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Abstract

In this paper we investigate the principal-multi agent relationship
with moral hazard where a risk neutral principal contracts with mul-
tiple risk averse agents whose actions are unobservable to the princi-
pal. We show that the well-known trade—off between incentive and
risk sharing can be asymptotically resolved as the number of agents
becomes sufficiently large, when an arbitrary fraction of agents can
obtain unverifiable perfect signals about the actions of other agents.
In particular the contract to attain the asymptotic efficiency has the
following features: (i) The wage schemes to some agents are contingent
on the task performances of other agents as well as their own perfor-
mances even though all of them are technologically and statistically
independent each other. (ii) The wage scheme specifies only two pay-
ment levels for each agent. (iii) The principal does not need to observe
all the performances of agents. (iv) The almost first best is uniquely
implemented.
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1 Introduction

In this paper we provide a new approach for resolving the trade—off between
incentives and risk sharing in the principal-multi agent model where a risk
neutral principal contracts with many risk averse agents. In our model all
agents are symmetric, and there exist no technological and statistical re-
lations among their task performances at all. Despite such independence
structure, we show that interdependent wage scheme which makes wages of
one agent contingent on the performances of others can attain almost the
first best, by identifying the large number effect that contracting with suffi-
ciently many agents has the value of providing appropriate work incentives
to them with arbitrary small risk.

The standard principal-agent theory has discovered the result that there
exists the basic tension between incentives and risk sharing in contracting
environments where trading partners have different risk attitudes and choose
privately observed actions after contract is signed: When a risk neutral
principal contracts with risk averse agents, she should impose no risk on
them but this will undermine their work incentives. *

In general efficient risk sharing and the provision of work incentives can-
not be compatible each other. However, there are a few papers which show
that such trade—off can be resolved in certain situations. One approach to
this is that the principal hires multiple agents who can monitor about their
chosen actions each other and can report messages about these actions. In
this case, it is known that, by using the technique of the implementation
theory, the first best can be attained as a unique equilibrium outcome (See
Ma (1988)). The other approach is to consider the dynamic structure of
principal-agent relationships by allowing renegotiation of initial contracts
after agents take actions. Hermalin and Kaz (1991) show in the single-
agent model that any implementable action without renegotiation is also
implemented at the first best cost when the principal can obtain an unveri-
fiable perfect signal about agent’s actions and initial contract is renegotiated
after such information is revealed. Ishiguro and Itoh (2001) also show that
the principal can attain the first best in the multi—agent model with rene-
gotiation even when agents’ actions are still unobservable to the principal
at the renegotiation stage.

Our main finding is that the principal can asymptotically attain the first
best payoff as a unique equilibrium payoff as the number of agents becomes
sufficiently large under certain information structure. The key feature of our
model is that there exists some subset of agents, called monitoring agents,
who can obtain unverifiable perfect signals about the actions of other agents
by taking monitoring activity. For example, the agents working at upper

!See Holmstrom (1979), Grossman and Hart (1983) and Mirrlees (1979) for pioneer
works on the moral hazard problems.



levels of a hierarchy may perform monitoring activities to supervise their
subordinates as well as they are engaged in productive activities. First we
suppose that such monitoring activity is costless and enforceable, and later
extend the model to allow monitoring to be costly and unobservable to the
principal.

In contrast to Ma (1988), in our model the principal cannot use the con-
tracts which are contingent on the reports about the monitoring outcomes,
because they are assumed to be unverifiable. Thus our result can be also
applied to the environments where communication between the principal
and the agents are limited so that the latter cannot tell to the former about
observed information about their actions because the contents of actions
may be very complex and indescribable.

As an alternative way, we may be able to resort to the model that the
principal can organize the production structures as the sequential stages in
which the agents who act at subsequent stages (followers) can observe the
actions taken by the previous agents (leaders). 2 Such sequential production
structures are often observed in production lines in the real world.

The main role of the above monitoring structure is to create endoge-
nous externality among agents by designing interdependent wage schemes.
Specifically, we will construct the mechanism by dividing the set of all agents
into two subsets: One is the set of agents (called non—monitoring agents)
who choose the actions first and one of whom is randomly selected by the
principal to be monitored by other agents (monitoring agents) at subsequent
stage of the mechanism. We will call the agent who was selected to be mon-
itored from the first set of agents the selected agent. The monitoring agents
choose the actions after they obtain unverifiable perfect signals about the
action of the selected agent.

Then the wage schemes to monitoring agents can be designed such that
they respond to the different actions of the selected agent by choosing differ-
ent actions. In particular, under the specified schemes, all monitoring agents
are induced to react to the first best action of the selected agent by choosing
the largest action among all possible actions but react to any lower action
than the first best one by choosing some lower action than the largest one.
This can endogenously create the externality effect that the action choice of
the selected agent affects not only his own task performance but also those
of monitoring agents through its influence on their action choices. Thus the
task performances of monitoring agents convey the useful information about
whether the selected agent works well or not. Then, by aggregating the per-
formances of all monitoring agents, the principal can check the deviation of

2Strausz (1999) considers such sequential productions in the deterministic partnership
model, and shows that there exists a budget balancing sharing scheme to attain the full
efficiency. The current paper differs from Strausz’s model: Our focus will be on how the
trade—off between risk sharing and incentives can be resolved in the agency setting, while
in Strausz (1999) stochastic and risk elements are assumed away from the model.



non—monitoring agents from the first best action.

