t)α, i′t), . . . , (1α(s′t+k−1)α, i′t+k−1)])

It follows that
1

J

J−1∑

j=0

P̂ (T−jC|D)〈s′, i′〉 =
1

J

J−1∑

j=0

∞∑

L=k

∑

(z,i)L∈AL

M(T j〈s′, i′〉; (z, i)L)K((z, i)L)

=
1

J

inf{t:s′t=α}−1∑

j=0

P̂ (T−jC|D)〈s′, i′〉 − 1

J

inf{t>J+1:s′t=α}∑

j=J

P̂ (T−jC|D)〈s′, i′〉

where M(T 〈s, i〉; (z, i)L) = 1, if [(s1, i1), . . . , (sL, iL)] = (z, i)L, = 0 else. For all 〈s′, i′〉 ∈ E , the first part of

this sum converges as J →∞ while the second and third parts tend to 0.

We have shown that there is a version of P̂ (·|D)(·) s.t. for P̂ -a.a. 〈s′, i′〉 : (that is for all 〈s′, i′〉 ∈ E)
1
J

∑J−1
j=0 P̂ (T−jC|D)〈s′, i′〉 converges for all k-dimensional cylinders in C(Ŝ∞ ×N∞). Letting Gα = {Ŝ∞, ∅} ×

B(N∞) we use Lebesgue’s bounded convergence theorem to conclude from this that for P̂ -a.a. 〈s′, i′〉:
1

J

J−1∑

j=0

P̂ (T−jC|Gα)〈s′, i′〉

converges for all k-dimensional cylinders in C(Ŝ∞ ×N∞). Let 〈s′, i′〉 ∈ E .

1

J

J−1∑

j=0

P̂ (T−jC|Gα)〈s′, i′〉 =
∫

(Ŝ×N )∞


 1

J

J−1∑

j=0

P̂ (T−jC|D)〈s, i〉

 P̂ (d〈s, i〉|Gα)〈s′, i′〉

Since
∣∣∣ 1
J

∑J−1
j=0 P̂ (T−jC|D)〈s, i〉

∣∣∣ ≤ 1, ∀〈s, i〉 and converges for P̂ (·|Gα)〈s′, i′〉-a.a. 〈s, i〉 (namely on E ) we have

that
1

J

J−1∑

j=0

P̂ (T−jC|Gα)〈s′, i′〉 →
∫

(Ŝ×N )∞
( lim
J→∞

1

J

J−1∑

j=0

P̂ (T−jC|D)〈s, i〉)P̂ (d〈ŝ, i〉|Gα)〈s′, i′〉

In the final step of the proof we show ( 17 ) using the convergence result just established. Let v′ be a transition

probability on Ŝ with v(s, {s}) = 1, s ∈ S and v(α, C) = ρ(C) for C ∈ B(Ŝ) then µ = µ̂v. (see Appendix

A). We also have for all i that vΠ̂i = Π̂i and Π̂iv = Πi. The proof is a repetition of that of Lemma 6.1 from

Chapter 5 of Durrett(1991), see Appendix A for details. Consider 〈ŝ′, i′〉 ∈ E . Let µj, respectively µ̂j be the

marginals on the j’th coordinate of S∞, respectively Ŝ∞ of P (·|G)〈s, i′〉 and P̂ (·|Gα)〈ŝ, i′〉 respectively. We

then have µj = µ̂jv
′ This follows since if A ∈ B(S) then

µj(A) =
∫

S
µ(ds1)

∫

S
Πi′1(s1, ds2) · · ·

∫

S
Πi′j−1

(sj−1, A) =
∫

S
µ̂v′(ds1)

∫

S
Π̂i′1v

′(s1, ds2) · · ·
∫

S
Π̂i′j−1

v′(sj−1, A) =
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∫

S

∫

Ŝ
µ̂(dŝ1)v

′(ŝ1, ds1)
∫

S

∫

Ŝ
Π̂i′1(s1, dŝ2)v

′(ŝ2, ds2) · · ·
∫

Ŝ
Π̂i′j−1

(sj−1, dŝj)v
′(ŝj, A) =

∫

Ŝ
µ̂(dŝ1)

∫

Ŝ
Π̂i′1(ŝ1, dŝ2) · · ·

∫

Ŝ
Π̂ı′j−1

(ŝj−1, dŝj)v
′(ŝj, A) =

∫

Ŝ
µ̂j(dŝj)v

′(ŝj, A)

Then let the transition probability ν on Ŝ ×N be defined by ν((s, i), A× {j}) = ν ′(s, A)δ{i}({j}),∀A ∈
B(Ŝ).

Let C = F × (S ×N )∞ ∈ Ck((S ×N )∞). We study 1
J

∑J−1
j=0 P (T−jC|G)〈s, i′〉. We have

P (T−jC|G)〈s, i′〉 =
[∫

S×N
µj+1 ⊗ δi′j+1

(d(sj+1, yj+1))
∫

S
Πi′j+1

(sj+1, dsj+2)
∫

N
δi′j+2

(dyj+2) . . .

∫

S
Πi′

j+k−1
(sj+k−1, dsj+k)

∫

N
δi′

j+k
(dyj+k)

]
· 1F ((sj+1, yj+1), . . . , (sj+k, yj+k)) =

[∫

Ŝ×N
µ̂j+1 ⊗ δi′j+1

(d(s, i))
∫

S×N
ν((s, i), d(sj+1, yj+1))

∫

S
Πi′j+1

(sj+1, dsj+2)
∫

N
δi′j+2

(dyj+2) . . .

. . .
∫

S
Πi′

j+k−1
(sj+k−1, dsj+k)

∫

N
δi′

j+k
(dyj+k)

]
· 1F ((sj+1, yj+1), . . . , (sj+k, yj+k)) (19)

Letting

H[s1, y1, . . . , yk] =
∫

S×N
ν((s1, y1), d(s, y))

∫

S
Πy1(s, ds2) . . .

∫

S
Πyk−1

(sk−1, dsk)1F ((s1, y1), . . . , (sk, yk))

which is a bounded and measurable function, ( 19 ) can be rewritten as

∫

Ŝ
µ̂⊗ δi′j+1

(d(ŝj+1, yj+1))H(ŝj+1, i
′
j+1, . . . , i

′
j+k) = EP̂ (H(X̂j+1, Ŷj+1, . . . , Ŷj+k)|Gα)〈ŝ, i〉

In conclusion,

1

J

J−1∑

j=0

P (T−jC|G)〈s, i′〉 =
1

J

J−1∑

j=0

EP̂ (H(X̂j+1, Ŷj+1, . . . , Ŷj+k)|Gα)〈ŝ, i′〉 (20)

which converges because of the convergence of 1
J

∑J−1
j=0 P̂ (T−jC|Gα)〈s′, i′〉 for all cylinders.

