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Abstract: 

In this paper we argue that cross-country convergence of output per capita should be examined in a 
fractional-integration time-series context and we propose a new empirical strategy to test it, which is the 
first one able to discriminate between fractional long-run convergence and fractional catching-up. The 
starting point of the paper is: since there are reasons to believe that aggregate output is fractionally 
integrated, the usual testing strategy based on unit-root or traditional I(1)-I(0) cointegration techniques is 
too restrictive and may lead to spurious results. Therefore, we propose a new classification of output 
convergence processes which is valid when outputs are fractionally integrated and which nests the usual 
definitions built for an I(1)-versus-I(0) world. The new empirical testing strategy that we propose can 
distinguish between these new types of convergence. It is based on the combined use of new inferential 
techniques developed in the fractional integration literature; compared with more traditional fractional-
integration procedures, they offer the great advantage of being robust to both deterministic and stochastic 
non-stationarity  (i.e. robust to the presence of a trend and/or to a memory parameter d above 0.5). We 
fully explain in the paper the importance of this advantage for testing convergence. Applying this 
strategy, we obtain that a group of developed countries (G-7, Australia and New Zealand) converged in 
the last century; we identify the type of convergence for each one. The main result is that per-capita-
output differentials are typically mean-reverting fractionally I(d),  with  d significantly above 0 but below 
1. This contrasts with the results of divergence obtained with six unit-root tests and also by other authors 
with I(1)-I(0) (co)integration techniques. The paper therefore contributes to solve the puzzling negative or 
inconclusive results about convergence usually obtained with I(1)-versus-I(0) tests; our results also prove 
that the proposed widening of the statistical definition of output convergence is necessary and that 
convergence does take place, but more slowly than traditionally expected. 
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1. Introduction 

 

There is a vast empirical literature testing whether per capita output of different economies tend to 

converge over time, as predicted by the neoclassical growth model (Solow, 1956), or whether the 

economies do not contain any automatic mechanism that prevents them from divergent steady states, 

as argued by the more recent endogenous growth models (Lucas, 1988, Romer, 1986 and the 

posterior literature). 

 

Discriminating between these two theoretical alternatives is obviously an important economic issue 

for policy makers at the national and international level. This explains why  many studies have 

examined this question. 

 

Output convergence between countries or regions has been tested with different types of samples, 

and different econometric procedures. A well-known methodology is the so-called " β -convergence" 

regression, associated to the works of Barro and Sala-i-Martín (1991,1992). It consists of a cross-

sectional regression of the average growth rate of per-capita output over some long enough time-

period on a constant, on the level of per-capita output at the beginning of the period and, if necessary, 

on a set of country-specific additional variables. For convergence, the coefficient of the output level 

at the beginning of the period should be negative, because this would reflect that the poorer the 

country (or region) in the initial year the faster it grew to catch up with the richer.  The collected 

evidence with this approach is generally interpreted as favourable to some type of convergence 

(Baumol, 1986, Barro and Sala-i-Martin 1991, 1992, Barro, 1991, Mankiw, Romer and Weil, 1992). 

However, this cross-section approach has received many criticisms. Quah (1993,1996) considers that 

what is needed is a dynamic analysis of the per-capita income distributions of the different regions or 

countries over time. Evans and Karras (1996) argue in favour of a panel data approach. Bernard and 

Durlauf (1996) argue that within a time-series framework a more refined analysis of convergence is 

possible. In particular, in a time series context it becomes possible to detect which countries of a 

given group are converging and which are not and, within the first group,  to separate the economies 

that are around or close to the common stationary state (what is known as zero-mean long-run 

convergence) from those who are still on the transition path towards this state (what is known as 

catching-up convergence). However, the empirical results in this context, applying unit-root and 

cointegration tests, are not very favourable to convergence. In most cases, some type of structural 

change has to be assumed in order to obtain better, although not overwhelming, evidence (see, for 

instance, Cellini and Scorcu, 2000). In a recent paper, Ericsson and Halket (2002) attribute the 

difficulty of detecting convergence with time series analysis to the use of univariate or single-

equation testing procedures. They advocate the use of multivariate Johansen cointegration tests 

between the per capita outputs of the countries of interest. When working with the per-capita outputs 

of the G-7 countries, they reject convergence in the cases where unit-root tests on the output 

differentials (i.e. on the distance of the output-per-capita of one country from the output-per-capita of 
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a benchmark country, which they choose to be the US) are applied; however bivariate and trivariate 

Johansen cointegration test applied on two or three series of outputs are more favourable to 

convergence (or at least to the existence of a cointegration relation between the countries per-capita 

outputs). But even in this multivariate framework, the evidence is not overwhelming. 

 

However, an alternative explanation of these failures might be that the per-capita output series are not 

I(1), but rather fractionally integrated. A series is said to be fractionally integrated, or FI(d), if  it is 

integrated of order d, with d not necessarily integer (Granger and Joyeux, 1980, Hosking, 1981).  

When d=0, any shock that affects the series has only a short-term effect, which completely 

disappears in the long-run. In this case, we say that the series is “short-memory”. On the contrary, 

when d>0, the value of the series will somehow be influenced by shocks that took place in the very 

remote past. In this case, the series exhibit “long-memory” or “persistence”. The intensity of memory 

of the series will depend on the value of d: the smaller d, the less persistent will be the shocks.  If 

d<0.5, the series is however stationary. A very interesting case for many economic issues is when 

0.5<d<1. In this situation, the series is long-memory and non-stationary although mean-reverting: in 

spite of the fact that remote shocks affect the present value of the series, this will tend to its mean 

value in the long-run; in other words, the series has long but transitory memory This is quite distinct 

from the case d ≥ 1 in which the mean of the series has no influence whatsoever on the long-run 

evolution of it, because the series is dominated by all the remote and recent shocks.  In this case, the 

series has permanent or infinite memory.  

 

So, provided d<1, some sort of a long-run equilibrium level of the series exists which is represented 

by the mean. Obviously, when 0<d<1, traditional unit root tests (testing d=1 under the null) or 

stationarity tests  (testing d=0 under the null), developed after Dickey-Fuller and Phillips-Perron 

works, may fail to detect mean-reversion in the series and reach the wrong conclusion of infinite 

memory. Diebold and Rudebush (1991) provide theoretical arguments for this phenomenon and 

Gonzalo and Lee (2000) provide recent Monte Carlo simulations illustrating this problem. 

 

Other problems occur when the series are FI(d) but are treated as if they were I(1): traditional 

I(1)/I(0) cointegration tests between two or more series are flawed not only because d differs from 1, 

but also because traditional cointegration is based on the assumption that all the possibly cointegrated 

series have the same order of integration, which is very difficult to guarantee when d may take non-

integer values.  

 

Even when all series have the same order of fractional integration, Gonzalo and Lee (2000) show that 

traditional cointegration tests and treating the series as if they were I(1) tend to find too much 

spurious cointegration, especially if the multivariate Johansen likelihood ratio tests are used.  Note 

that the risk of spurious cointegration results might, at least in part, the somewhat better results in 

favour of convergence obtained by Ericsson and Halket(2002) when they use multivariate Johansen 
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cointegration tests: their results might be spurious if the level of per-capita outputs are fractionally 

integrated instead of being I(1). 

 

Michelacci and Zaffaroni (2000) is the first published paper to consider the possibility of fractional 

integration in per-capita outputs in an analysis of convergence. These authors point out possible 

contradictions between the traditional β-convergence concept and per-capita outputs being  I(1) ; on 

the other hand they present theoretical reasons why outputs should be fractionally integrated. They 

then redefine β-convergence in terms of mean-reversion of detrended levels of per-capita outputs and 

obtain empirical results which are favourable to their new definition. Silverberg and Verspagen 

(1999) and Cunado et al. (2002) also examine convergence from a fractional-integration point of 

view, although they search for mean-reversion of the output differentials.  

 

This paper also analyses convergence within a fractional-integration setting. It however differs in 

several aspects from the aforementioned papers carried out in this framework.  

 

First, in those papers, the techniques used for estimating d require stationarity of the series on which 

they are applied: d < 0.5 and no deterministic trend in the series. Therefore, the authors work with 

detrended and/or differenced series. But the stationarizing transformations may distort the estimation 

of the integration order and eliminates from the data information that is relevant to the question under 

study; for instance, a significant trend in the output differential indicates that the countries stand in a 

catching-up convergence rather than in long run convergence.  In this paper, we use instead recently 

developed estimators which are robust to nonstationarity in the original series: the possible presence 

of a trend or a value of d possibly above 0.5 do not require any detrending nor differencing of the 

series before estimating d.   

 

Secondly, we also offer new and more precise definitions of convergence when fractional integration 

of outputs is allowed; they extend the traditional time-series concepts of convergence built in the I(1) 

paradigm to the context of fractional integration.  

 

Thirdly, we propose and apply a strategy that allows discriminating between long-run convergence 

and catching-up in a fractional integration setting. This is a novel feature of convergence testing in 

this setting. Our strategy combines the robust estimators of d with new techniques (Marmol and 

Velasco, 2002) aimed at estimating and testing a trend in non stationary FI(d>0.5) series. Our paper 

therefore relies on techniques that are robust to the relevant characteristics of the series that we have 

to analyse and   provides a more complete examination of the convergence processes than previous 

papers.  