If the above information aggregation is possible, it suffices to design a
simple wage scheme offered to non—monitoring agents, by specifying only
two wage levels, bonus and penalty, which will be paid according to the
outcomes of the aggregated performances of monitoring agents. Specifically
we will use a statistical test contract which checks whether the aggregated
performances of monitoring agents can pass some statistical test or not. 3

The statistical test here estimates whether or not the aggregated per-
formances can be on average close to their expected values conditional on
all monitoring agents choosing the largest action within some small positive
constant. If the selected agent can pass this test he will be paid a bonus,
while if he fails the test he must pay a penalty. If the selected agent shirks,
then all monitoring agents will shirk as well at the subsequent stage. As
a consequence, the principal can collect many signals about such deviation
of the selected agent and detect it with almost probability one. Then any
deviation of the selected agent can be heavily punished by taking a suffi-
ciently large penalty. On the other hand, by choosing the first best action,
the selected agent can pass the statistical test with almost probability one:
By the property of the incentive scheme offered to monitoring agents, they
will react to the first best action of the selected agent by choosing the largest
action. Then, by the Law of Large Numbers and the property of the sta-
tistical test contract offered to the selected agent, the probability to pass
the statistical test converges to one as the number of agents goes to infinity.
Thus the selected agent can almost surely obtain the bonus.

From this argument, all non—monitoring agents choose the first best
action and face almost zero risk. However, monitoring agents choose the
largest action, which may not be the first best one, and face the non—trivial
risk because their wage schemes must satisfy the standard incentive compat-
ibility constraints. This problem can be resolved, by choosing a sufficiently
small fraction of monitoring agents. Therefore, the principal can succeed in
eliciting the first best action from almost all agents but imposing sufficiently
small risk on them when the number of agents becomes sufficiently large.

Our contract also has the following interesting features: (i) It makes

3Al-Najjar (1997) also utilizes the statistical test approach in the two-sided moral
hazard model where the principal exerts an unobservable effort as well as many agents
do so. Al-Najjar (1997) then shows that the second best optimum, which is attained
when the principal can commit herself to her effort choice, can be approximated as the
number of agents becomes large enough. The current paper, however, is different from
Al-Najjar (1997): First, we address the issue about whether or not the first best optimum
can be approximately implemented. Second, we emphasize the role of monitoring among
agents, which can be used for creating endogenous externality among them. Third, our
mechanism uniquely implements the almost first best, and hence is robust to multiple
equilibria. See also Matsushima (2001) for utilizing the statistical test approach in the
context of repeated games with imperfect monitoring (the implicit collusion between firms
contacting in many markets).



wages of any monitoring agent contingent on the task performances of the
selected agent as well as his own performance, even enough all of them are
technologically and statistically independent each other. In the standard
argument such interdependent schemes become suboptimal when the tasks
of agents are technologically and statistically independent. However, we will
show that the interdependent wage schemes can asymptotically attain the
first best outcome when the number of agents becomes sufficiently large, even
in the environments with technological and statistical independence. (ii) It
is very simple in that the wage scheme specifies only two wage levels for each
agent. Since the contract theory is often criticized on the complexity and
reality of the optimal contracts derived from the models, our result may help
to fill the gap between the theory and practice, at least in large organizations
where many agents participate. (iii) We show the unique implementation
result that the principal can attain the almost first best payoff as a unique
equilibrium payoff. Thus our result is robust to the problems of multiple
equilibria under the proposed mechanism. (iv) The principal does not need
to observe all the performances of agents. It is sufficient to obtain verifiable
performances of the selected agent and all monitoring agents but not those
of all non—monitoring agents.

The remaining sections are organized as follows: In section 2 we will set
up the model. In section 3 we will show the main result that the principal
can asymptotically attain the first best payoff as a unique equilibrium payoff
when the number of agents tends to be sufficiently large. In Section 4 we
will extend the model to allow costly and unobservable monitoring and show
that the asymptotic efficiency result still holds.

2 The Model

2.1 Contractual Environment

We investigate the principal-multi agent relationship with moral hazard
where a risk neutral principal contracts with multiple risk averse agents
whose actions are unobservable to the principal. Let I = {1, 2, ..., N} denote
the set of agents. All agents are identical in that they have the same pref-
erence (which will be explained later) and the same production technology.
Each agent is assigned a task to be performed and chooses an unobservable
action. Let a; € A denote the action taken by agent ¢, where A C R is a
finite set. Let also a = (a;)Y.; € AN be an action profile of all agents. Let
a_; denote a vector a_; = (a;)j%. The (von Neumann and Morgenstern)
utility function of agent ¢ is additively separable on his income w; and action
a; as follows:

u(w;) — Claq). (1)

The reservation utility of all agents is normalized to zero.



We also make the following standard assumption:

Assumption S: (i) u : [w,0) — R is strictly increasing and concave, (ii)
limyy—p u(w) = —00 and ¥V a; € A, 3w € (w,00), u(w) > C(a;), and (i)
C is strictly increasing.

