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Abstract

We revisit the concept of unpredictability to explore itspiinations for forecasting strategies
in a non-stationary world subject to structural breaks, ieh@odel and mechanism differ. Six
aspects of the role of unpredictability are distinguistmanpounding the four additional mistakes
most likely in estimated forecasting models. Structuraalis, rather than limited information,
are the key problem, exacerbated by conflicting requiresnent‘forecast-error corrections’. We
consider model transformations and corrections to redoeecést-error biases, as usual at some
cost in increased forecast-error variances. The analydlisistrated by an empirical application to

M1 in the UK.
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1 Introduction

The historical track record of econometric systems is hitidréd with forecast failures, and their empir-
ical out-performance by ‘naive devices'’: see, for exammiany of the papers reprinted in Mills (1999).
At first sight, such an adverse outcome for econometric Bysie surprising: since they incorporate
inter-temporal causal information representing inewighamics in the economy, such models should
have smaller prediction errors than purely extrapolatieeicks—but do not. In fact, discussions of
the problems confronting economic forecasting date froengdurly history of econometrics: septer
alia, Persons (1924), Morgenstern (1928) and Marget (1929). xptaim such outcomes, Clements
and Hendry (1998, 1999) developed a theory of forecastinghém-stationary processes subject to
structural breaks, where the forecasting model differechfthe data generating mechanism (extended
from a theory implicitly based on the assumptions that thelehooincided with a constant-parameter
mechanism). They thereby accounted for the successes iurédaof various alternative forecasting
approaches, and helped explain the outcomes of forecastimgpetitions (see e.g., Makridakis and
Hibon, 2000, Clements and Hendry, 2001a, and Fildes and20f®).

Following Clements and Hendry (1996), consifebbservationsX}. = (xi,...,x7) on a vector
random variable, from which to predict thé future vaIuesX?i}q = (Xp41,.--,X7+H). The joint
probability of the observed and futures is DX1T+H (X7, 11X0,0) whered € © CRP is the parameter
vector, andX, denotes the initial conditions. Factorizing into conditidand marginal probabilities:

Dxy., , (Kb | Xo,60) = Dyror (Xgi}{ | XlT,XO,e) x Dyt (X} | Xo,6) . 1)

DX?}{ (+) is unknown, so must be derived frong (+), which requires the ‘basic assumption’ that:
+

‘The probability IaWDX1T+H (1) of theT + H variables(x, ...,x7r4x) is of such a type
that the specification c[bxlT () implies the complete specification Ibg(lﬂH (-) and, there-
fore, ofDxp}{ (1) (Haavelmo, 1944, p.107: my notation).

+

This formulation highlights the major problems that needbéoconfronted for successful forecasting.
The form ofDX1T (-) and the value o in sample must be learned from the observed data, involving
problems of:specificationof the set of relevant variablgs;, }, measurementf the xs, formulation of
the joint densitnylT (), modellingof the relationships, anestimationof 6, all of which introduce un-
certainties, the baseline level of which is set byphepertiesof Dx1 (-). When forecasting;)xﬁh ()
determines the ‘intrinsic’ uncertainty, rapidiyowingasH increases—especially fapn-stationarydata
(from stochastic trends etc.)—further increased bydrangesn the distribution functiorDXgi}{ (-)or
parameters thereof betwe&hand later (lack of time invariance). These ten italiciseniés structured
their analysis of economic forecasting, but they emphddise importance of the last of these.

The complementary, ‘bottom up’ explanation proposed hig® ih the many steps between the
ability to predict a random variable at a point in time, ande€tast of the realizations of that variable
over a future horizon from a model based on an historical $amphis paper spells out those steps,



and demonstrates that many of the results on forecastindemehts and Hendry (1998, 1999) have a
foundation in the properties of unpredictability.

Having established foundations for their findings in theaapt of unpredictability, this paper draws
some implications for forecasting non-stationary proessssing incomplete (i.e., mis-specified) mod-
els. The objective of this analysis is to ascertain ways glémenting the strengths of so-called ‘naive’
methods in macro-econometric models, via a ‘forecastirgesy’ which uses a combination of their
‘causal’ information with a more ‘robust’ forecasting de®i Such a combination could be either by ren-
dering the econometric system robust, or by modifying a sobevice using an estimate of any likely
causal changes. This paper concerns the former: for thes,lattthe policy context, see Hendry and
Mizon (2000, 2003). Although combining forecasts has a Ipedigree (see, e.g., Bates and Granger,
1969, Diebold and Pauly, 1987, Clemen, 1989, Diebold anakpp996, Stock and Watson, 1999, and
Newbold and Harvey, 2002) and a theory for its success (saegér, 1989, and Hendry and Clements,
2003b), we consider instead transformations of economsyistems that may improve their perfor-
mance in the face of structural breaks.

We first review the well-established concept of unpredititghin section 2 and the transformations
under which it is invariant (based on Hendry, 1997), witreasions of earlier results to non-stationary
processes. Then section 3 draws its implications for theadidation of forecasting devices. Section 4
specifies a cointegrated DGP subject to breaks, and sectxarfines some adaptive devices which
might improve its robustness in forecasting. Section &itltes the ideas for the much-used empirical
example of the behaviour of UK M1. Finally, section 7 con@sd

2 Unpredictability: A review and extension

A non-degenerate vector random variabldgs an unpredictable process with respect to an information
setZ;_; over a periodl if its conditional distributionD,,, (v¢|Z;_1) equals its unconditiondD,, (v):

Dyt (Vt ‘ It—l) = Dut (Vt) VteT. (2)

Importantly, unpredictability is a property of; in relation toZ;_; intrinsic tov,, and not dependent
on any aspect of our knowledge thereof: this is one of the legg dpetween predictability, when (2) is
false, to ‘forecastability’. Note thaf may be a singleton (i.e{¢}), and thatZ;_, always includes the
sigma-field generated by the pastof

A necessary condition for (2) is that is unpredictable in mean (denotBg) and variance (denoted
V,) at each point ir{’, so assuming the relevant moments exist:

Et [Vt | It—l] = Et [Vt] and Vt [Vt | It—l] = Vt [Vt] . (3)

The former does not imply the latter (a predictable condi@lanean with a randomly heteroscedastic
variance), or vice versa (e.g., an autoregressive conditibeteroscedastic—-ARCH—process, as in (7)
below, affecting a martingale difference sequence). Tdinout, we will take the mean of the unpre-
dictable process to be zerd; [v;] = 0 V¢. Since we will be concerned with the predictability of
functions ofv; andZ;_1, such as (6) below, any mean otherwise present could betsdukor the latter.
Due to possible shifts in the underlying distributions,Hotite information set available and all expecta-
tions operators must be time dated, which anyway clarifielsi+step prediction as ity [vrin|Z7]

for h > 1. The paper will focus on the first two moments in (3), rathemtlthe complete density in
(2), although extensions to the latter are feasible (see By and Wallis, 2000): however, for normal
distributions, (3) suffices.



Unpredictability is only invariant under non-singular temporaneous transforms: inter-temporal
transforms must affect predictability (so no uniqgue meastfiforecast accuracy exists: see e.g., Leitch
and Tanner, 1991, Clements and Hendry, 1993, and Grangé&tesaitan, 2000a, 2000b). Predictability
therefore requires combinations with_1, as for example:

yi = @y (L1, V) 4)

soy; depends on both the information set and the innovation coeo Then:

Dy, (¥t | Zt-1) # Dy, (yt) VteT. )

Two special cases of (4) are probably the most relevant éafhyr in economics, namely (after appro-
priate data transformations, such as logs):

yvi =fi (Zi—1) + vy (6)

and:
Yt =V © @y (Zi-1) (7)

where® denotes element by element multiplication, so that= v;p, , (Z;~1). Combinations and
generalizations of these are clearly feasible and are alsmpally relevant.
In (6), y; is predictable in mean eveni; is not as:

Eelye | Ze—1] = £ (Zi—1) # Ei 4],

in general. Thus, the ‘events’ which will help predigt in (6) must already have happened, and a
forecaster ‘merely’ needs to ascertain whdfZ; ;) comprises. The dependenceygfonZ;_; could be
indirect (e.g., own lags may ‘capture’ actual past causesgsystematic correlations over the relevant
horizon could suffice for forecasting — if not for policy. Hewer, such stable correlations are unlikely
in economic time series (a point made by Koopmans, 1937).c®heerse to (6) in linear models is well
known in terms of the prediction decomposition (sequeritiatorization) of the likelihood (see e.g.,
Schweppe, 1965): if a random variallgis predictable fron¥;_q, as in (6), then it can be decomposed
into two orthogonal components, one of which is unpredietain 7, ; (i.e., v; here), so is a mean
innovation. Since:

Vilye | Zi—1] < Vily:] whenf, (Z,_1) #0 (8)

predictability ensures a variance reduction, consistetft i nomenclature, since unpredictability en-
tails equality from (8)—the ‘smaller’ the conditional varnice matrix, the less uncertain is the prediction
of y; fromZ; ;.

