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Abstract 

 

Tests and estimation for structural changes in single equation models, particularly the 

analysis of covariance and the Chow tests, are well known to econometricians and widely 

used. This paper demonstrates that analogous estimation can also be constructed in 

simultaneous equation models when equations are estimated by common estimator like 

2SLS and 3SLS. In the present paper, we discuss the problem of estimating structural 

changes, both equation by equation and globally, in simultaneous equations model. We 

consider the case of possible multiple switching of the parameters at unknown sample 

points and investigate the simultaneous estimation of multiple structural changing points 

along with the regression coefficients within subdomains. A recursive segmentation 

method will be used which is based on the principle of dynamic programming and allow 

global minimizers to be obtained using a number of sums of squared residuals.  
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1. Introduction 

 

Before an econometric model can be used to draw inference about economic phenomena, 

it is of great importance to assess the adequacy of its specification. To test structural 

change, or parameter constancy as the simplest case, is particularly appropriate for 

dynamic econometric models in that policy prescriptions might be quite different with the 

presence of structural changes.  

 

Simultaneous equation model has been widely used in econometric literatures; 

nevertheless there are only a few results available on analyzing and testing the stability of 

the coefficients in structural equations. Andrews and Fair (1988) discusses the problem in 

a general setting, while more concrete situations are studied in Lo and Newey (1985) and 

Erlat (1983). The former work extended Chow’s (1960) tests to simultaneous equations 

and proposed a simple Wald test, composed of two-stage lease-squares (2SLS) estimator 

and the estimate of its covariance matrix. Erlat (1983) advocated an exact F test for the 

cases when there are inadequate degrees of freedom. It also constituted an extension of 

Gile’s (1981) result, where CUSUM and CUSUM of squares tests for parameter stability 

in a single structural equation are developed. However, it is a common drawback of all 

the tests mentioned above that the switching point is assumed to be known a priori, which 

is often not the case in applied research. Their studies, in addition, only examine the 

structural change of one single equation belonging to a simultaneous equation model 

rather than considering the entire system as a whole. 

 

The single-equation counterpart in this agenda has been discussed by several authors 

(Chong 1995; Bai 1997, etc). In many applications, the number of structural breaks as 

well as the locations of break points are taken as unknown parameters and a theory of 

least squares estimation has been developed. Operationally, the whole sample is split at 

each possible breakpoint, the other parameters are estimated by OLS and the sum of 

squared errors (SSE) is calculated. The least squares breakpoint estimation is the value 

that minimizes the full sample SSE. Independently in an early study, Huang, Liu and 
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Zhang (1985) considered multiple structural changes in a linear model estimated by least-

squares and proposed an information criterion for the selection of the number of changes. 

Their study discussed the problem in a more general framework, where the form of the 

model is not fixed between various segments and other estimation criteria besides OLS 

are allowed. However, there has not been a corresponding development of tests and 

estimation method for changes in the coefficients of structural equations in simultaneous-

equation models.  The purpose of this paper is to investigate this issue in simultaneous 

equations context.  

 

The outline of the paper is as follows. Section 2 presents the Recursive Segmentation (RS) 

method which is able to detect the unknown changing points in simultaneous equations. 

Section 3 tackles the problem of determining number of the changes where information 

criterion is applied. Concluding remarks are provided in section 4.  

 

2 Recursive Segmentation 

 

The basis of the method, for specialized cases, is documented by Fisher (1958) and 

Guthery (1974). However, thorough treatment and description of the main idea in the 

econometrics literature seems still sparse. We hope to fill a small part of that breach.  

 

The standard linear simultaneous equations model is considered first, where all identities 

are assumed to have been substituted out of the system of equations: 

YB X U+ Γ =                                                                                                        

where Y is the N M× matrix of jointly dependent variables, X  is the N K× matrix of 

predetermined variables, and U  is a N M× matrix of the structural disturbances of the 

system. Thus the model consists of M equations and N observations. We have assume 

B is nonsingular, ( )rk X K= , and that all equations satisfy the rank condition for 

identification. Lastly, the orthogonality condition applies between the predetermined 

variables and structural errors, and the second order moment matrices of the current 

predetermined and endogenous variables are assumed to have nonsingular probability 
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limits. The structural errors are assumed to be independent and identically distributed. 

