
 

Some New Semiparametric Panel Stochastic Frontiers    

  A Bayesian Penalized Approach 

 
 

Gholamreza Hajargasht* 

 

School of Economics,  

University of Queensland,  

St Lucia QLD 4072, Australia 

  

 

 

ABSRACT 

 

Greene (2002, 2004) examines several extensions of the panel 

stochastic frontier models including what he calls the “true” 

fixed and random effect stochastic frontier models. In this paper 

we extend these two models to their semiparametric alternatives 

where the functional form for production function (or other 

forms of technology) is assumed to be unknown. To this end we 

use the Bayesian penalized approach to stochastic frontiers 

developed in Hajargasht et al. (2003). Finally we illustrate our 

estimation method with an example using real data. 
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Introduction 
 

Stochastic frontier modeling with panel data has relied primarily on results from 

traditional fixed and random effects models. These models fail to distinguish between 

inefficiency and technological differences across firms; they assume all the firms share 

the same frontier functions and all the differences are due to inefficiency. In practice, 

firms might face different technologies and assuming the same frontier technology could 

lead to wrong inefficiency estimates. Recently, there have been some studies to address 

this problem. Tsionas (2001) proposes a random coefficient approach while Orea and 

Kumbhakar (2003) use a latent model approach to alleviate this shortcoming. Greene 

(2002, 2004) examines several extensions of the conventional fixed and random effect 

models. He extends the fixed effects model to what he calls the “true” fixed effects model 

by adding an extra one-sided random term to the standard fixed effect stochastic frontier 

model and shows how to practically estimate such a model.  He then considers additional 

approaches, the “true” random effect and random parameters models. In this paper we 

extend “true” fixed and random effects models of Greene to their semiparametric 

alternative. 

 

Standard stochastic frontier models are parametric; the researcher has to assume a 

particular functional form for technology and inefficiency distribution. If the specified 

functional form is not correct, the estimates will be inconsistent. Relaxing this 

assumption is particularly important in the context of the stochastic frontier modeling 

because inefficiencies, the primary aim of the estimation, measured as deviations from a 

frontier function. There have been many studies with the purpose of relaxing the 

parametric assumption in stochastic frontier framework, for example Fan & et al. (1995), 

Kneip & Simar (1996), Henderson (2002), Adams et al. (1999) and Kumbhakar & 

Tsionas (2002)1. In Hajargasht et al. (2003) we applied the Bayesian penalized approach 

to semiparametric estimation of stochastic frontier models and explained its advantages.  

The purpose of this paper is to extend Greene’s true fixed and random effect stochastic 

frontier models to the semiparametric case where the functional form for the 

                                                 
1 - All these studies have used local nonparametric approaches (particularly kernel method) to estimating of 
stochastic frontiers. 



representation of technology (production or cost function) is assumed to be unknown 

using the Bayesian penalized spline approach developed in Hajargasht et al. (2003).  

 

The structure of the paper is as follows: In section 1 we introduce the Bayesian penalized 

spline approach to nonparametric estimation. Section 2 discuses the current literature on 

fixed and “true” fixed effect stochastic frontier model and we generalize them to 

semiparametric case in section 3. Section 4 and 5 deal with “true” random effects and its 

generalization to semiparametric case using the Bayesian penalized spline approach. In 

the presentation of parametric fixed and random effect we follow Greene (2002). We 

conclude the paper with empirical application of the proposed models.    

 
1- Bayesian Penalized Approach to Nonparametric Regression 
 
There are several approaches to nonparametric regression modeling including (but not 

limited to) local approach; wavelets; regression splines; smoothing and penalized splines 

(Ruppert et al 2003). In this paper we use a variant of smoothing splines called P-spline  

(i.e. Eilers and Max 1996 and Ruppert et al. 2003). We have explained in detail the 

advantages of the Bayesian version of this approach particularly in the context of 

estimation of stochastic frontier in Hajargasht et al. (2003). Here we just have a quick 

review2. 

Suppose we are intended in estimation of the following univariate nonparametric 

regression: 
 

                                         iii xfy ε+= )(                                      (1) 
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2 - Here we only explain the univariate regression case. For extension to multivariate case see Ruppert et al. 
or Hajargasht et al.  (2003). 



that f has been approximated with separate polynomials in the interval between two 

consecutive knots in a way that it is continuous and has continuous derivatives up to 

order p-1.   