Althoughy; remains unpredictable in mean in (7):

Etlye | Ze-1] = Bt [ve © 0y (Zi—1) | Zi—1] = 0,
it is predictable in variance because:
Er [yiyt | Zio1] = Bt [pav; © 0y (Zi-1) 04 (Zi-1)' | Ti1] = Qu, © 0 (Zi-1) 04 (Ti-1)'

A well known special case of (7) of considerable relevancé&nancial markets is whefd; ; is the
sigma-field generated by the pastygf For a scalay; with constant? andy (-) = oy, this yields:

Yt = VO,



so that (G)ARCH processes are generated by (see e.g., E9@2, and Bollerslev, 1986: Shephard,
1996, provides an excellent overview):

p p
o} = @p + Z Pl + Z Pp+50t—j- )
i=1 j=1

Alternatively, ¢ (1) = exp (0¢/2) leads to stochastic volatility (here as a first-order precege e.g.,
Taylor, 1986, Kim, Shephard and Chib, 1998 and again, Smdph896):

Ot41 = Po + P10t + 1 (10)
In both classes of model (9) and (10), predictability of tlaeiance can be important in its own right
(e.g., pricing options as in Melino and Turnbull, 1990), or deriving appropriate forecast intervals.
2.1 Prediction from a reduced information set

Predictability is obviously relative to the informationt ssed—when7; 1 C Z;_ itis possible that:

Dy, (ut [ Ji-1) = Dy, (ut) Yet Dy, (u | Zt—1) # Dy, (u) - (11)

This result helps underpin both general-to-specific modkgction and the related use of congruence

as a basis for econometric modelling (see e.g., Hendry, ,189& Bontemps and Mizon, 2003). In

terms of the former, less is learned based%n; thanZ;_;, and the variance (where it exists) of the

unpredictable component is unnecessarily large. In teffrtfeedatter, a later investigator may discover

additional information irZ;_, beyond.7;_1 which explains part of a previously unpredictable error.
Given the information set7,_1 C Z;—; when the process to be predicted/is= f; (Z;,—1) + v; as

in (6), less accurate predictions will result, but they wélinain unbiased. Sindg [v,|Z;_1] = 0:

E:[ve | Je-1] =0,

so that:
Etlye | Tem1] = B¢ (£ (Ze—1) | Te—1] = 8¢ (JTi—1) s

say. Lete, = y; — g (Ji—1), then, providing7;_; is a proper information set containing the history of
the process:
Etle: | Jt-1] = 0,

SOe, is a mean innovation with respect$_,. However, a®; = vy + f; (Z;—1) — g (Ji—1):
Eiler | Zv1] = £ (Zi—1) — B [ge (Ji1) | Zia] = £ (Zi—1) — 8¢ (Ji-1) # 0.
As a consequence of this failure @fto be an innovation with respect #o_:
Viled > Vi v,

so less accurate predictions will result. Nevertheless, phedictions remain unbiased on the reduced
information set suggests that, by itself, incomplete imfation is not fatal to the forecasting enterprise.



2.1.1 Changes in information sets

Similarly, predictability cannot increase as the horizeavgs for a fixed eveny based orZ,_;, for
h=1,2,..., H, since the information sets form a decreasing nested segming back in time:

Ir- g CIp-pgy1 ©-- Clpg. (12)

Conversely, disaggregating componentsZef ;, into their elements cannot lower predictability of a
given aggregatgr, where such disaggregation may be across space (e.g.nsegfian economy),
variables (such as sub-indices of a price measure), or Bottther, since a lower frequency is a subset
of a higher, and unpredictability is not in general invarismthe data frequency, then (11) ensures that
temporal disaggregation cannot lower the predictabilitghe same entityy (data frequency issues
will reappear in section 3).

These attributes sustain general models, and so may pravigienal basis for including as much
information as possible, being potentially consistenhwitany-variable ‘factor forecasting’ (see e.g.
Stock and Watson, 1999, and Forni, Hallin, Lippi and ReigH000), and with the benefits claimed in
the ‘pooling of forecasts’ literature (e.g., Clemen, 1988d Hendry and Clements, 2003b, for a recent
theory). Although such results run strongly counter to thimmon finding in forecasting competitions
that ‘simple models do best’ (see e.g., Makridakis and Hil2®90, Allen and Fildes, 2001, and Fildes
and Ord, 2002), Clements and Hendry (2001a) suggest thatisity is confounded with robustness,
and there remains a large gap between predictability amdésting, an issue addressed below.

In all these caseDy,,.. , (yr+4|-) remains the target of interest, aiig_ is ‘decomposed’, in that
additional content is added to the information set. A défey but related, form of disaggregation is of
the target variablg7 into its componenty; . Consider a scalagr = wiryir + (1 —wir) Yo, r
say. It may be thought that, when ther depend in different ways on the general informatioriZset;,
predictability could be improved by disaggregation. HoemrletEr [y; r|Zr—1] = 5;7TIT_1 then:

2 2
Erlyr | Zr—1] = Z wi TET [yir | Zr—1] = Z w; 78, 7Ir—1 = NpIr 1
i=1 i=1
say, so nothing is gained unless the previous situationoéased_; is attained. Indeed, if the;
change and thé;T do not, forecasting the aggregate could well be easier. ,‘thasey issue in (say)
inflation prediction is not predicting the component pribages, but including those elementgin ;
rather than restricting_, to lags of aggregate inflation.

2.1.2 Increasing horizon

The obverse of the horizon growing for a fixed evetis that the information set is fixed @t (say),
and we consider predictability as the horizon increases/far, ash = 1,2,..., H. If a variable is
unpredictable according to (2) (a ‘1-step’ definition),rttiemust remain unpredictable as the horizon
increase¥(T'+h) € T (i.e., excluding changes in predictability as consideretthé next section): this
again follows from (11). Equally, ‘looking back’ from timE + h, the available information sets form
a decreasing, nested sequence as in (12). Beyond thesewatieimplications, little more can be said
in general once densities can change over time. For exaaieipating the next section, consider the
non-stationary process:

yr = pt +t e, where e, ~ IN [O, af] , (13)



where we wish to compare the predictability;af, , with that ofyp. 1 givenZy for known p. Then:
Vrin [yren | Zr]) = Erqn [(QT-HL —p(T+ h))ﬂ

= ET+h [((T + h)_l €T+h> 2:|
= (T+h) 202 <Vrin|yrsn-1 | Zr]. (14)

The inequality in (14) is strict, angr.;, becomes systematically more predictable frémash in-
creases. Although DGPs like (13) may be unrealistic, speagsumptions (such as stationarity and
ergodicity or mixing) are needed for stronger implicatiof®r example, in a dynamic system which
induces error accumulation, where error variances do noedse systematically as time passes (e.g.,
being drawn from a mixing process), then predictabilitysfals the horizon increases since additional
unpredictable components will accrue.

2.2 Non-stationarity

In non-stationary processes, unpredictability is alsatned to the historical time period considered
(which is why the notation above allowed for possibly chaggilensities), since it is then possible that:

Dut (ut | It—l) 75 Dut (ut) for ¢t = 1, - ,T,

yet:
Dut (ut |It_1) = Dut (ut) for t:T+1,,T—|—H,

or vice versa More generally, the extent of any degree of predictabdédy change over time, especially
in a social science like economics (e.g., a move from fixecdbiatithg exchange rates).