Then structural change is said to be present within the range of the index i  if  

1 1 1 1( ) ( ) ( )Y i B Z i U i i I+ Γ = ∈  

2 2 2 2( ) ( ) ( )Y i B Z i U i i I+ Γ = ∈  
. 

. 

( ) ( ) ( )l l l lY i B Z i U i i I+ Γ = ∈                                                                                  (2.1) 

Here 1 2 ... lI I I I∪ ∪ ∪ = (I is the domain of i  in the set of samples.) Usually, we have 

( )s tI I s t∩ =∅ ≠  The index variable i , in time series data, corresponds to time or 

observation. 

 

Now with the index or partitioning variable identified, the inferential problem 

confronting us involves three parts: (1) the specification of the number of changes in the 

model, l ; (2) the detection of the change point { si }, or the boundaries of intervals over 

which each of the model pieces applies; (3) the estimation of the model parameters within 

each subdomain. If l  and the { si } were specified, step 3 would simply consist of 

applying the classical theory, interval by interval. Summing the residual sums of squares 

for the various intervals yields an overall index of the quality of fit of the segmented 

model. With l  fixed, the { si } may be estimated by minimizing this index. Further 

minimization of the index to estimate l  will base on information criterion for model 

selection problems.  

 

In estimating the appropriate sample separation in simultaneous equation system, there 

are two approaches to analyze the timing and form of structural changes, either to 

estimate equation by equation separately using a limited information estimator, or 

globally consider joint estimation of the entire system. In this section, we first deal with 

the estimation of structural changes in one equation embedded in a system of 
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simultaneous equations. We have parallel, more complex results for system methods of 

detecting structural changes. The corresponding discussion follows.  

 

2.1 Single Equation: Limited Information Method 

 

We shall, without loss of any generality, consider the first equation in the system of 

simultaneous equations and write it as  

1 1 1 1 1 1y Y X uβ γ= + +                                                                                                       (2.1.1) 

where 1y  and 1u  are 2( 1), (0, )N u N Iσ× ∼ , 1Y  is 1( )N g× , 1X  is 1( )N m× and the 

elements of 1 1,β γ  identified.  

The reduced form corresponding to (2.1.1) is  

I I IY Z V= Π +                                                                                                                 (2.1.2) 

where 1 1( , )IY y Y= , 1 2( , )Z X X= , 1 1( , )I πΠ = Π and 1 1( , )IV v V= . Z is the ( )N G×  matrix 

of non-stochastic exogenous variables in the complete system, 1Π  is a 1( 1)G m× + matrix 

of reduced form coefficients, and IV  is a 1( 1)G m× +  matrix of reduced form 

disturbances whose rows are assumed to be normally and independently distributed with 

zero mean and covariance IΩ . 

 

Now comparing (2.1.1) and (2.1.2), we have 0
1 1 1 1 1Iu v V Vβ β= − =  where 0 ' '

1 1(1, )β β= − . 

Thus, one may estimate 1u  by utilizing appropriate estimators for IV  and 0
1β . Then IV  

may be estimated by applying OLS to (2.1.2) to yield ˆ ˆ
I I IV Y Z= − Π , since IV  is reduced 

form coefficient and OLS will give consistent estimation. Meanwhile, 0
1β  will be 

estimated from (2.1.1) using 2SLS. Thus, the appropriate estimator of 1u  would then be 

* 0
1 1̂Îu V β= ⋅ .  

 

Since we know that Î Z IV M Y= , where 1( ' ) 'ZM I Z Z Z Z−= − , it follows that *
1u  may be 

obtained directly as the residual vector of the unrestricted OLS regress of 1
1 1 1̂y Y β−  on Z , 
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that is, regressing * 0
1̂Iy Y β= on Z . Denoting the 1G× coefficient vector of said 

regression by δ and *
1u would be expressed alternatively as  

* *
1

ˆu y Zδ= −                                                                                                               (2.1.3) 

As shown in Harvey and Phillips (1980), conditional on 0
1̂β , *

1u has the same 

distributional property as the OLS residuals from the general linear regression model with 

well-behaved disturbances.  