 

One of the main conclusions of the paper is that convergence has taken place between the G-7 

countries, Australia and New Zealand over the last century. However, the convergence processes did 

not produce stationary output differentials: most differentials are FI(0.5<d<1); this characteristic 
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would explain why unit-root and cointegration tests  applied in the past often have failed to detect 

convergence between output series. 

 

The structure of the paper is as follows. Section 2 is dedicated to a brief description of the concept of 

fractional process and of the advantages of recently developed techniques for testing and estimating 

the memory parameter and the trend of fractionally-integrated non-stationary series (the Appendix 

offers to the interested reader a more technical discussion of these aspects). In Section  3,  we first 

review the concept of growth convergence and we examine some possible limitations of the results 

obtained in the literature;  we then offer  new definitions of convergence in terms of the output 

differentials which are compatible with fractional integration of the output series and which 

generalises the definitions made in the I(1) - I(0) paradigm; finally, we propose an empirical strategy  

for detecting convergence based on the new inferential tools described in Section 2. We apply this 

strategy in Section 4 on the per capita outputs of G-7, Australia and new Zealand, published in 

Maddison (1995, 2001). Finally, Section 5 concludes.  

 

 

2. Fractional integration:  

general definitions, problems for estimating and testing the memory parameter and  the deterministic 

component 

 

The aim of this section is to offer an overview of the concept of fractionally integrated process, and 

of the problems generally encountered in estimating the memory parameter and the trend of a 

fractional process, together with possible solutions that have been developed recently. This overview 

is intentionally as little technical as possible. A more technical presentation is offered in the 

Appendix. 

 

 Consider the process tX  generated by the model tt
d uXXL =−− )()1( 0  where 0X  is a 

random variable with a certain fixed distribution, d is not necessarily integer and tu  is a zero-mean 

stationary process.  The process tX  is said to be fractionally integrated of order d or FI(d). It is 

stationary and invertible if 5.0<d  and is non-stationary if 5.0≥d .  However as long as 1<d , 

the process is mean reverting, which means than any shock that affects the process at some point in 

time has a non-permanent impact on the value of the series in the future. If d=0,  the unique source of 

dynamic correlation stems from  the stationary dynamics of tu ; the process is then said to exhibit 

short memory. As soon as d>0, the dynamics of the process comes both from the short-run  dynamics 

included in tu  and from the long-range dependence implied by the positive value of d. The process 

is then said to exhibit long-memory. However, this long memory  is transitory if d<1 and becomes 

permanent if d ≥ 1. The value of d is therefore an indication of the persistence of the shocks: the 

smaller d the less persistent will be the shocks.  The value of d by itself is therefore of prime interest  
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in many economic problems and not only in convergence studies. Of particular interest is to 

determine whether d<0.5, 0.5 ≤ d<1 or d ≥ 1.  

 

 Different methods have been developed to estimate this long-range parameter independently from 

the short-run parameters belonging to the dynamics of tu .  

 

One of the most widely used methods is due to Geweke and Porter-Hudak (1983) and Robinson 

(1995a) and is based on a regression of the logarithm of the periodogram of the series on the 

logarithm of the Fourier frequencies.  It is usually identified as the "GPH regression" or the "LP 

regression". Another frequently used estimator is the "local Whittle estimator" suggested by Künsch 

(1987) and further studied by Robinson (1995b). An important characteristic of both approaches is 

that they require the data to trend-free. Robinson (1995a) and Robinson (1995b) demonstrate the 

consistency and asymptotic normality of the LP estimator and of the local Whittle estimator, 

respectively.  However, these results are limited to the interval 5.05.0 <<− d . This explains why 

it has been a usual practice to difference the series previous to the estimation of d as soon as it is 

suspected that the order of integration of the original series might be above 0.5. Recently, these 

asymptotic properties have been partially extended. Velasco (1999a) establishes the consistency of 

the LP estimator for 15.0 <<− d . Velasco (1999b) does the same for the local Whittle estimator. 

As far as asymptotic normality is concerned, he extends the result to d<0.75 for both estimators. In 

spite of these slightly more general results, differencing is still needed with these techniques if 

d>0.75 is suspected.  

 

The practice of detrending and differencing the data before estimating d is however not innocuous. 

Sun and Phillips (1999) point out the importance of efficient detrending when estimating d with 

methods that require the series to be stationarized. They show that the usual OLS estimate of the 

trend is highly inefficient. As far as differencing is concerned, Agiakloglou et al.(1993) and Hurvich 

and Ray (1995) illustrate how the LP estimator of d  is not invariant to differencing, so that a biased 

estimation may result from overdifferencing the series (i.e. from estimating d from a stationary series 

that has been unnecessarily differenced). Recently, new methods have been developed that allow 

estimating d without differencing nor detrending the original series.  

 

To avoid differencing and detrending, Velasco (1999a) advocates the application of a weighting 

scheme on the original data - which is known as "tapering the data”. It consists of applying a 

symmetric weighting scheme on the original data, such that the observations located in the central 

dates of the original sample receive more weight than the observations located at the beginning and at 

the end of the sample. The periodogram is then computed on these weighted data. Together with the 

tapering, Velasco(1999a) also proposes a modification of the LP regression method. The new 

procedure is valid for estimating d up to 3.75 and does not require detrending the data as long as the 

trend is a polynomial of degree 3 or lower.  
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Kim and Phillips (2000) develop an alternative modification of the LP estimator, called the "modified 

LP estimator", which is valid for d<2 and is invariant to the presence of a linear trend. It is 

asymptotically more efficient than the modification proposed by Velasco (1999a).  

 

Velasco (1999b) also proposes tapering the original data to allow for non-stationary values of d and 

the presence of a polynomial trend in the data when using the local Whittle estimator.  Shimotsu and 

Phillips (2000) develop a modified local Whittle estimator, which is invariant to the presence of a 

linear trend and is valid for d up to 2. Moreover, it is asymptotically more efficient that the LP-type 

estimators. However, for empirical purposes it has to be borne in mind that the original, unmodified, 

local Whittle estimator has better properties than this modified version if d<0.5 (see Shimotsu and 

Phillips, 2000). 

 

These new methods therefore permit direct estimation of the memory parameter of series as well as 

testing whether d<0.5, 0.5 ≤ d<1 or d ≥ 1 without previous transformation.   

 

However, it is often important to determine whether a fractional integrated series contains a 

deterministic trend or not, and which is the sign of this trend. As we will see, this is an important 

element in testing convergence that has however been ignored so far in the studies of convergence 

carried out in a fractional-integration setting.  Results from Marmol and Velasco (2002) are very 

useful for this objective.  For 0.5<d<1.5, these authors demonstrate that the OLS estimation of the 

trend is invalid and propose an alternative estimation of the trend coefficient in the frequency 

domain. They also indicate how to compute the variance of this estimation, so that a t-ratio can be 

calculated for testing the significance of the trend. They provide formulas for computing the critical 

value of this t-ratio, as a function of d 1. When d is unknown, as is usually the case, an estimated 

value can be used. The authors suggest the estimators proposed by Velasco (1999a, 1999b). However 

the estimator proposed by Shimotsu and Phillips (2000) is also robust to the presence of a linear trend 

and to d up to 2, with the additional advantage of a lower asymptotic variance. Moreover this 

estimator does not require previously tapering the data, which is an advantage for our sample, as we 

will see below.  

 

 

3. Growth convergence 

 

3.1. Growth convergence in the existing literature: definitions, results and limitations 

 

In the economic growth literature, there exist basically two opposed strands of thought. On the one 

hand, the neoclassical growth model (Solow, 1956) predicts that each country per capita real income 

converges to a steady state, regardless of the initial level of per capita income. If the steady state is 

                                                           
1 These formulas are reproduced in the Appendix, together with a description of how to estimate the trend 
and how to compute the t-ratio. 
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common for all countries, they will all converge to the same level of per capita income. This is 

known as the “absolute convergence” hypothesis. If the steady states are country-specific, they are 

nonetheless parallel and the per capita incomes will end up differing between countries by a constant 

quantity. This situation is known as “conditional convergence”. On the other hand, in the more recent 

endogenous growth models (Romer, 1986, Lucas, 1988 and the subsequent literature) there is no 

force that pushes the per capita income to a specific level: per capita incomes of different economies 

may diverge and nothing guarantees that the income difference between poor and rich countries will 

not become unbounded. 

 

Whether per capita income converge or not is therefore an important economic issue with substantial 

policy implications. If there is no automatic mechanism that ensures the convergence of economies 

over time, it is not only justified but also probably ethically necessary and "politically correct" to 

implement public policies aimed at helping the poorer (poorer regions or poorer countries) to catch-

up as fast as possible with the richer. Knowing whether it is justified to dedicate public funds to these 

policies is therefore an important matter both for national and supra-national governments. This 

explains why there have been many attempts in the literature to develop methods of testing economic 

convergence. 

