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Abstract 
 

In this paper, we relate security returns in the thirty securities in the Dow Jones index 

to regime shifts in the market portfolio (S&P500) volatility. We model market 

volatility as a multiple-state Markov switching process of order one and estimate 

non-diversifiable security risk (beta) in the different market volatility regimes. We 

test the significance of the premium of the beta risk associated with the different 

market regimes and find evidence of a relationship between security return and beta 

risk when conditional on the up and down market movement. 
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1. Introduction 

 
When testing the validity of asset pricing models, especially the capital asset pricing model 

(CAPM1), many studies examine models conditional on market movements. A common method 

to capture market movements is to define up and down markets based on some arbitrarily chosen 
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1 CAPM conveys the notion that securities are priced so that their expected return will compensate 
investors for their expected risk. Symbolically, CAPM is expressed as ( ) ( )[ ]fmifi RRERRE −+= β  

where,  is the return on security i,  is the return on risk-free asset,  is the return on the market 

portfolio and 
iR fR mR

iβ  is the measure of security i’s non-diversifiable risk relative to that of the market portfolio. 
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threshold value. For example, Kim and Zumwalt (1979) used three threshold levels, namely, 

average monthly market return, average risk-free rate and zero. Several studies have investigated 

the risk-return relationship in the tails of the market return distribution. For example, Crombez 

and Vander Vennet (2000) defined three regimes for market movements, namely, substantially 

upward moving, neutral, and substantial bear. They used the following threshold points: (i) the 

average positive market return and average negative market return, (ii) the average positive 

market return plus half the standard deviation of positive market returns and average negative 

market return less half the standard deviation of negative market returns, and (iii) the average 

positive market return plus three-quarters of the standard deviation of positive market returns and 

average negative market return less three-quarters of the standard deviation of negative market 

returns. Crombez and Vander Vennet (2000) assessed the robustness of the regime classification 

on the conditional beta risk-return relationship by varying the width of the neutral interval. They 

found the relationship to be stronger as the classification of up and down markets became more 

pronounced. 

 

 An alternative approach to capture market movements is through market volatility regimes. 

Since the introduction of ARCH/GARCH-type processes by Engle (1982) and others, testing for, 

and modelling of, time-varying volatility (variance/covariance) of stock market returns (and 

hence the time-varying beta) have been given considerable attention in the literature. See 

Bollerslev, Engle and Wooldridge (1988) – the first study to model the beta in terms of time-

varying variance/covariance – and the survey paper by Bollerslev, Engle and Nelson (1994). The 

ARCH-based empirical models appear to provide stronger evidence, though not convincingly, of 

the risk-return relationship than do the unconditional models. For example, Fraser, Hamelink, 

Hoesli and MacGregor (2000) compared the cross-sectional risk-return relationship obtained with 

an unconditional specification of the asset’s betas with betas obtained through Quantitative 
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Threshold ARCH (QTARCH2) and GARCH-M3 models. In all specifications, they allowed for 

possible negative return-risk relationships when excess return on the market is negative. They 

observed that the QTARCH specification, in which they allowed for asymmetries in the first and 

second moments of returns, yields a significant beta without having to account for up and down 

markets. Recently, Galagedera and Faff (2003) incorporated market movements into the asset 

pricing model by partitioning the market returns into three regimes corresponding to the size of 

the conditional market volatility modelled via an ARCH/GARCH-type proces. They reported that 

the beta risk premium in the three market volatility regimes is priced only in the pricing model 

conditional on the sign of realised market return. 

 

 The objective of this paper is to investigate whether securities’ responses to the market vary, 

depending on changing market volatility as defined by a Markov switching process. In particular, 

we aim to investigate whether market risk as measured by beta estimated across different market 

volatility regimes are useful in explaining asset/portfolio returns. Postulating distinct betas across 

different market volatility regimes, a multiple-state Markov regime-switching threshold model, 

with defined levels of probabilities of being in each state as threshold parameters, will be 

employed to examine the above issues. 