 

Now we proceed to the structural change analysis. Suppose we have structural change 

model in the form of (2.1) and have divided the entire sample set into l  segments, and let 

1 21 ... li i i N= < < < <  be the subscripts of the first data points of each segment. We 

denote such segmentation with N  observation of l  segments as 1( , ) { , ..., }lP N l i i= . We 

define target function, e , as the statistics that describe the overall goodness-of-fit of the 

model using certain estimation criteria. The value of the target function within a segment 

is called the diameter, denoted as d . Obviously, e  is a function of d . To illustrate the 

segmentation procedure, the most commonly used criterion in regression, ordinary least 

square (OLS), is used in this section. This gives specific form to the target function and 

diameters and simplifies the discussion. Other methods, like maximum likelihood and 

minimax criteria may also be applied. 

 

Following on the above definition and using OLS, the diameter of the segment from point 

si  to 1 1si + − , out of N observations, is defines as: 

1

1

1
* 2

1

1
* 2

( , 1) min ( )

ˆ( ) 1, 2,...,

s

s

s

s

i

s s t t t
t i

i

t t t
t i

d i i y Z

y Z s l

δ
δ

δ

+

+

−

+
=

−

=

− = −

== − =

∑

∑
                                       (2.1.4)                        

where *
ty  is the t th element of *y matrix. And e is defined as: 

1

( )

1
* 2

1
[ ( , )] min{ ( ) } 1, 2,...,

s

s

s

il

t t t
s t i

e p N l y Z s l
δ

δ
+ −

= =

= − =∑ ∑                                                  (2.1.5) 
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that when ( )sδ  (s=1, 2, …, l) are all different, from (2.1.5) we have: 
1 1

* 2
1

1 1

ˆ[ ( , )] ( ) ( , 1)
s

s

il l

t t t s s
s t i s

e p N l y Z d i iδ
+ −

+
= = =

= − = −∑∑ ∑                                                    (2.1.6) 

Equation (2.1.6) shows that by the construction of the method, the target function 

[ ( , )]e p N l  can be decomposed into the sum of individual diameters. This is to say, given 

l , the overall optima with respect to δ  can be achieved by optimizing each segment 

(since the segments are independent from each other). The ultimate goal is to obtain the 

optimal segmentation: 1 2( , ) { , ,..., },lp N l i i i= � � �� which minimizes the target function, i.e.: 

( , )
[ ( , )] min [ ( , )]

p p N l
e p N l e p N l

∈
=�                                                                                  (2.1.7) 

let δ̂ denote the resulting estimates based on the given l  partition 1 2( , ,..., )li i i . 

Substituting these estimates in the objective function and denoting the resulting sum of 

squared residuals as 1 2( , ,..., )lSSE i i i , the estimated break points 1 2{ , ,..., }li i i� � � can be 

alternatively denoted as 

1 2

1 2 1 2
, ,...,

{ , ,..., } arg min ( , ,..., )
l

l l
i i i

i i i SSE i i i=� � �  

Because the target function is the additive function of diameters, it is obvious that 

[ ( , )]e p N l  satisfies the separability condition in a multi-stage decision-making problem 

in dynamic programming. Thus, by using the technique of backward recursive 

optimization, the following relationship can be derived: 

)1(),~()]1,1~(~[

)},()]1,1(~[{min)],(~[

Nnsnjdsjpe

njdsjpesnpe

ss

ssnjs s

≤<<+−−=

+−−=
<≤                                  (2.1.8) 

In (2.1.8), )1,1(~ −− sjp s  represents the optimal s-1 segmentation of first 1sj −  

observations, while sj
~  is the corresponding value of sj that minimizes the value of 

(2.1.8), denoted as g(n ,s). Especially when s=2, (2.1.8) becomes: 

)2(),~()1~,1(

)},()1,1({min)]2,(~[

22

222 2

Nnnjdjd

njdjdnpe
nj

≤<+−=

+−=
<≤                                                (2.1.9) 
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Equations (2.1.8) and (2.1.9) are the main devices to obtain optimal segmentation. Using 