A major source of non-stationarity in economics derivesnfitbe presence of unit roots. However,
these can be ‘removed’ for the purposes of the theoretiaiysis by considering suitably differenced
or cointegrated combinations of variables, and that israssbelow: section 4 considers the relevant
transformations in detail for a vector autoregression. Qirse, predictability is thereby changed—
a random walk is highly predictable in levels but has unmtatlile changes—but it is convenient to
consider such(0) transformations.

In terms off; (Z;—1) in (6), two important cases of change can now be distingdisie the first,

f; (-) alters tofy 1 (+), sofi41 () # £ (+), but the resulting mean of tHgy; } process does not change:

Eiv1 [yer1] = Eelye] - (15)

In the face of such a change, interval predictions may berdifft, but their mean will be unaltered. In
the second case, (15) is violated, so there is a ‘locatidti shiich alters the mean:

Bty [yea1] # Eelye] -

Such changes over time are unproblematic for the concepipsedictability, sincer ; —fi4; (Zi4+5-1)
is unpredictable for both periods= 0, 1. The practical difficulties, however, for the forecasteryrba
immense, an issue to which we now turn.



3 Implications for forecasting

It is clear that one cannot forecast the unpredictable bytsnunconditional mean, but there may be
hope of forecasting predictable events. To summarize jgiedality of a random variable likg; in (6)
from Z;_, has six distinct aspects:

1. the composition of;_1;

howZ,_; influencesDy, (- | Z;—1) (or specifically,f; (Z;—1));

howDy, (- | Z;—1) (or specificallyf; (Z,_1)) changes over time;

the use of the limited information sgi_1 C Z;_1 V¢;

the mapping oDy, (- | Z;—1) into Dy, (- | J¢—1) (or specifically,f; (Z;—1) into g (J;—1));
how Jr will enterDy..., (- | Jr) (or frop, (J1)).

o 0hswN

Forecasts of 7., from a forecast origin ai” are made using the modg} = v (J;—1,0) based on
the limited information set/;_; with conditional expectatiok [y;|7;—1] = g: (J;—1). The postulated

parameters (or indexes of the assumed distributbmust be estimated & using a sampleé =
1,...,T of observed information, denoted B%_;. Doing so therefore introduces four more steps:

the approximation of; (7;—1) by a functiony (7;_1, 0) Vt;
measurement errors betwe&n ; and the observed?t_l Vt;
estimation ob in ¢(ft—1, 0) from in-sample data?T;

10. forecastingr, from a,, (77, §T).

© © N

We consider these ten aspects in turn.

Concerning 1., although knowledge of the compositiorZof; will never be available for such a
complicated entity as an economy, any hope of success indstiag with macro-econometric models
requires that they actually do embody inertial responsems€quently,Z;_; needs to have value for
predicting the future evolution of the variables to be fasceither from a causal or systematic correla-
tional basis. Evidence on this requirement has perforce based on using;_1, but seems clear-cut in
two areas. First, there is a well-known range of essentialiyredictable financial variables, including
changes in exchange ratés,, long-term interest rates;,, commodity prices’, and equity pricesk.:
if any of these could be accurately forecast for a futuregakra ‘money machine’ could be created,
which in turn would alter the outcormeWhile these are all key prices in decision taking, forward an
future markets have evolved to help offset the risks of ckangnfortunately, there is yet little evidence
supporting the efficacy of those markets in forecasting §smeated outcomes. Secondly, production
processes indubitably take time, so lagged reactions dsenotm on the physical side of the economy.
Thus, predictability does not seem to be precludef_iff was known.

Learning precisely hov,_; is relevant (aspect 2., albeit vi%_1) has been the main focus of
macro-econometric modelling, thereby inducing major tgwaents in that discipline, particularly in
recent years as various forms of non-stationarity have beeselled. Even so, a lack of well-based
empirical equation specifications, past changes in dataitiesithat remain poorly understood, mis-
measured—and sometimes missing—data series (espedifilggaencies higher than quarterly), and
the present limitations of model selection tools to (neimgdr models entail that much remains to be
achieved at the technical frontier.

Changes irff; (Z;—1) over time (3.) have been discussed above, and our earleEangshas clarified
the impacts on forecasting of shifts in its mean values.

A ‘fixed-point’ analysis (like that proposed by Marget, 1929 possible, but seems unlikely for phenomena prone to
bubbles. However, transactions costs allow some prediityab



Turning to aspect 4., economic theory is the main vehiclaherspecification of the information
setJ;—1, partly supported by empirical studies. Any modelDgf, (-|-) embodiesg; (-) not f; (-), but
section 2.1 showed that models with mean innovation errmudcstill be developed. Thus, incomplete
information about the ‘causal’ factors is not by itself peahatic, providingg; (J;—1) is known.

Unfortunately, mappind; (Z;—) into its conditional expectatiog; (J;—1) (aspect 5.) is not under
the investigator's control beyond the choice Gf ;. Any changes irf; (Z;_1) over time will have
indirect effects org; (7;—1) and make interpreting and modelling these shifts diffictlevertheless,
the additional mistakes that arise from this mapping aetiliovation errors.

However, even if 1.-5. could be overcome in considerablesorea aspect 6. highlights that re-
lationships can change in the future, perhaps dramatitafigction 2.2 distinguished between ‘mean-
zero’ and ‘location’ shifts iny;, the most pernicious breaks being location shifts (e.gfisuoed in the
forecasting context by the taxonomy of forecast errors en@nts and Hendry, 1998, and by a Monte
Carlo in Hendry, 2000). Considér = 1, where the focus is on the medsy 1 [y7+1|J7], which is
the integral over the DGP distribution at tirfie+ 1 conditional on a reduced information s&t, and
hence is unknown af. Then averaging across alternative choices of the conténfs could provide
improved forecasts relative to any single method (i.e tebetpproximate the integral) when the dis-
tribution changes from timé&’, and those choices reflect different sources of information course,
unanticipated breaks that occur after forecasts have be®uaced cannot be offset: the precise form
of Dy, (+]) is not knowable till timel” +- h has been reached. However, after tilme- h, Dy, (-|-)
becomes an in-sample density, so thereafter breaks coulfidat.

Aspect 7., appears to be the central difficulgy:(-) is not known. Firstg; (J;—1) experiences de-
rived rather than direct breaks from change$,if¥;_,), making model formulation and especially se-
lection hard. Secondly, empirical modellers perforce apipnateg; (7;—1) by a functiony (7;—1, 0),
where the formulation o is intended to incorporate the effects of past breaks: nimse:varying
coefficient’, regime-switching, and non-linear models mrembers of this class. Thirdly, while ‘mod-
elling breaks’ may be possible for historical events, atiocashift at, or very near, the forecast origin
may not be known to the forecaster; and even if known, may béeets that are difficult to discern,
and impossible to model with the limited information avhita

Measurement errors, aspect 8., almost always arise, daldeabbservations are inevitably inac-
curate. Although these may bias estimated coefficients anthbound the modelling difficulties, by
themselves, measurement errors do not imply inaccuragedsts relative to the measured outcomes.
However, in dynamic models, measurement errors inducetimegaoving-average residuals. Thus,
a potential incompatibility arises: differencing to atigmte systematic mis-specification or a location
shift will exacerbate a negative moving average. Convgradbrecast-error correction can remove unit
roots and hence lose robustness to breaks. This new resaisge lie at the heart of practical forecast-
ing problems, and may explain the many cases where (e.feyatiting and intercept corrections have
performed badly.

Concerning aspect 9., the ‘averaging’ of historical datesttimated by 0r imparts additional inertia
in the model relative to the data, as well as increased waingrt More importantly, there are probably
estimation biases from not fully capturing all past breaksich would affect deterministic terms.

Finally, concerning aspect 10., multistep forecasts hheeatlded difficulty of cumulative errors
although these are no more than would arise in the contexedigiability.

2Sir Alec Cairncross (1969) suggested the example of fotiecps/K GNP in 1940 for 1941—a completely different
outcome would have materialized had an invasion occurrdie récent theoretical analyses discussed above have in fact
helped to formalize many of the issues he raised.
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Not adapting to location breaks induces systematic misefsting, usually resulting in forecast
failure. To thrive competitively, forecasting models ne¢edavoid that fate, as there are many devices
that track (with a lag) and hence are robust to such breaks they have occurred. Section 5 con-
siders several such devices. Before that, however, sulmse®:1 formalizes these possible errors in a
taxonomy to seek pointers for attenuation of their adveosseqguences.

