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Abstract

Robust properties of a semiparametric method for estimating the parameter of a copula

are investigated using a simulation study, and compared with the maximum likelihood es-

timator[MLE] and an estimator based on the Inference Function Method [IFM]. The semi-

parameric method estimates the marginal distributions nonparametrically and hence the

form of the marginal distribution need not be known. By contrast, MLE and IFM require

the exact form of the marginal distributions; it is reasonable to expect that incorrect speci-

fication of the marginal distribution would almost certainly lead to inconsistent estimators.

The simulation results show that, when the marginal distributions are correctly specified as

normal for MLE and IFM, the semiparametric method is slightly less efficient than the MLE

and IFM. However, if the marginal distributions are incorrectly specified as normal for MLE

and/or IFM, the semiparametric method is considerably better than the MLE and IFM.

Based on these results, the semiparametric estimator appears to be an excellent competitor

to, if not better than, the MLE and IFM for estimating the parameter of the copula.

JEL Classification: C13, C14, C32
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1



2

1 Introduction

There has been a growing interest in modelling multivariate observations using flexible func-

tional forms for distribution functions and in estimating parameters that capture dependence

between the different components of the vector of variables. It has been recognized that the

traditional approach based on multivariate normal distribution is limited in scope because

it can capture only a very limited range of distributional shapes. Further, it is also known

that the maximum likelihood method based on multivariate normal is sensitive to departures

away from multinormal. Thus, there is a genuine need for methods of modelling multivari-

ate data that address the flexibility and robustness issues. In response to the demand for

flexibility, methods based on copula have been the subject of extensive study in the recent

literature; for example see the recent books Joe (1997) and Nelson (1999).

In what follows, we shall restrict our discussion to bivariate observations only for sim-

plicity. Let (X1, X2) be a continuous bivariate random variable, H(x1, x2) denote the cdf of

(X1, X2), and let Fk and fk denote the marginal cdf and pdf respectively of Xk, (k = 1, 2).

Then, a well-known result says (for example, see Joe 1997) that there is a unique function

C(u1, u2), termed the copula, such that

H(x1, x2) = C{F1(x1), F2(x2)}. (1)

It turns out that the copula C is the joint distribution of (U1, U2) where Uk = Fk(Xk), k =

1, 2; clearly, U1 and U2 are uniformly distributed on (0, 1). Thus, any continuous bivari-

ate distribution is uniquely defined by its marginal distributions and its copula; conversely,

given the marginal distributions and the copula, there is a unique bivariate distribution with

the same marginal distributions and copula. This suggests the possibility of estimating the

marginal distributions and the copula separately. In fact, this flexibility has played an im-

portant role for the recent interest in copulas. For example, it is possible to specify a gamma

distribution for X1, a t-distribution for X2, and a copula to capture the joint behaviour of

the two variables. The shapes of the marginal distributions of X1 and X2 do not play a role

in the specification of the copula. For example, if Yk = hk(Xk) where hk is continuous and

increasing (i = 1, 2), then the copula of (X1, X2) is the same as that for (Y1, Y2). Thus, the

copula captures features that are invariant under monotonic transformations of the marginal

variables. Features that are not invariant under such transformations would be captured by

the marginal distributions. Thus, copulas offer a flexible approach to modelling multivariate

observations. In this setting, one’s interest may be on the complete joint distribution of

(X1, X2), or on the copula with the marginal distribution being a nuisance function. In this

paper, we are interested in the latter.

Several approaches to estimating copulas, including maximum likelihood, estimating

equation, semi-parametric and nonparametric methods have been suggested. In this paper

we evaluate the performance of a semi-parametric method introduced by Genest, Ghoudi

and Rivest (1995). An attractive feature of this method is that it estimates the marginal

distributions nonparametrically by the empirical distribution function [edf], thus allowing the

distribution of the marginals to be quite free and not restricted by parametric families. Once
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this is done, the interdependence between the margins is estimated using a parametric family

of copulas. This approach is particularly suitable for our purposes because by estimating

the nuisance function, namely the marginal distributions, nonparametrically the validity of

the estimator of the copula would not be compromised due to possible misspecification of

the marginal distribution functions. In this paper, we evaluate the performance, including

robustness, of the semi-parametric estimator for a range of realistic settings. Our simulations

studies suggest that the semi-parametric method has excellent robustness properties. For ex-

ample, the method of maximum likelihood is slightly better than the semiparametric method

if the full likelihood, which includes the marginal distributions as well, is correctly specified.