Assumption S (i) and (ii) say that each agent is risk averse and we
can always find a low payment to punish the agent heavily as well as some
payment to ensure he covers his action cost. Assumption S (iii) simply states
that any agent dislikes to work hard.

Let denote by a € argminge 4 C(a) the least costly action and define the
least cost of action as C' = C(a). Let ¢ be the inverse function of u (such
inverse exists by Assumption S (i)).

The principal can obtain a benefit R(a) from an action profile a € AN, by
hiring N agents and assigning them to the tasks.  One interpretation about
this is that R is deterministic but non—verifiable. The other interpretation
is that R(a) is the expected value of some random returns generated by an
action profile a € AYN. ® R(a) is assumed to be symmetric and take the
form as R(a) = "N, r(a;) where r : A — R.

We define the first best (FB) solution as the outcome to be attained when
the actions of all agents are contractible. Since the agents are symmetric,
we will focus on the average payoff of the principal per agent. Let o' € A
denote the first best action level to maximize the average payoff of the
principal. Then, the first best outcome is characterized as the efficient risk
sharing and optimal action choice:

w; = ¢(C(aP)), forallie I, (2)
and
afP ¢ argrgeaj‘(r(a) — ¢(C(a)). (3)

Let VFB denote the principal’s average payoff at the first best solution:
VI = r(a™?) — ¢(C(a"")). (4)

To avoid the trivial result, we assume that af'? > a.

4Since task assignment itself is not issue of the paper, we assume that each agent is
assigned to a task due to some technological reasons which are exogenously fixed.

SIn the latter interpretation the random returns may correspond to the task perfor-
mances we will introduce below. Even when this is not always the case and hence the
random returns convey other verifiable information than the task performances to be de-
fined below, our result is not changed because the principal can attain almost the first
best even if she simply uses only the latter information by discarding any additional in-
formation.



2.2 Information Structure

We assume that the action chosen by each agent is not observable to the
principal but she can access to some informative signal about it. Let y; € Y
be the verifiable performance on the task assigned to agent ¢. Here Y C &
is the set of all possible performances.

We will assume that the task performance of agent ¢ depends on his own
action and some random shock which is not statistically correlated with
those of other agents. As in the standard agency model, we will regard
y; itself as a random variable of which probability distribution is affected
by action a;. We then assume that the distribution of each y; has the full
support over Y.

We will also assume that all the task performances (y;)¥; are identically
distributed, given all agents choose the same action. In other words the
probability distribution of y; depends only on the action a; € A but not on
the name of a particular agent.

Let E[y;|a;] denote the expected value of the task performance of agent
i, conditional on his action a;.

We will assume that each y; has a finite variance Var(y;|a;) for any given
action a; € A. Note then that under our assumption Var(y;|a;) depends
only on the action level a; but not on the name of agent. Let also define
U = maxge 4 Var(yla) where 7 < +00.

Let F(z|a;) denote the cumulative distribution function of y;, given an
action a; € A. We will then make the following weak assumption, which
states that any lower action than the largest action, denoted @ = max A, or
the first best one a’? negatively affects the improvement of the probability
distribution of the task performance, as compared to the largest action or the
first best one, in the sense of the first order stochastic dominance (FOSD):

Assumption FOSD: For anyy € Y with minY < y < maxY,
F(yla) > F(yla) Ya<a, and F(yla) > F(yla'?) Ya < a’®

where @ = max A.

Assumption FOSD requires only “local” conditions on the FOSD improve-
ment of the distribution function. Thus it will be satisfied when the FOSD
property “globally” holds, i.e., F((y|a) is decreasing in a € A.

Under Assumption FOSD the expected value of y; conditional on a; € A,
Ely;|a;], has the following property: Ely;|[a] > F[y;|a;] for all a; < @.

We will also define the following function:
o) = 5 D=l

(z]a) — F(z|a)

Note that g(a; z) > 0 by Assumption FOSD. ¢(a; z) represents the ratio
between the change of action cost and the improvement of the distribution

fora<a (5)



function in the sense of FOSD evaluated at the largest action @. Note that
this function is well-defined because of Assumption S (iii) and Assumption
FOSD. We will use g(a; z) later for constructing the mechanism in the proof
of our main theorem.

2.3 Monitoring Structure

Although the principal can observe only the realizations of the task perfor-
mances y = (y;)~;, we will assume that there exists some subset of agents
who can obtain unverifiable perfect signals about the actions other agents
have chosen by taking some monitoring activity. Specifically we assume that
a fraction a € (0, 1) of all agents can act as such monitoring agents as well
as they choose their productive actions. Each of them can obtain an unver-
ifiable perfect signal about any other agent’s action. Let I, C I denote the
set of monitoring agents, where #1,, = aN. We assume that the principal
can identify the set of monitoring agents I,.

For the time being, we will maintain the assumption that the monitoring
activity does not cost any monitoring agent and is not subject to the moral
hazard problem so that it is enforced by the principal. In Section 4 we will
relax this assumption and introduce costly and unobservable monitoring
activity.

Alternatively we can resort to the other model in which the principal
is allowed to organize the production structures of agents as the sequential
stages where the subsequent agents can observe the actions taken by the
previous agents (See Strausz (1999) for the similar approach in the part-
nership model). All we need is that some subset of agents can observe the
actions taken by others before they will choose their actions.