  

One of the most well-known convergence test is based on the so called “β-convergence regression” 

associated to the works of Barro and Sala-i-Martín (1991, 1992). It consists of a cross-country 

regression of the average growth rate over some long enough time period of per-capita output (in log) 

on the level of the log of per-capita output   at the beginning of the period and on a set of country-

specific additional variables 2. The typical β-convergence regression (without country-specific 

regressors) is as follows: 

 

N,,1iyg T,i0,iT,i =ε+β+α=  

where t,iy  is the log per capita output of economy i in year t, )yy(Tg 0,iT,i
1

T,i −= −  is the 

average growth rate of economy i during the time span from year 0 to year T and  T is a fixed 

horizon. For convergence, the coefficient of per-capita output in the initial year ( β ) should be 

negative, since it would reflect that the poorer the country in the initial year, the faster it grew over 

the period in order to catch up with the rich. The empirical tests made in cross-section samples 

generally delivered results favourable to convergence, at least when country-specific regressors are 

added (which corresponds to "conditional convergence"). 

 

This cross-section approach however has been criticized for various reasons.  To cite only a few,  

Quah (1993) shows how it is possible for a negative β  to be compatible with a non-decreasing   

                                                           
2 The logarithm of output per capita is usually the variable on which the empirical work is carried out. So, 
unless otherwise said,  in what follows , the expressions “per capita output” , “per capita income” , as well 
as “output” and “income” all refer to the logarithm of the per capita variable. 
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cross-section variance in output levels. Evans (1996,1997,1998) shows that the β -convergence 

regression provides invalid inference and conclusions on β , unless per capita output of all the 

countries of the sample follow the same AR(1) process. Obviously this is a very improbable 

condition. Evans and Karras (1996) propose an alternative methodology derived from panel data unit 

root tests, which they show to be valid under milder conditions. Bernard and Durlauf (1996) show 

that a negative β̂  is compatible with the endogenous growth model; they also argue that the β -

convergence test is ill-designed to analyse data where some countries are converging and other are 

not. In their opinion, convergence tests based on time series samples are more useful than cross-

section, as they contain the right information to distinguish between the countries who converge to 

each other from those who diverge. These data can also distinguish between different types of 

convergence. 

 

As a result, in the time series context, various authors have proposed and applied different 

operational definitions of convergence based on the per capita output differential. Let us represent the 

output differential of country i with respect to country j in period t as: 

 

ji,N,...2,1i,yydif jtitt,ij ≠=−=  

 

More or less explicitly, all the existing definitions take for granted that kty  is I(1) .The definitions 

that have been most used are 3: 

 

� “Stochastic convergence” (Carlino and Mills, 1993) and “catching-up”(Bernard and Durlauf, 

1996):  

 

ji,N,...2,1i,utdif t,ijt,ij ≠=+δ+α=  with t,iju  zero-mean I(0) 

two countries exhibit stochastic convergence if their per-capita output  differential is trend 

stationary. By itself, stochastic convergence is not a sufficient condition for real convergence. 

To make sense, stochastic convergence requires that the trend moves in the right direction, that  

is,  that  the absolute value of the differential decreases over time.  This reduction of the 

absolute differential is what Bernard and Durlauf (1996) call catching up convergence. 

 

� “Deterministic convergence” (Li and Papell, 1999):  

 

ji,N,...2,1i,udif t,ijt,ij ≠=+α=  with t,iju  zero-mean  I(0) 

 

                                                           
3 Various names have been used in the literature to differentiate the definitions.  Here we mainly use the 
nomenclature of  Ericcson and Halket (2002), as we find it clearer than other ones. 
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two countries exhibit deterministic convergence if their per-capita output  differential is 

stationary around a constant level. This definition is compatible with absolute convergence if this 

level is zero, whereas it corresponds to the concept of conditional convergence when this level 

differs from zero.  

 

� “zero-mean convergence” (Bernard and Durlauf, 1996): 

 

ji,N,...2,1i,udif t,ijt,ij ≠==  with t,iju  zero-mean  I(0) 

 

 two countries exhibit zero-mean convergence if their per-capita output  differential is stationary 

around zero. This definition coincides with the concept of absolute convergence.  

 

So, these definitions require the output differential to be I(0), either around a trend or a level. The 

convergence test  would then consist of applying a unit root test on this differential, or checking that 

the output levels are cointegrated  with the correct sign and values for the cointegration coefficients, 

and finally checking that deterministic components have the correct sign. 

 

However, although the definition of convergence is in terms of the output differential, many empirical 

studies have worked on the deviation of the output per capita from the group average. In other words, 

according to the definition of convergence, the stochastic and deterministic characteristics to be 

studied are those of t,ijdif  but instead of that, many studies focus rather on  

N,...2,1i,yydev titit =−=  

where ty  is the cross-section arithmetic average of the output per capita of all the N countries in the 

group of interest, or some other  measure of averaged output (see a.o. Carlino and Mills, 1993, Loewy 

and Papell, 1996,  Strazicich, Lee and Day, 2001). However, it has to be noted that it is not innocuous 

to work with itdev instead of itdif . Let us imagine that among the N countries, country k diverges 

and all the other countries converge to each other (either with catching up or with deterministic or 

zero-mean convergence). Then t,ijdif  should reflect convergence for all i and j not equal to k; by the 

same token,  t,ikdif  should  reflect divergence for all i. So the "dif” variable contains the relevant 

information about the convergence characteristics of the group. On the other hand, the data of country 

k , which does not cointegrate with the other countries of the group, are  included in all the "dev" 

series through the group mean value, so that all the  itdev  for any i will contain the divergence 

characteristic of country k, and so all will be divergent. In other words, the inclusion in the 

computation of the common average of a non-converging country will mask the convergence process 

linking the other countries outputs. So, theoretically, either all the "dev" variables are I(0) if all 

countries converge, or none of them is I(0) if only one country diverges. As a first consequence,  

results of unit root tests on "dev" series in which convergence is detected for only a subgroup of the 
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series  should be interpreted  with caution. As a second consequence, convergence tested on output 

differentials is at least more informative, if not more reliable. 

 

The studies which centre the analysis on the output differentials normally apply unit root tests on the 

differentials or single-equation cointegration tests on the log level of outputs, seeking for a (1,-1) 

cointegration vector. Their results do not support convergence, unless some type of structural change 

in the deterministic component of the series is introduced in the testing procedure. In particular, 

Bernard and Durlauf (1995) obtain very little evidence of convergence between 15 OECD countries 

over the period 1900-1987. Oxley and Greasley (1995) analyse only three countries (Australia, USA 

and UK) and obtain catching-up convergence if they allow for a segmented trend in the catching-up 

process.  More recently, Cellini and Scorcu (2000) study deterministic convergence 4 between the G-7 

countries over the period 1900-1989, pair by pair; they therefore analyse 21 differentials. They detect 

only 6 cases of convergence over the whole period, provided a change in the intercept term is allowed. 

They express their surprise for not obtaining convergence in the second half of the time sample, in 

spite of the increased economic integration among the G-7 countries. 

 

So, in general, the results in the time-series context using unit-root and cointegration tests do not 

constitute a strong support of convergence. This is however puzzling because a simple graphical 

observation of long term or even medium term per capita output statistics seem to indicate that most 

countries (at least the developed ones) have converged over time (for an illustration, see for instance 

Figure 1 in Section 4 of this paper). 

 

Michelacci and Zaffaroni (2000) (MZ in the following) proposed an alternative approach in the time 

series context.  These authors detect possible theoretical contradictions in the coexistence of I(1) 

outputs and β -convergence. They then show that there are theoretical reasons why the output levels 

series should be fractionally integrated and that mean-reverting fractional integration of output levels -

i.e ouptut levels being FI(0.5<d<1)- is compatible with the empirical results of the β -convergence 

regression reported in the literature. They then redefine the β - convergence concept in terms of mean 

reversion of the deviations of output levels around a country-specific or a common trend, instead of 

defining it in terms of trend stationarity of output differentials. Specifically, they propose the 

following definition of (absence of) β - convergence: " an economy has no tendency to converge 

either towards its own or the common steady state if, after fitting either a country specific or a 

common (linear) trend respectively, the parameter of fractional integration d of the residuals is greater 

than or equal to 1 (d ≥  1). In the former case we say that there is no conditional convergence and in 

the latter that there is no unconditional convergence"5.  They then test the integration order of the 

residuals of their definition, applying Geweke-Porter-Hudak (1983) Log Periodogram estimator on 

                                                           
4 Although they call it "stochastic convergence" 
5 They also define "uniform convergence" when all the residuals have the same order of integration. 
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differences of previously detrended per capita output log levels and conclude that these residuals are 

indeed FID(0<d<1), which agrees with their new definition of convergence. 

 

By offering theoretical and empirical evidence of fractional integration of output levels, MZ made an 

important contribution towards the solving of the puzzling results of no convergence usually obtained 

in the time series context. In particular, their results indicate that all the tests based on the assumption 

of the output being I(1) and searching for an I(0) differential or for traditional C(1,1) cointegration 

between output levels  are  invalid.  