3.1 Taxonomy of error sources

The 1-step ahead error from the forecasting mgdel; = ¢1(fT, 5T) iSury1 =yri1—yre1- Then
ur1 can be decomposed into six basic sources of mistakes (asitherfahead errors):

ury] = Vryl DGP innovation error
+ fro1(Zr) —gr+1 (Jr) incomplete information
+  gr+1 (JIr) —gr (Jr) induced change
+ gr(Jr)— ¢, (Jr,0) approximation reductior
+ Y (JIr,0) — wl(jT, 0) measurement error
+ Y (.@,0) — (j:rﬁ;p) estimation uncertainty

We consider these in turn.

Sincevr, 4 is aninnovation against the DGP information Eef nothing will reduce its uncertainty.
Nevertheless, the intrinsic propertiesiof,; matter greatly, specifically its variance, and any unpre-
dictable changes in its distribution. The baseline acgurd forecast cannot exceed that inherited
from the DGP innovation error.

There are many reasons why information available to thec&ster is incomplete relative to that
underlying the behaviour of the DGP. For example, importamtables may not be known, and even
if known, may not be measured. Either of these m&kea subset of 1, although the first (excluding
relevant information) tends to be the most emphasised. &srsin section 2.1, incomplete information
increases forecast uncertainty over any inherent ungeddiity, but by construction:

gr1(Jr) = Ery1 [fr (Zr) | I1,

S0, no additional biases result from this source, even whegakis often occur.

Rather, the problems posed by breaks manifest themselvies ivext termgr.1 (J7) — gr (J7):
sub-section 3.3 below addresses their detection. In-s&ritpé often possible to ascertain that a break
has occurred, and at worst develop suitable indicator basao offset it, but the real difficulties derive
from breaks at, or very near, the forecast origin. Sub-se@i4 considers possible remedies: here we
note that ifAgr.1 (Jr) has a non-zero mean, either an additional intercept (n&rdept correction,
denoted IC), or further differencing will remove that mearoe

There will also usually be mis-specifications due to the fdation of bothe (-) and@ as approx-
imations togr (Jr). For example, linear approximations to non-linear respsnaill show up here,
as will dynamic mis-specificationfr assumes all earlier values are available, but models afipnse
short lag lengths). If the effect is systematic, then an I@iierencing will again reduce its impact;
however the required sign may be incompatible with the previcase.

Even if all variables known to be relevant are measured, bsemvations available may be inaccurate
relative to the DGP ‘forces’. A distinction from the case gtkiding relevant information is useful, as
it matters what the source is: measurement errors in dynamdels tend to induce negative moving
average residuals, whereas omitted variables usuallyte@dsitive autoregressive residuals. Thus,
again a potential incompatibility arises: differencindlwkacerbate a negative moving average, and an
IC may need the opposite sign to that for a break.
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Finally, estimation uncertainty arising from usiﬁq in place of@ can compound the systematic
effects of breaks wheaT adjusts slowly to changes induceddn

When models are mis-specified by usifig.; C Z;_1, for a world whereZ; _, enters the density in
changing ways over time, forecasting theory delivers iogtions that are remarkably different from the
theorems that hold for constant processes as the summanssisn in Hendry and Clements (2003a)
emphasises. We can now see a basis for such results in thbegwiéen predictability and empirical
forecasting highlighted by the above taxonomy.

3.2 Congruent modelling for forecasting

Given the taxonomy, what is role for orthogonalised, paosilnus encompassing, congruent models?
Eight benefits are potentially available, even in the foséng context, and the need for such a model
in the policy context is clear.
1. Rigorous in-sample modelling helps detect and therebidaaquilibrium-mean shifts which would
otherwise distort forecasts.
2. Such models deliver the smallest variance for the inmavatrror defined on the available information
set, and hence offer one measure of the ‘best approximatart* ).
3. Itis important to remove irrelevant variables which ntighffer breaks over the forecast horizon (see
e.g., Clements and Hendry, 2002).
4. The best estimates of the model's parameters will beuaidé over periods when no breaks occur,
and thereby reduce forecast-error variances.
5. An orthogonalised and parsimonious model will avoid gdaratio of the largest to smallest eigen-
value of the second-moment matrix, which can have a dettmheffect on forecast-error variances
when second moments alter, even for constant parametdrs forecasting model.
6. A dominant parsimonious congruent model offers betteletstanding of the economic process by
being more interpretable.
7. Such a model also sustains a progressive research gteatdgpffers a framework for interpreting
forecast failure.

Nevertheless, how such a model is used in the forecast paisodnatters and is discussed below.

3.3 Diagnosing breaks

A problem for the forecaster hidden in the above formulatsomletermining that there has been a break.
First, data at or near the forecast origin are always lessmedsured than more mature vintages, and
some may be missing. Thus, a recent forecast error may réfilgica data mistake, and treating it
as a location shift in the economy could induce systematiectst errors in later periods. Secondly,
a model which is mis-specified for the underlying processhsas a linear autoregression fitted to
a regime-switching DGP, may suggest breaks have occurresh Wiey have not. Then, ‘solutions’
such as additional differencing or intercept correctiol@®s) need not be appropriate. Thirdly, even
when a break has occurred in some part of a model, its effésgw/leere depend on how well both the
relevant equations and their links are specified: UK M1 befwavides an example where only the
opportunity cost is mis-forecast in one version of the mpbat real money is in another. Fourthly,
sudden changes to data (e.g., in observed money growth nated not entail a break in the associated
equation of the model: UK M1 again highlights this. Thusheilit knowing how well specified a model
is under recently changed conditions, data movements amnesufficient to guide the detection of
breaks. Unfortunately, therefore, only recent forecasirerare useful for diagnosing change relative to
a model, highlighting the importance of distinguishing iéigd from innovation errors.
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3.3.1 Co-breaking

On the other hand, co-breaking of a subset of relations dweerfdrecast horizon would be valuable
because such variables would move in tandem as a group.uiithiorecasting the remaining variables
would still be problematic, one would not need ICs for thébceaking equations, which would improve
the efficiency of the forecasts. The UK M1 system also illatts this aspect, as an IC is needed in only
one equation.

Moreover, lagged co-breaking is invaluable. A break in agimal process, which affects the vari-
able to be forecast with a lag, does not induce forecastréailu

3.4 Potential improvements
A reduction in the seriousness of forecast failure coulddieexed by:

(a) breaks being sufficiently infrequent to ignore;
(b) a forecasting system being invariant to breaks;
(c) an investigator forecasting breaks; or

(d) forecasts adapting rapidly to breaks that occur.

Al four possibilities merit consideratioh.

(a) relates to the second role of data frequency noted altidweaks occur erratically over time and
across variables, but with an average of oncerpgrars per variable (wherecould be less than unity,
but seems larger in practice) then on (e.g.) weekly datakisreccur once péi2r observations. While
the impact of any break in a dynamic system takes time to rigaéhll effect, and high-frequency data
are often noisy, nevertheless on such data there will be marigds of ‘normal’ behaviour between
breaks during which ‘causal’ models should perform wels(gsing past breaks have been successfully
modelled). Conversely, breaks will be relatively frequentannual data (roughly 15% of the time for
GDP since 1880 in the UK: see Clements and Hendry, 2001b)lyses of other series for breaks to
ascertain their size and latency distributions would béuliseerhaps using robust univariate devices as
the baseline against which to determine the existence angiof breaks.

When the ‘target’ variablg .1 to be forecast is, say, annual inflation, then *‘solution’ig¢apfeasi-
ble: that selection entails the choice of data frequencyvéver, the frequency need not be the same for
Jr: forecasting annual changes from quarterly data is comnsamce predictability cannot fall with
a larger information set, an implication is to use the higlfiegjuency, and the largest set, irrespective
of the ‘target’ (e.g., hourly data even if annual GNP grov&tha be forecast). Although this is usually
impractical given the limited sample periods available iacno-economics, and the lack of collection
of high-frequency data on many variables of interest, tmgiication also merits exploration.