 

 The paper is organised as follows: The volatility switching models are specified in Section 2. 

In Section 3, we define a multi-beta asset pricing model. The data series used in this study are 

described in Section 4. Section 5 is devoted to the empirical results and their analysis. This is 

followed by a concluding section. 

 

                                                           
2 See Gourieroux and Monfort (1992) for details. 
3 Due to Bollerslev, Engle and Wooldridge (1988).  
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2. Volatility-switching model specification 

The return generating process of the market portfolio is postulated as: 

Model Al: 
1

l

mt i it t
i

r Sµ σ
=

⎛ ⎞= + ⎜
⎝ ⎠
∑ ε⎟

)

   (1) 

where  is return of the market portfolio in excess of the risk-free rate, mtr ( mtE rµ = , l is the 

number of regimes ,  is an unobserved binary variable that identifies which one of the l 

regimes the market is in at time t ( =1 if the market is in the volatility regime i and =0 

otherwise), and 

( )2l ≥ itS

itS itS

( )1,0~1 Ntt −Φε  where 1−Φ t  is information set at time t-1. In Model A, we 

assume that the changes in regimes can only affect the volatility of the market return distribution 

and there is no switching in mean4. In other words, we assume that market returns are drawn from 

l distributions that differ only in their variances. The volatility regimes are characterised by 1σ , 

2σ ,…, lσ  where 1 2 ... lσ σ< < <σ . It is assumed further that  follows a Markov chain of 

order one with constant transition probabilities where 

itS

( , 1 1 1)j t itP S S p+ ij= = = ,    (2) 

    ,     (3) 0 1   ijp≤ ≤ ∀ ,i j

and    
1

1  
l

ij
j

p i
=

= ∀∑ .      (4) 

When there is no switching in market volatility, l = 1 and Model A reduces to the single regime 

model given as 

mt tr µ σε= + .     (5) 

                                                           
4 Studies have shown that the switching behaviour in market portfolio returns can be primarily attributed to 

the switching in volatility (Assoe, 1998; Hess, 2003).  
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Estimation 
Let  denote the observed return at time t whose distribution is denoted as f, and let ty tΦ  

denote the information set at time t where ( )tt yyy ,...,, 21=Φ . The distribution from which returns 

are drawn is determined by the state variable . Following Hamilton’s (1989) procedure for 

filtering, the iterative algorithm uses an input value at time t, 

itS

( )ttSP Φ , which will be developed 

by using Bayes theorem into the output value at time t+1, ( )11 ++ Φ ttSP . Note here that ( )ttSP Φ  

is a vector of l elements representing the probabilities of being in the l different states and that the 

sum of all elements is equal to 1. To set up the iteration, the procedure needs an initial value 

( 11 ΦSP ). This value is set equal to the unconditional probability ( )1SP  that has l elements 

given by the solution of the following equation 

    0 0π πτ = ,      (6) 

where 0π  represents the limiting probability of the Markov process and τ  is the transition 

matrix between the different states given by 

11 12 1

21 2

1

l

l

l ll

p p p
p p

p p

τ
⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.    (7) 

 

The following iterative steps will be carried out. 

Input: ( )ttSP Φ . 

Step-I: ( ) ( ) ( )ttttttt SPSSPSSP Φ=Φ ++ 11, . 

Step-II: ( ) ( )1 1,
t

t t t t t
S

P S P S S+ +Φ = Φ∑ . 

Step-III: ( ) ( ) ( )tttttttt SPSyfSyf ΦΦ=Φ +++++ 11111 ,, , 
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where ( )
2

1
2

ˆ
2

1 , 1 2

1,
2

t

j

e

t j t t

j

f y S e σ

πσ

+−

+ + Φ = , jσ  is the standard deviation of error when in state j 

and  is the estimated error of the model being estimated. ê

Step-IV: ( ) ( )
1

1 1,
t

t t t t t
S

f y f y S
+

+ +Φ = Φ∑ 1+ . 