We have shown, for all k, all C ∈ CK(S∞) and for all 〈s, i〉 ∈ E that ( 17 ) holds. From Proposition 9 it

follows, that the convergence is in fact to P (C) for Q a.a. 〈i〉.
The marginal of P (·|G)〈s, i′〉 is γ(µ̄, {Πi′t}) as follows from ( 15 ), thus P (·|G)〈s, i′〉 =γ(µ̄, {Πi′t})⊗ δ〈i′〉. From

( 16 ) it follows that γ̄(µ̄, {Πi′t}) = γ(µ̄, Π̄). By Proposition 8, these features are not changed if we replace µ̄

with µ̃

Remark 7

It should be noted that we could weaken somewhat the requirement that cΠ̄(s, F ) ≤ Πi(s, F ), ∀F ∈ S, since

it need only hold for s ∈ A and F ⊂ B
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4 Sun-spot rational belief structures, anonymity and structural

independence

4.1 Sunspot rational belief structures

The purpose of this section is to motivate and define the concept of a Sunspot Rational Belief Structure

(SRBS). A SRBS defines a stochastic process of exogenous variables {Xt} and a stochastic process of sunspots

{DT}. The latter are sunspots in the sense that their empirical distribution is independent of the empirical

distribution of the exogenous variables. However, according to the subjective rational beliefs held by agents

and described in the SRBS, there need not be independence8.

In the first example discussed here we stay in the framework of a rational belief structure as defined in

Nielsen(1996). There (and in other papers using the concept of a rational belief structure) it was assumed

that there are M agents, where agent m has a sequence {Bmt}∞t=1 of either one-period beliefs for the SIDS

case or transition probabilities (i.e. one-period conditional beliefs) for the SSM case and furthermore, that

there is an exogenous stochastic process {Xt}∞t=1. In many cases (f.i. the one commodity stochastic OLG

model), the equilibrium price function then has the form pt = P (Xt, B1t, . . . , BMt}. In the next example we

assume that M is equal to 2 and that each agent only has 2 possible one-period (conditional) beliefs and

furthermore, that Xt only takes two values. This means that there will at most be 8 observed equilibrium

prices for the economy. One problem we encounter with this framework is that there is an obvious correlation

between the beliefs of the individual agent and the prices. In previous work (i.e. Kurz and Schneider, 1996,

Kurz and Wu, 1996, and Nielsen, 1996) it was assumed that agents do not explore this connection and,

comparing it to the assumption of competitive behavior in GE models, it was stated that one should expect

this phenomena to disappear when the number of agents becomes larger. More specifically it was assumed

that no agent consider his own belief part of the data when deriving the stationary measure. If he did so, he

would discover the connection between his beliefs and prices, and knowing his own future beliefs he would be

able to predict more accurately future prices. As we shall see below, in rational beliefs equilibria where beliefs

(on fundamentals) are described by an SRBS, no agent can discover any correlation between his own beliefs

and endogenous variables even at infinity. None the less, sunspots act as sources of correlated fluctuations in

beliefs that in turn create fluctuations in aggregate variables like prices. This is much the same effect as was

obtained when rational belief structures were used (i.e. without anonymity). Thus we may conclude that the

results obtained hitherto (without anonymity) can be interpreted in terms of models with many anonymous

8In this sense, sunspots are not extrinsic, however we use the term ’sunspots’ because of their stated independence from

exogenous fundamentals and because they function as coordination devices for the beliefs of individual agents. In the original

article on sunspots, Cass and Shell(1983), the possibility that agents may have subjective expectations about sunspots was

considered (see p. 208).
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agents as it was (implicitly) claimed and that in this sense, the issue of anonymity is mostly of a technical

nature. However, as the following example demonstrates, in the case where agents have Markovian beliefs, so

that they condition their forecasts on present observations there is potentially a separate issue, since realized

expectations may then be quite arbitrary.

Example 4

Suppose first that there is an exogenous process which has 8 different states and that the stationary measure

is Markovian with a transition matrix that looks as follows:



1
8
· · 1

8

1
8
· · 1

8

· · · ·
1
8
· · 1

8




i.e. the stationary distribution is i.i.d. with every state having the same probability. Now suppose the belief

of some agent is SSM with two transition matrices each occurring with frequency 1
2
. The two transition

matrices are as follows:

B1 =




1
4

0 1
4

0 1
4

0 1
4

0
1
4

0 1
4

0 1
4

0 1
4

0
1
4

0 1
4

0 1
4

0 1
4

0
1
4

0 1
4

0 1
4

0 1
4

0

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4




and B2 =




0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

1
4

0 1
4

0 1
4

0 1
4

0
1
4

0 1
4

0 1
4

0 1
4

0
1
4

0 1
4

0 1
4

0 1
4

0
1
4

0 1
4

0 1
4

0 1
4

0




If an agent has a Markovian beliefs, at each date, he conditions his forecast on the realized observed variables

at that date. Thus, his realized belief depends both on his subjective belief and on the true (unknown)

distribution (both probability measures on S∞). If there is no particulary bad9 correlation between the

realization of the variable and the sequence of generating variables, then the forecasts conditional on the

observed variable will on average be correct. This means that if for instance one looks at those dates where

state number 1 is observed, then the average forecast on those dates will be equal to the average empirical

distribution on dates following state number 1.

Next consider a different interpretation of these beliefs. Suppose that the 8 different states describe

fundamentals in terms of a two agent situation (where each agent has two possible transition matrices) and two

9Specifically, if we have structural independence as defined below (see also Example 6).
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exogenous states i.e. the fundamental states are s1 = (B1, B1, X1), s2 = (B1, B1, X2), s3 = (B1, B2, X1),....,

s7 = (B2, B2, X1), s8 = (B2, B2, X2). Each agent m uses each transition matrix Bj, j = 1, 2 half of the

dates. This would imply that the second half of B1 and the first half of B2 would never be used by agent

1: Whenever he uses matrix B1, one of the first four states (which are the states where he uses B1 ) is the

present realized state, and he will be conditioning on one of these four states (thus not using the second half

of B1). Whenever he uses matrix B2, one of the last four states is the present realized state, which he is then

conditioning on, and consequently he is not using the first half of B2).

So although according to his rational belief as well as the (empirical) stationary measure, the state X2

happens half of the dates, and although this is confirmed by his observations, his conditional belief for the

next period will always be that state has 0 probability. Note, that at any date, his belief predicts that the

frequency of X2 will be 1
2

in the future (but that X2 will not happen the next date)

That such a case can arise in the context of rational beliefs may or may not be considered a problem. The

crux of the theory is after all that agents are mistaken, and it is not ruled out that it can be discovered that

their beliefs have hitherto performed badly. One should also note that the above phenomenon only arises

because agents implicitly condition on their own beliefs. If they for instance only conditioned on exogenous

variables we would be back in the framework of the first interpretation of the above set-up and there would

be no problem. The next example is used to explain the idea behind SRBS and to see how we get anonymity

and avoid the problem from Example 4 (see also Kurz, 1998 for another approach to dealing with these

issues).