(2.1.8) recursively, we can obtain all ' ' '[ ( , )], 3, 4,..., 1, ( )e p n l l N l n N= − < <�  and the 

corresponding '( , )g n l ; For any given l, (l=1,2,...,[N/m]) (N is the sample size while m is 

the number of independent variables), check out ( , ),li g N l=� which is the subscript of the 

first data point of the lth segment. Then, from 

1( 1, ), ( 1,2,..., )s si g i s s l+= − =� �                                                                                     (2.1.10) 

we obtain all the subscripts of the first data points of the rest segments, 1 2 2, ,..., .l li i i− −
� � � Thus 

the optimal segmentation is derived as: 

1 2( , ) { , ,..., }.lp N l i i i= � � ��                                                                                                   (2.1.11) 

The critical step of the RS method is the recursive equation (2.1.9). That is why it is 

called “recursive segmentation method”. 

 

2.2 Full Information Method of Estimation 

 

Structural change analysis using limited information method allows each equation among 

the whole system to react differently to external shocks, or the structural breaks. That 

means each equation might change its structural at different timing. However, intuition 

would surely suggest that full information, or systems methods of estimation are 

asymptotically better than limited information methods which estimate the system one 

equation at a time, since the latter neglect information contained in other equations while 

the former brings efficiency gains. Now we examine the structural instability using the 

technique of joint estimation of the entire system of equations. 

 

The stated discussion about structural changes detection and, in particular, the RS method 

is also applicable to this circumstance. We may formulate the full system as 

Y Z Uδ= +  

where ( ) 0E U = and [ ']E UU I= Σ⊗ . In line with the principle of system methods, the 

technique of three-stage least square is used for joint estimation of the entire system of 

equations. Thus the 3SLS estimator is 
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1 1 1
3̂

ˆ ˆ ˆ[ '( ) ] '( )SLS Z I Z Z I Yδ − − −= Σ ⊗ Σ ⊗                                                                             (2.2.1) 

where Ẑ is the IV estimator for 2SLS. 

Again, the model is assumed to have 1l −  structural changes in the whole sample period, 

i.e., l  subsamples. Following the definition of diameter and target function stated in 

section 2.1, we have  

1 1
1

( , 1) ( , 1)
M

s s h s s
h

d i i d i i+ +
=

− = −∑                                                                                      (2.2.2) 

where 1( , 1)h s sd i i + −  is the diameter of the h th equation, for the individual segment 

staring from si  to 1 1si + − . 1( , 1)s sd i i + −  is the summation of all the diameters throughout 

the system. Given the structural changes in the form of 1 2( , ) { , , ..., }lP N l i i i= , we have 

1 1
1 1 1

[ ( , )] ( , 1) ( , 1)
l l M

s s h s s
s s h

e p N l d i i d i i+ +
= = =

= − = −∑ ∑∑                                                      (2.2.3) 

Those corresponding diameters can be calculated from 3SLS estimators. Similarly, we 

have the optimum of target function as
( , )

[ ( , )] min [ ( , )]
p p N l

e p N l e p N l
∈

=� . Again, the 

estimated break points will be
1 2

1 2 1 2
, ,...,

{ , ,..., } arg min ( , ,..., )
l

l l
i i i

i i i SSE i i i=� � � .  

 

It is obvious that the technique of backward recursive optimization and dynamic 

programming procedure are applicable and we can apply RS method again to detect the 

structural changes without grid search calculation. The use of full information or system 

method in model estimation makes use of the cross-equation correlations of the 

disturbances. In so doing, the structural change analysis is conducted with regard to the 

whole simultaneous equation system instead of with each equation at one time. The 

structural changes occurred are therefore assumed to affect the whole system, with each 

equation included, at the same timing.   

 

3 Determining the Number of Breaks 
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By using recursive classification, we can obtain different recursive segmentations 

simultaneously, given different number of segments l . If and only if l = 0l  ( 0l  is the true 

number of structure changes), the optimal l  segmentation can optimally fit in the given 

data and reflect the structure changing characteristics of the model. In practice we may 

not have such information of the exact number of changes or the number of segments. 