(b) unfortunately seems unlikely, and has not happenedrfaatly. But it is important to clarify the
reason why (b) is unlikely to occur. It is not because automgsrequations are necessarily scarce, but
because the weakest link in the system determines the beatabme. For example, consider the oll
crisis in the mid 1970s: models which excluded oil prices Maertainly have mis-forecast inflation,
and experienced ‘breaks’—but even models with oil pricesld/dave suffered forecast failure unless
they could have forecast the olil crisis itself. After theryéowever, a distinction emerges: the former
would still suffer serious mis-fitting (probably adapteddochanges in estimated coefficients given the
propensity to use least squares estimation which seeksltweehe largest errors), whereas the latter
would not for the inflation equation, but still would for itd price equation. ‘Explaining’ the latter by

3Averaging a set of forecasts is shown in Hendry and Clem@083p) to improve forecasting when at least one (different)
method responds to each break.
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building a model of oil supply would push the problem downyelabut at some stage, an unanticipated
jump is left: a non-linear process—or even an indicatorHd/oemove the misfiex postbut neither need
help to forecast the next jump.

(c) essentially requires a crystal ball that can foresemlng changes. In some cases, however, this may
be possible. For example, related situations may have watpreviously, allowing a model to be built
of the ‘change’ process itself (though that too could ch&ngime-switching models are one attempt
to do so for states that often change and are partly predéctdthe conditional probability of the
state differs from the unconditional. To date, their fostizey performance has not proved spectacular,
even against univariate predictors, partly because thadiwf the switch remains somewhat elusive—
albeit crucial to their accuracy. Another possibility isittalthough breaks are relatively rare, they have
discernible precursors, either leading indicators or @aas is being discovered in volcanology. Here,
more detailed studies of evolving breaks are merited.

(d) is more easily implemented, as there many forecastimre that are robust to various forms
of break. Notice the key difference from (c): here adapighit after the event, improvingx post
tracking and thereby avoiding systematic forecast fajlutgereas (c) sought to improve predictability.
As emphasized by Clements and Hendry (1998, 1999), knowirgainple causal relations need not
deliver ‘better’ forecasts (on some measures) than those dievices where no causal variables are used.
Thus, it seems crucial to embed macro-econometric model$arecasting strategy, where progressive
research is essential to unravel (b) and (c), and adapyasiter shifts is the key to mitigating (d).

4 A cointegrated DGP

Consider a first-order VAR for simplicity, where the vectdrrovariables of interest is denoted ky,
and its DGP is:
x; =T+ Yx;—1 + € wWheree ~ IN, [0,9]. (16)

Y is ann x n matrix of coefficients and- is ann dimensional vector of constant terms. The specifi-
cation in (16) is assumed constant in-sample, and the syistéaken to bd (1), satisfying ther < n
cointegration relations:

Y =1I,+af. (a7)

o andg aren x r full-rank matrices, no roots di — YL| = 0 lie inside unit circle (¥z; = x;_),
anda/, Y3 is full rank, wherea; and/3, are full column rank: x (n — r) matrices, witha'a | =
B3, = 0. Then (16) is reparameterized as a vector equilibriumemtion model (VEqCM):

Ax; =T +af'x_1 + €. (18)
Both Ax; and3'x; arel(0) but may have non-zero means. Let:
T=7-—ap (19)

then:
(Ax —v) = a (B'x-1 — p) + &. (20)
The variables grow at the ralAx;] = + with 3’y = 0; and whend'a is non-singular, the long-run
equilibrium is:
E [,@’xt] = pu. (22)
Thus, in (20), bothAx; and3'x; are expressed as deviations about their means. Noteytisat x 1
subject tor restrictions, andgls is r x 1, leavingn unrestricted intercepts in total. Alsg, a andp are
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assumed to be variation free, although in principlesould depend ory: see Hendry and von Ungern-
Sternberg (1981). Thefr, Y) are not variation free, as seems reasonable when, 3 andy are the
‘deep’ parameters: for a more extensive analysis, see Qismaad Hendry (1996).

4.1 Location shifts

The shift of interest here ¥ u* = pu* — . Then:

Axpi =+ o (B'xp — p*) + epq (22)
so from (22):
Axpir =y + o (Bxr —p) + ery1 —aVp® (23)
or:
Axri1 = Axpyqr —aVp'. (24)

The first right-hand side term in (24) (named/;\ocﬂ”T) is the constant-parameter forecastotr1;
the second is the shift with:
E |:AXT+1 — AXT-ﬁ-l‘T = —onu*

Section 5 now considers possible solutions to avoidingctsefailure.

5 Adaptive devices

Three approaches to implementing suggestion (d) in se8tibare considered:

¢ differencing the VEqCM (20) to improve its forecasting retmess to location shifts;
e rapid updating of the estimatesgfandu after such shifts; and
e forecast-error corrections to adjust quickly to breaks.

We take these in turn: none actually alters predictabibity the information set is unchanged), but they
all seek to mitigate the impact of breaks.

5.1 Differencing the VEqCM

Since shifts inp are the most pernicious for forecasting, consider forgmastot from (20) itself but
from a variant thereof which has been differenced after @@nt representation has been estimated:

Axy = Axi_q + o' Axi_1 + Aep = (I, + af) Axy—y + g (25)
or:
A%y = a8/ Ax1 + uy. (26)

(25) is just the first difference of the original VAR, sin(‘.]a,l + aB’) = T, but with the rank restriction
from cointegration imposed. The alternative represemtaith (26) can be interpreted as augmenting a
double differenced VAR (DDV) forecast hy3' Ax;_1, which is zero on average.

To trace the behaviour of (25) after a brealuinlet:

&T+1|T = (I, + af’) Axr,

where from (23):
Axry = Axp + o (B Axp — Ap*) + Aepp.
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Attime T only, Ap* = Vu*, so:
Axpi1 = Axp + oS/ Axp — aVp" + Aery .
Then:
E |:AXT+1 — AVXTH‘T = Axp + af'Axr — aVp* — (I, + af) Axp = —aVp*.

Here there is no gain, as the break is after forecasts areiaoed—an IC, or DDV, would fare no better.
However, one period later:

Axpio = Axpyr + o (B Axpy — Ap®) + Aergo,
and nowAp* = 0, so:
E AXT+2 — A\;CT+2‘T+1:| =E [AXT-‘,—l + aﬁ,AXT+1 — (In + aﬁ,) AXT+1] =0.

Thus, the differenced VEqQCM ‘misses’ for 1 period only, armes not make systematic, and increas-
ing, errors. The next sub-section considers the impact necessary differencing on forecast-error
variances, and in the context of 1-step ahead forecasts.

5.1.1 Forecast-error variances

Leter; 1 = Axpyq — &TH‘T be the forecast error, then, ignoring parameter estimatimertainty
asO, (T~1/2):
eri1 = —aVu* + Aery,

and:
eryo = Aerys.

Since the system error {&, }, then the additional differencing doubles the 1-step erapiance, which
is the same as for the DDV. Relative to a DDV, however, thergegain from the DVEQCM, since the
former has a component from the variance of the omitted blrigx3’ Ax;), as well as the same error
terms. Thus, a DDV is not only the difference of a DVAR, butlisoeobtained by dropping a mean-zero
term from the differenced VEqCM.

Using Axy to forecast

Second differencing removes two unit roots, any intercaptslinear trends, changes location shifts to
‘blips’, and converts breaks in trends to impulses. Figullugtrates.
Also, most economic time series do not continuously acatder entailing a zero unconditional
expectation of the second difference:
E [A%x] =0, (27)

and suggesting the forecasting rule:
AiT-ﬁ-l‘T = AXT. (28)

One key to the success of double differencing is that no chééstic terms remain, so that for time
series like speculative prices, where no deterministims$eare present, ‘random walk forecasts’ will
be equally hard to beat. However, as discussed below, eiiiténg is incompatible with solutions to
measurement errors as it exacerbates negative movinggagera
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Figure 1 Location shifts and broken trends.