Step-V (output): ( ) ( )
( )tt

ttt
tt yf

Syf
SP

Φ

Φ
=Φ

+

++
++

1

11
11

,
. 

We should note here that Step-IV provides the conditional distributions for the calculation of the 

likelihood function (∏
=

+ Φ=
T

t
ttyfL

1
1 ) where T is the sample size. 

 

3. Development of the asset pricing model 

 In the following sub-section, we describe how each sampled day is classified into only one of 

the market volatility regimes. An unconditional multiple-beta security return-generating process 

is defined next. 

 

3.1 Market regimes 

 First, we select a Markov regime-switching volatility model (Model A) for daily market 

returns and obtain the estimates for probabilities that a given day belongs in the various volatility 

regimes. Then, based on the magnitude of these probability estimates we assign each day to one 

of the market volatility regimes, using an indicator function. Specifically, day t is assigned to 

regime j if regime j has the highest probability of occurrence among all l regimes. 

 Define a dummy variable  as: jtd

     , (8) 
⎩
⎨
⎧ ≠=>=

=
otherwise0

allfor)1()1(if1 kjSPSP
d ktjt

jt
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where  and . Now define 1, 2,...,j l= 1, 2...,k = l ][ 1 2, ...,t t t ltD d d d ′=  a column vector made up 

of the dummy variables that corresponds to the l regimes. Dt is then used to classify each day in 

the sample period into one of the l different market volatility regimes. For example, for l=3, three 

market volatility regimes may be defined: low volatility market, neutral volatility market and high 

volatility market. 

 

3.2 A multiple-beta security return-generating process 

 In empirical investigation of the single-beta CAPM, the beta is estimated using the market 

model given as: 

     Model B: itmtiiit RR εβα ++=     (9) 

where, ( )2,0~ σε Nit . We refer to Model B as the unconditional single-beta security return-

generating process. To estimate the betas in the l volatility market regimes, we extend the market 

model given in (9) as: 

     Model C: itmttiiit RDR εβα +′′+= ,   (10) 

where, 1 2[ , ,..., ]i i i ilβ β β β ′=  and ( )2,0~ σε Nit . We refer to Model C as the unconditional l-beta 

security return-generating process. 

 

4. Data 

 We use the daily price series of the thirty securities in the Dow Jones Industrial index. The data 

covers the period from 2 January 1990 to 23 May 1996, and consists of 1619 observations for each 

security. The daily returns are calculated as the change in the logarithm of the closing prices of 

successive days. The return on the Standard and Poor’s 500 Index (S&P500) is used to proxy the 

market portfolio return and the return on the US 1-month Treasury Bill (TB) is used to proxy the 

risk-free return. 
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 Table 1 provides some summary statistics of the thirty securities, the US 1-month TB and the 

market portfolio returns. The returns vary widely across the securities, with the highest being 

13.26 per cent and the lowest being –26.15 per cent. The market return, as expected, has a smaller 

range with the lowest and the highest returns being –3.73 per cent and 3.66 per cent respectively. 

The standard deviation of the market return distribution, 0.73 per cent, is much smaller compared 

to that of the securities, of which the lowest is 1.13 per cent and the highest is 2.36 per cent. The 

market and seven securities are negatively skewed. The excess kurtosis of one security, PM, is 

extremely high compared to the others. When PM is left out the excess kurtosis varies only 

between 6.40 and 0.96. The excess kurtosis of the market return distribution is 2.39. The US 1-

month TB returns distribution is tri modal, positively skewed and has mean 0.0128 per cent and 

standard deviation 0.0039 per cent. 

 

5. Results and Discussion 

5.1 Market volatility model 

 We apply model (1) for l =2 to 6 such that five different switching models with volatility 

switching states ranging from 2 to 6 are estimated. The number of parameters in each model 

increases with the increase in the number of states. If l is the number of states, then the parameters 

of the model consists of the mean µ , ( )1l l −  probabilities and l standard deviations for a total of 

 coefficients to estimate. We select the best model using the AIC which imposes a penalty 

for additional coefficients. AIC is given by 

2 1l +

    2 / 2 /AIC lik T k T= − + ,    (11) 

where lik is the log likelihood value and k is the number of parameters in the model. The models 

are estimated with daily data spanning 1366 days and ranging from January 1990 to May 1995. 