 

However, there are possible operational problems with their new definition of convergence. On the 

first place, if the series are actually fractionally integrated, it is not an easy task to guarantee an 

efficient estimation of  the trend in order to obtain residuals  on which the memory parameter can be 

reliably estimated  (see Section 2,  Sun and Phillips, 1999 and Marmol and Velasco, 2002 on this 

topic). This efficiency consideration is not addressed in MZ; they use for instance OLS estimation for 

the country specific trend, which is shown to be inefficient for 5.0d > . 

 

On the other hand, in order to estimate the memory parameter d, MZ use the GPH or LP estimator 

(see Section 2) which requires the data to be not only trend-free but also preferably integrated of order   

50.d <  and in any case  1d < .  To ensure this, the usual practice in the literature consists of first-

differencing the series in order to obtain an estimation of (d-1) from data that are stationary (i.e. with a 

memory parameter lower than 0.5 and without trend). This is for instance what Cunado et al. (2002) 

and Silverberg and Verspagen (1999) do, when working with output levels and output differentials.  

However, Agiakloglou, Newbold and Wohar (1993) and Hurvich and Ray (1995) show that the 

estimation of d is not invariant to differencing, so that there might be bias due to overdifferencing. 

Moreover, MZ apply instead fractional differences: they estimate the memory parameter of 

t
/ z)L( 211−  (where tz are the residuals around a country-specific or common linear trend). This 

fractional-difference transformation necessarily implies a loss of data. Additionally, in the case where 

the common trend is used, this strategy does not guarantee that the common-trend fractionally 

differenced residuals are trend-free. 

 

Finally, let us now suppose that the common linear trend has been adequately estimated, as well as the 

memory parameter d of the derived residual corresponding to, say, country k. And let us suppose that 

this estimated d falls significantly below 1, so that the deviation of output from the common trend is 

mean reverting. This implies that the deviation of country k from the common linear trend will return 

to its own mean in the long run. This mean may still be a trend, and there is a non-zero probability that 

this trend evolves in the wrong direction  (from a graphical inspection of the data, this appears to be 

the case of Norway for example; see Figure 1 of their paper). Some additional test on the trend of the 

residual is therefore necessary to ensure that the mean-reversion of residuals is an indication of actual 

convergence (and not of divergence).  In other words, obtaining mean-reversion for the residuals from 

a common trend is a necessary although not sufficient condition for convergence. 
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The tests carried out by Cunado et al. (2002) and Silverberg and Verspagen (1999) are also affected 

by the risk of overdifferencing and by testing a necessary but not sufficient condition for convergence: 

they work on the first differences of output and/or differentials and do not run any test on the possible 

trend of the differentials. 

 

All these limitations could be avoided if fractional convergence is tested without detrending or 

differencing the output data. This is possible if the three following conditions are met: 

 

a) convergence is defined  as (mean-reverting, i.e. d 1<  ,or stationary, i.e. . d 5.0<   ) fractionally 

integrated output differentials, instead of as mean-reverting deviations from a trend. 

 

b) more robust estimation techniques of the memory parameter are used. These techniques must be 

robust to the presence of both deterministic and stochastic non-stationarity (deterministic trend and /or 

50.d ≥ ), possibly present in the output differentials. 

 

c) testing the significance of the trend coefficient of the output differential is carried out, with 

techniques that are robust to a non-stationary  memory parameter  ( d 5.0≥  ) 

 

The robust estimation and testing procedures required for b) and c) are now available; their main 

characteristics have been described in Section 2 and they are explained with some more details in the 

Appendix. Extending the definition of convergence in a time-series context, in terms of the fractional-

integration order and the deterministic characteristic of the output differential, as suggested in a), is 

therefore not only theoretically desirable but also empirically operational. We carry out his extension 

in the following subsection. 

 

3.2. A new classification of convergence processes 

 

In Table 1, we propose a new classification of the distinct types of convergence process through 

which different economies may be linked. This classification is based on the stochastic and 

deterministic characteristics of the output differentials, for reasons explained in Subsection 3.1. The 

type of convergence depends both on the value of the integration parameter d of the output differential 

and on the characteristic of the possible trend of this differential.  

 

The strongest case of convergence takes place when the output differential is I(0) with zero-mean. 

This coincides with the "zero-mean convergence" of Bernard and Durlauf (1996). However, as long as 

the output differential has zero mean and is FI(d) with d<0.5, it is stationary  around zero. In this case, 

convergence takes place, although at a lower speed than when d=0. An even slower case of 

convergence is when 0.5 ≤ d<1: the output differential is non-stationary although mean-reverting. 

When the mean of the output differential is a (not necessarily zero) constant, we stand in 



 14

"deterministic convergence" as long as d<1; again, the lower d, the faster the convergence.  

"Catching-up" takes place if d<1 and the trend of the output differential is such that this differential 

tends to zero; here also, the lower d, the earlier convergence will be reached. If d<1 but the trend in 

the output differential pushes its value to ∞, the outputs will diverge. We call this "deterministic 

divergence". Finally, whatever the deterministic component of the output differential, divergence 

takes place as  soon as d ≥ 1. We call this "stochastic divergence". 

 

 

Table 1: A new classification of convergence processes as a function of the behaviour of the output 

differential: 

    mean 

   d 
Zero mean Constant mean 

“decreasing”(a) 

trend 

“increasing”(a) 

trend 

0 

Strict 

 zero-mean 

convergence 

Strict 

deterministic 

convergence 

Strict  

Catching-up 

0<d<0.5 

Long-memory 

stationary  

zero-mean 

convergence 

Long-memory 

stationary 

deterministic  

convergence 

Long-memory 

stationary  

Catching-up 

0.5 ≤ d<1 

Long-memory 

mean-reverting 

zero-mean 

convergence 

Long-memory 

mean-reverting 

deterministic 

convergence 

Long-memory 

mean-reverting  

Catching-up 

Deterministic 

Divergence 

 

d≥1 Stochastic divergence  

(a) “decreasing” (“increasing”) refers to the fact the trend coefficients have the right (wrong) signs in 

order to push the differential from its initial level to 0. 

 

 

3.3. A new empirical strategy 

 

The empirical strategy that we propose emerges naturally from our previous comments on how to 

measure growth convergence (subsection 3.1 and 3.2, and especially Table 1) and from the new 

techniques described in Section 2 for the estimation and testing of the fractional order of integration 

and trend of possibly non-stationary processes. 

 

This strategy consists of: 

 

1) Choose a benchmark country towards which convergence of per-capita output of the countries of the 

sample will be tested.  
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2) Compute the differential of each country in the sample with respect to this benchmark country and 

apply a semi-parametric method of estimation of d that must be robust to stochastic nonstationarity 

).d( 50≥  and to deterministic trend. See section 2 for a description of such estimators. 

3)  Use the distribution results available for these estimators in order to perform the following tests: 

(a) 11
0 =d:H )(          against 11 <d:H )(

A  

(b) 0d:H )0(
0 =         against     00 >d:H )(

A  

(c) 5021
0 .d:H )/( =  against    5021 .d:H )/(

A ≠   

 

Tests (b) and (c) have to be carried out on the level of the differential, whereas (a) can be performed 

both on levels and on first differences (in the latter case, the hypotheses to be tested are in fact 

011
0 =− )d(:H )(  against 011 <− )d(:H )(

A  , where (d-1) is the memory parameter of the 

first difference of the differential). 

 

Depending on the results of the tests, different conclusions emerge. In the following, the notation 

" )k(
oRH " means that the hypothesis " k=d:H )k(

o  “ is rejected in favour of the alternative 

specified in the hypothesis testing   (a), (b) or (c) where " )k(
oH " appears as the null. On the 

opposite, the notation " )k(
onotRH " means that the null " )k(

oH ” is not rejected in that test. 

 

¾ If )(RH 1
0  and  )(notRH 0

0  ⇒ d<1 and d not >0: 

 

strict zero-mean convergence is present if the mean of the differential is not significantly 

different from 0; strict catching-up is taking place if the differential is trending in the right 

direction; finally, strict  deterministic convergence is in place if the differential is not trending 

but its mean differs significantly from zero. Traditional t-tests may be used to test these different 

possibilities for the trend. 

 

¾ If )(RH 1
0  and  )(RH 0

0  ⇒ 0<d<1 

 

the output differential is fractional and  some type of convergence may be  taking place.  In this 

case, additional testing that accounts for the possibly non-stationary characteristic of the 

differential is necessary to nuance this conclusion: 

 

• If 50.d̂ <  and )/(RH 21
0 , this fractional differential is stationary and fractional 

stationary deterministic convergence exists if the mean of the differential is not 

trending. 
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• If 50.d̂ > , the fractional differential is not stationary though mean reverting. Then we 

can estimate and test the significance of the trend coefficient of the differential, using 

Marmol and Velasco (2002) results, and in particular the t-ratio on the trend coefficient 

that they propose and their formulas for computing the one-sided critical values (see 

Section 2 and formulas (10), (11) and (12) of the Appendix). Fractional mean-reverting 

deterministic convergence is taking place if the trend of the differential is not 

significant. If this coefficient is significant and has the correct sign according to the 

level of the differential at the beginning of the period, fractional mean-reverting 

catching up is in place. If it has the wrong sign, deterministic divergence is operating. 