Example 5

Define the sunspot state to be either D1 or D2 and let the exogenous state be X1 or X2 as before. There

are 8 agents in the economy (we will later assume that there is a continuum) and they are all identical

in terms of endowments and preferences and differ only in terms of the timing but not frequency of their

(conditional) beliefs. At any date (no matter the state), 3/4 × 1/2 = 3/8 of the agents have belief B1,

3/4 × 1/2 = 3/8 of them have belief B2, 1/4 × 1/2 = 1/8 of them have belief B3 and 1/4 × 1/2 = 1/8 of

them have B4. Which of the agents have the different beliefs differs. The state space of fundamentals is :

{(D1, X1), (D1, X2), (D2, X1), (D2, X2)}. The beliefs on this state space are as follows:

B1 =




1
3

1
6

1
3

1
6

1
6

1
3

1
6

1
3

1
12

5
12

1
12

5
12

1
8

1
8

3
8

3
8




B2 =




1
3

1
6

1
3

1
6

1
6

1
3

1
6

1
3

5
12

1
12

5
12

1
12

3
8

3
8

1
8

1
8




B3 =




0 1
2

0 1
2

1
2

0 1
2

0
1
12

5
12

1
12

5
12

1
8

1
8

3
8

3
8




B4 =




0 1
2

0 1
2

1
2

0 1
2

0
5
12

1
12

5
12

1
12

3
8

3
8

1
8

1
8




The stationary transition matrix is
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B̄ =




1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4




=
3

8
B1 +

3

8
B2 +

1

8
B3 +

1

8
B4

When the state is (D1, X1), 3/4 of the agents have the probability distribution (1
3
, 1

6
, 1

3
, 1

6
) over next

period’s state and 1/4 of them have (0, 1
2
, 0, 1

2
). When the state is (D2, X1), 1/2 of the agents have the

belief ( 1
12

, 5
12

, 1
12

, 5
12

) and the rest have ( 5
12

, 1
12

, 5
12

, 1
12

) over the next period’s state. When the state is (D1, X2),

3/4 of the agents have the probability distribution (1
6
, 1

3
, 1

6
, 1

3
) over next period’s state and 1/4 of them have

(1
2
, 0, 1

2
, 0) . When the state is (D2, X2), 1/2 of the agents have the belief (1

8
, 1

8
, 3

8
, 3

8
) and the other half have

(3
8
, 3

8
, 1

8
, 1

8
) over the next period’s state. We should check whether there will be endogenous uncertainty, that

is whether the prices in, say the states (D1, X1) and (D2, X1) are different. Note that in state (D1, X1), 3/4

of the agents put probability 2/3 on X1 and 1/4 of them put probability 0 on X1. On the other hand, in

state (D2, X1), 1/2 of the agents put probability 2/12 on X1 and 1/2 of them put probability 10/12 on X1.

This means that agents believe that the current value of the sunspot affects the probability of the exogenous

variables next period. Since all the agents are the same, in a model with risk aversion (where beliefs matter),

agents will behave differently in the two states if the prices in those states are the same, so the prices cannot

be the same. A similar argument shows that the two states (D1, X2) and (D2, X2) must be different in terms

of prices. Thus the four states are different in terms of observed variables: prices and X. In this sense we

have excess volatility, that is the price volatility is not only determined by exogenous shocks but also by

changes in agents’ beliefs.

In the example just presented, the agents who are all identical ( except for the timing of the sequence of

conditional beliefs) have no way to discern a statistical connection between the states they observe and their

individual beliefs. This is so, because when the individual agent uses the matrix Bn, at 1/4 of the times the

state is (D1, X1), at 1/4 of the times it is (D1, X2) and so on. Thus the individual agent who has an SSM

belief with four one-period conditional beliefs , B1, B2, B3, and B4 has no way to convert his knowledge

about his own (or his dynasty’s) future belief into a knowledge about future prices. For this idea to work it

is important that the endogenous variables that may arise, do only depend on D and X and not on who has

which beliefs in any endogenous state. That is why it was assumed that the eight agents were identical, i.e.

were of the same type. Note, however that we can expand on this example and allow for many different types

of agents as long as there are many of each type. We then require that at any date, the number of agents of

a certain type that uses a certain (conditional) belief is the same. We now turn to the formal definition of a

sunspot RBS.
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Definition 11 Sunspot Rational Belief Structure (SRBS).

The Borel measurable set of sunspot states is D ⊂ <KD . The Borel measurable set of exogenous states is

X ⊂ <KX . Let S = X ×D.

The Stationary Measure:
(
µX , ΠX

)
represents the stationary measure for the exogenous variables where Π̄X is

a transition probability on X and µX is an invariant ergodic probability measure for Π̄X having X as support.(
µD, ΠD

)
represents the stationary measure for the sunspot variables where Π̄D is a transition probability

on D and µD is an invariant ergodic probability measure for Π̄D having D as support. Let Π = ΠX × ΠD

and µ = µX ⊗ µD. Here the transition probability ΠX × ΠD is defined by ΠX × ΠD((x, d), AX × AD) =

ΠX(x,AX)ΠD(d,AD) for AX ∈ B(X) and AD ∈ B(D). The stationary measure on (S∞,B(S∞)) then is

γ(µ, Π).

True Distribution: B0 = γ (µ0, {Π0t}∞t=1) is the distribution of an SSM process on S with associated stationary

measure being equal to γ
(
µ, Π

)
.

Types of agents: There are K ≤ ∞ types of agents in the economy. For each type k there is a continuum of

agents represented by the interval (0, 1]. Type k is having an SSM belief using the set {Πkl}∞l=1 of transition

probabilities on S, each having frequency qkl ≥ 0 s.t.
∑∞

l=1 qklΠkl = Π̄. We let Qk = ⊗∞t=1qk where qk is the

probability measure on N with qk({l}) = qkl.

Beliefs of type k agents: Consider an agent m ∈ (0, 1] of type k. We represent his belief Bkm by a sequence

of transition probabilities as follows:

Divide the interval [0, 1] into the countable set of intervals, Ikj, j = 1, 2.. where Ikj =
(∑j

l=1 qkl − qkj,
∑j

l=1 qkl

]

and define the transition Tk : (0, 1] → (0, 1] as follows:

Tk(x) =
1

qkj

x−
∑j

l=1 qkj − qkj

qkj

if x ∈ Ikl

Then define the function dk,1 : (0, 1] → N by dk,1(m) = j if m ∈ Ikj and define for t > 1 dk,t : (0, 1] → N by

dk,t(m) = dk,1(T
t−1
k m). Then the belief of agent m is

Bkm = γ
(
µk,

{
Πkdk,t(m)

}∞
t=1

)

if (i) Bkm is stable and (ii) Bkm = γ(µ, Π), else it is γ
(
µ, Π

)

It should be noted that the SRBS is constructed so as to let prices affect beliefs. If in equilibrium each

fundamental state is associated with a different price, we can assume that agents observe and condition on

prices and exogenous variables rather than on the variables in D. In this particular respect the construction

is similar to that of Kurz and Schneider(1996), who also allow for an influence of prices on beliefs. Another

interpretation of a SRBS would suggest that different types of agents may not observe and condition their

beliefs on the same sunspot. However, since the sunspot that a particular type observes will typically influence

prices, other agents will indirectly, by conditioning on prices, condition their beliefs on that sunspot. In this
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sense beliefs about sunspots are contagious. Finally it should be noted that if all agents use the empirical

distribution as their belief, this is equivalent to them adopting stationary rational expectations.