Nevertheless, there is a deeper reason why a forecast ajriing28) may generally perform well.
Consider the in-sample DGP:

Axy =g+ ap (Boxi—1 — o) + Yozt + €, (29)

wheree; ~ IN,, [0, 2] independently of all the included variables and their mstaith population
parameter values denoted by the subsdiiptilso, z; denotes potentially many omittd¢D) effects,
possibly all laggedl(0), perhaps because of ‘internal’ cointegration, beirfpdinced, or intrinsically
stationary). The postulated econometric model is a VEqQCMin

Axp =~ +a(B'%xr-1 — p) + v,
and that model, estimated fromobservations, is used for forecasting:
o~ o~ ~ A/ o~
AXp i1 =7+ @ (5 XT4i—1 — u) : (30)
Finally, over the forecast horizon, the DGP becomes:
Axpii =5 + o ((80) Xr4i-1 — 1) + Cozryi + €rgi. (31)

All the main sources of forecast error occur, given (31)clssstic and deterministic breaks, omitted
variables, inconsistent parameter estimates, estimatioartainty, and innovation errors: data measure-
ment errors could be added. ThusNk7 ; — AX7jj74i—1 = Wi

* * * * * -~ ~ (5 ~
Wr4i = Yo + O ((ﬁo)/XT-H‘—l - Ho) + Wz i + € — Y —Q (/3 XT4i—1 — H) . (32)

It is difficult to analyze (32) as its terms are not necesgadlen 1(0), but conditional on
(XT4i-1,27+i-1), Wr4; has an approximate mean forecast error (usiffg] = ~,, etc.) of:

Elwryi | Xrrionzrvic] = (960 — ) — (ot — o) + [a5(85) — apB,] Xr1ia

+WOE (274 | XT4io1, 274 1] -
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Also, neglecting parameter estimation uncertaintydgél’ '), wr,; has an approximate conditional
error-variance matrix:

VI wryi | Xrtio1, 2r4+i-1] = OOV (2144 | Xrpio1, 204i-1) O + Qe (33)

and its conditional mean-square forecast error matrib@stim ofe[wy ;| xX7+i—1, 20+i—1|E[Wri|Xr4io1, Zrri-1]
and (33).
Contrast using the sequencefk; ; to forecastAxy.,, asin (28):

AX7ygr4io1 = AXTpio1. (34)
Because of (31)Axr,;_1 isin fact (for: > 1):
Axriic1 =5 + o ((80) Xr4i—2 — 1)) + ¥ozr4io1 + €rgioi. (35)

Thus, (35) shows that, without the economists needing tavkhe causal variables or the structure of
the economyAxr.; ;1 reflects all the effects in the DGR including all parameter changes, with no
omitted variables and no estimation required at all. Howewere are two drawbacks: the unwanted
presence otr.;_1 in (35), which doubles the innovation error variance; andratiables are lagged
one extra period, which adds the ‘noise’ of madfw 1) effects. Thus, there is a clear trade-off between
using the carefully modelled (30) and the ‘naive’ predict®4). In forecasting competitions across
many states of nature with structural breaks and comptidatePs, it is easy to see whlyxr ;1 may
win.

Let AXT—H’ — A)N(T+Z'|T = UT 44, then:

Ur+; = 78 + aEk) ((BS)IXT—HL—I - lJzEk)) + ‘I’SZT-H—l + €14
— [v6 + o ((BY) x14i-2 — 1) + ¥ozr1i1 + €14i1)
= aE’S(BE’S)’AXTH_l + WAz + Aery. (36)

All terms in the last line must bg—1), so will be very ‘noisy’, but no systematic failure shouldué.
Indeed:

E[uri] = ofE [(85) Axryi1] + WoE [Azryi] + E[Aer ] = ai(B5) v = 0.
Neglecting covariances, we have:

Viury) = V[og(85) Axriio1] +V [®5Azry] + V [Aery]
= aj(B)'VI[Axri] Brag + BV [Azry] B+ 29 (37)

which is the mean-square error matrix becak$er. ;| = 0. Conventional analysis notes the doubling
of Q. in (37) relative to (33). However, whejz; } is a stationary vector autoregression (say):

z; = I'z; 1 +mn, wheren, ~IN;[0,€,],

then:
V [Zt] =TV [Zt] ]_-‘, + 977,

and:
VI[Az] = (T —I;)V]z (T — L) + Q,
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so that:

V[Azryi] =Vizry] = (T —=Ti)Vizrgy] (T — L) =TV [z7] T
= Vlzryi] =TV [zr4] = V[z74] T
which could attain a maximum &f [z7;] when{z;} is white noise [' = 0), or approach-V [zp,]

when{z, } is highly autoregressivd(~ I,,). Thus, the overall error variance in (37) will not necesgar
double relative to (33), and could be smaller in sufficielidgly specified VEqQCMSs.

5.2 Rapid updating

An alternative to over-differencing is more rapid updatofghe coefficients of the deterministic terms,
possibly using different estimators for forecasting. Thosa ‘non-causal’ representation, consider a
short moving average of past actual growth rates, so:

Axq iy = Fr (38)
where: "
Tr = %ﬂ iz_; Axp_;. (39)
Then: .
(m+1)Fr =Y Axp i = Axp — AXp_ (1) + (M + 1) Frog,
So: -

Tr =T7_1+ AA G y1)XT,

(m+1)
reflecting aspects of Kalman filtering. When= 0:

AXT-ﬁ-l‘T = AXT,

which reproduces the DDV as corresponding to updating ttezdept by the latest ‘surprise\%xy.
Larger values ofn will ‘'smooth’ intercept estimates, but adapt more slowhgingm = 7 — 1 es-
sentially delivers the OLS estimates, which do not adapt: féecasting from quarterly data using
m = 3:

1 1

which is the previous average annual growth. So long as bra@knot too frequent, and the variables to
be forecast do not accelerate, such devices seem likely io ieasonably well in avoiding systematic
forecast failure.

Implicit in (38):

T =Yp — Qpiyp,

and so it reflects changes in either source of intercept $bifte a more causally-based model is used,
that mapping ceases, so implementing an analogous notijpiires care. The basic problem is that if
such corrections work well when a model is mis-specifiedy t@not be appropriate when it is valid
for the same observed change in growth: the latter case tinisdées changed observed growth to a
shift in 7 whereas it will be captured by other regressors. A lack dfagbnality between the various
‘explanatory components’ is the source of this difficultjtanges in one variable are confounded with
resulting changes in the growth rates of others (see Be&@§0, for an alternative parameterization
that seeks ro resolve this problem).
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5.3 Forecast-error based adaptation

Consequently, only forecast-error based information ctvineflects the problems of the model, not the
changes in the data, can be used to correct breaks in ecaioeystems. Apart from ICs (which add
back recent errors, and are also susceptible to smootling)of the most famous ‘forecast-error cor-
rection’ mechanisms (FErCMs) is the exponentially weighteving average (EWMA), so we consider
its possible transmogrification to econometric systems.

The EWMA recursive updating formula is, fare (0,1) and a scalar time seridg; }:

Urnr = (1=X) Y Nyrj,
=0

so (e.g.):
Ursyr = (1= AN yr + MNgrir—1 = yr — A (yr — Jryr—1) » (40)

with start-up valuey; = y;. Hence, for an origil’, Y7 = yr41r for all h. One can view this
method as ‘correcting’ a random-walk forecast by the Idagtcast erro(yr — yrr_1):

&JTH\T =—A (QT - §T|T—1) ) (41)
possibly seen as approximating the ARIMA(0,1,1):
Ay =gy — 0541, (42)
so the second term in (40) seeks to offset that in (42):
Ayriq — A\yTJr”T =ery1 — e+ X (yr — Urr—a) -

Consequently, (40) could be seen as being designed for dzgtaured with error, where the underlying
model wasAy; = v, with y, = y; + w; So that:

Ayt = Ayf + Awt = (Ut + U)t) — W¢—1.

Any shift in the mean of y} will eventually feed through to the forecasts from (40): iaddback
a damped function of recent forecast errors ought, thezetorbe productive when location shifts are
common. The speed with which adjustment occurs dependseatetiree of damping,, wherex = 0
corresponds to a random walk forecast. The choice of a largeevents the predictor extrapolating
the ‘noise’ in the latest observation, but when there is & 8himean, the closeh is to zero the more
quickly a break will be assimilated in the forecasts.