Otherwise, which is likely to be the case in most practical situations, the semiparametric

method is substantially better.

2 Specification and estimation of copulas

Let (X1, X2) denote a continuous bivariate random variable, Fk(x; αk) and fk(xk; αk) be the

cdf and pdf respectively of Xk, Uk = Fk(Xk; αk), C(x1, x2; θ) denote the copula, c(x1, x2; θ)

denote the pdf corresponding to C(x1, x2; θ), ξ = (α′1, α
′
2, θ

′)′ and H(x1, x2; ξ) and h(x1, x2; ξ)

denote the cdf and pdf of (X1, X2) respectively. The parameters α1 and α2 may be vectors;

further, for the most part, we consider the case when θ is a scalar, although an extension

to the vector case would be obvious. In this paper, we are interested in estimating θ; thus

α1 and α2 are treated as nuisance parameters. Let us first mention briefly the methods of

estimating θ that are considered here.

2.1 Maximum likelihood

In view of (1) the joint density function h(x1, x2; ξ) of (X1, X2) can be expressed as follows:

h(x1, x2; ξ) = c{F1(x1; α1), F2(x2; α2); θ}f1(X1; α1)f2(X2; α2). (2)

Let (X1i, X2i), i = 1, . . . , n, be n iid observations on (X1, X2). Therefore, the loglikelihood

function takes the form

L(ξ) =
n∑

i=1

log[c{F1(X1i, α1), F2(X2i; α2); θ}f1(X1i; α1)f2(X2i; α2)]. (3)

Hence the maximum likelihood estimator [MLE] of ξ, which we denote by ξ∗∗ is the global

maximizer of L(ξ). Then, we have that
√

n(ξ∗∗− ξ0) converges to a normal distribution with

mean zero, where ξ0 is the true value. If the model is correctly specified so that L(ξ) is the

correct loglikelihood, then as a general rule, the MLE is the preferred first option, at least

in large samples.
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2.2 Inference function method [IFM]

In this method, the parameters are estimated in two stages. In the first stage, αk is estimated

using Xk1 . . . , Xkn, and let the estimator be denoted by α̂k (k = 1, 2). Then, in the second

stage, θ is estimated with Fk(xk; α̂k) being treated as the true distribution of Xk ( k = 1, 2).

While there are several ways of implementing such a method, the one that is adopted here

is to substitute α̂k for αk in the loglikelihood. Thus, the IFM estimate of θ is the maximizer

of
n∑

i=1

log[c{F1(X1i, α̂1), F2(X2i; α̂2); θ}]; (4)

let us denote this estimator by θ̂. Under a reasonable set of regularity conditions, we have

that
√

n(θ̂−θ0) is asymptotically normal with mean zero; for example, see Joe (1997, Chapter

10).

2.3 Semiparametric method

The MLE and IFM methods just mentioned are completely parametric because they require

the model to be specified up to a finite number of unknown parameters. A possible short-

coming of these two methods of estimating θ is that they are likely to be inconsistent, and

possibly inefficient, if the marginal distributions are misspecified. Since, the marginal distri-

butions are seen as nuisance functions, ideally the method of estimation should be insensitive

to misspecification of the marginal distributions. To this end, we relax the assumption that

the marginal distribution of Xk is known up to the finite-dimensional parameter αk (k = 1, 2).

Instead, we allow the marginal distributions to be arbitrary. Estimation is carried out in

two stages as in IFM, but the difference is that the marginal distributions are estimated

nonparametrically by their sample empirical distributions. More specifically, let Fk denote

the cdf of Xk and let F̃k denote the empirical cdf of Xk1, . . . Xkn, (k = 1, 2). Then, θ is

estimated by the maximizer of

n∑
i=1

log[c{F̃1(X1i), F̃2(X2i); θ}]. (5)

Let us denote the resulting semiparametric estimator by θ̃. It has been shown that
√

n(θ̃−θ0)

is asymptotically N(0, ν2); this result holds irrespective or whether or not we know the

marginal distributions. A large sample 95% confidence interval for θ is θ̃ ± 1.96ν̂ where ν̂ is

a consistent estimator of ν given in section 3 of Genest et al (1995).