Model (1) can be estimated by replacing  f with Xβ  form (2) using ordinary least 

squares once the knots have been selected. This method is known as the regression spline 

approach. The problem with this approach is that knot selection procedures are 

complicated and computationally intensive (Smith and Kohn 1996). Smoothing spline 

[see Green and Silverman (1994)] is another approach which uses all the observations as 

knots. Consequently, when the number of observations is large they become 

computationally impractical. P-splines, as presented in Ruppert & et al. (2003), combine 

features of smoothing splines and regression splines in such a way that, unlike regression 

splines, the locations of knots are not crucial, and they have far fewer parameters than 

smoothing splines. In the P-spline approach we allow K to be large and fixed (i.e. 20 

knots on equidistant intervals), but we put a penalty on the K
kkβ 11}{ =+  (the set of jumps in 

the derivative of ),( βxf ) such that 2

1

K

p k
k

Cβ +
=

≤∑ . In this case the least square 

minimization problem can be written as 
 

 Min '( ) ( )− −y Xβ y Xβ Subject to C≤β'Kβ  

 
Where K is a diagonal matrix whose first p diagonal elements are 0 and the remaining 

diagonal elements are 1. It can be shown using a Lagrange multiplier argument, that this 

is equivalent to choosing β to minimize 
 

Kββ'XβyXβy λ+−− )()( '  
  

Simple calculation shows that the penalized least square minimizer βwill be 
 

              yX'K)XX'β 1−+= λ()(λ             (3) 
  

 



Bayesian Approach: In this paper we employ the Bayesian version of the penalized 

spline. Suppose we are again asked to estimate (1). Based on the above assumptions we 

know that we can rewrite (1) as regression spline (2) which is a linear regression and can 

be easily estimated using the Bayesian methodology but we have an extra requirement 

that 2

1

K

p k
k

β +
=
∑ must not be big. In the Bayesian approach this requirement can be 

incorporated using a prior onβ . For example: 

                                     2(0, )N βσ
−β K∼                         (4) 

 
where K is a diagonal matrix with the first p diagonal elements equal to zero and −K  is 

its generalized inverse. It is not difficult to show that with this prior, the posterior mean 

for  β  is equal to (3) where 2 2/ βλ σ σ=  [Ruppert & et al. 2003].  We can now see the 

strength of the Bayesian penalized approach for estimation of complex semiparametric 

models like the semiparametric stochastic frontier models that we are trying to estimate 

in this paper. This approach enables us to turn the semiparametric model to a parametric 

counterpart by transforming the nonparametric part of the model to a linear function with 

particular priors on the coefficients. This together with the powerful Bayesian MCMC 

simulation methods enables the researcher to estimate more complex semiparametric 

models which might not be estimable by other nonparametric methods3. In section (3) 

and (5) we show in detail how to specify and estimate the semiparametric versions of 

Greene’s true fixed and random effects using Bayesian penalized approach.  

 

2- The “True” Fixed Effect Model 
 
Fixed effects stochastic frontier models have been based on Schmidt and Sickles’s (1984) 

treatment of the linear regression model4: 
 
        it i it ity α ε= + +βx                        (5) 

                                                 
3 - The Bayesian penalized approach has several other attractive properties which have been discussed in 

Hajargasht (2003). 

 
4 - For  Bayesian approach to fixed effect stochastic frontier see Koop and Steel (2002) 



 
which can be estimated consistently and efficiently by ordinary least squares. The model 

is reinterpreted by treating αi as the firm specific inefficiency term. To retain the flavor  

 

of the frontier model, the authors suggest that firms be compared on the basis of 

 
       i i i i* = max { } - α α α                      (6) 
 

    This approach has formed the basis of recently received applications of the fixed 

effects model in this literature. Some extensions that have been suggested include 

Cornwell, Schmidt and Sickles proposed time varying effect, αit = αi0 + αi1t + αi2t2, 

and Lee and Schmidt’s (1993) formulation αit = θtαi. All these models have a common 

shortcoming: By interpreting i*α  as “inefficiency” any other non-efficiency related 

heterogeneity across firms is ignored. Greene (2002) proposes some alternative models 

that more explicitly build on the stochastic frontier model instead of reinterpreting the 

linear regression model. Greene presents the following model as a “true” fixed effects 

stochastic frontier model 

                 it i it it ity zα ε= + + −βx                      (7) 
 

which has been also used in Polachek and Yoon (1996) where αi is a coefficient 

representing the heterogeneity across firms and zit is a random error with one sided 

distribution representing inefficiency.  The model can be estimated as a stochastic 