5.3.1 The relation of EWMA and IC

Four components seem to contribute to the forecasting ss@fdEWMA:

adapting the next forecast by the previous forecast error;
differencing to adjust to location shifts;

the absence of deterministic terms which could go awry;
rapidly adaptive when is small.
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The correction of a forecast by a previous forecast erroeisimiscient of intercept correction.
However, EWMA differs from IC by the sign and size of the damgpfactor,—X in place of unity,
so may not face the latter’s problems when there are largesunement errors at the forecast origin.
To investigate the implications of this sign change, coersal vector generalization of (41) using the
forecast from (43), (abstracting from parameter estinmtio

Axriir =7+ (@B'xr —ap), (43)
when augmented by the forecast-error correction:
Axpir = &T—FHT — A (xp —Xpip_1) - (44)
Assuming the VEqQCM (22) was congruent in-sample, then using
Xrir—1 = Axpip_1 +Xp_1 = Xxp_1 + v + (aB'xp_1 —ap)

leads to:
Xy — Xpjr-1 = Axp — v — a (B'xr1 — ) = Axy — Axqyp_y,

which is the last in-sample 1-step residuat, Thus, lettinger 1 = Axpyq — E{T+1|T:
Axpi1 — Axpyqr = €p41 + Aér,

soA = —I,, corresponds to the IC for ‘setting the forecasts back orktraicthe forecast origin. The
sign change is not due to IC being an autoregressive, rdtaara moving-average, correction: rather,
the aim of the IC is to offset a location shift, whereas EWMAIlseto offset a previous measurement
error, using differencing to remove location shifts. Thus,see an importamaveatto the explanations

fo the empirical success of ICs discussed in Clements andrig€h999, Ch.6). some of the potential
roles conflict. In particular, to offset previous mis-sgieeitions or measurement errors requires the
opposite sign to that for offsetting breaks.

5.3.2 Adapting EWMA for growth changes

The absence of any deterministic terms in (41) entails fhidwei data are growing, systematic under-
prediction may occur. This last difficulty could be circumted by an extra degree of differencing as
in the type of model discussed by Harvey and Shephard (1992) (n (40) becomes the growth rate),
or alternatively by letting:

Ayriayr =Ar = M (yr — Irir—1) (45)
where: .
Yr =r-1+ mA(m—H)AyT~ (46)

Notice thaty,_; could be based on all the in-sample data, switching to (46) when forecasting.
However,m = 0 (say) enforces complete adaptation to the latest ‘surprse, which could be
noisy. The ‘combined’ device in (45) both corrects recerst garors and adjusts rapidly to changes in
observed growth irrespective of whether that corresponahanges iny in the DGP, or is an induced
effect from shifts ing.

Vector generalizations of (45) and (46) are straight-fodrathe former becomes:

ANXT+1|T =7 — A (xp — Xpyr_1) 47)
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where A could be diagonal, denoted ADV for adaptive DVAR. Then, (géneralizes the simplest
DVAR-based forecast:

AVXTH\T =, (48)
and is also similar to (20) when that equation is written as Khown in-sample parameters):
&T+1\T =7+ (Oéﬁ,XT - au) ) (49)

but with the equilibrium correction in (20) replaced by foast-error correction in (47). Alternatively,
combination leads to (44) above, which augments (49) byasietérm in (47).

6 Empirical illustration of UK M1

The two ‘forecasting’ models of UK M1 in Hendry and Mizon (I3®%nd Hendry and Doornik (1994)
respectively illustrate several of these phenomena (sesetpapers for details of the models: other
closely related studies include Hendry, 1979, Hendry arnidsEon, 1991, Boswijk, 1992, Johansen,
1992, Paruolo, 1996 and Rahbek, Kongsted and Jgrgensed). T88 data are quarterly, seasonally-
adjusted, time series over 1963(1)-1989(2), defined as:

M nominal M1,

1 real total final expenditurelFE) at 1985 prices,
P the TFE deflator,

Ry, the three-month local authority interest rate,
R, learning-adjusted own interest rate,

Rnet Rla - Ro-

The first model is based on using the competitive interesti?gt, and the second on the opportunity-
cost measurdk,,.; appropriate after the Banking Act of 1984 legalized intepeg/ments on chequing
accounts. To simplify the results, we first consider onlyriieney-demand model, then turn briefly to
system behaviour. In both cases, ‘forecasts’ are over theyéars 1984(3)-1989(2), or subsets thereof.

6.1 Single-equation results

The first step is to illustrate that the Banking Act corresjixhto an equilibrium-mean shift relative
to the model based oR;,. The own rate,R, has a mean of approximately 0.075 over the forecast
horizon, and a shift indicatary, 9552y} times that mean closely approximates the actual time path of
that variable: see figure 2, panel a. Thus, subtradlifg5 x 14 1985(2)} from Ry, is close toR;
(denotedRj, in figure 2b): it is clear why an intercept correction shou&tfprm well after 1985(4).
Next, over the forecast horizon, the moving average groath of real money shifted dramatically
relative to the recursively estimated historical mean ghawte (see figure 2c¢): this reflects both effects
in V~* —aVu*, even ifV~* = 0 so the ‘fundamental’ growth rate is unchanged. Since thseled
growth mimics the ‘missing ingredient’ in a univariate foasting device, the second adaptation above
should be successful in that context. Finally, the estirotle original equilibrium meary based on
Ry, is quite sensible (see figure 2d), and shows no signs of a afifireag: based orR,,.;, does shift.
At first sight, that may seem counterintuitive, but it occprecisely because the opportunity costs have
shifted dramatically, spu does not reflect that shift, thereby causing forecast fil@onsequently, real
money andR,,.; must co-break, as illustrated in Clements and Hendry (18899).

Figure 3a shows the dismal performance on 20 1-step fosechthe Hendry and Mizon (1993)
model: almost none of th&27 error bars includes the outcome, and a large fall is foretashg the
largest rise experienced historically, so the level is ditirally underestimated.
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Figure 2 Effects of the 1984 Banking Act on UK M1.

1975

For comparison, the 20 1-step forecasts from the first diffee of that original model are shown
in figure 3b: there is a very substantial improvement, wittsystematic under-forecasting, suggesting
that the first proposed adaptation can be effective in the dhequilibrium-mean shifts (all the panels

are on the same scale, so the corresponding increase inteheairforecasts is also clear).
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Figure 3 Forecasts of UK M1 adapting the,,-based model.
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Next, correcting the original model (i.e., wiflabased onR;,,) by an estimate of the changed tran-
sient growth rate, namely (schematically):

- — ~ ~/ ~
AXT+1\T—’YT=0<(,3XT—M> +
using:
U
Yr = Z Z AXT—ia (50)
i=0

is also effective, as shown in figure 3c, although it can ba sede drifting off course at the end once
economic agents have adjusted to their new environmenttrendbserved growth rate reverts4o
(which no longer reflectee V 1 *).

i ---- EQCMR, ) Y Ak DEJCMR, )
0.10" e 0.10" e
I — A(Mm-p) — A(M-p)
0.05} 005",
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Figure 4 Forecasts of UK M1 adapting the,,.;-based model.

Finally, figure 3d records the IC adjusted forecasts overstiwter horizon from 1986(1) (so the
adjustment can be estimated): even so, it is the least sfate$these three adaptations.

Figure 4a shows the good performance on 20 1-step forechtite &correct’ model (i.e., based
on R,.:). Since one cannot know whether a given model is robust teakbithe effects of the three
adaptations applied to the,,.; model are also worth investigating. Differencing the EqCiMduces
similar forecasts to the EqQCM itself as shown in figure 4b, with larger error bars; however, even
for a ‘correct specification’, the costs of that strategy dbseem to be too high. The same cannot be
said for the results obtained by correcting ustpg in figure 4c, which confirms the anticipated poor
performance: the regressors already fully account fornbeeased growth, so that strategy is likely to
be useful only for univariate models. Finally, an IC is imsfgcant if added to the model using,.; and
so has little impact on the forecasts beyond an increaseiartior bars (see figure 4).