4.2 Structural Independence

The concept of structural independence was introduced in Nielsen(1994) as a condition that guarantees that

systems of stable beliefs are jointly stable and also as a natural notion of incorrectness of rational beliefs.

In the context of SSM beliefs, structural independence between a belief and the true process turns out also

to guarantee that the realized sequence of conditional beliefs (as a function of a realized sequence of states)

of an individual agent is rational. Without any assumptions about the relationship between beliefs and the

true distribution this is not necessarily the case (see Example 6 below). Consider a particular agent, m and

his rational SSM belief γ(µm, {Πmt}) on the sequence space S∞. The realized sequence, 〈st〉 is governed

by the probability measure γ(µ0, {Π0t}). At any date, t, the realized belief of the agent, after st has been

observed, is γ(δst , {Πms}∞s=t). Let {Ft}∞t=0 be the natural filtration (induced by information at date t). It is

a consequence of Chuang(1997), Theorem 1 that ∀C ∈ C(S∞) :

lim
J→∞

1

J

J−1∑

j=0

γ(µm, {Πmt}∞t=1)(T
−jC|Fj)〈s〉 = γ̄(µm, {Πmt}∞t=1)(C) for γ(µm, {Πmt}∞t=1) a.a. 〈s〉 (21)

However, we are interested in whether there is convergence for γ(µ, {Π0t}) a.a. 〈s〉:

Definition 12 Conditional WAMS and Conditional Rationality.

Let µ be a probability measure on (S∞,B(S∞)) and let ν be a stable probability measure on the same space.

Then µ is conditionally WAMS relative to ν if

∀C ∈ C(S∞) :
1

J

J−1∑

j=0

µ(T−jC|Fj)〈s〉 converges for ν-a.a.〈s〉 (22)

If the convergence in ( 22 ) is to ν̄(·|I)〈s〉, we say that µ is conditionally rational relative to ν

Example 6 Absence of conditional rationality.

Let S = {0, 1} and the belief an SSM measure involving two matrices, Π0 and Π1 each with frequency 1
2

(i.e.

q0 = q1 = 1
2
).

Π0(0, {0}) = Π0(1, {1}) = 1

Π1(0, {1}) = Π1(1, {0}) = 1

The empirical distribution is i.i.d. with probability of 0 being 1
2
. Let {Πt} be a Q-typical realization defining,

together with the belief that X1 = 0 with probability 1, a WAMS rational belief. Now construct a sequence

{st} as follows:
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If Πt = Π0, st = 0

else st = 1

Then Πt(st, {0}) = 1,∀t so the belief is not conditionally rational relative to δ〈s〉. Moreover, the associated

stationary measure of δ〈s〉 is equal to the empirical distribution.

Note that we do not have structural independence between the belief and the true measure (which is an SSM

measure). Also, by modifying the true sequence in a suitable way, we get a belief which is not conditionally

WAMS

If the belief of an agent is not conditionally WAMS relative to the true measure, then we could have that

his realized actions, as they depend on his realized beliefs, are non-stable. However, conditional WAMS is

not sufficient to ensures stability of the resulting action as the following example demonstrates.

Example 7 Belief is stable but resulting action is not.

Suppose an agent is betting on a fair coin with outcome, xt at date t, in {0, 1}. Let the belief of the agent

be defined as follows. T ∗ ⊂ N fulfills

1

J

J−1∑

t=0

1T ∗(t) does not converge as J →∞

The belief is: µ(xt = 1) = 1/2 + 1/t if t ∈ T ∗, 1/2 − 1/t, else. If the agent wins he receives $1 else he pays

$1 and if he is risk neutral, he will bet on 1 at all dates in T ∗, and on 0 at all other dates. The belief is

WAMS, while the actions are not stable. Neither conditional WAMS nor WAMS is sufficient for stability of

an equilibrium process

The stability of the actions of an individual agent may also become an issue if he is infinitely lived, even when

his belief is WAMS. Suppose his SIDS belief, ⊗∞t=1Πt in non-stationary. Then we have for t 6= t′, that ⊗∞s=tΠs

6= ⊗∞s=t′Πt (Remark 2). So the countable sequence of beliefs about the infinite future never repeats itself and

in that particular sense this sequence is ”non-stable”. If the actions of this agent are sensitive to beliefs into

the distant future, possibly his actions may then become be non-stable. If the agent discounts future utility,

this may however not be the case. The question about induced stability of actions is important, but we will

not consider it further here since, as is implied by Proposition 11 to follow, for the systems of beliefs we

study, stability of actions is always the case for short-lived agents. The following definition is an extension

from Nielsen(1994).

Definition 13 Structural Independence.

Two SSM measures γ(µ1, {Π1
t}∞t=1) and γ(µ2, {Π2

t}∞t=1) (generated by Qi = ⊗∞t=1qi, i = 1, 2 respectively) are

said to be structurally independent if the sequence {Π1
t , Π

2
t}∞t=1 is Q1 ⊗Q2-typical
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Proposition 11

Let q be a probability measure on P = {Π1, Π2, . . .}, a countable set of transition probabilities on S and let

qB be a probability measure on PB = {ΠB1, ΠB2, . . .}, a countable set of transition probabilities on S, s.t.
∑

i q({i})Πi =
∑

i qB({i})ΠBi = Π and Π has an ergodic, invariant measure µ̄. Then letting Q = ⊗∞t=1q and

QB = ⊗∞t=1qB we have:

(a) For the case where S is countable,

(b) For the general case, if the conditions of Proposition 10 hold,

that for Q⊗QB a.a. 〈Π, ΠB〉 ∈ P∞ ×P∞B , γ(µ̄, {ΠB
t }∞t=1) is an SSM measure which is conditionally rational

relative to the SSM measure γ(µ̄, {Πt}∞t=1).