Another standard problem is that an improvement in the objective function is always 

possible by allowing more breaks. Therefore, in determining optimal 0l , we have to take 

both the goodness-of-fit and the efficiency of the model into consideration, so that 

maximum amount of accurate information can be obtained. Information criterion which 

derives from maximizing the posterior likelihood in a model selection paradigm and 

enjoys widespread use in model identification provides a natural baseline.  

 

In the multiple change point model, it has been found that sequential estimation is 

consistent to estimate the model without treating all break points simultaneously.  The 

basic logic is to estimate the break point using the whole sample data and then to divide 

the sample into two sub-samples at the estimated break point which allows the greatest 

reduction in the sum of squared residuals. Estimate an additional break whenever the sub-

sample fails the parameter constancy test. This step is repeated until all the sub-domains 

do not reject the null hypothesis of no structural changes. Although it yields consistent 

estimates of the break points, the estimates are not guaranteed to be identical to those 

obtained by global minimization.  

 

In this section, we use model selection method, and in particular, information criterion to 

determine the number of breaks. Information theory and, in particular the Kullback-

Leibler (Kullback and Leibler 1951) “distance” or “information” forms the deep 

theoretical basis for data-based model selection. Akaike (1973) found a simple 

relationship between expected Kullback-Leibler information and Fisher's maximized log-

likelihood function. This relationship leads to a simple, effective, and very general 

methodology for selecting a parsimonious model for the analysis of empirical data. 
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We know that the general form of Information Criterion (IC) is: 

)()](ln[2 sss mPMLIC +−=                                                                                           (3.1) 

where sM  represents the sth model, sm is the corresponding number of independent 

variables. It is expected intuitively that a more complicated model will provide a better 

approximation to reality. But, on the contrary, in most practical situations a less 

complicated model is likely to be preferred if we wish to pursue the accuracy of 

estimation. ( )sL M  is the value of the maximum likelihood function of the model, which 

takes into account of the goodness-of-fit of the model. ( )sP m  is the penalty function, 

which is an increasing function with respect to sm and penalizes the index when the 

model’s efficiency decreases. Thus, the RS model should be the one with smallest IC 

value. By using computer simulation, the investigation of the penalty function with 

different values of N, m and the variance 2σ suggests that the AIC function by Akaike, 

BIC of Schwarz and CAI of Sugiura are all appropriate. 

 

Based on the results obtained in section 2.2, for different number l, we have found the 

optimal segmentations and the corresponding estimation of the whole sample. Now the 

determination of l0 will be obtained according to the IC criteria, i.e., the one which allows 

the greatest reduction in the IC value: 0
1 2arg min ( , , ,..., )s

s
l

l IC l i i i= .  

 

4. Conclusion 

 

In this paper we present a comprehensive treatment of issues related to the estimation of 

linear models with multiple structural changes, to detection of the presence of multiple 

structural changes and to the determination of the number of changes present. It will 

further allow us to state facts about the number of segments present in the horizon 

covered, the magnitude of the mean and variance in each subsample, the nature of the 

dynamics in the error component, and the timing of the changes in regime. 
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In particular, the RS method we present is able to correctly detect and estimate the 

existence and the timing of unknown changing points. This method provides a systematic 

and operational approach that can accurately detect structural changing points without 

any prior information or knowledge of the pattern and timing of possible structural shifts. 

The method is based on the principle of dynamic programming and allows global 

minimizers to be obtained using a number of sums of squared residuals rather than an 

exhaustive grid search. 

 

The single equation estimation of structural changes enables us to detect the structural 

instability in individual equation, which is not necessary that of the entire simultaneous 

system. Since the changing points estimated among different equations may differ to 

some extent, this provides a new angle to explain the spillover effect of some policy 

implementation. Meanwhile, allowance is made to adapt different estimating criterion for 

different equation and the flexibility, in this respect, is gained. Another obvious practical 

consideration of estimating equation-wide instead of system-wide is the computational 

simplicity of the single equation methods. But the current state of available software has 

all but eliminates this advantage.  

 

Although the systems methods are asymptotically better, they are risky at propagating 

any specification error in one structural model throughout the system. But obtaining a 

unique structural changing points estimator help in consistency interpretation and enjoy 

the simplicity in coping with one system with the same number of segments, rather than 

with various numbers and different timing of structural changes for individual equation. 
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