For comparison, forecasts based on the most naive devied)iv, are shown in figure 5 panel
a. The DDV actually has a smaller mean error than the ‘cdrraotlel (—0.01% as agains0.9%),
but a much larger standard deviatidh26% againstl.19%), so the benefits of causal information are



24

marked? The ADV forecasts (based on (47) with= 0) using¥, from (50), and shown in figure 5c,
are distinctly better than the DD\WRMSFE of 1.8% as against 2.25%). This is also true of the ADV
and DDV forecasts foR,,.; shown in figure 5 panels b and RMSFE of 1.5% as against 1.9%). Thus,
while double differencing is highly adaptive when a breakuwss, the additional error variance at all
points seems to more than offset its advantage in compatiosibre smoother adaptation used here.
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0.00 \/\ V" 0.05
_0_05:, | o.oo; | | Lfl ‘ii #1 |
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1983 1984 1985 1986 1987 1988 1989 1990 1983 1984 1985 1986 1987 1988 1989 1990
Figure 5 DDV and ADV forecasts of UK M1.

6.2 System behaviour

The above are all essentially single-equation forecatitspuyh the DDV and ADV devices are un-
altered by being embedded in a system. In a system contewteven, the break in the money-
demand equation in the first VEQCM based By, becomes, in the second VEqQCM, a shift in the
R,.: equation—which in turn could not be forecast accuratelyasbe seen in figure 6, panels a and
b (the outcomes fof FE and Ap are omitted).

Nevertheless, the adaptations generalize to the othetiegsiaf theses systems, and have corre-
sponding impacts, illustrated in figure 5 féy,.;. As another example, when co-breaking is known, so
R, is the only equation for which an IC is required, the outcomefigure 6, panels ¢ and d, result:
R, is accurately forecast, with perceptible improvementsi@interval forecasts for real money (and
TFE, though not shown). However, the ADV fét,,.; achieves a similarly outcom&WVSFE of 0.8%
for the IC as against 1.0% for the ADV over 1985(4)-1989(B))t applicable over a longer forecast
horizon.

4Subject to thecaveatghat the former uses current-dated variables in its ‘faststaand the error bars on the DDV graph
fail to correct for the negative residual serial correlatio
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Figure 6 System forecasts from two 4-variable VARs of UK M1.
Forecasting volatility
Reconsider a GARCH(1,1) process where+ ¢, < 1:
0} = Qo+ Prui_1 + P20ty (51)

The long-run variance is = ¢y /(1—¢; —¢,) > 0 which implies that (51) is an equilibrium-correction
model, and hence is not robust to shiftsdnbut may be resilient to shifts in; or ¢, which leavew
unaltered, as those only impact on ‘mean zero’ terms:

0'% =w + ©1 (uf_l — O'%_l) + (@1 + 902) (U%—l - W) :

A forecast of next period’s volatility would use:
~2 N e ) ~ AN (A2~ 52
Oryr =W+ 9 (Ut —57) + (@1 + o) (67 — D) . (52)

Then (52) confronts every problem noted above for foreaafstseans: potential breaks in ¢, ¢,
mis-specification of the variance evolution (perhaps adiffit functional form), estimation uncertainty,
etc.

The 1-step ahead forecast-error taxonomy takes the falp¥arm after a shift inpg, 1, ¢, t0 ¢g,

v, 5 atT to:

oh = w4+ ¢} (uf — 0F) + (o] + ¥3) (07 — w*),
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so that letting the subscriptdenote the plim:

o7 —0rr = (1= (0F+ b)) (W' —w) long-run mean shift, [1]

+ (1= (21 +82)) (w—wp) long-run mean inconsistency, [2]

+ (1= (@14 @2)) (wp — @) long-run mean variability, [3]

+ (o1 — 1) ( - O'T) p; shift, [4]

+ (o1 = #1) (uf — o7) 1 inconsistency, [5]

+ (1, — ?1) (uf — 0F) ¢, variability, [6]
+3, (uF — Er [47]) impact inconsistency, [7]
+3, (Er [u7] — @7) impact variability, [8]

+ (6 + ¢3) — (o1 + 92)] (07 — w) variance shift, [9]

+ [(p1 4+ ©2) = (b1p + ¥2p)] (07 —w) variance inconsistency, [10]

+ [(¢1 ,p - <p27p) @1+ 32)] (07 —w) variance variability, [11]
+@y (07 —Er o ]) o% inconsistency, [12]

+&, (Er [aT] 57) o2 variability, [13].

The first term is zero only if no shift occurs in the long-runigace and the second only if a consistent
in-sample estimate is obtained. However, the next fourdeara zero on average, although the seventh
possibly is not. This pattern then repeats, since the nexklbf four terms again is zero on average,
with the penultimate term possibly non-zero, and the lasi pa average. As with the earlier forecast
error taxonomy, shifts in the mean seem pernicious, wherese in the other parameters are much
less serious contributors to forecast failure in variancesleed, even assuming a correct in-sample
specification, so terms [2], [5], [7], [10], [12] all vanistine main error components remain.

In practice,p; + p, is often close to unity, an@, is small. This makes the behaviour of (51)
also rather like a unit root in an AR(1) arising from unmoddllocation shifts, even though the former
remains non-integrated for constant parameters when ttex @oes not. In any case, models like
(51) will miss jumps in volatility, but capture phases of eggence and high volatility. Thus, consider
forecasting using the variance equivalent/x?ffﬂ”T = 0, namely:

5%+1\T = 82T~ (53)

Then (53) extrapolates the latest volatility estimate, smavill track the main changes in volatility, as
well as constant variance periods, albeit noisely. All tadier ‘tricks’ discussed above seem to apply
again when the main focus is on variance forecasting (emppthed estimates @f> etc.), as against
interval forecasts, although related issues arise.

7 Conclusions

The properties of unpredictability of a random vector gatest by a non-stationary process entail many
of the difficulties that confront forecasting. Since ecomtric systems incorporate inter-temporal causal
information representing inertial dynamics in the econpthgy should have smaller prediction errors

than purely extrapolative devices—but in practice oftemdb Rather, there are 10 basic difficulties to

be circumvented to exploit any potential predictabilitgnmely:

the composition of the DGP information sgt +;

howZ,_, enters the DGPy, (y:|Z:—1) (or for point forecasts, the form of the conditional exp&ota
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£, (Zi-1));

how Dy, (y¢|Z:—1) (or f; (Z;—1)) changes over time;

the use of a limited information sgf_, C Z;_1;

the mappindy, (y:|Z:—1) into Dy, (y¢|J:—1) inducingg: (J;—1) = E¢ [fi (Zi—1) | Te-1];

how Jr will enter Dy, (-|J7) (or gr4 (Jr)) for a forecast origin at’;

approximatingg; (7;—1) by a functiom) (7;—1, @) for some specification of the basic parametgrs
measurement errors i_; for J;_1:

the estimation o8 from in-sample data=1,...,T;

and the multistep nature of most economic forecasting.

The first six are aspects of predictability in the DGP; theogsécfour of the formulation of forecasting
models which seek to capture any predictability.

Two types of shift inf, (Z;_;) were distinguished, corresponding to mean-zero and tocathifts
respectively. The fundamental problem does not seem todmsmplete informatiorper se by con-
struction,g; (J;—1) — f: (Z;—1) has a zero mean, even for processes with breaks. Howevénowing
g: (J;—1) is problematic for the specification a@f (J;—1, 0) Vt; the use of in-sample estimates when
the process changes then compounds the difficulty.

Consequently, using a cointegrated linear dynamic systém weaks over the forecast horizon
as the illustrative DGP, three adaptations were considefidek first was differencing the in-sample
estimated DGP; the second was rapid updating of the estintatation in a growth representation;
and the third was forecast-error correction mechanismsGME) loosely based on EWMAs. All three
use representations that are knowingly mis-specified mmp®, and two use highly restricted choices
of J;_1: nevertheless, they all help avoid systematic forecaktréai The analysis also highlighted the
distinctly different role of the FErCM in EWMA (namely, tofskt previous measurement errors) and
in ICs (to offset breaks), which required the opposite signsynthesis in which the former role is
combined with a different mechanism for adapting to logashifts has much to recommend it, and one
univariate approach was noted.

The empirical example of the behaviour of M1 in the UK follogithe Banking Act of 1984 illus-
trated the three adaptations in action, with the last apprated by intercept corrections. All behaved
as anticipated from the theory, and demonstrated the dfificii out-performing ‘naive extrapolative
devices’ when these are adative to location shifts thatrdrerently inimical to econometric systems.
Overall, the outcomes suggest that, to retain causal irdfbom when the forecast-horizon ‘goodness’
of the model in use is unknown, model transformations maybartost reliable route of the three.
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