Proof: (a) Construct the probability measure ν on S×P×PB as follows: The initial distribution is µ̄⊗q⊗qB

and the transition probability M is defined by:

M((s, Π, ΠB), {s̃} × {Π̃} × {Π̃B}) = Π(s, {s̃})q({Π̃})qB({Π̃B})

ν is ergodic and stationary. Let G = σ[{S∞, ∅} × B(P∞) × B(P∞B )]. From Proposition 7 we have (using

the notation of that proposition) that for Q ⊗ QB a.a. 〈Π̃, Π̃B〉 and any s̃ that ν(·|G)〈s̃, Π̃, Π̃B〉 is WAMS

with associated stationary measure being ν. Thus if F : (S × P × PB)L → < is integrable we have for

ν(·|G)〈s̃, Π̃, Π̃B〉 a.a. 〈s, Π, ΠB〉 that

1

J

J−1∑

J=0

F ((sj+1, Πj+1, Π
B
j+1), . . . , (sj+L, Πj+L, ΠB

j+L)) → EνF as J →∞

For a cylinder C = CL+1 × S∞ in CL+1(S∞) we let

F (s, ΠB
1 , . . . ΠB

L ) =
∫

S
ΠB

1 (s, ds′2)
∫

S
ΠB

2 (s′2, ds′3) · · ·
∫

S
ΠB

L (s′L, ds′L+1)1CL+1
(s, s′2 · · · s′L+1) (23)

Note that F (sj+1, Π
B
j+1, . . . , Π

B
j+L) = γ(µ̄, {ΠB

t })(T−jC|Fj)〈s〉 for j = 0, 1, . . . . Then

EνF =
∫

S
µ̄(ds1)

∫

S
Π(s1, ds2) · · ·

∫

S
Π(sL, dsL+1)1CL+1

(s1, · · · sL+1) = γ(µ̄, Π)(C)

(b) The argument is basically the same as in (a). Let h : P×PB → N be one-to-one and onto and define g1 and

g2 on N by h−1(n) = (g1(n), g2(n)). Let Q̃ on N be defined by Q̃{n} = Q⊗QB({(g1(n), g2(n))}) and let P̃ =

{Π̃1, Π̃2, . . .} be defined by Π̃j = g1(j). Then by Proposition 10 we have for Q̃ a.a. 〈n̄〉 that γ(µ̄, {Π̃n̄t}∞t=1)⊗δ〈n̄〉

is WAMS on ((S × N )∞,B((S × N )∞)). In other words, we have that γ(µ̄, {Π̃n̄t}∞t=1) ⊗ δ{g1(n̄t)} ⊗ δ{g2(n̄t)}

is WAMS on ((S × P × PB)∞,B((S × P × PB)∞)). As before, using the definition in ( 23 ), we have for

γ(µ̄, {Π̃n̄t}∞t=1) a.a. 〈s〉 that 1
J

∑J
j=1 F (sj, g2(n̄j), . . . , g2(n̄j+L)) → γ(µ̄, Π̄)(C) (by the rationality of beliefs)
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Remark 8

The proposition can be interpreted as stating that for ”almost all” true distributions and rational beliefs

which are structurally independent, we have conditional rationality of the belief. On the other hand, if an

agent happens to have a correct belief, we do have conditional rationality but not structural independence

Remark 9

Note that when we have an SRBS (if relevant, fulfilling the conditions of Proposition 10), it is the case that

(Lebesgue) almost all agents have rational beliefs which are conditionally rational and which induce actions

that are stable when agents are short lived (or myopic), i.e. their actions only depend on their forecasts for

a limited number of future periods

5 An application

To illustrate how the concept of a Sunspot Rational Belief Structure may be applied, we present a general

equilibrium, continuous state space version of the model of Muth(1961). In the context of rational beliefs,

partial equilibrium versions of this model were studied in Kurz(1994) (where the existence of an equilibrium

with homogenous beliefs was proved) and in Nielsen(1996) (where an example with diverse beliefs and a

finite state space was provided). In these kind of models, whether rational expectations or rational beliefs

are imposed, producers decide on their output before they know prices. In our version of the model, there is

a continuum of agents that interpret sunspots differently over time in such a way that these interpretations

are consistent with the observed average independence between sunspots and fundamentals of the economy.

Despite this empirical independence, the sunspots do influence real economic activity, since they influence

beliefs and hence production decisions (and in the following period prices of all commodities)10. This would

be so, whether agents observe the current production decisions (i.e. the current beliefs) of other agents or

not. However, we assume that they do not, i.e. contrary to the rational expectations case we do not assume

common knowledge of beliefs. The consequence is a miscoordination similar to what was found in the original

cobweb model, but now founded on a rigorous theory about expectations. The model we present does not

strive for maximal generality, but is constructed to exemplify how the theoretical concepts and results, we

presented may apply to general equilibrium models.

There are N commodities and K types of agents, both finite numbers. Each type of agent, k = 1, 2, . . . , K

at any date uses one of Lk possible short term beliefs (that is transition probabilities). We assume that X

is an interval in < and that D is finite. Time is discrete and runs from 1 to ∞. In odd periods (denoted

10As a consequence, even if the exogenous process is stationary, the equilibrium process need not be.
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No) agents make production decisions based on their expectations about prices and exogenous shocks the

following period. In even periods, production is realized, commodities are exchanged at market clearing prices

and consumption takes place. In odd period t an agent of type k receives the signal dk
t ∈ Dk and observes the

exogenous shock xt, but he does not observe the signal of other agents (there is asymmetric information). As

a consequence an individual tries to make forecasts not only about future exogenous shocks but also about

how much other agents are currently deciding to produce (that is about the current beliefs of other types as

parametrized by d). Let D = ×K
k=1Dk and dt = (d1

t , . . . , d
K
t ). Mainly in order to facilitate the presentation

of the model we assume that the beliefs have the following format:

Πkl((x, dk), Ax × Ad) = πkl((x, dK), Ax)µD(Ad), ∀k, l, (x, d) ∈ X ×D, Ax ∈ B(X), Ad ⊂ D (24)

where πkl maps X ×Dk into the set of probability measures on (X,B(X)). We also assume that µX on X is

equivalent to Lebesgues measure and that

πkl((x, dk), ·) ≈ µX ≈ ΠX(x, ·),∀k, l, (x, d) (25)

At any t ∈ N0, an agent of belief-type (k, l) decides on input of labor, α ∈ [0, Ak] in producing Fk(α) of

commodity n(k) ∈ {1, 2, . . . , N}. Fk is C2, increasing and concave, Fk(0) = 0. We assume that, ∀n ∈
{1, 2, . . . , N}, ∃k ∈ {1, 2, . . . , K} s.t. n(k) = n.

Each agent consumes leisure and the N consumption goods. The consumption set (for any state (d, x, x))

of an agent of type k is <N
++ × [0, Ak]. The preferences over consumption depend on the exogenous shocks.

Thus, we define a utility function uk : <N
++ × [0, Ak] × X2 → < for each even period. Given stochastic

consumption of consumption goods and leisure, C : D ×X2 → <N
++, l : X ×D → [0, Ak] and given a belief

B on (X ×D)∞ the expected utility of an agent of type k is:

EB{
∑

t∈N0

ρtuk[C(dt, xt, xt+1), l(dt, xt), xt, xt+1]}

where ρ ∈ (0, 1) is the discount factor. We assume that uk is smooth and that for all (x, x′) ∈ X2: uk(·, ·, x, x′)

is strictly increasing, strictly concave, with indifference curves that are uniformly bounded away from ∂<N+1
+ .