2.4 A bench-mark estimator

In order to evaluate the performance of the foregoing estimators, we introduce the following

estimator. Let F1 and F2 be as in the previous subsection. Let us suppose that these
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distribution functions are known. Now, θ is estimated by the maximizer of the loglikelihood

n∑
i=1

log[c{F1(X1i), F2(X2i); θ}]. (6)

Let us denote the resulting estimator by θ∗. Note the difference between (5) and (6) is that

in (5) Fk is replaced by F̃k. Although, the marginal distributions are unknown in practice,

this hypothetical scenario, where Fk is assumed to be known, represents the ideal situation

which can be used as a benchmark for comparative purposes, because we would not expect

ML/IF/Semiparametric estimators to perform better than θ∗.. The difference between the

efficiencies of θ∗ and the estimators in the previous subsections quantify the loss due to the

functional form of the marginal distribution being unknown.

3 Simulation study

A simulation study was carried out to compare the different estimators mentioned in the

previous section for a range of copulas and marginal distributions. There are two mains

objective of the study: (1) Evaluate the efficiency-robustness of the semiparametric estimator

against violations of the assumed marginal distributions, and (2) estimate the coverage rate

of the confidence interval θ̃ ± 1.96ν̂.

3.1 Design of the simulation

The following seven copulas are studied; for six of them, the parameter θ is a scalar and for

the seventh one it has two components. More details about these copulas may be found in

Joe (1997) and Nelson (1999).

1. Ali-Mikhail-Haq [AMH] Family of copulas: C(u, v; θ) = uv/{1− θ(1− u)(1− v)}.
2. Clayton copula: C(u, v; θ) = (u−θ + v−θ − 1)−

1
θ .

3. Frank copula: C(u, v; θ) = −θ−1 log
(
[1 + (e−θu − 1)(e−θv − 1)]/(e−θ − 1)

)

4. Gumbel copula: C(u, v; θ) = exp−(
(− log u)θ + (− log v)θ

) 1
θ

5. Joe copula: C(u, v; θ) = 1− (
(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ

) 1
θ

6. Plackett copula:

C(u, v; θ) = [1 + (θ− 1)(u + v)− {{(1 + (θ− 1)(u + v)}2 − 4θ(θ− 1)uv} 1
2 ]/{2(θ− 1)}.

7. Joe–Clayton copula.

C(u, v; θ, δ) = 1−
(

1−
((

1− (1− u)θ
)−δ

+
(
1− (1− v)θ

)−δ − 1
)− 1

δ

) 1
θ
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These copulas cover a very wide range of distributional shapes. The ML and IF estimators

are those that correspond to the case when, the marginal distributions are assumed to be

normal. To evaluate the robustness properties, three other sets of marginal distributions are

considered; the cases studied are:

(N-N): X1 and X2 are normally distributed.

(T-T): X1 ∼ t3 and X2 ∼ t3.

(T-ST): X1 ∼ t3 and X2 ∼ skewed t-distribution with df=3 and skewness = 0.5.

(T-C): X1 ∼ t3 and X2 ∼ χ2
2.

Since the maximum likelihood estimation method turned to be extremely time consuming,

we needed to restrict the number of samples to a manageable proportions.

3.2 Results

The results are presented in Tables 1 - 5. The main observations are summarized below:

The two marginal distributions are correctly specified as Normal-Normal: The

results are given in Tables 1 and 2. Since the marginal distributions and the copula are

correctly specified, there is no mis-specification and hence all the estimators are consistent.

The MLE and IFM are based on correct specification of the marginal distribution and the

likelihood function. Therefore, one would expect that these estimators would have good

properties. As expected, they perform better than the semiparametric estimator. However,

the difference is small. The bias is small for each of the four estimators.