We left the remaining 252 days for testing purposes. The estimation results reported in Table 2 
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reveals that the model with the least AIC is the one with three volatility regimes. Hence the asset 

pricing model that we consider for further investigation is assumed to be  

   ( )i f L iL N iN HE R R iHλ β λ β λ β= + + +     (12) 

where, iLβ , iNβ  and iHβ  are the beta risk associated with the low, neutral and high market 

volatility regimes. 

 

5.2 Analysis of the risk-return relationship 

 As indicated earlier, the analysis of the risk-return relationship is based on a two-stage 

procedure. In the first stage of the analysis, the systematic risks, iLβ , iNβ  and iHβ , are estimated. 

In the second stage we test whether the systematic risks are priced or not. 

 

Estimating beta risks 

 We estimated Model C with l=3 for each security in the sample using time series data through 

a period of 1366 days. In addition, we estimated the constant beta in the market model given in 

(9). The results are reported in Table 3. The results reveal that the beta in the low volatility market 

is significantly different from zero only in twelve of the thirty securities where as in the neutral 

and high volatility regimes the beta is significant at the one percent level in all securities. The 

constant beta is also significant at the one percent level and this was observed in all securities. 

 

 We also tested whether or not the betas estimated in the low, neutral and high volatility 

regimes are equal for each of the thirty securities. Table 4 reports the results in the F-test of 

0 : iL iNH β β= , 0 : iL iHH β β=  and 0 : iN iHH β β=  against the alternative of not equal and of 

0 : iL iN iHH β β β= =  against the alternative of at least one is different from the others. In four 

securities namely, Alcoa, ATT, Coca Cola and Home Depot there is statistical evidence that beta 
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in the low volatility regime is different from the beta in the neutral volatility regime. A similar 

observation is made for the same set of securities for beta in the low and high volatility regimes as 

well. On the other hand, significantly different beta in the neutral and high volatility regimes are 

observed only in the securities Boeing, Amex, CITIGRP and Kodak, Wal-Mart and Intel. 

 

Estimating beta risk premiums  

 Having found evidence that beta is significantly different from zero in the low, neutral and high 

volatility markets, we extended our investigation to test whether or not the beta risks in these 

markets are priced and the risk premiums are equal or not. In the sample period immediately 

following the estimation period (252 days), using cross-sectional data we test whether the 

systematic risks are priced or not. Here, we consider the betas estimated in the first stage as 

proxies for the true betas in the 252-day period immediately following the beta estimation period. 

To ascertain whether beta in the three regimes is priced, the cross-sectional regression model  

   Model D: 0it L iL N iN H iH itR λ λ β λ β λ β ε= + + + + ,  (13) 

where ( )2,0~ σε Nit  is estimated 252 estimates for each beta risk premium, UL λλ ,  and Hλ  

were obtained. 

 

Table 5 reports the summary statistics of the estimated premiums together with the results of 

testing 0:0 =iH λ  against 0:1 ≠iH λ  for i =L, U, H. The results reveal that none of the betas is 

priced at the ten percent significance level. However, the average premium in all three market 

volatility regimes has the expected sign. We believe that the lack of evidence in beta risk pricing 

might be due to the bias that creeps in as a result of using realized return in equation (13) instead 

of the expected as derived in (12). Therefore, following Pettengill, Sundaram and Mathur (1995), 
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to ascertain whether beta in the three volatility regimes is priced or not, the cross-sectional 

regression model given by 

( ) ( )
( ) itiH

D
HiH

U
H

iN
D
NiN

U
NiL

D
LiL

U
LitR

εβδλδβλ

βδλδβλβδλδβλλ

+−++

−++−++=

1

110    (14) 

where 1=δ  for up market, 0=δ  for down market and ( )2,0~ iit N σε  is estimated for each day 

in the testing period. We refer to (14) as the conditional three-beta risk-return relationship. Like 