Let ∆N be the N -dimensional simplex and
◦
∆

N

its interior. In equilibrium there will be a measurable price

function p : D ×X ×X → ◦
∆

N

( we normalize prices state by state). At odd date t, an agent of belief-type

(k, l) with d
k
, x and p given is faced with the following problem:

Problem of belief-type (k, l): Choose α ∈ [0, Ak] and C : D ×X → <N
+ to maximize

∫

X

∑

d∈D

uk[C(d, x), Ak − α, x, x]µD(d|dk
)πkl((x, d

k
), dx) (26)

subject to

N∑

n=1

Cn(d, x)pn(d, x, x) = pn(k)(d, x, x)Fk(α) for µD(·|dk
)⊗ πkl((x, d

k
), ·) a.a. (d, x) (27)
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The first order conditions for this problem are:

∫

X

∑

d∈D

[
−u′kn+1(C(d, x), Ak − α, x, x) + λ(d, x)pn(k)(d, x, x)F ′

k(α)
]
µD(d|dk

)πkl((x, d
d
), dx) = 0 (28)

u′kn(C(d, x), Ak − α, x, x)− λ(d, x)pn(d, x, x) = 0, 1 ≤ n ≤ N, for µD(·|dk
)⊗ πkl((x, d

k
), ·) a.a. (d, x) (29)

One consequence of these first order conditions is:

∫

X

∑

d∈D

[ −1

F ′
k(α)

u′kn+1(C(d, x), Ak − α, x, x) + u′kn(k)(C(d, x), Ak − α, x, x)

]
µD(d|dk

)πkl((x, d
k
), dx) = 0 (30)

We are now ready to present the definition of equilibrium:

Definition 14 Equilibrium

A price function p, labor supply: αkl : D×X → [0, Ak], ∀k, l, measurable, and consumption, Ckl : D×X2 →
<N

++, ∀k, l, measurable s.t. ∀d ∈ D and µX a.a. x:

(a) Ckl(·, ·, x) : D ×X → <N
++ and αkl(d, x) solve belief-type (k, l)’s problem given (d

k
, x) and p.

(b)
∑K

k=1

∑Lk
l=1 Fk(αkl(d, x))qkl1n(k)(n) =

∑K
k=1

∑Lk
l=1 Ckln(d, x, x)qkl for n = 1, 2, . . . , n, for µX a.a. x

Recall that qkl is the weight of the continuum of agents of belief-type (k, l). A particular agent i is of a

certain type k, but which belief (in terms of πkl) he uses varies over time. However, any agent of belief-type

(k, l) acts the same way in this model no matter the date or the past. Consequently, we need only consider

actions of the different belief-types and not of the individual agents.

Sketch of proof of existence of equilibrium

We sketch the proof here, further details are provided in Appendix B. The equilibrium is found as a fixed point

of a correspondence from the set of production decisions into that same set. This correspondence is defined for

a given x. For every array of production decisions, {αkl} À 0 there is a set of measurable price functions p s.t.

for every (d, x), p(d, x, x) ∈ ◦
∆

N

is an equilibrium for the even date sub-economy with belief-type (k, l) having

utility function uk(·, αkl, x, x) and initial endowment of commodity n(k) in the amount of αkl. On the other

hand, for every price function p : D ×X → ◦
∆

N

there is an optimal supply for an agent of belief-type (k, l),

αkl : D → <. Composing the correspondence from production decisions into (measurable) price functions

with the function from price functions into production decisions, we obtain the desired correspondence

Using the results obtained previously, let us summarize the features that this model exhibits. Each agent

holds a rational belief about the stochastic process of equilibrium prices (remember, that presenting the

sunspot RBS in terms of beliefs on primitives is only a modelling device and that in equilibrium the beliefs of

each agent can be transformed into beliefs about prices, using the functional relationship between (d, x) and

p) - rational in the sense that each belief would, if it were correct, generate the same empirical distribution

of exogenous variables and prices as does the true (unknown) distribution. These beliefs are in terms of
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(Markovian) WAMS probability measures on a continuous state space and moreover, they are for almost all

agents conditionally rational, that is the sequence of realized conditional beliefs also conforms to the empirical

(stationary) measure.

Recalling that the basic motivation of rational beliefs is to describe an environment where something but

not everything is learnable, the model thus demonstrates how mistakes and increased price volatility arise in

such environments. The fact that not everything is learnable means that there are many possible models that

fits the observed behavior of the economy. We argued that using the stationary measure is a conservative

strategy and that the use of any other rational belief is a sign of overconfidence on the part of the agent.

Overconfident agents continue to believe that they can forecast the future prices better than they actually

did (when they look back at their performance). This overconfidence is however rational precisely in the

sense that the belief employed is consistent with observations.

An important assumption made was that agents have asymmetric information about the sunspot. In

other words, agents of one type are at odd dates uncertain about what beliefs agents of other types hold11.

This is one way of modelling what we consider to be a fact, namely that market participants (whether they

be producers or financial firms) only get to know the beliefs and hence actions of other participants with

a delay12. This together with the assumption of some sort of adaptive expectations were the fundamental

assumptions underlying the cobweb model. Muth’s contribution sought to confront the assumption made

about expectations, not the assumption made about the timing of information. In the context of the cobweb

model, the aim of the rational beliefs literature is precisely to provide a more solid foundation, in terms

of the modelling of expectations, for the miscoordination of market actions that the original cobweb model

sought to illustrate. In particular, in contrast with the original model, there is in the rational beliefs version

no singular easily recognizable sequence of price movements that, one could argue, all rational agents ought

to identify and adopt as their own belief. By introducing sunspots as quasi-public coordination devices, we

retain the assumption of anonymity, an important assumption in general equilibrium theory, but allow for

individual beliefs to have an impact on aggregate variables like prices. These sunspots, acting as coordinating

devices for beliefs, allow us to capture two important facts about the market participants: (i) that there are

correlated movements in their subjective expectations and (ii) that it is prohibitive costly if not outright

impossible to get to know these expectations for each and every one of them.

From the perspective of social welfare, we argue that there are two distinct (although both consequences

of the diversity of beliefs) sources of inefficiency in the equilibrium presented here. Firstly, and less contro-

11We assumed though, that they were using the empirical distribution µD in forming expectations about other’s beliefs - an

assumption that could be relaxed at the expense of a more complicated notation. In that case agents would have subjective

beliefs about the current distribution of other agents’ beliefs.
12The importance attributed to aggregate (and thus imprecise) market indicators, including various measurements of consumer

sentiments, by both the private and public sector, demonstrates that this information is not readily available.
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versially, the fact that agents do not observe each other’s subjective beliefs or actions at odd dates introduces

an added element of uncertainty which is social rather than exogenous. This social uncertainty has as conse-

quence that prices at even dates will exhibit excess volatility, that is there are more price states than would

be present if agents had rational expectations. Because this uncertainty is social it is also endogenous that

is, it is a product of the particular economic institution. To take an example, if a social planner dictated

the production level to each agent, said miscoordination and excess volatility would not be present (although

other types of miscoordination might then be present in stead).