As explained in the Introduction, the principal cannot use the revelation
mechanisms which are contingent on the reports about the monitoring out-
comes as in Ma (1988), because the monitoring outcomes are assumed to be
unverifiable.

3 Asymptotic Efficiency

We will now show that the principal can attain the almost first best payoff
VFB as a unique equilibrium payoff when the number of agents becomes
sufficiently large. Since we will employ the multi-stage mechanism, we will
use the subgame perfect equilibrium (SPE) as a solution concept.

Theorem. Suppose that Assumption S and FOSD are satisfied. Then, for
any € > 0, there exists some N such that for all N > N the principal can
obtain VB — ¢ as a unique SPE payoff.



Proof. See Appendix.

Although the formal proof is relegated to Appendix, we will here explain
the mechanism to attain the asymptotic efficiency and discuss its implica-

tions.

We will use the following mechanism:

Mechanism

Stage 0

Stage 1-1

All agents simultaneously decide whether to participate in the mecha-
nism or not as well as they simultaneously announce positive integers
(k;)X., chosen from {1,2,...}. Let denote by M the set of the agents
who have decided to participate in the mechanism. Only they can go
to the next stage and all others obtain the reservation payoff, zero.

If #M < N, all agents of M simultaneously choose the actions. Then
the payments to agents are made according to the following wage
schemes:

— CASE 1: #M < N — 1. All agents of M obtain the following
constant utility payment:

u(y)=C+35, Yy ey

where § > 0.

— CASE 2: #M = N — 1. Let L C M denote the set of the agents
who have announced the highest integer at Stage 0. Let also
K = #L. Then all agents of L obtain the following constant
utility payment:

uly) =C+e€x, Yy ey

where £ € (0,1), and all agents of M \ L obtain the constant
utility payment C + ¢V,

CASE 3: If #M = N, the game goes to the following stages (Stage
1-2, 2, 3 and 4).

First, the principal divides the set of all agents, I, into two disjoint
subsets, denoted I; and Iy, where I; NIy = () and I;Uls = I. Moreover,
set Iy C I, and let SN = #1I; and (1 — B)N = #I where 3 € (0,1)
and 1 — 3 < a. Recall here that I,,, is the set of monitoring agents and
a € (0,1) is its fraction relative to all agents.

Let denote ¥y = > ;¢ 1, ¥i the aggregated performances of all monitoring
agents of Is. Let also Y5 be the set of all possible 7.

Stage 1-2 The agents of I; simultaneously choose the actions.



Stage 2

Stage 3

Stage 4

The principal randomly selects one agent from [y with equal proba-
bility (1/8N) and has all agents of Iy choose the monitoring activity.
Let denote by i* € I the agent selected to be monitored by the agents
of I5. This agent will be called the selected agent.

The agents of Iy simultaneously choose the actions after they have
obtained the unverifiable perfect signal about the action the selected
agent * has chosen at Stage 1-2.

The task performances of all agents are realized and the payments to
them are made according to the following wage schemes:

— The utility payment to the agents of I1: Let define by T the
set of the aggregated performances of monitoring agents (Is),

Ua = D icr, Yi> as follows:

< g} (6)

— 1
Tz{y €Yy ‘75 — Flyla
2 €T | | =gy~ £l
where € > 0 is chosen to satisfy

L wnin (E[yla] - Blyla]) > =. (7)

a<a

Then the utility payment to the selected agent i* € Iy is given by

=) C@P)+n g e,
where C(a) — C(afP) > n > 0 for all a > a’P and B is chosen
to satisfy
1
B _ FB 9
1< B <C- (") +0) 0

for some v € R.

— Any other agent k € I; than ¢* obtains the constant utility pay-
ment C(afP) + 1.
— The utility payment to agent j € Io:

m
u; (Y, yir) = { "

where minY < § < maxY. Here, by defining Au = u — u and
P(a) =1—-F(y|a), wand u are given so as to satisfy the following

if y; > ¢ and y;+ > 9,
otherwise

(10)

inequalities:
1
1Y) > Au> 9 (11
max, .78 P(a) r£1<a;<g(a v) u P(aFB) rél<a;<g(a g) (11)
and

P(@)P(a"P)Au+u— C(@) > 0. (12)

10



The above mechanism essentially consists of two stages: One is the par-
ticipation stage in which all agents decide whether to participate in the
mechanism or not. This corresponds to Stage 0 defined above. The other is
the action choice stage in which agents choose their actions, given the wage
schemes defined above. The important point at this stage is that the wage
schemes are offered to agents, depending on how many agents decided to
participate in the mechanism at Stage 0. Except the case that all N agents
decide to participate in the mechanism, the utility based payment schemes
to all agents are independent of their performances (see CASE 1 and CASE
2 in the mechanism). In the case that all N agents participate in the mecha-
nism (CASE 3), the action choice stages are sequentially designed such that
non-monitoring agents (I;) move first at Stage 1-2 and then monitoring
agents (Iy) choose the actions at Stage 3 after one agent, ¢*, is randomly
selected from the first set of agents (I;) and his action is monitored by the
latter agents at Stage 2.