 

¾ If )(notRH 1
0  and )(RH 0

0   ⇒ d not <1 

 

the output differential is I(1) or FID(d>1). These are cases of stochastic divergence. If 1>d̂ , it 

may be interesting to check whether it is significantly higher than 1, since this would reflect a 

higher grade of divergence than if d=1. 

  

¾ Finally, if )(notRH 1
0  and )(notRH 0

0 , it is impossible to discriminate between the two 

extreme cases of d=0 and d=1, so that more sample information is required. 

 

 

4. Empirical results  

 

We have applied our empirical strategy on internationally comparable per-capita GDP data of 

different countries, provided by Madison (1995) and Madison (2001). Put together, these two 

sources provide annual data expressed in 1990 international (PPP) Geary-Khamis dollars, over a 

period that extends from 1870 to 1998. Various empirical studies of convergence have been carried 

out on this source or an earlier version of it (see a.o. Oxley and Greasley, 1995, Li and Papell, 1999,  

Michelacci and Zaffaroni, 2000, Cunado et al., 2001, Cellini and Scorcu, 2000)  

 

The group of countries on which we apply this strategy is the G-7 group (USA, Canada, France, 

Germany, Italy, Japan and United Kingdom) plus Australia and New Zealand. These G-7 data 

coincide with one of the sample used by Ericsson and Halket (2002) who obtained rejection of 

convergence when applying unit root tests on output differentials and results that are somewhat 

more favourable to convergence when multivariate Johansen cointegration tests are applied, 

although these last results might be spuriously favourable in the light of the paper of Gonzalo and 

Lee (2000), if the output per capita are actually fractionally integrated instead of I(1). The G-7 is 

also the group of countries analysed by Cellini and Scorcu (2000) who obtain timid results of 

convergence with traditional I(1)/I(0) cointegration tests when endogenous structural breaks are 
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allowed in the data. However, even with structural breaks, they do not detect convergence at all in 

the post-WWII period, which they consider as "astonishing" given  "the increased economic 

integration among the G-7 countries (with the associated evidence of β-convergence)" (Cellini and 

Scorcu, 2000, p. 464).  

 

In this section, we show among other things that the output differentials are in fact fractionally 

integrated with d>0, instead of I(0). This should shed some light on the strange results of Cellini and 

Scorcu, should explain why Ericsson and Halket(2002) do not obtain I(0) differentials or residuals 

when applying unit root tests or single-equation traditional cointegration tests, and put in doubt the 

statistical validity of their multivariate Johansen cointegration results, which might be spurious. 

  

 

4.1. Results 

 

4.1.1.    The data 

 

Figure 1 6 presents the logarithm of real per capita output for the G-7 countries extracted from 

Maddison(1995, 2001). It this graph, the level of the US log ouptut is represented by the upper edge 

of the red-shaded area. The other countries’ level of output can then be visually compared with this 

benchmark country7. At first glance, it is obvious that these 7 countries somehow converged over 

the last century. It is also worthwhile noticing the huge and longer-lasting difference in output that 

took place during the Second World War between the US and Japan and Italy, as well as the very 

sudden and huge increase in the differential with Germany by the end of this war. As we will see, 

this will have an impact on the results.  

 

4.1.2. Results from unit- root tests 

 

Before applying and commenting the results obtained by the new empirical strategy that we propose, 

we first reproduce in Table 2 the results obtained from the application of unit-root tests on the output 

differentials of each country with respect to the US. We apply six different tests, aimed at 

determining whether the differentials are compatible with convergence (in case they are not 

statistically different from an I(0) series) or indicate divergence (if the test results is that they are I(1) 

series). The tests that we apply are the following: the traditional ADF test, the Phillips-Perron test, 

the KPSS stationarity test, and the more recent DF-GLS and ERS test due to Elliott et al. (1996) as 

well as the Ng-Perron modified tests. In all the cases, a constant and a trend are included in the 

testing equation. The results of all these tests are far from supportive of convergence: for most 

countries, the result is that the series of differential is an I(1) series.  

                                                           
6 The Figures and Tables of this section 4 are reproduced at the end of the paper, after the conclusions and 
before the Appendix.  
7 Unless otherwise said, the US will serve as the benchmark country both for economic reasons and 
because this country is traditionally used as a benchmark in most convergence studies. 
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4.1.3. Estimation and testing of the memory parameter of the output differentials 

 

 

In order to determine the order of integration of the output differentials of the nine countries, we 

have to choose an estimation method that is robust to values of d >0.5 and to deterministic trends 

(see Sections 2 and 3 for a justification). One of the possibilities described in Section 2 consists of 

using an estimator based on tapered data as proposed by Velasco (1999a, 1999b). Another 

possibility consists of using one of the Modified estimators due to Kim and Phillips (2000) or to 

Shimotsu and Phillips (2000).  

 

Tapering the data consists of weighting the original data before estimating d ,  according to a bell-

shaped weighting scheme which takes maximum values in the central dates of the sample and 

symmetrically decays to zero from the central dates towards the years at the beginning and at the 

end of the sample. In other words, the tapered estimator is based on data in which the central dates 

play a role in the estimation that is much more important than the observations at the beginning or at 

the end of the observation period. 

 

However, the countries have been involved in the Second World War, with impacts of different 

nature and intensity on their economies during the war years and just after it. For the USA, and to a 

lower extent for some other countries such as Canada or the United Kingdom, the war led to a major 

boom, whereas it led to an important reduction in GDP for the European countries directly 

implicated in the conflict. As a result, the differential of any country of the boom group with respect 

to any country of the reduction group takes abnormally high (absolute) values at the very end of the 

30’s and during the first half of the 40’s. These years stand in the middle of our sample. This 

prevents us from applying the robust tapering methods advocated by Velasco (1999 a, b). In our 

sample, this tapering would indeed give maximum weight to the abnormal WW2 data and  ever 

decreasing weight to  more normal data further away from this major conflict. We checked by 

simulation that, as expected, this produces an overestimation of the memory parameter d that can be 

substantial, especially when the true value of d  is low.  

 

For this reason, we opted for not tapering the data. In order to use a semi-parametric estimator 

robust to non-stationarity and deterministic trend, we use here the Shimotsu and Phillips (2000) 

Modified Local Whittle estimator (denoted MLW,md̂  in the following and in the Appendix), which is 

asymptotically more efficient than the also robust Modified Log Periodogram estimator developed 

by Kim and Phillips (2000) (see again Section 2 and the Appendix for more details) 

 

Table 3 reproduces the results of estimating and testing the order of integration of the output 

differential of each of the remaining countries with respect to the US.  In this table, four rows of 



 19

results are presented for each country. The first two rows, identified by “(d1)” and "(d2)" refer to the 

results obtained when d  is estimated on the level of the differential, using the Modified Local 

Whittle estimator of Shimotsu and Phillips (2000). The only difference between the two rows refers 

to the number m of frequencies that are used in the computations of the estimator. In the row 

identified as "(d1)", m=int(n0.5) frequencies are used, where n is the sample size and int(x) stands for 

the integer part of x. In the second row, identified as “(d2)”,   m=int(n0.6)  is used 8.  According to our 

empirical strategy, for these estimations, all the tests described in columns (3) , (4)  and (5) are 

carried out. The third and fourth rows, identified as “(∆1)” and “(∆2)” correspond to the estimation of  

d as one plus the estimated memory parameter of the first difference of the differential. This first 

difference is computed to bring the series to the stationarity zone, with the only purpose of obtaining 

an alternative test of )(H 1
0 .  The estimator in this case is the unmodified Local Whittle estimator, 

because the first differences of differentials are very likely to have a low value of d and no trend. The 

unmodified estimator indeed dominates the Modified for stationary series (see Shimotsu and Phillips, 

2000). The only difference between the third and the fourth rows is the value of m (m = int(n0.5)  and  

m = int(n0.6),  respectively).   

 

In this table we have highlighted in bold red the rejections of d=0 against d> 0 and of d =1 against 

d<1. The first important result of this table is the very strong rejection of d=0 in favour of positive d. 

for all countries and all estimated values of this parameter. The differentials are therefore 

unambiguously not I(0), which may greatly explain the non-convergence results obtained in the 

framework of the I(1)-I(0) dichotomy. In particular and as mentioned above, this would explain the 

no-convergence results of Ericsson and Halket (2002) and of Cellini and Scorcu(2000); also, in 

combination with Gonzalo and Lee(2000) results, they  cast some doubt on the convergence results 

obtained by Ericsson and Halket (2002) with trivariate Johansen cointegration tests. 

 

As far as the opposite hypothesis is concerned, namely d =1 against d<1, a unit root is 

unambiguously rejected in the cases of France and the United Kingdom, as well as in the case of 

Canada when d is estimated from the first differences of the differential. The results for Germany and 

Italy are more in favour of the existence of a unit root, although mean reversion is accepted for one of 

the four alternative estimations, and is rejected on the boundary of the 10% level of probability in 

another case. Japan is much more extreme: values of d  larger than one cannot be excluded. On the 

other hand, it is also noticeable that for none country, the hypothesis of d<0.5  has been accepted, 

and for most of those with d significantly below 1, d is also significantly above 0.5.  So, if 

convergence takes place, it is mean reverting but not stationary. This implies that convergence is 

slow.  