Secondly, we argue that even if there were full information about the beliefs (or production decisions) of

all agents, there would still be an inefficiency due to the fact that individual agents use mutually inconsistent

beliefs in their optimization problem. There are at any date
∑

k Lk different short term beliefs, of which

at most one of them is correct. The inconsistency of these rational beliefs results in a social inefficiency13:

Most agents, if not all, make suboptimal decisions. Obviously, this position is at variance with the use of

Pareto ranking as a criterion for evaluating social incomes. Rather we propose to employ the so called ex

post optimality criterion, according to which a single belief should be used when evaluating the outcome

of an equilibrium for a particular economic institution. The concept of ex-post optimality is presented in

Hammond(1981) and employed in the context of rational beliefs in Nielsen(2003) where a fuller discussion of

the nature of this inefficiency, and how it can be remedied is provided.

6 Conclusion

With the new framework presented here we have considerably enlarged the scope for applying rational beliefs

to various general equilibrium frameworks. Specifically it is now possible to study dynamic models with an

Markovian empirical distribution on a continuous state space where agents are not only assumed to be, but

are in fact, anonymous. Such applications can be carried out along the lines developed in Nielsen(1996),

where the existence of a general equilibrium is established by showing the existence of a fixed point for

a translation on a set of exogenous and endogenous variables. By imposing from the outset, that beliefs

are rational relative to the fundamentals of the economy, we ensure that in equilibrium, these beliefs are

rational relative to all variables. Compared to finding an equilibrium in a space of beliefs and distributions of

endogenous variables this considerably simplifies the problem at hand. The growing literature on behavioral

economics demonstrates the need to go beyond the rational expectations assumption, which has been the

source of too many ”puzzles” - or, if one prefers, empirical refutations. However, the theoretical foundation of

behavioral economics still seems underdeveloped. We have argued that non-stationary rational beliefs exhibit

13This is the case whether markets are complete or not, however incompleteness of markets would probably accentuate the

problem.
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rational overconfidence and in this way the theory captures a recurring concept in behavioral economics. The

rationality requirement imposed, on beliefs then provides a clear delineation between which beliefs can be

considered acceptable to the theory and which cannot. Especially in finance there has been a very active

search for models that go beyond rational expectations and behavioral economics has has come to the fore

here. Since finance models often work with a continuous state space, we expect that SSM processes on a

continuous state space will be particularly useful in this context.

Appendix A

(1) Proof of ( 16 ):

We let xt = (xt, xt−1, . . . , x1) and for any measure ρ on a space of sequences, ρt, is the restriction to the first

t coordinates. Let A = At−1 × S∞ ∈ At−1 (where At−1 is the σ algebra generated by (Xt−1, . . . , X1). We

then have

∫

A
PS∞({Xt ∈ F}|At−1)(〈s〉)PS∞(d〈s〉) =

∫

At−1×Y t−1
Pt

(
{Xt ∈ F} |(st−1, yt−1)

)
Pt(d(st−1, yt−1))

=
∫

At−1×Y t−1
Πyt−1(st−1, F )Pt(d(st−1, yt−1)) =

∫

At−1×Y t−2

∫

Y
Πyt−1(st−1, F )q(dyt−1)Pt(d(st−1, yt−2)) =

∫

At−1×Y t−2
Π̄(st−1, F )Pt−1(d(st−1, yt−2)) =

∫

At−1

Π̄(st−1, F )P∞(d〈s〉)

(2) µ̂ is a probability measure:

We only need to show that µ̂ is non-negative. For this it is sufficient to consider any measurable F ⊂ B.

µ(F ) =
∫

S
Π̄(s, F )µ̄(ds) ≥

∫

A
Π̄(s, F )µ̄(ds) ≥

∫

A

∫

F
ε̂ρ(ds′)µ̄(ds) = µ̄(A)ε̂ρ(F ) (31)

(3) Stationarity of γ(µ̂,
¯̂
Π):

(i)
∫

Ŝ

¯̂
Π(ŝ, {α})µ̂(dŝ) =

∫

A
ε̂µ̂(dŝ) +

¯̂
Π(α, {α}(µ̂({α}) = ε̂µ̂(A) +

∫

S

¯̂
Π(s, {α})ρ(ds)µ̂({α})

= ε̂[µ̄(A)− ρ(A)ε̂µ̄(A)] + ρ(A)ε̂2µ̄(A) = ε̂µ̄(A) ≡ µ̂({α}).

(ii) For F ∈ B(S) :
∫

Ŝ

¯̂
Π(ŝ, F )µ̂(dŝ) =

∫

S

¯̂
Π(ŝ, F )µ̂(dŝ) +

¯̂
Π(α, F )µ̂({α}) =

∫

S

¯̂
Π(s, F )d [µ̄(s)− ρ(s)ε̂µ̄(A)]

+
∫

S

¯̂
Π(s, F )ρ(ds)ε̂µ̄(A) =

∫

S

¯̂
Π(s, F )dµ̄(s) =

∫

S
Π̄(s, F )µ̄(ds)− ε̂ρ(F )µ̄(A) = µ̄(F )− ε̂ρ(F )µ̄(A)

(4) Ergodicity of γ(µ̂,
¯̂
Π):

Note first that the inequality in ( 31 ) is strict if µ̄(F ) > 0 or ρ(A) > 0. So if µ̄(F ) > 0, µ̂(F ) > 0. And if

µ̄(F ) = 0 then µ̂(F ) = 0. So if we let µ̂S be µ̂ restricted to S, µ̂S ≈ µ̄.
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We also have for all s ∈ S that
¯̂
Π(s, A) = 0 ⇔ Π̄(s, A) = 0

Next note that if E is
¯̂
Π-invariant and µ̂(E) > 0 then α ∈ E. Else, E would also be Π̄-invariant and we would

have µ̄(E) = 1. But since
¯̂
Π(s, {α}) > 0, ∀s ∈ A and µ̂(A) > 0 this would give a contradiction.