Furthermore, when CASE 2 is applied (i.e., the number of participating
agents is equal to N — 1), only the agents who have announced the highest
integer at Stage 0 can obtain some positive rent ¢& where K is the number
of those agents. This will trigger the integer game so that some agent always
has the incentive to break the equilibrium in which CASE 2 is applied by
announcing a higher integer. This is because the rent X is decreasing
in the number of the agents who announced the highest integer K. The
role of introducing such integer game is simply to eliminate all undesirable
equilibria in which CASE 2 is applied, as in the standard implementation
theory. We also show that any equilibrium in which CASE 1 is applied can
be eliminated. This is simply because any agent can obtain at least positive
rents, 6 > 0 or &Y > 0, by participating in the mechanism when CASE 1
is applied. Thus we can ensure that in any SPE all N agents participate in
the mechanism. Thus only CASE 3 occurs in any SPE under the proposed
mechanism.

In CASE 3, the wage schemes offered to the agents have the following
features: First, the wage scheme to the selected agent i* depends only on the
aggregated performances of all monitoring agents (I2), Jo = > ey, ¥i- More
precisely, we define the set of the aggregated performances (see T in (6))
such that their average value (7,/(1 — 3)N) is close to their expected value
conditional on all the agents of I choosing the largest action @, i.e., E[y|d],
within some positive constant € > 0. Then we say that the selected agent
can pass the statistical test when the realized aggregated performances %,
lie in this set T. The selected agent will be paid a bonus C(af?) + 7 if he
can pass the test but will be paid a penalty B otherwise. This is the wage
scheme offered to the selected agent (see (8)), which will work so as to check
whether non—monitoring agents have deviated from the first best action or
not.

Note that the wage scheme to the selected agent depends only on the

11



performances of monitoring agents (I2) but not on his own performance.
Second, at Stage 2 all agents of I» are forced to monitor what action
the selected agent i* € I1 has chosen at Stage 1-2. Note here that we are
assuming that the monitoring activity is enforceable at no costs. Then, after
having observed the unverifiable perfect signal about this action, all agents
of I simultaneously choose their actions. In this stage agent j € Iy will be
paid a high utility payment @ (resp. a low payment w) if and only if both
his own and the selected agent’s performances exceed some critical value ¢
(resp. otherwise). Note that such payment scheme to the agents of I is
well-defined because P(a’?) > P(a) for all a < a'® by Assumption FOSD.
One important implication about the above wage scheme (10) is that any
agent of I has the strict incentive to choose the largest action @ = max A
whenever having obtained the unverifiable perfect signal that the selected
agent i* has chosen the first best action af'” while he has the strict incentive
to choose some lower action than @ whenever having obtained the signal that
i* has chosen a lower action than the first best one. This observation is due
to the fact that the definition of Awu implies the following two inequalities:
1

Au > mrgggg(a $9), (13)

and

1
A 14
max, ,#5 P(a) r£1<a;<g(a 9 > Au. (14)

The first inequality (13) then implies

1
A 1 )
u > plorEy maxg(a )

1 C@) - Ca)
P(a"P) P(a) — P(a)

Ya#a
which can be rewritten by
P(@)P(a"B)Au — C(@) > P(a)P(a'B)Au — C(a), Ya#a. (15)

This shows that any agent of I will choose the largest action @ with certainty
when he has obtained the unverifiable perfect signal that the selected agent
i* has chosen the first best action af5.

On the other hand, the second inequality (14) implies that for any a’ <
a™P there exists some action @ < @ such that

P(a)P(a)Au — C(a) > P@P(d)Au — C(@). (16)

Thus any agent of I never chooses the largest action @ when he has obtained
the unverifiable signal revealing that the selected agent ¢* has chosen a lower
action than the first best one af . Instead, in this case each agent of I will
choose some lower action a < @.

12



Given the above argument, we can then show that any agent of I; has the
incentive to choose the first best action. If some agent of I1 deviates from the
first action and shirks, 6 by the above argument, all agents of I, will react to
such deviation by choosing some lower action than the largest one @ when
the deviating agent is selected to be monitored at Stage 2. Thus, shirking by
any agent of I creates the large externality effect in the subsequent stage:
it affects the task performances of all monitoring agents by changing their
action choices at Stage 3. Thus the principal can exploit such externality
effect to check whether the agents of I work well or not. In fact, when the
number of agents becomes sufficiently large, by the Law of Large Numbers
such deviation can be almost perfectly detected and heavily punished. On
the other hand, if the selected agent chooses the first best action, then all
monitoring agents choose the largest action @ and hence the selected agent
can pass the statistical test with almost probability one, due to the Law of
Large Numbers and (6). Anticipating the random selection to be monitored
at Stage 2 and fearing a large fine B, all agents of I; will choose the first best
action. Thus, any agent of I; obtains the bonus C(a’?) + 7 with almost
probability one and hence is imposed almost zero risk in the equilibrium.