Pettengill, Sundaram and Mathur (1995), we postulate that in the time periods where the market 

return in excess of the risk-free rate is negative it is reasonable to infer an inverse relationship 

between realized return and beta. Accordingly, we expect the beta risk premium in the up market 

to be positive and the beta risk premium in the down market to be negative. A positive and 

statistically significant beta risk premium in the up market and a negative and statistically 

significant beta risk premium in the down market is sufficient to suggest a systematic relationship 

between the beta in the low, neutral and high volatility regimes and the security returns. 

 

 We estimated equation (14), the conditional three-beta return generating process, in the 252 

days in the testing period of which 110 (43.7%)5 are ‘up market’ days and 142 are ‘down market’ 

days. An analysis of the results reported in Table 6 indicates that the risk premium is significantly 

different from zero and has the correct sign in the low and neutral market volatility regimes. In the 

high market volatility regime though the beta risk premium is not significantly different from zero 

has the expected sign. Therefore, in the dataset that we have considered, there is considerable 

evidence to suggest that the beta risk premium in the ‘up market’ is positive and the beta risk 

premium in the ‘down market’ is negative and this is true with the beta in the low, neutral and 

high market volatility regimes. The unconditional model failed to uncover a systematic relation 
                                                           
5 Pettengill, Sundaram and Mathur (1995) using monthly US data from Jan 1926 through Dec 1990, 
reported 57.6% of the months correspond to ‘up market’ days. Faff (2001) study that used monthly 
Australian data over the period 1974 to 1995 reported that 54.2% of the months provide positive excess 
market returns. 
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between the beta in the low, neutral and high volatility regimes and the security returns but the 

conditional model does. 

 

6. Conclusion  

In this paper, we examined the appropriateness of a conditional three-beta model as a security 

return-generating process. First, we modelled volatility of the market portfolio return generating 

process as a Markov regime switching process of order one. A sample of daily returns of the 

S&P500 index that we use as a proxy for the market portfolio reveals that the model with three 

volatility regimes appears to model the market returns better compared to the competing models 

which included two, four, five and six volatility regimes. In the chosen model with three volatility 

regimes there is strong volatility switching behaviour with high-volatility regime being more 

persistent than the low-volatility regime. 

 

We assigned each sampled day into one of the three volatility regimes based on the probability 

that a given day belongs in a volatility regime. Specifically, a given day is assigned to the regime 

with the highest probability of occurrence among all three regimes. A three-beta asset-pricing 

model is then specified and tested. The three betas correspond to the low, neutral and high market 

volatility regimes specified by the probability estimates. 

 

An analysis of the returns in the securities in the Dow Jones index overwhelmingly suggests 

that the betas in the low, neutral and high volatility regimes are positive and significant. In most of 

the sectors the betas were not found to be significantly different in the three regimes. For some 

securities, the beta in the high volatility regime however is more likely to be different from the 

neutral volatility regime. 
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We also investigated whether or not the betas are priced in the cross-sectional regression. We 

find that the beta risk premium in the low and neutral market volatility regimes is priced. These 

significant results are uncovered only in the pricing model conditional on the realised market 

return, while the unconditional model does not uncover such significant relationship. In the 

conditional three-beta asset-pricing model, the beta risk premiums are positive and significantly 

different from zero in the up market and are negative and significantly different from zero in the 

down market. That is, we have strong evidence to suggest that the components of the total 

portfolio return variations systematically related to the low and neutral market volatility regimes 

are priced. 
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Table 1. Some descriptive statistics of the distributions of the continuously compounded daily  