The two marginal distributions are incorrectly specified as Normal-Normal: The

results in Tables 3, 4, and 5 are for the case when the parametric methods ML and IF in-

correctly assume that each of the marginal distributions is Normal; hence these estimators

may not be even consistent. The semiparametric method assumes that the marginal distri-

butions are continuous, but apart from that it does not assume any functional form for these

distributions. Thus, in contrast to the ML and IF methods, the semiparametric method

is not based on incorrect assumption for the marginal distributions. It is known that the

semiparametric estimator is consistent and asymptotically normal; the rate of convergence

is the usual n1/2. Tables 3-5 show that, as expected, the semiparametric method performs

considerably better than IFM and MLE.

Note that the marginal distributions for the cases in Tables 3-5, have long tails. In all

these cases, we restricted each parameter to an interval of the form (a, b) where a and b

are finite, even when the true parameter range was unbounded; this was necessary to avoid

overflow/underflow. However, when the size of interval is too small or too large, in many

of these cases, the MLE was on the boundary. Consequently, the ML iteration failed to
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converge. For some copulas, this occurred quite frequently. For example, for Frank copula

with parameter interval is (0, 200) and the true copula parameter θ = 3.5, the MLE failed to

converge in about 80% of the cases. Consequently, the standard deviations of the estimators

were quite large. The reason for this failure appears to be the following, although this may

not the only possible explanation.

Since the MLE and IFM assume that the marginal distribution is normal when in fact

this is not the case. Since the marginal distribution has long tails, some observations tended

to be in the extreme tails of the relevant normal distribution. Consequently, whatever be the

value of (µ1, σ1), the value of φ{(Xi1−µ1)/σ1} was close to zero for and hence, the absolute

value of log φ{(Xi1−µ1)/σ1} was very large for some i. Consequently, the observations in the

extreme tails tend to be highly influential. This caused computational and other difficulties.

For Frank copula, the MLE-iteration did not converge for 80% of the cases indicating

that the MLE was close to the boundary at infinity. Thus, it is clear that if there are extreme

observations in the tail then the MLE and IFM estimators are unlikely to be suitable. While,

it may be possible to use ideas similar to Winsorization used in the classical robust inference

literature to reduce the influence of extreme observations, such a modification is likely to

result in an inconsistent estimator.

Very large standard deviations for some of the estimators reflect the fact that the esti-

mators were on the boundary which was chosen to be much larger than the true value.

In summary, Tables 1-5 show that, overall, the semiparametric method is considerably

better than the MLE and IFM.

Table 6 shows that an approximate 95% confidence interval based on a normal approxi-

mation for the large sample distribution of θ̂ has coverage rates close to 95% for sample size

≥ 50; in some isolated cases, it could drop to a rate in the range 80 - 90 % ( see AMH copula

with θ = 0.4, 0.8; and Clayton copula with θ = 0.221.).

4 Empirical Example:

In this section, we use a bivariate example to illustrate the estimation methods studied in this

paper and to highlight some of the challenges. We consider data from the 1988-89 Household

Expenditure Survey conducted by the Australian Bureau of Statistics. For simplicity, we

shall restrict to Households consisting of exactly two adults and two children. Let X1 =

proportion of expenditure on housing and X2 =(1 - proportion of expenditure on food). We

wish to estimate the joint distribution of X1 and X2.

One of the challenges that we face is the specification of a suitable copula. Since there

are a large number of copulas, specifying one that would suit a particular example is not

easy at all. Even if one has some idea of the shape of the joint density function of (X1, X2),

it is not easy to deduce the shape of the copula, which is the shape of the density function of

(F1(X1), F2(X2)) where F1 and F2 are the cdf s of X1 and X2 respectively. Therefore, what

we can do is to consider different copulas and evaluate their goodness of fit.
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An Archimedean copula is defined to be the one that is of the form

C(u, v) = φ−1{φ(u) + φ(v)}

where φ is a strictly decreasing smooth convex function. This family is known to capture

a range of functional forms; see Genest and Rivest (1993) for a graphical way to guide the

choice of a suitable member of this family. Let λ(t) = φ(t)/{(d/dt)φ(t)}. There is a one-one

correspondence between the functions λ and φ; hence choosing the particular Archimedean

copula is equivalent to choosing the function λ. A nonparametric estimator of λ is given by

λ̂(t) = t− n−1
∑

I(t− Vi) where I is the indicator function and

Vi = Number of {(X1j, X2j) : X1j < X1i, X2j < X2i}/(n− 1).