Thus if E is
¯̂
Π-invariant and 0 < µ̂(e) < 1, there is measurable K ⊂ Ŝ \E s.t. µ̂(K) > 0 and

¯̂
Π(s,K) = 0 for

µ̂ a.a. s ∈ E. But then 1 > µ̄(K) > 0 and E \K is Π̄-invariant, contradicting the ergodicity of (µ̄, Π̄)

(5) µ = µ̂ν:

∫

Ŝ
ν(s, F )dµ̂(s) =

∫

S
ν(s, F )d[µ(s)− ρ(s)ε̂µ(A)] + ρ(F )µ̂({α}) = µ(F )− ρ(F )ε̂µ(A) + ρ(F )ε̂µ(A) = µ(F )

(6) νΠ̂i = Π̂i:

νΠ̂i(s, C) =
∫
Ŝ ν(s, ds′)Π̂i(s

′, C) = Π̂i(s, C) for s 6= α,
∫
Ŝ ρ(ds′)Π̂i(s

′, C) = Π̂i(α,C), else

(7) Π̂iν = Πi:

Let s ∈ S, C ∈ B(S). Π̂iν(s, C) =
∫
Ŝ Π̂i(s, ds′)ν(s′, C). If s ∈ S \A, this is equal to

∫
S Πi(s, ds′)ν(s′, C) =

Πi(s, C). If s ∈ A, it is equal to
∫
S[Πi(s, ds′)−ε̂ρ(ds′)]ν(s′, C)+ε̂ν(α,C) =

∫
S Πi(s, ds′)1C(s′)−∫

S ε̂ρ(ds′)1C(s′)+

ε̂ρ(C) = Πi(s, C)

Appendix B

Proof of Equilibrium

Let for q ∈ N with q > mink
1

Ak , Aq
k = [1

q
, Ak], Aq = ×K

k=1 ×Lk
l=1 Aq

k and Aq
D = ×d∈DAq. For the rest of the

proof we fix an x ∈ X. Define for {αkl} ∈ Aq and x ∈ X the exchange economy ε({αkl}, x) by:

Belief-type (k, l) has preferences on <N
++ represented by the utility function uk(·, αkl, x, x) : <N

++ → < and

initial endowment αkl of commodity n(k). We have at least one equilibrium price p ∈ ◦
∆ for this economy 14.

Let

P = {p ∈ (∆N)X : p is measurable B(X)}
and

P̃ = {p ∈ P : p(x) ∈ ◦
∆

N

,∀x ∈ X}
In the following we use the topology of pointwise convergence on (∆N)X . Using lemma 1 on p. 55 of

Hildenbrand(1974), one establishes (see below for details) that the correspondence

Ψq : Aq
D ⇒ P̃D ≡ ×d∈DP̃

defined by

Ψq(α) = {p ∈ P̃D : ∀(x, d), p(d, x) is an equilibrium price for ε({αkl(d)}, x)}
has non-empty values.

14This follows from the properties of the excess demand function, see f.i. Lemma 1 of Hildenbrand(1974), p.150.
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For every p ∈ P̃D we have for each d ∈ D and each (k, l) a solution αkl(d) to the restricted problem of an

agent of belief-type (k, l), where we in his problem replace the condition α ∈ [0, Ak] with α ∈ Aq
k. By strict

concavity of u, this solution is unique. Thus we have defined, for each q, a function

gq : P̃D → Aq
D

Lemma 8 Ψq is upper hemi continuous (u.h.c.).

Proof: Let αr → α in Aq
D and pr → p in P̃D s.t. pr ∈ Ψq(αr),∀r. So for given (d, x), pr(x, d) is an equilibrium

for the economy ε({αr
kl(d)}, x), ∀r and ({αr

kl(d)}, x, pr(d, x)) → ({αkl(d)}, x, p(d, x)). Because of continuity of

u, p(d, x) is then an equilibrium price for the economy ε({αkl(d)}, x)

Lemma 9 gq is continuous.

Proof: Let pr → p ∈ P̃D pointwise. Consider a particular belief-type (k, l) and a state d ∈ D. For each r

we then have a unique solution, (αr
kl(d), cr

kl) to the restricted problem of belief-type (k, l). {αr
kl(d)}r has a

convergent subsequence, w.l.o.g. itself, converging to some αkl(d). If we consider ( 27 ) and ( 29 ) for given

d and x, it follows from the smoothness of u that there are c(d, x) and λ(d, x) s.t. cr(d, x) → c(d, x) and

λr(d, x) → λ(d, x). It then follows from Lebesgue’s bounded convergence theorem that also ( 28 ) holds in

the limit, so that αkl(d) is indeed (part of) the solution to the belief-type’s problem

It now follows from Hildenbrand(1974), Corollary to Proposition 1 (p. 22) that Φq ◦gq is u.h.c. Kakutani’s

fixed point theorem gives us a sequence of fixed points {αq} in ×d∈D ×K
k=1 ×Lk

l=1[0, A
k] a compact set (as well

as a sequence, {cq} of optimal consumptions). Hence, there is a cluster point, α for {αq}. To show that α is

an equilibrium for the unrestricted economy, it is sufficient to show, for each (k, l) and d, that αkl(d) > 0.

Suppose this was not the case for some (k, l) and d. Rewriting ( 30 ) we have for each q,

∫

X

∑

d∈D








−u′kn+1(c
q
kl(d, x), Ak − αq

kl(d), x, x)

u′kn(k)(c
q
kl(d, x), Ak − αq

kl(d), x, x)F ′
k(α

q
kl(d))

+ 1



 ·

u′kn(k)(c
q
kl(d, x), Ak − αq

kl(d), x, x)F ′
k(α

q
kl(d))

]
µD(d|dk

)πkl((d
k
, x), dx) ≤ 0 (32)

But if αq
kl(d) → 0 then cq

kln(k)(d, x) → 0 for µD(·|dk) ⊗ πkl((dk, x), ·) a.a. (d, x). Since we assumed that the

indifference curves are uniformly bounded away from the boundary of <N+1
+ , this would imply that

−u′kn+1(c
q
kl(d, x), Ak − αq

kl(d), x, x)

u′kn(k)(c
q
kl(d, x), Ak − αq

kl(d), x, x)
→ 0

and since F ′
k(α

q) is bounded away from 0 this is incompatible with ( 32 )
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Ψq has non-empty values

Let Ekl be the excess demand of belief-type (k, l) as a function of p and x (and with αkl > 0). Ekl is

continuous:

Let (pr, xr, Er) → (p, x, E) with p ∈ ◦
∆

N

and where Er = Ekl(p
r, xr),∀r. Then the first order conditions hold

for all r and, since u is smooth, they also hold in the limit.

Let Φ{αkl} : X ⇒ ◦
∆

N

assign, to each x ∈ X, the set of equilibrium prices for the economy ε({αkl}, x). Then

Φ{αkl} is closed valued since if pr → p, pr ∈ Φ{αkl}(x),∀r then, letting E =
∑

kl Ekl, E(pr) = 0,∀r and so, also

E(p) = 0.

Let F ⊂ ∆N be closed. We show that B = {x : Φ{αkl}(x) ∩ F 6= ∅} is also closed. So let {xr} be a sequence

in B converging to x and let pr ∈ Φ{αkl}(x
r)∩F, ∀r. {pr} has a converging subsequence, {prn} converging to

some p. Since {pr} is a sequence of equilibrium prices it is bounded away from ∂∆N , hence p ∈ ◦
∆

N

. We then

have E(prn , xrn) = 0,∀n and so by continuity of E also for (p, x). Since prn ∈ F,∀n, p ∈ F , also and hence

x ∈ B.

It follows from Hildenbrand(1972) Lemma 1, p.55 that Φ{αkl} has a measurable selection. Let {αkl(d)} ∈ Aq

be given for each d ∈ D. Then if p ∈ P̃D is defined by pd : X → ◦
∆

N

is a measurable selection from Φ{αkl(d)},

we have p ∈ Ψq(α)
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