returns of Dow Jones industrial securities 

Security  Mean Max Min Standard 
deviation Skewness Excess 

kurtosis 
Dupont 0.0437 7.0351 -6.1548 1.4405 0.1989 1.3886
Boeing 0.0474 8.0165 -11.7571 1.6119 -0.0468 3.9943
Caterpillar 0.0525 8.8147 -10.8175 1.7651 0.0510 3.5391
Alcoa 0.0316 8.1309 -8.3716 1.6607 0.2003 1.5540
Amex 0.0270 9.6100 -9.7466 1.9364 0.1239 1.9854
ATT 0.0195 10.1103 -6.4044 1.3310 0.3214 3.1347
CITIGRP 0.0914 11.2095 -10.6916 2.0009 0.0083 2.3436
Coca Cola 0.0973 7.5945 -5.7500 1.3933 0.1811 1.7486
Home Depot 0.1144 9.0151 -10.3622 1.9034 -0.0139 1.7856
GE 0.0597 5.9719 -6.3084 1.2349 0.0270 1.7511
GM 0.0176 7.1153 -8.3560 1.8797 0.0812 0.9682
Kodak 0.0494 10.5585 -12.2729 1.6496 0.0654 6.1489
Exxon 0.0349 5.6240 -4.3222 1.1266 0.1079 1.1863
Honeywell 0.0745 12.4121 -6.3918 1.6350 0.6464 4.2264
HP 0.0926 13.2552 -19.3955 2.1933 0.0526 6.3984
IBM 0.0092 11.0782 -11.3736 1.7086 0.0476 6.0508
INTL Paper 0.0252 6.7090 -8.7292 1.4437 0.0676 1.4353
JP Morgan 0.0428 6.6975 -6.0331 1.4796 0.2936 1.7619
JJ 0.0729 7.5801 -6.4568 1.5008 0.0241 1.3069
MCD 0.0647 6.3149 -8.7011 1.5088 0.0296 1.4721
MERCK 0.0555 5.3820 -6.3911 1.5369 0.0178 0.9606
MSFT 0.1548 9.9091 -8.1041 2.1203 0.1389 1.2503
MMM 0.0343 4.9461 -9.0476 1.1752 -0.3528 4.0753
PM 0.0565 6.2250 -26.1523 1.6107 -2.6417 43.6380
PG 0.0578 5.5280 -5.6041 1.3212 0.1523 1.1559
SBC 0.0271 7.2321 -5.3476 1.3374 -0.0031 1.1647
United Tec 0.0441 8.3160 -6.9054 1.4424 0.2320 2.6466
Walmart 0.0486 7.5913 -9.8961 1.7352 -0.0047 1.8396
Disney 0.0491 11.2655 -6.6880 1.5806 0.4532 2.6014
Intel 0.1301 9.009 -14.5082 2.3631 -0.3969 2.9882
US 1-month TB  0.0128 0.0218 0.0059 0.0039 0.2609 -0.9868
S&P500 0.0401 3.6642 -3.7272 0.7268 -0.1664 2.3902

Notes: The statistics are based on 1618 observations. The sample period is January 1990 through 
May 1996. 
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Table 2: Model estimates 

Number of volatility switching regimes Parameter 
2 3 4 5 6 

Intercept 0.035 0.0290 0.0369 0.0393 0.0428 
P11 0.987 0.2731 0.6795 0.6923 0.7228 
P12 0.013 0.7039 0.3049 0.2867 0.2430 
P13  0.0230 0.0100 0.0100 0.0132 
P14   0.0056 0.0100 0.0100 
P15    0.0010 0.0100 
P21 0.029 0.3308 0.1992 0.1598 0.0595 
P22 0.971 0.6682 0.7898 0.8192 0.9095 
P23  0.0010 0.0100 0.0100 0.0100 
P24   0.0010 0.0100 0.0100 
P25    0.0010 0.0100 
P31  0.0130 0.0100 0.0100 0.0100 
P32  0.0100 0.0100 0.0100 0.0100 
P33  0.9770 0.9574 0.9604 0.9583 
P34   0.0226 0.0186 0.0107 
P35    0.0010 0.0100 
P41   0.0100 0.0100 0.0100 
P42   0.0100 0.0100 0.0468 
P43   0.0727 0.0979 0.1089 
P44   0.9073 0.8811 0.8233 
P45    0.0010 0.0100 
P51    0.0649 0.0258 
P52    0.0704 0.1022 
P53    0.0804 0.1124 
P54    0.0629 0.0471 
P55    0.7214 0.7116 
P61     0.0528 
P62     0.0569 
P63     0.0604 
P64     0.0531 
P65     0.0475 
σ 1 0.554 0.2526 0.3133 0.3095 0.2804 
σ 2 1.057 0.6805 0.6505 0.6102 0.5481 
σ 3  1.0889 0.7665 0.7575 0.7998 
σ 4   1.4220 1.4728 1.5186 
σ 5    2.0715 2.0325 
σ 6     2.5770 