                                                           
8 The number "m" of frequencies is the number of points, or "observations", in the frequency domain that 
are used to run the estimation of d (see the appendix for more details). The value m=n0.5 has been 
traditionally used, as a result of the recommendation of Geweke and Porter-Hudak(1983) for the Log 
Periodogram regression. However, according to Hurvich and Deo(1998), it seems to be that the optimal 
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Given the particular situation of Germany, Japan and Italy during and after the Second World War, 

and in particular given their relative output position with respect to the US (remember Figure 1 and 

comments thereon), it seems reasonable to check whether the choice of US as the benchmark country 

may influence the results. In Table 4, we repeat the analysis using Germany as the benchmark 

country, as justified by its economic position in Europe. 

 

In Table 4, Italy and the UK offer unambiguous symptoms of convergence with Germany. The first 

two converge with mean-reversion (i.e.  d ≥ 0.5) whereas the French differential is I(0) or stationary, 

depending on the value of m .9   Canada stands again in an intermediate position: convergence takes 

place for half of the estimations of d, whereas d=1 according to the other half. 

 

Japan is the only country that still exhibits symptoms of divergence, in spite of what could be 

inferred from a visual inspection of the data.  In our opinion, the memory parameter for this country 

is overestimated. For a better understanding of the argument that we are going to develop, we 

reproduce in Figure 2 the differential of Japan with respect to the USA and with respect to Germany.  

 

As can be seen in this graph, these differentials are decreasing and progressively reaching a near-zero 

value, which is visually compatible with catching-up. However, these trends are not linear: there are 

economic and graphical reasons to believe that the trend changed at least in the late forties-early fifties. 

The Modified local Whittle estimator that we have been using so far is robust to a linear trend, but not to 

a polynomial trend of degree higher than 1, or to structural changes in an otherwise linear trend. The 

tapering methods of Velasco (1999 a) are able to take care of a polynomial trend that involves term up to 

t3 . However, as we mentioned above, they are extremely sensitive to abnormal data in the middle of the 

sample. Such abnormal data are present in the case of the output of Japan with respect to the US; 

However, since the Germany-Japan differential does not suffer from abnormal values, and it seems that a 

third degree trend would be able to capture adequately the downward trending evolution of this 

differential, we have applied a Parzen-taper to this differential with the following results (see Velasco, 

1999,a for details). With 11 periodogram points in the regression, d̂ = 0.3415 (significance value: 0.07); 

with 16 periodogram points, d̂  = 0.4685 (significance value:0.035). These estimations are much lower 

than the estimators used in Table 3 and 4 and therefore they may indicate a positive bias in the estimation 

of d for Japan in Table 3 and 4 due to a non-linear trend. In other words, it is probable that Japan is 

converging more than what could be apparent from the results of Tables 3 and 4. 

 

                                                                                                                                                                          
choice for m is in general slightly higher for these regressions. In absence of other explicit information, 
we have used these indications for fixing the values of m in our estimates. 
9 Given the very low value of d̂  for the French differential with respect to Germany, there is neither need 
nor justification for getting the estimated value of this parameter from the first difference of the 
differential. This is why the third and fourth rows of Table 2 for this country are empty. 
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4.1.4. Deterministic convergence or catching up? 

 

In the preceding section, we have obtained that most differentials are FI(d) with 0.5<d<1. So, since 

d>0.5, it is not surprising that the simple I(0)- versus- I(1) tests yield results that mainly favour the I(1). 

However, the conclusion of divergence is erroneous, since in fact d<1; so, most economies converge, 

although at a slower rate that under traditional I(0) convergence. The next question is now to test the 

significance of the trend coefficient, in order to determine whether the data present deterministic 

convergence or catching-up (or even deterministic divergence if the trend evolves in the wrong direction). 

For that purpose, the estimation and testing procedures of Marmol and Velasco (2002) - which are valid 

for d>0.5 - are applied10 (see Section 3 and formulas (10), (11) and (12) in the Appendix). For each case, 

from the alternative estimates of d, we have chosen that one closest to 0.5. The results, collected in Table 

5, indicate on the first place that there is no case of divergence caused by a wrongly directed trend: all the 

signs of the significant trends are correct. On the other hand, these results indicate that what tends to 

dominate is catching-up. Only France as well as Australia and the US on one part, and Canada and 

Germany on the other exhibit deterministic convergence. 

 

 

5. Summary, conclusions and possible extensions 

 

In this paper, we have examined output convergence is in the framework of fractional integration. We 

have suggested new definitions of convergence in terms of the output differential; these new 

definitions distinguish between the case where this output differential is I(0), is fractionally integrated 

of order 0<d<0.5, or is fractionally integrated of order 0.5≤d<1. They also differentiate catching-up 

convergence, when convergence is in fact under way, from the cases of  “zero-mean” or deterministic 

convergence. In order to test which type of convergence has characterised the G-7, Australia and New 

Zealand over the last century, we have used recently developed techniques which offer the great 

advantage of being robust to both deterministic and stochastic non-stationarity  (linear trend and/or 

memory parameter d≥0.5) and which are therefore particularly adequate for our problem.  Based on 

these new techniques, a new testing strategy is proposed which is able to differentiate catching-up 

form deterministic convergence, and which is operational even if d > 0.5. This strategy avoids some 

limitations of other convergence studies carried out in a fractional setting and completes the 

characterization of the convergence or divergence process.   

 

Applying this new strategy, we obtain, that, except for Japan, all the other G-7 countries, Australia 

and New Zealand show rather strong signs of either catching-up or deterministic convergence. Except 

in one particular case, convergence is not I(0): the memory parameter is generally significantly higher 

than 0.5 but lower than 1. This means that convergence did take place although the convergence 

process is slower than what would be implied by I(0) differentials.  

                                                           
10 Except in the case of the differential of France against Germany, for which I(0) convergence was 
detected. In this case, standard OLS trend estimation and t-tests may be used. 
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This paper contributes therefore to solve the puzzling results of rather timid convergence usually 

obtained in the time series context even when structural change is introduced in the model, which are 

probably due to limiting the study to the extreme cases of I(0) convergence versus I(1) divergence. 

 

Possible extensions of this study, partly under progress, consists of applying the same empirical 

strategy to other developed and less developed countries, and of testing whether the results are 

sensible to the estimator that we have used  (applying for instance the LP and MLP estimators 

mentioned in Section 3).  

 

On the other hand, the univariate approach developed here for output convergence can also be applied 

on other types of convergence analysis, such as price convergence between regions, interest rate 

convergence between countries of an economic integration zone or for Purchasing Power Parity.  

 

Finally, an interesting complementary analysis would consist of testing whether some type of 

fractional cointegration links the per-capita output series of the different countries. This analysis could 

be carried out along the lines of Davidson (2002, 2003) bootstrap techniques for fractional 

cointegration. 
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Tables and figures of Section 4:  

 

Table 2: I(1)-I(0) tests on the  output differentials 

Benchmark country: USA  - Output variable: log of per capita GDP in 1990 International  

Geary-Khamis dollars 

test 

country 

 

ADF 
PP 

ADF-

GLS 
KPSS ERS Ng-P conclusion

Canada 
-3.51 

I(1) at 1% 

-3.49 

I(1) at 1%

-3.35 

I(1) at 1%

0.07 

I(0)  

4.97 

I(1) at 1%
I(1) at 1% 

I(1) at 

1% 

I(0) at 

5% 

France 
-3.79 

I(1) at 1% 

-2.43 

I(1) 

-3.33 

I(1) at 1%

0.179 

I(1) at 5%

4.21 

I(1) at 1%
I(1) 

I(1) 

 at 1% 

Germany 
-2.27 

I(1) 

-2.79 

I(1) 

-2.20 

I(1) 

0.15 

I(1) at 5%

10.04 

I(1) 
I(1) I(1) 

Italy 
-2.95 

I(1) 

-2.52 

I(1) 

-2.43 

I(1) 

0.19 

I(1) at 5%

8.45 

I(1) 
I(1) I(1) 

Japon 
-1.97 

I(1) 

-1.93 

I(1) 

-1.59 

I(1) 

0.22 

I(1)  

19.63 

I(1) 
I(1) I(1) 

Reino Unido -2.82 

I(1) 

-3.15 

I(1) 

-2.72 

I(1) 

0.18 

I(1) at 5% 

7.08 

I(1) 
I(1) I(1) 

Australia -2.64 

I(1) 

-2.64 

I(1) 

-2.43 

I(1) 

0.28 

I(1)  

8.79 

I(1) 
I(1) I(1) 

New-Zealand -3. 