Finally, when the number of agents tends to be large enough (N —
o0), the principal’s expected payoff per agent can be given by the average
value between the payoffs obtaining from a monitoring agent and a non-—
monitoring agent:

B{r(@"?) = o(C(a"?) + m)} + (1 = B){r(@) - W*}

where W* denotes the expected wage paid to a monitoring agent (See the
Appendix for more precise derivation). Then, by taking a sufficiently small
fraction of monitoring agents, 8 — 1, and sufficiently small rent to non—
monitoring agents, n — 0, the above average payoff converges to the first
best one VB,

The mechanism has several interesting features: First, the wage scheme
is simple in that it specifies only two payment levels for each agent. This
is desirable property of the mechanism because contract theory has been
often criticized on the ground of its reality that derived contracts are more
complicated than those observed in practice. Second, the principal does
not need to observe all the performances of agents. The wage schemes are
contingent only on the performances of the selected agent and all monitoring
agents but not on those of all non—monitoring agents. Thus the number of
the task performances to be needed for contracting is given by 1 + (1 —
B)N. Since we take 3 — 1, the principal is required to observe only the

5 Any deviation to a higher action than the first best one is not profitable for any agent
of I because he can obtain at most C(a”?) 4+ 1 which is, by definition of 7, smaller than
C(a) when a > of'®.
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performances of relatively small fraction of agents, 1/N + (1 — (), when
N — oo. Third, the wage scheme to the selected agent is based only on
the performances of monitoring agents but not on his own performance.
This is because, through the interdependent wage schemes defined by (10),
the realized performances of monitoring agents convey sufficient information
regarding the action of the selected agent, and hence are utilized for checking
whether the selected agent has shirked or not.

4 An Extension to Costly and Unobservable Mon-
itoring

We have so far assumed that the principal can force any monitoring agent to
monitor any other agent in the costless way. In this section we will extend
the model to allow monitoring to be costly and unobservable to the principal.

Specifically we will assume that any monitoring agent must incur some
cost p > 0 when he monitors any other agent’s action. Furthermore, the
principal cannot directly observe whether each monitoring agent has per-
formed the monitoring activity or not. Let m € {1,0} denote the action of
a monitoring agent representing whether he takes the monitoring activity
(m = 1) or not (m = 0). The principal is assumed to obtain a verifiable
informative signal about the monitoring activity of each monitoring agent.
Let s € {s1, s2} denote this signal and assume that s = s; occurs with prob-
ability ¢(s;lm) € (0,1) and ¢(s1|1) > ¢(s1]/0). Thus, obtaining the signal
s1 more accurately reveals the fact that a monitoring agent has taken the
monitoring activity (m = 1) rather than he has not taken it (m = 0).

Since the signal s is verifiable, contract can be contingent on this. Let
(T, v) be the utility payment scheme offered to any monitoring agent, where
U (resp. v) denotes the utility payment made when the signal s; is obtained
(resp. the signal s9 is obtained). We add this scheme (7, v) to the original
payment scheme (@, u).

To specify (T,v), we define the following function which represents the
expected payoff of the monitoring agent without adding the new scheme
(T, v):

Ulaj,a) = P(aj)P(ai)Au — C(aj). (17)

Then, since ¢(s1]1) > ¢(s1|0), we can choose Av = T — v to satisfy the
following inequality:

min (max Ul(aj, ai*)> +q(s1|1)Av —p
aj

Q;*

> max (max Ul(aj;, ai*)> + q(s1]0)Av. (18)

Q;* a;j

Here the left hand side of the above inequality is the minimum payoft
each monitoring agent can obtain when he takes the monitoring activity
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(m = 1) while its right hand side is the maximum payoff he can obtain when
he does not take the monitoring activity (m = 0). Since the action of the
selected agent i* is not observable to any monitoring agent who does not
take the monitoring activity, his expected payoff off the equilibrium path
when he does not perform the monitoring activity depends on his belief
about what action the selected agent has chosen at Stage 1-2. However,
the above strict inequality implies that any monitoring agent has the strict
incentive to monitor the action of the selected agent, whatever beliefs about
the selected agent’s action he has off the equilibrium path after he does
not take the monitoring activity. Thus, under the above payment scheme
(v, v), any monitoring agent will monitor the selected agent at Stage 2 with
certainty.

Then the base payments v and u can be freely chosen to satisfy the
individual rationality constraint of monitoring agents:

P(@)P(a"P)Au+u+ q(s1|1)Av +v — C(@) — p > 0. (19)

Although the additional incentive compatibility constraint (18) imposes
further risk on monitoring agents, such efficiency loss can be taken as small
as possible by choosing a sufficiently small fraction of monitoring agents
(6 — 1). Therefore, the principal can still attain the asymptotic efficiency,
even when the monitoring activity is costly and subject to the moral hazard
problem.

5 Concluding Remarks

In this paper we have investigated the principal-multi agent relationship
with moral hazard where a risk neutral principal contracts with multiple risk
averse agents whose actions are unobservable to the principal. Our main
finding is that the standard trade-off between incentives and risk sharing
can be asymptotically resolved as the number of agents becomes sufficiently
large, when a fraction of them acts as monitoring players who can obtain
unverifiable perfect signals about the actions of other agents.

From our result we can derive several implications about organizational
designs. First, as Al-Najjar (1997) also discussed in the different context,
the informational economy of scale works in large organizations: It is bene-
ficial to organize many production tasks which are technologically and sta-
tistically unrelated each other. This creates the source of information to be
used for checking whether agents take appropriate actions or not. Second,
our result may also explain the fact that large organizations are often formed
as the hierarchical structure where relatively small fraction of agents act as
monitoring players who supervise their subordinates. The role of monitoring
performed by the agents at upper levels of a hierarchy is to encourage the
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subordinates to work well by linking the wage schemes of the former with
the performances of the latter.