MLE -624.73 -615.44 -614.53 -615.75 -619.94 
AIC 0.9220 0.9157 0.9246 0.9396 0.9619 

  Note: The estimation period is January 1990 to May 1995 spanning 1366 days. 
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Table 3: Beta estimates 

Model 
estimated 

Three-beta security return generating process 
itmtHtiHmtNtiNmtLtiLiit RdRdRdR εβββα ++++=  

Market model 
itmtiiit RR εβα ++=  

Security iα  iLβ  iNβ  iHβ  iα  iβ  
Dupont 0.0040 1.2231* 1.0024*** 1.1351*** 0.0049 1.0762***

Boeing 0.0035 0.2700 0.7455*** 1.2260*** -0.0033 1.0073***

Caterpillar 0.0266 0.4745 1.0371*** 1.0058*** 0.0223 1.0176***

Alcoa -0.0237 2.5013*** 0.9824*** 0.8507*** -0.0107 0.9164***

Amex -0.0225 0.6419 1.0618*** 1.5286*** -0.0288 1.3163***

ATT -0.0135 -0.1127 0.9955*** 0.9991*** -0.0223 0.9928***

CITIGRP 0.0318 1.9583** 1.5751*** 1.2699*** 0.0368 1.4091***

Coca Cola 0.0561* 0.1088 1.1857*** 1.2553*** 0.0470 1.2194***

Home Depot 0.0845** 0.1012 1.4981*** 1.6184*** 0.0726** 1.5583***

GE 0.0110 0.7792 1.0699*** 1.1702*** 0.0080 1.1237***

GM -0.0332 1.3086 1.3430*** 1.3173*** -0.0333 1.3288***

Kodak 0.0129 1.3722* 0.7590*** 1.0527*** 0.0159 0.9228***

Exxon 0.0033 1.0753** 0.6782*** 0.6346*** 0.0067 0.6559***

Honeywell 0.0365 0.7479 0.9547*** 0.8420*** 0.0356 0.8920***

HP 0.0276 2.6639*** 1.3732*** 1.3862*** 0.0379 1.3857***

IBM -0.0280 1.2980 0.9270*** 0.8945*** -0.0248 0.9107***

INTL Paper -0.0106 1.7384** 0.9197*** 1.0001*** -0.0045 0.9673***

JP Morgan 0.0050 0.6117 1.1152*** 1.0678*** 0.0013 1.0871***

JJ 0.0212 1.4366** 1.2014*** 1.0723*** 0.0239 1.1315***

MCD 0.0260 0.7193 1.1179*** 1.0414*** 0.0232 1.0742***

MERCK 0.0110 0.8539 1.0770*** 1.1274*** 0.0089 1.1038***

MSFT 0.1210** 1.5361 1.3502*** 1.3856*** 0.1223* 1.3704***

MMM 0.0046 0.6940 0.8284*** 0.8572*** 0.0033 0.8437***

PM 0.0041 1.5897** 1.0260*** 1.1366*** 0.0079 1.0891***

PG 0.0189 1.0638* 1.1270*** 1.0416*** 0.0189 1.0798***

SBC -0.0092 1.5993** 1.0031*** 0.8887*** -0.0037 0.9428***

United Tec -0.0033 1.0436 0.8736*** 0.8938*** -0.0020 0.8854***

Walmart 0.0121 1.6843** 1.3177*** 1.5291*** 0.0137 1.4353***

Disney 0.0223 0.4429 1.0862*** 1.1363*** 0.0169 1.1110***

Intel 0.1004* 0.9597 1.6641*** 1.3186*** 0.0970** 1.4715***

 
Notes: *** indicates significant at the 1 percent level, ** at the 5 percent level and * at the 10 
percent level. , if market is in volatility regime k and 1=ktd 0=ktd  otherwise where, 