I(0) 

-4.10 

I(0) 

-3.93 

I(0) 

0.096 

I(0)  

3.74 

I(0) 
I(0) I(0) 
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Table 3: Estimation and testing of the order of integration  of output differentials 

Benchmark country: USA  - Output variable: log of per capita GDP in 1990 International  

Geary-Khamis dollars 

(3) 

 

0

0
0

0
0

>

=

d:H

d:H
)(

A

)(

 

(4) 

 

1

1
1

1
0

<

=

d:H

d:H
)(

A

)(

 

(5) 

50

50

50

21
2

21
1

21
0

.d:H

.d:H

.d:H

)/(
,A

)/(
,A

)/(

>

<

=

 

 

Country 

 
d̂  

p-values 

CONCLUSION  

Canada  (d1)  

(d2) 

             (∆1) 

        (∆2) 

1.054 

.9305 

.705 

.766 

0.0000 

0.0000 

- 

- 

.6391 

.2777 

.0250 

.0191 

.0002 ⇒ d>0.5 

.0003 ⇒ d>0.5 

- 

- 

d=1, not >1 

d=1, not >1 

Mean reversion 

Mean reversion 

 

France   (d1)  

(d2) 

             (∆1) 

        (∆2) 

.554 

.669 

.480 

.640 

0.0001 

0.0000 

- 

- 

.0016 

.0025 

.003 

.0011 

.3596 ⇒ d≅ 0.5 

.0075⇒ d>0.5 at 10% 

- 

- 

Mean reversion 

Mean reversion 

Mean reversion 

Mean reversion 

 

Germany (d1)  

(d2) 

             (∆1) 

        (∆2) 

0.814 

1.037 

.82 

1.060 

0.0000 

0.0000 

- 

- 

.10913 

.6257 

.0317 

.6948 

.0185⇒ d>0.5 

.0000⇒ d>0.5 

 

 

d=1, not >1 

d=1, not >1 

Mean reversion 

d=1, not >1 

 

Italy    (d1)  

(d2) 

             (∆1) 

        (∆2) 

.949 

.849 

.828 

.783 

0.0000 

0.0000 

- 

- 

.3684 

.1007 

.1270 

.0269 

.0029⇒ d>0.5 

.0030⇒ d>0.5 

- 

- 

d=1, not >1 

d=1, not >1 

d=1, not >1 

Mean reversion 

 

Japan    (d1)  

(d2) 

             (∆1) 

        (∆2) 

1.186 

1.106 

1.332 

1.189 

0.0000 

0.0000 

- 

- 

.8916 

.8154 

.9862 

.9443 

.0000 ⇒ d> 0.5 

.00000⇒ d> 0.5 

 

d=1, not >1  

d=1, not >1  

d >1  

d >1 

 

UK       (d1)  

(d2) 

             (∆1) 

        (∆2) 

.615 

.744 

.390 

.580 

0.0000 

0.0000 

- 

- 

.0053 

.0148 

.0000 

.002 

.4456 ⇒ d≅ 0.5 

.0387⇒ d> 0.5 

 

Mean reversion 

Mean reversion 

Mean reversion 

Mean reversion 

 

Australia (d1)  

(d2) 

             (∆1) 

        (∆2) 

.771 

.910 

.582 

.678 

0.0000 

0.0000 

- 

- 

.0645 

.2225 

.0028 

.0031 

.0720 ⇒ d≅ 0.5 

.0005⇒ d> 0.5 

 

Mean reversion 

d=1, not >1 

Mean reversion 

Mean reversion 

 

NZealand d1)  

(d2) 

             (∆1) 

        (∆2) 

.702 

.901 

.2474 

.3310 

0.0000 

0.0000 

- 

- 

.0239 

.1999 

.0000 

.0000 

.1806 ⇒ d≅ 0.5 

.0007⇒ d> 0.5 

 

Mean reversion 

d=1, not >1 

Mean reversion 

Mean reversion 
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Table 4: Estimation and testing of the order of integration  of output differentials 

Benchmark country: Germany  - Output variable: log of per capita GDP in 1990 International  

Geary-Khamis dollars 

(3) 

 

0

0
0

0
0

>

=

d:H

d:H
)(

A

)(

 

(4) 

 

1

1
1

1
0

<

=

d:H

d:H
)(

A

)(

 

(5) 

50

50

50

21
2

21
1

21
0

.d:H

.d:H

.d:H

)/(
,A

)/(
,A

)/(

>

<

=

 

 

Country 

 
d̂  

p-values 

CONCLUSION  

Canada  (d1)  

(d2) 

             (∆1) 

        (∆2) 

.751 

.955 

.725 

.962 

0.0000 

0.0000 

- 

- 

0.0489 

.3503 

.0336 

.3727 

.0002 ⇒ d>0.5 

.0003 ⇒ d>0.5 

- 

- 

Mean reversion 

d=1, not >1 

Mean reversion 

d=1, not >1 

 

France  (d1)  

(d2) 

             (∆1) 

        (∆2) 

.012 

.285 

- 

- 

0.4678 

0.0079 

- 

- 

.0000 

.0000 

- 

- 

.0000 ⇒ d< 0.5 

.034⇒ d<0.5  

- 

I(0) 

Stationarity 

- 

- 

 

Italy    (d1)  

(d2) 

             (∆1) 

        (∆2) 

.659 

.618 

.499 

.511 

0.0000 

0.0000 

- 

- 

.0118 

.0000 

.0004 

.0000 

.1462⇒ d≅0.5 

.1590⇒ d≅0.5 

- 

- 

Mean reversion 

Mean reversion 

Mean reversion 

Mean reversion 

 

Japan    (d1)  

(d2) 

             (∆1) 

        (∆2) 

.9803 

.9247 

.9163 

.8533 

0.0000 

0.0000 

- 

- 

.4479 

.2615 

.2895 

.1065 

.00007⇒ d> 0.5 

.00002⇒ d> 0.5 

 

d=1, not >1  

d=1, not >1  

d=1, not >1 

Mean revers ~10% 

 

UK       (d1)  

(d2) 

             (∆1) 

        (∆2) 

.7954 

.8501 

.433 

.641 

0.0000 

0.0000 

- 

- 

.0873 

.1016 

.0000 

.0010 

.0250 ⇒ d>0.5 

.0030⇒ d> 0.5 

 

Mean revers. 10% 

Mean revers ~10% 

Mean reversion 

Mean reversion  
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Table 5: Catching-up or deterministic convergence? 

Benchmark country: USA Benchmark country: Germany 

Country 
Trend 

coefficient 

tm 

test 

1-sided 

5% c.v. 
CONCLUSION

Trend 

coefficient

tm 

test 

2-sided 

5% c.v. 
CONCLUSION

Canada 
-0.0025 

correct 

sign 

-6.2344 -4.9422 
Mean-reverting 

catching up 

-.0034 

correct 

sign 

-2.1452 -5.09432 

Mean-reverting 

deterministic 

cvgce 

France 
-0.0014 

correct 

sign 

-2.3064 -4.0234 

Mean-reverting 

deterministic 

cvgce 

-.0013 

correct 

sign 

-3.0349 -1.645 

If I(0) 

convergence, 

strict catching-up

Germany 0.0009 0.5210 5.9138 

If convergence, 

deterministic 

convergence 

- - - - 

Italy -0.0028 -1.1623 -5.5756 

If convergence, 

deterministic 

convergence 

-0.0036 

correct 

sign 

-4.2781 -3.8355 
Mean-reverting 

catching up 

United 

Kingdom 

.0055 

correct 

sign 

6.4042 4.1524 
Mean-reverting 

catching up 

0.0046 

correct 

sign 

4.9931 4.5032 
Mean-reverting 

catching up 

Australia .0061 3.8558 4.1630 

Mean-reverting 

deterministic 

cvgce 

n.a. n.a. n.a. n.a. 

New-Zealand .0059 10.791 4.920 
Mean-reverting 

catching up 
n.a. n.a. n.a. n.a. 
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Figure1: real per capita output (log) in nine developed countries 
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Figure 2: Differential of Japan 

log(per capita GDP of USA)-log (per-capita GDP of Japan) 

log(per capita GDP of Germany)-log (per-capita GDP of Japan) 
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Appendix: 

 

In this Appendix, after a definition of fractional integration valid for both the stationary and the non-

stationary intervals, we focus on the technical aspects of the recently developed estimation and 

testing methods that we consider are more suitable than previous techniques for their application on 

convergence problems, and that are especially useful for the type of convergence that we have 

defined in this paper. 

 

Following Shimotsu and Phillips (2000), who developed the estimator of the memory parameter used 

in this paper, let us consider the fractional process tX  generated by the model  

,,,tu)XX()L( tt
d 2101 0 ==−−        (1) 

where 0X  is a random variable with a certain fixed distribution, tu  is a zero-mean stationary  

process with continuous spectrum 0>)(fu λ , and 00 ≤= t,ut  , d is not necessarily integer 

and the fractional difference operator is defined as: 

 

∑
=

−−
+−

=−
t

k
ktt

d a
)d(

)kd(a)L(
0

1
Γ

Γ
        

 where )( ⋅Γ is the gamma function.  

 

Depending on the value of d, the series exhibits the following properties. If 50.d < , tX is 

stationary and invertible. For 50.d ≥ , tX  is non stationary. If  d <1, tX  is mean-reverting, 

exhibiting transitory memory. For 1≥d ,  the memory is permanent and there is no mean-reversion. 