frontier model simply by creating the dummy variables. The fixed effects model has the 

virtue that the effects need not be uncorrelated with the included variables. But, there are 

two problems with the estimation of this model. The first is the practical problem that the 

model involves many parameters that must be estimated. The second, more difficult 

problem is the incidental parameters problem. The incidental parameters problem is a 

persistent bias that arises in nonlinear fixed effects models when the number of periods is 

small. Greene (2002) addresses both of these problems. He provides a maximum 

likelihood estimation method which can be practically applied even if the number of 

firms is very high. Greene also examines the incidental parameter problem in the context 

of stochastic frontier using a Monte Carlo experiment. Greene has found that the biases in 



coefficient estimates were surprisingly small and did not appear in the patterns predicted 

by received results for other models, and, moreover, that there appeared to be no biases 

transmitted to the estimates of technical inefficiency. 

3- Semiparametric True Fixed Effect: The Bayesian Penalized Estimation 
  
Consider following semiparametric fixed effects model for a (possibly unbalanced) panel 

data  

                                            ( )it i it it ity f zα ε= + + −x                             (8) 

1,2,.... , 1,2,...it T i n= =  
 

where f is assumed to have an unknown functional form; the only assumption about f we 

make is that it satisfies some degree of smoothness. Based on the discussion in section (2) 

we can rewrite (8) in the following regression spline form 
 
                                               it i it it ity zα ε= + + −x β                              (9) 

 
and proceed by assuming β  has a normal prior distribution of the form 

2(0, )N τ −=β K . zit must have a one sided distribution, here we assume an exponential 

distribution 1~ (1, )iz Gamma γ − 5. We also make the standard assumption that random 

error has a normal distribution 2(0, )it N εε σ= . It is also assumed that itε  and itz  are 

independently distributed.  

 
In the maximum likelihood approach to fixed effects we don’t make any distributional 

assumption about iα  we consider it as a fixed parameter and the estimation proceeds 

using dummy variables. The Bayesian analog to this is to use flat non-informative priors 

for iα .  Note that we can rewrite (9) in the following matrix form 
 
                                            * *Y = X β + ε - z  

where 

                                                 
5 - The analysis can be easily to modify to include other distributions like half-normal. 
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and iD  is a vector of ones with the size of iT . 

 In the Bayesian approach to above estimation problem our goal is to find and analyze 

following posterior 
 

       * 2 2 1( , ,σ ,σ , )p β γ− − −β z | y,x                    (10) 

 
According to the Bayes theorem and considering the independence assumption that we 

have made we can write: 

 
   * 2 2 1 * 2 * 2 1 2 2 1( ,σ , , ) ( | , ) ( | ) ( | ) ( ) ( ) ( )p p p p p p pτ γ σ τ γ τ σ γ− − − − − − − − −∝β ,z | y,x y β ,z β z    (11) 
 
The first term in the right hand side of the above relation is the likelihood function. Using 

(9) and the normality assumption about the error term it is not difficult to show that  
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To obtain the posterior we need to specify priors on variances andγ . We accept the 

inverse gamma priors which is standard in Bayesian stochastic frontier analysis. Putting 

all the information together we obtain   
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For further inference we must be able to analyse the above posterior but this posterior is 

not of any standard form and it seems unlikely to even randomly draw from it directly. 

However, we can derive the following conditional distributions: 
  

* 2 2 1 ' 2| , , ~ { . .( ), }Nβσ σ γ σ− − − +*β z S X y z S where 
2

* 1
2( )σ
τ

−= +*' *S X X K  

* ' * * ' *
2 1 ( ) '( )| , , ~ / 2,

2
G a n bσ γ− −  + − + − + + 

 

y z X β y z X βz β  

*' * *
2 2 1| , , , ~ ( ) / 2,

2
G a n m p bβ βτ σ γ− − −   + + − + 
  

β K βX z  

2 * 1 * 1 2 2| , , ~ { , }, 0it it it iz N y zσ γ γ σ σ− − −− − ≥β x β  

1 2

1 1
| , , ~ ( , )

iTn

it
i t

G T a b zγ γγ σ− −

= =
+ + ∑ ∑z β  

 
All the above distributions are of standard forms (normal, truncated normal and gamma) 

and drawing random numbers from them is fairly easy6. So a Gibbs sampler with data 

augmentation can be set up by sequentially drawing from the above conditional 

distributions. These draws can be used to obtain posterior means and standard errors. 