Now, a graphical way of choosing an Archimedean copula is to draw λ̂(t) and the λ functions

for different copulas and see which of the λ functions is ’close’ to λ̂. Figure 5 shows the λ

functions for Clayton, Joe and Frank copulas; the λ functions for the other Archimedean

copulas considered in simulation are not shown because they were not close to λ.

We fitted the Clayton, Joe and Frank copulas by the semiparametric methods. To assess

the goodness of fit, the domain [0, 1] × [0, 1] of the copula was first partitioned into 25

squares; then the squares with small frequencies were amalgamated and chi-square test of fit

was applied. The chi-square statistics and the p-values are given in Table 11. Note that the

p-values for Clayton and Joe copulas are considerably smaller than that for Frank copula.

Figure 5 also shows that the λ functions for Clayton and Joe copulas are not as close as that

for the Frank copula.

A plot of (X1, X2) is given in Figure 3. While this plot provides an overview of the joint

distribution of (X1, X2), it is not that helpful in suggesting a suitable function form for the

copula. To this end, we need to plot {(F1n(X1i), F2n(X2i)) : i = 1, . . . , n}, where F1n and F2n

are the empirical cdf s of the two variables. Figure 4 shows that the points tend to concentrate

near (0,0) and (1, 1). The shapes of the density functions of the estimated copulas are shown

in Figures 6,8 and 10. The single peaks for Clayton and Joe copulas do not appear to be

consistent with the nature of the scatter in peaks in {(F1n(X1i), F2n(X2i)) : i = 1, . . . , n}.
Thus among the Archimedean copulas that we considered, Frank copula appears to fit

the data best.

The estimates of the copula parameters corresponding to semiparameteric method and

the parametric method with normal margins turned out to be close (see Tables 10 and

11). If we use a t-distribution for the margins with the degrees of freedom as an unknown

parameter, then the MLE and IFM-estimate of the copula parameters change substantially.

Strictly speaking, one needs to consider the standard errors of the estimates and goodness of

fit statistics to quantify this - these are not necessarily easy tasks. This raises the question

which distribution should we use for the margin ? The fact that the semiparametric estimate

of the copula parameter is consistent and the fact the MLE and IFM estimates are close

to the semiparametric estimates suggest that if we were to choose a suitable distributions

for the margin, then the normal distribution appears better than a t-distribution for this
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example. The more important point is that this example illustrates the advantages of using

the semiparametric method as opposed to the fully parametric ML and IF methods in dealing

the unknown marginal distributions.

5 Conclusion

In this paper, we evaluated a semiparametric method of estimating the copula. A simulation

study showed that the semiparametric method, which estimates the marginal distributions

nonparametrically, is more robust than the fully parametric ML and IF methods. A data ex-

ample involving the household expenditure survey data, compared and contrasted the three

methods. The example illustrated the difficulties in choosing the correct marginal distri-

butions to implement fully parametric methods. By contrast, the semiparametric method

estimates the marginal distributions nonparametrically by the empirical distribution func-

tion and hence the difficult task of choosing the correct form for the marginal distribution

does not arise. The simulation study also highlighted the difficulties that arise due to non-

convergence of the computational iterations for MLE and IFM; the semiparametric method

did not exhibit such difficulties.

We recognize that in the copula approach, the marginal distribution is treated as a nui-

sance function while the copula is the function of interest. By contrast, for the ML approach,

the marginal distribution and copula are treated as equally important. Therefore, a direct

comparison of the two methods may not be completely justified. However, if copula is the

basic function of interest which captures the features of dependence between X and Y that

are invariant under monotonic transformation of the marginal distribution, and hence treats

the marginal distribution itself as a nuisance function, then the fully parametric methods,

ML and IFM, do not appear to be as good as the semiparametric method.