 

 

Inverting (1), an alternate form for tX  is: 

kt

t

k
t

d
t u

)d(
)kd(Xu)L(X −

−

=

− ∑ +
=+−=

1

0
01

Γ
Γ

 

 

Note that for d integer and positive, model (1) expresses the behaviour of tX  in terms of first of          

higher order differences. Note also that tu  is not necessarily serially uncorrelated, so that short-run 

dynamics -additional to long-range dependence- is not excluded in tX .  Finally, note that when tu  

follows and ARMA(p,q) process, tX is called an ARFIMA(p,d,q) process.  

 

Mainly during the last decade, different methods have been developed to estimate the so-called 

“memory parameter” d. Very often, the main empirical interest lies exclusively on the value of this 
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parameter.  So instead of developing and using parametric methods tending at estimating all the 

parameters of the process, various authors focused on a semi-parametric estimation of d alone, 

ignoring the short-run parameters.  Until very recently, these semi-parametric methods were restricted 

to the stationarity cases ( 50.d < ), which required to previously difference the series when non-

stationarity was suspected11 .  

 

An important property of stationary fractional series on which some of these semi-parametric methods 

are based is: 

 
+− →≈ 0as2 λλλ dG)(f  (2) 

 

where )(f λ is the spectral density of the series and ∞<< G0 . 

 

so that  

)log(dk))(flog( λλ 2−+≈         (3) 

for small frequencies. 

 

Therefore, defining the Discrete Fourier Transform of a series ta for t=1,2,...,n as  

jit
n

t
tja ea

n
)(w λ

π
λ ∑

=

=
12

1
 

where 
n

j
j

πλ 2
=  are the Fourier frequencies, we may compute the periodogram of the series tX as 

 
∗= )(w)(w)(I jxjxjx λλλ  

 

 

Then property (3) suggests to regress [ ])(Ilog jx λ  on a constant and jlog λ2− , for 

m,,l,lj 1+= , with 1≥l  and nm <  . This is the basis for the so-called  “log-periodogram 

(LP) regression” or “GPH regression” (Geweke and Porter-Hudak ,1983 , Robinson,1995a). It is an 

appealing method because it is rather simple to implement. This explains why it has been widely used. 

 

Robinson (1995a) showed the consistency and asymptotic normality of a version of this estimate for 

stationary and invertible processes, i.e. for -0.5<d<0. Velasco (1999a) studied the asymptotic 

properties of the LP estimator for 50.d ≥ , showing that it is asymptotically Normal for 

                                                           
11 Note that if tX is FI(d0+θ ), with  d0  integer and 50.<θ , t

d X)L( 01− is FI(θ ) and therfore 
stationary. 
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[ )75050 .,.d ∈  and consistent for 1<d . This author also advocates data tapering together with a  

slight modification of the LP estimator which  guarantee consistency and asymptotic normality  of this 

log periodogram regression for any value of d; moreover, with adequate tapering, the estimate would 

be invariant to the presence of a deterministic polynomial trend, without any need of previous 

estimation of this trend. Tapering the data consists of applying weights to them before estimating the 

periodogram; the weights are ≤ 1, and decay symmetrically from the centre observation of the sample 

towards the extreme. The tapered estimator, however, has a higher variance than the non-tapered 

periodogram Velasco (1999a) also proposes different tapering schemes that are suitable for  a value of 

d up to 3.75 and a polynomial trend up to third degree. On the other hand, Kim and Phillips (2000) 

develop  a slight modification of the LP regression derived from adding a term in the Discrete Fourier 

Transform of tX , which therefore modifies the values of the periodogram. They show that the new 

estimator, based on this modified periodogram and called  “Modified LP estimator” is consistent and 

asymptotically normal for d <2, as well as invariant to the presence of a linear trend. The asymptotic 

distribution of the LP estimator ( LP,md̂ ) and the asymptotic distribution of this Modified LP estimator 

( MLP,md̂ ) are identical: 

 

( ) ),(Ndd̂m nLP,m 24
0

2π
 →− ∞→  

and           (4) 

( ) ),(Ndd̂m nMLP,m 24
0

2π
 →− ∞→   

 

Another frequently used estimator is the local Whittle estimator suggested by Künsch (1987) and 

further studied and justified by Robinson (1995b).  It is obtained by minimising the following 

objective function with respect to G and d  (see Künsch, 1987, Robinson, 1995b) over a closed 

interval of admissible values for d 12: 

∑
=

−
−





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+=
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d
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jxd
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)(I
)Glog(
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)d,G(Q

1
2

21
λ
λ

λ      (5) 

Robinson(1995b) established the conditions under which this estimator of d, that we will denote 

LW,md̂  is consistent  and asymptotically normal, with asymptotic distribution given by: 

 

( ) ),(Ndd̂m nLW,m 4
10 →− ∞→                                               (6) 

                                                           
12 i.e. ( )∞∈ ,G 0   and [ ]21 ∆∆ ,d ∈  with 150 ∆<− . < 502 .<∆  . In practice, 1∆ and 1∆ can be 
chosen arbitrarily close to their limit values. 
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Therefore, for the same m sequence, it is asymptotically more efficient than LP,md̂ . Velasco (1999b) 

extends these properties of LW,md̂  to part of the non-stationarity zone. In particular, he shows that this 

estimate is consistent for ( )150 ,.d −∈  and asymptotically Normal for ( )75050 .,.d −∈ . He also 

shows that adequately tapering the observations allows estimating any degree of non-stationarity, even 

in the presence of a deterministic polynomial   trend without the need of previously estimating this 

trend. More recently, Shimotsu and Phillips (2000) used the same modification of the periodogram as 

Kim and Phillips (2000) to develop a new local Whittle estimator, called the Modified Local Whittle 

estimator, which we will denote MLW,md̂ . It results from minimising a modification of the objective 

function given in (5): 
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where 
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seen, the modified periodogram )(I~ jx λ differs from the periodogram  )(I jx λ  as a result of adding 

the term 
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21
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⋅
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 in the Discrete Fourier transform. 

 

These authors demonstrate that this estimator is invariant to the presence of a deterministic linear 

trend in the series. They also show that it is consistent for ),(d 20∈ . Its asymptotic distribution is 

given by  

 

 

( ) ),(Ndd̂m nMLW,m 4
10 →− ∞→                                 (8) 

for ( )75150 .,.d ∈ , which is the same as (6) This makes this estimator asymptotically more efficient 

than those of  the  LP-type.  

 

 Finally, an interesting paper by Marmol and Velasco (2002) examines the problem of discriminating 

between fractional (non-stationary) integration and trend-stationarity around a linear trend, and the 

related problem of correctly estimating and testing the significance of the trend of an FID(d)  series 

when ).,.(d 5150∈ . For this range of d, the authors extend the results of Durlauf and Phillips 

(1988) obtained for d=1. They demonstrate that: 

♦ the OLS estimation of the constant term diverges in distribution at a rate 21 /dn −  
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♦ the OLS estimation of the trend coefficient has a well defined limiting distribution, upon suitable 

standardization given by 23 /dn +− . 

♦ as far as hypothesis testing on the constant term and the slope is concerned, the distributions of  

traditional t-students tests for both parameters diverge at a rate 21 /n  

    

Then they propose an alternative estimate for the trend coefficient based on a local version in the 

frequency domain of least squares. For a process such as  
o
tt XtX ++= βα          (9) 

where 0
tX is a zero-mean FI(d) process with ).,.(d 5150∈ , and with α and β possibly zero, they 

propose the following estimates: 
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 where 21 /nm ≤≤  , ℜ stands for the real part and the (cross) periodogram is defined as 

)(w)(w)(I jbjajab λλλ −=  

 

Estimating the intercept term as 

tˆXˆ mm βα −=  

the residual is then 

tˆˆXû mmtt βα −−=  

 

For the estimator of the variance of mβ̂  in the frequency domain, they propose: 
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jûûjtt

m

j
jttm )(I)(I(IV̂

1

2

12
1 λλλ  

The corresponding t-ratio would be: 

21 /
m

m
m V̂

ˆ
t̂

β
=                (11) 

which has a non-degenerated although non-standard symmetric limiting distribution. Their Monte-

Carlo simulations provide useful information about   how to obtain the approximated critical values. 

They can be generated according to the following formulas, where αc stands for the critical values 

for a two-sided test at α  probability level: 

2
10

2
5

2
1

879809251194
9581126368364
8961981974095

d.d..c
d.d..c
d.d..c

%

%

%

+−=
+−=
+−=

             (12) 
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By symmetry, for one-sided tests, formulas (12) can be used with the corresponding size correction. 

For instance, the third equation of (12) would provide the 5% critical level for a right-tailed test. 

 

 

An empirical strategy for testing the significance of the trend in a non-stationary series with 

).,.(d 5150∈  unknown would then be: 

� Obtain a consistent estimate d̂ of d with methods that are robust to linear trends and to 

stochastic non-stationarity. 

� Compute the critical values at the desired probability levels introducing d̂ in (12) 

� Estimate mt̂ as defined in (11) and compare it with the critical value(s) obtained in the previous 

step 

 

 

For obtaining d̂ , the authors suggest the semi-parametric tapered estimators of Velasco (1999a, 

1999b). However, it has to be noted that Kim and Phillips (2000) MLP and Shimotsu and Phillips ( 

2000) MLW estimators share the same desirable properties, with the advantage of a lower asymptotic 

variance, especially in the case of the MLW estimator.   
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