. Of the 1366 sampled days the market is in the low, neutral and high volatility 
regimes in 311 (22.77%), 714 (52.27%) and 341 (24.96) days respectively.  

HNLk ,,=
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Table 4: p-values from F-tests  
Security 0 : iL iNH β β=  0 : iL iHH β β=  0 : iN iHH β β=  0 : iL iN iHH β β β= =  

Dupont 0.7377 0.8937 0.1344 0.3178 
Boeing 0.5386 0.2161 0.0000*** 0.0000***

Caterpillar 0.5041 0.5278 0.7821 0.7794 
Alcoa 0.0580* 0.0393** 0.2217 0.0655*

Amex 0.6566 0.3474 0.0002*** 0.0009 
ATT 0.0643* 0.0632* 0.9643 0.1775 
CITIGRP 0.6897 0.4729 0.0182** 0.0521*

Coca Cola 0.0743* 0.0572* 0.3908 0.1244 
Home Depot 0.0985* 0.0725* 0.2898 0.1270 
GE 0.5645 0.4381 0.1397 0.2654 
GM 0.9699 0.9924 0.8342 0.9781 
Kodak 0.4584 0.6990 0.0084*** 0.0265**

Exxon 0.4652 0.4173 0.5510 0.6194 
Honeywell 0.8027 0.9094 0.3117 0.5901 
HP 0.2095 0.2138 0.9246 0.4549 
IBM 0.6532 0.6248 0.7696 0.8570 
INTL Paper 0.2291 0.2777 0.3798 0.3545 
JP Morgan 0.4752 0.5174 0.6174 0.7008 
JJ 0.7363 0.6017 0.1698 0.3538 
MCD 0.5702 0.6462 0.4173 0.6320 
MERCK 0.7575 0.7049 0.6043 0.8230 
MSFT 0.8519 0.8797 0.7918 0.9523 
MMM 0.7967 0.7543 0.6817 0.8818 
PM 0.4678 0.5592 0.2895 0.4619 
PG 0.9138 0.9696 0.2770 0.5535 
SBC 0.3407 0.2557 0.1739 0.2274 
United Tec 0.8143 0.8358 0.8358 0.9553 
Walmart 0.6188 0.8330 0.0331** 0.0973*

Disney 0.3990 0.3629 0.6254 0.6017 
Intel 0.5312 0.7495 0.0225** 0.0666*

Notes: *** indicates significant at the 1 percent level, ** at the 5 percent level and * at the 10 
percent level.  
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Table 5: Risk premium estimates in the unconditional three-beta asset pricing model 

 0λ  Lλ  Nλ  Hλ  
Mean  0.0766 0.0003 0.0039 0.0196 
Standard Deviation 0.1196 0.0306 0.1137 0.1043 
t-value 0.6406 0.0100 0.0343 0.1877 

Notes: The λ  is estimated over 252 days 
 
 
Table 6: Risk premium estimates in the conditional three-beta asset pricing model 

Up market (n = 110 days) Down market (n = 142 days)  
U
0λ  U

Lλ  U
Nλ  U

Hλ  D
0λ  D

Lλ  D
Nλ  D

Hλ  
Mean -0.0527 0.0800 0.2828 0.2153 0.2436 -0.1026 -0.3562 -0.2331
Std dev 0.1592 0.0408 0.1413 0.1456 0.1808 0.0444 0.1811 0.1447
t-value -0.3312 1.9608** 2.0013** 1.4786 1.3470 -2.3101** -1.9670** -1.6113
Notes: ** indicates significant at the 5 percent level.  
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