 

4- The “True Random Effect” 

 
  The random effects model is also motivated by the linear model with the assumption 

that firm specific inefficiency is constant over time. Thus, the model becomes 
 

      it it it iy zε= + −βx  

Where 

2[0, ]it Nε σ=  

                                               
2| [0, ] |i zz N σ∼       or    1 1exp( )i iz zλ λ− −−∼  

 
This model, proposed by Pitt and Lee (1981) can be estimated by maximum likelihood. It 

maintains the spirit of the stochastic frontier model and satisfies the condition that the 
                                                 
6 - Drawing random numbers from a truncated distribution has been discussed in Tsionas (2002) 



inefficiency be positive. The random effects model is an attractive specification. But, it 

has three noteworthy shortcomings. The first is its implicit assumption that the effects are 

not correlated with the included variables. This problem could be reduced through the 

inclusion of those effects in the mean and/or variance of the distribution of zi however. 

The second problem with the random effects model as proposed here is its implicit 

assumption that the inefficiency is constant over time and this might be a strong 

assumption for a long time series of data, There has been efforts to remedy this 

shortcoming, notably that of Battese and Coelli (1992, 1995) and Kumbhakar (1990). The 

third shortcoming of this model is the same as characterized the fixed effects regression 

model. Regardless of how it is formulated, in this model, zi carries both the inefficiency 

and, in addition, any time invariant firm specific heterogeneity. 

As a first pass at extending the model, Greene considers the following true random 

effects specification: 
 

        it it i it ity zα ε= + + −βx  

 
where iα is the random firm specific effect, itε  and  itz  are the symmetric and one sided 

components specified earlier. In essence, this would appear to be a regression model with 

a three part disturbance, which immediately raises questions of identification. However, 

that interpretation would be misleading, as the model actually has a two part composed 

error; 

it it i ity vα= + +βx  
 

which is an ordinary random effects model, albeit one in which the time varying 

component has an asymmetric distribution. The conditional (on iα ) density is that of the 

compound disturbance in the stochastic frontier model, 
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Thus, this is actually a random effects model in which the time varying component does 

not have a normal distribution, though iα  may. In order to estimate this random effects 

model by maximum likelihood, as usual, it is necessary to integrate the common term out 



of the likelihood function. There is no closed form for the density of the compound 

disturbance in this model. However, Greene proposes a simulation based approach to 

estimate the model.  This model can be written equivalently as a stochastic frontier with a 

firm specific random constant term, 
  

   ( )it i it it ity a zα ε= + + + −βx  

 
This look likes a random parameter model in which only the intercept is random. Greene 

and Tsionas (2002) have extended the model to following random parameter model  
 

             ( )it i it it ity zε= + + −β α x  
  

Here in addition to the intercept, the slope parameters are also random. Greene proposes a 

simulated maximum approach to estimate the above model while Tsionas uses a Bayesian 

approach. In the next section we extend our Bayesian semiparametric approach to 

estimate semiparametric version of the true random effect model where the function form 

for the representation of technology is assumed to be unknown but all the other 

specifications will be the same.  

 
5- Semiparametric “True” Random Effect: Bayesian penalized estimation 
 
Consider following semiparametric random effects model for a (possibly unbalanced) 

panel data  

( )it i it it ity f zα ε= + + −x  

1,2,.... , 1,2,...it T i n= =  
  
  In the classical approach to fixed effects models, iα  is treated as a fixed parameter while 

it is treated as a random variable when dealing with a random effects model. In the 

Bayesian approach to both fixed and random effect iα  is treated as random and the 

distinction is the priors that we specify for the individual effects. For a fixed effect model 



e put a non-hierarchical prior like the non-informative priors we used in section (4).  For 

a random effect model we specify a hierarchical prior on iα  like7 
 

2~ ( , )i N αα µ σ  
 
where the hyperparameters is also given the following priors  
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All the other assumptions and priors are same as the fixed effect model. With a similar 

argument it is not difficult to show that the posterior will be  
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   Again this posterior is not of any standard form and there is no easy way to analyse it 

directly. However, we can derive following conditional distributions: 
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7 - The standard assumption about iα  is normal distribution but the analysis can proceed by assuming a 
more flexible approach: mixture of normal distributions. 
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   As we see all these distributions are of one of the normal, inverse gamma or truncated 

normal distributions and drawing random numbers from them is fairly easy.  So a Gibbs 

sampler can be easily setup by sequentially drawing from theses distributions. After a 

burning period these draws can be used for further analysis. 

 
6- Empirical Application 
 
This part is not complete yet 
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