An attractive feature of the semiparametric method studied here is that it lends itself to

the more general setting where the observations may not be iid. For example, the marginal

variables may have a regression or a time-series structure. In such general settings, choosing

the correct joint distribution for the error term and using it in inference are more difficult

tasks. The semiparametric method considered here appears to provide a reasonably flexible

way of approaching this; we are currently working on this and hope to report the results

elsewhere.
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Table 1: Estimated means and variances when both marginal distributions are correctly

specified as normal: Number of samples=250, Number of observation in each sample=100

Mean Variance (×100)

θ BM MLE IFM SP BM MLE IFM SP

AMH copula

-0.9 -0.81 -0.80 -0.81 -0.81 6.13 6.49 6.20 6.20

0.1 0.09 0.09 0.09 0.09 8.24 8.24 8.15 8.41

0.5 0.47 0.46 0.46 0.47 5.51 5.46 5.41 5.65

0.9 0.87 0.87 0.87 0.88 0.93 1.06 1.07 1.10

Clayton copula

0.11 0.12 0.11 0.11 0.13 1.21 1.10 1.08 1.34

2.00 2.01 2.04 2.01 2.08 7.55 15.0 13.9 16.3

3.95 3.97 4.04 3.96 3.99 17.2 38.9 37.6 42.4

6.39 6.40 6.43 6.20 6.14 44.4 88.8 84.0 89.0

Frank Copula

-5.0 -4.98 -4.99 -4.96 -5.01 49.7 54.9 54.8 57.1

0.5 0.53 0.54 0.54 0.55 22.8 24.0 23.8 25.3

2.5 2.50 2.48 2.47 2.51 45.8 49.3 48.5 50.8

5.0 5.1 5.1 5.1 5.1 58.8 68.0 67.4 70.4

Gumbel Copula

1.5 1.51 1.51 1.51 1.54 1.35 1.97 1.97 2.29

6.5 6.6 6.6 6.6 6.4 36.4 68.4 67.3 64.0

9.0 9.0 9.1 9.0 8.6 46.6 95.3 97.7 99.2

11.0 11.1 11.2 11.1 10.3 83.9 182 184 175

Joe Copula

1.2 1.23 1.23 1.23 1.25 1.79 1.89 1.79 2.13

3.0 3.01 3.04 3.00 3.07 9.4 16.9 16.5 20.3

4.0 4.09 4.09 4.01 4.06 17.9 40.7 39.1 39.2

5.0 5.05 5.04 4.92 4.96 21.2 45.7 43.8 49.4

Plackett Copula

0.5 0.52 0.52 0.52 0.52 2.69 2.75 2.74 2.87

5.5 5.8 5.8 5.7 5.8 216 239 230 255

8.0 8.1 8.2 8.0 8.2 426 456 420 487

10.0 10.2 10.4 10.2 10.3 744 897 857 880
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Table 2: Estimated means and variances when both marginal distributions are correctly

specified as normal and the copula is the Joe-Clayton family

First Parameter

Mean Variance (×100)

θ1, θ2 BM MLE IFM SP BM MLE IFM SP

1.5,0.5 1.52 1.52 1.51 1.56 3.81 4.15 4.12 5.43

1.5,2.5 1.53 1.53 1.54 1.63 8.69 9.86 9.75 12.5

3.5,0.5 3.48 3.50 3.47 3.50 12.6 21.4 21.8 27.5

3.5,2.5 3.54 3.51 3.51 3.56 17.4 26.3 29.7 41.1

Second parameter

1.5,0.5 0.51 0.51 0.51 0.56 4.85 5.93 5.42 7.25

1.5,2.5 2.56 2.58 2.54 2.59 15.0 26.9 25.7 32.0

3.5,0.5 0.52 0.53 0.54 0.66 10.3 11.7 11.6 20.2

3.5,2.5 2.59 2.58 2.55 2.63 29.2 50.6 46.8 71.9
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Table 3: Estimated means and variances when both marginal distributions are t3, but incor-

rectly specified as normal distribution: Number of samples=250, Number of observation in

each sample=1000

Mean Variance (×100)