6 Appendix: Proof of the Theorem

Under the mechanism defined in the text, we will first show the following
series of claims.

Claim 1. All agents of M choose the least costly action a with certainty in
the subgame at Stage 1-1.

Proof. This follows from the utility payment schemes defined in the mech-
anism: The utility payment scheme to any agent of M who has decided
to participate at Stage 0 is independent of the realizations of all the task
performances, when #M # N. Thus all agents of M surely choose the least
costly action @ in the subgame at Stage 1-1. #M. Q.E.D.

Next we will consider the subgame at Stage 3 where monitoring agents
of Is choose the actions simultaneously. As we discussed in the text, the
expected payoff of each agent j € Is depends only on his own action as well
as the action of the selected agent, a;+, which has been already fixed at Stage
1-2:

P(a;)P(ai<)Au+u— C(aj).

Let 1;(a;+) denote the mixed action strategy of agent j € I which is used
at Stage 3 contingent on the observed action of the selected agent a;+, where
pj : A — A(A) is a mapping from A to the set of probability distributions
over A, A(A).

Claim 2. In the subgame at Stage 3, agent j of Iy chooses ij(a;) which
has the support over ¥(af) as follows:

Y (a;x) = argmax P(a)P(a;+)Au — C(a),

a€A

where ¥(a'P) = {a@} and @ ¢ L(ay) for any a; < af'B.

Proof. Since the action set A is finite and the expected payoff of any agent
of Iy depends only on his own action as well as that of the selected agent
1" which has been already fixed at Stage 3, any agent of Iy has the optimal
action choice in any subgame at Stage 3. Thus, X(a;+) # 0 for all a;« € A.
In particular, as we have argued (see inequalities (15) and (16) in the main
text), any agent of I will choose the largest action @ with certainty when
the selected agent i* has chosen the first best action a’® but choose a
lower action than @ with certainty when he has not done so. Thus we have
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Y(alB) = {@} and @ ¢ %(as) for any a;+ < a’P. Q.E.D.

Then we will turn to the subgame at Stage 1-2 in which agents of Iy
choose the actions.

Claim 3. All agents of I choose the first best action a*B with certainty in
the subgame at Stage 1-2, when the number of agents N becomes sufficiently
large.

Proof. Take any agent [ € I; and suppose that he chooses a lower action
than the first best one af B, i.e., a; < a®"B. Suppose also that he is selected
to be monitored at Stage 2, i.e., i* = [. Then, by Claim 2, after having
obtained the unverifiable perfect signal about the action a;, all agents of I
never choose the largest action @, i.e., @ ¢ ¥(a;). Thus @ ¢ suppp;(a;) when
a; < af'B where suppp;(-) denotes the support of p;(-).

Take any action profile a € [[;¢r, suppp;(ar).

We will define by P(7, € T;a) the probability that the shirking agent [
can pass the statistical test (g, € T'), given the action profile a. Then we
can obtain the following:

P(y, € T;a)
— P (‘m@ Byl <= a)
=P (O—%)N Yo — j;g Elyjla,] +j;2 Ely;la;] = N(1 - B)E[yla]| <& d)
<P (O—%)N j;g Elyjla;] — N(1 - B)Elyla)| < 25; d)
+ P (O—%)N Vo —j;g Ely,la;l| > & a) :

Here, by Chebyshev’s inequality, the second term appeared in the last ex-
pression can be bounded above by
2 jer, Var(yla;) < v
2(1-pPN? = B2(1- PN

which converges to zero as N — oo (Recall here that 7 = max,e4 Var(yla)).
The first term in the last expression can be also written by

1 . _ .
P (m > {Elyjla;] — Ely;lal}| < QE;G)

JEI2
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1 _ . .
=P (m > {Ely;la) - Ely;la;]} < QE;G)

JEI2

< P (min (Blyla) - Elyla)) < 25:0)

a<a
which becomes zero because by definition of &:

min (Bly[a] - Elylal) /2 > =

Thus P(yy € T;a) — 0 as N — oo. This convergence result holds for
any action profile of agents of Iy belonging to the support of their action
strategies, i.e., any @ € [[;cy, suppp;(ar). In other words, the shirking agent
I would fail the statistical test with almost probability one as N — oo,
whatever action profiles of agents of I are considered from the support of
their action strategies. Hence the shirking agent [ would be made a low
payment B with almost probability one if he were selected to be monitored
at Stage 2.

More precisely, the shirking agent [ € I; will obtain the following ex-
pected payoff:

1
AN

1
BN

because he will be selected from I; to be monitored at Stage 2 with proba-
bility 1/3N and obtain the expected payment P(7, € T;a)(C(a’?) +n) +
P(y, ¢ T;a)B while he can obtain C(a’?) +n when he will not be selected,
which occurs with probability 1 — 1/8N. By limy_,oc P(y, € T;a) = 0 and
the definition of B (see (9)), the above expected payoff can be negative when
N — 0.

Next suppose that the same agent [ € I; chooses the first best action
a™B at Stage 1-2 and that he was selected to be monitored at Stage 2. By
Claim 2, after having obtained the unverifiable perfect signal about a;, all
agents of Iy will choose the largest action @ with certainty at Stage 3.

Let @ € AM=AN denote the action profile of agents of Iy where all of
them choose @. Then, if agent [ is selected by the principal to be monitored
at Stage 2, he will face the following probability to fail the test:

ZE;E)

P Tim) = P (|t~ Ell

Var(y|a)
= g2(1-B)N
— 0 (N — )

where the inequality follows from the Chebyshev’s inequality.
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Thus, by choosing a’Z, agent | will obtain the following expected payoff:

1
BN BN
which converges to n > 0 as N — oo, because B/BN is bounded (see (9))
and P(yy ¢ T;a@) — 0 when N — oo.

Finally suppose that agent [ € I; chooses a higher action than the first
best one, i.e., a; > af’P. By the property of the wage scheme (8), any agent
of I; cannot obtain higher payoffs than C(a’?) 4+ n — C(a), which is then
negative for any action a > ! due to the definition of . Thus any agent
of I; would obtain a negative payoff if he chose a higher action than the first
best one.

The above arguments then show that any agent of I; has no incentives
to choose other actions than af? at Stage 1-2, when the number of agents
N becomes sufficiently large, because those actions give him negative ex-
pected payoffs while choosing a’? yields a positive rent n > 0 with almost
probability one. Q.E.D.

Finally, we will show that all agents participate in the mechanism at
Stage 0.

Claim 4. When the number of agents N is sufficiently large, there exists
a SPE in which all agents decide to participate in the mechanism at Stage
0 with probability one (i.e. Pri#M = N| = 1) and other possibilities never
become SPEs (i.e. Pr{#M # N]=0 in any SPE).

Proof. First, suppose that all but one of I decide to participate in the mech-
anism with certainty at Stage 0 and consider the incentive of the remaining
agent. If such agent does not participate in the mechanism, he will obtain
the reservation payoff, zero. However, if he participates in the mechanism,
he will obtain some positive payoff, regardless of being a monitoring or non—
monitoring agent: If #M # N, all participating agents will obtain at least
positive rents § > 0 or &V, If #M = N, by Claim 2 and 3, any monitoring
agent will obtain a positive rent by (12) and any non—monitoring agent will
obtain the payoff n > 0 with almost probability one. Thus we have a SPE
having all agents participating in the mechanism with certainty at Stage 0.

Next we will show that Pr[#M # N] =0 in all SPEs.

By Claim 1, in the subgame at Stage 1-1 with the outcome of Stage 0
being #M < N — 1, any agent surely chooses the least costly action a.

We first show that Pr[#M = N —1] = 0 in any SPE. Suppose contrary to
the claim that Pr[#M = N —1] > 0in some SPE. Then some agent ¢ who has
decided to participate with positive probability at Stage 0 has the incentive
to raise an announced integer and become a unique “winner” in the integer
game to obtain the prize £ > 0. This is explained as follows: Note that
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announced integers affect only the equilibrium outcomes in which CASE 2
is applied but not others where CASE 1 and 3 are applied. Furthermore, the
prize €& obtained by the winners who have announced the highest integer is
decreasing in the number of them K and all losers who have not announced
the highest integer obtain a smaller rent ¢V. Thus, the deviation to become a
unique winner in the integer game can increase the expected payoffs in all the
states when CASE 2 is applied but not those in other states. The states when
CASE 2 is applied have positive measures because Pr[#M = N — 1] > 0.
Thus we must have Pr[#M = N — 1] = 0 in any SPE.

Next note that Pr[#M < N — 1] = 1 never happens in any SPE: If
such case occurs, some agent must not participate in the mechanism with
certainty at Stage 0 but then he would deviate to choose “participation” and
the highest integer with certainty. This deviation gives him some positive
payoff (Note that such deviation can increase the number #M at most by
N —1). Thus Pr[#M < N —1] <1 in any SPE.

Then we must have Pr[#M = N] > 0 because Pr[#M = N —1] =0
by the above argument. Then Pr[#M = N] > 0 implies that all agents
must choose “participation” with strictly positive probabilities at Stage 0.
However, this can be satisfied only when Pr[#M = N] = 1 so that all agents
choose “participation” with probability one because if 0 < Pr[#M = N] < 1
some agent must choose “not participation” with strictly positive probability
but this contradicts the fact Pr[#M = N — 1] = 0.

Therefore, we must have Pr[#M = N| =1 in all SPEs. Q.E.D.

From Claim 1-4, we have established the result that a SPE exists and
all SPEs must have the following equilibrium properties when N — oo: (i)
All agents of I; choose the first best action a’® while all agents of I choose
the largest action @. (ii) Any agent of I7 is paid C(a!®) + n with almost
probability one. (iii) The expected wage paid to any agent of I is given by

W* = P(@)P(a"")¢(@) + (1 — P@P(a""))¢(w).

Thus, when N is large enough, the (average) expected payoff of the principal
per agent can be unique and given by

B{r(a™?) = ¢(Ca"P) +m)} + (1 = p){r(@) - W*}.
Then, by taking  — 0 and 3 — 1 along with N — oo, 7 we show that the
average payoff of the principal converges to the first best one V5.
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