True value MLE IFM Semiparametric MLE IFM SP

AMH copula

0.3 0.49 0.47 0.30 1.89 1.63 0.66

0.5 0.69 0.67 0.50 0.75 0.67 0.45

0.7 0.82 0.82 0.70 0.18 0.17 0.22

Clayton copula

0.105 0.04 0.13 0.11 0.10 0.35 0.16

1.718 2.70 2.19 1.73 3372 10.1 1.07

6.389 14.6 7.35 6.32 56286 109 8.37

Frank copula

0.5 0.94 0.92 0.51 15.4 13.2 3.28

3.5 5.17 4.85 3.50 34.4 19.1 3.81

5 6.96 6.53 5.03 48.0 22.0 5.85

Gumbel copula

1.5 1.95 1.69 1.51 137 1.93 0.20

6.5 9.2 7.5 6.5 1182 45.5 4.73

11 12.9 12.6 10.9 558 167 14.7

Joe copula

1.2 1.51 1.25 1.20 265 0.85 0.16

2.4 5.67 2.87 2.42 2765 9.05 1.17

5 12.0 5.93 5.00 2298 43.7 4.25

Plackett copula

0.5 0.31 0.33 0.50 0.58 0.45 0.22

5.0 8.99 7.87 5.07 362 119 18.6

10.0 16.7 14.8 10.1 483 300 68.5
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Table 4: Estimated means and variances when marginal distributions are t3, and skew −
t(3, 0.5) but incorrectly specified as normal distribution: Number of samples=250, Number

of observation in each sample=1000

Mean Variance (×100)

True value MLE IFM Semiparametric MLE IFM SP

AMH copula

0.3 0.64 0.60 0.300 4.64 3.89 0.58

0.5 0.82 0.79 0.50 0.81 0.82 0.39

0.7 0.91 0.90 0.70 0.11 0.12 0.22

Clayton copula

0.105 0.08 0.23 0.11 1.01 1.76 0.15

1.718 3.59 1.96 1.73 8056 11.1 1.34

6.389 6.18 3.97 6.34 3671 41.4 9.40

Frank copula

0.5 1.01 0.93 0.49 45.5 29.8 4.01

3.5 5.36 4.84 3.52 74.3 29.4 5.95

5 7.06 6.37 5.00 64.6 28.6 6.10

Gumbel copula

1.5 1.90 1.63 1.51 49.0 1.68 0.17

6.5 6.30 5.19 6.46 649 23.9 4.71

11 7.99 6.14 10.89 973 59.0 16.9

Joe copula

1.2 1.47 1.21 1.21 240 7.61 0.17

2.4 6.3 2.61 2.40 3408 27.7 0.98

5 12.4 5.05 4.99 2615 52.0 4.28

Plackett copula

0.5 0.30 0.34 0.50 0.51 0.40 0.25

5.0 9.64 7.77 5.05 646 175 20.6

10.0 16.6 13.4 9.90 491 268 63.2
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Table 5: Estimated means and variances when marginal distributions are t3, and χ2(2) but

incorrectly specified as normal distribution: Number of samples=250, Number of observation

in each sample=1000

Mean Variance (×100)

True value MLE IFM Semiparametric MLE IFM SP

AMH copula

0.3 0.54 0.48 0.30 5.38 3.60 0.56

0.5 0.83 0.78 0.49 1.29 1.48 0.39

0.7 0.93 0.91 0.70 0.09 0.11 0.25

Clayton copula

0.105 0.06 0.20 0.11 0.71 0.90 0.14

1.718 1.63 1.50 1.73 21.8 3.98 1.08

6.389 4.05 2.63 6.31 3684 63.7 8.06

Frank copula

0.5 0.71 0.67 0.49 8.73 7.75 3.61

3.5 4.68 4.20 3.54 26.4 9.00 4.41

5.0 6.33 5.60 5.00 29.8 11.9 7.19

Gumbel copula

1.5 1.58 1.48 1.50 32.2 0.50 0.21

6.5 4.96 3.54 6.46 255 7.51 4.69

11.0 5.51 3.82 10.9 243 9.92 14.6

Joe copula

1.2 1.31 1.14 1.21 344 0.16 0.19

2.4 3.97 2.11 2.41 2149 1.57 1.17

5.0 7.72 3.51 4.99 2632 10.3 3.95

Plackett copula

0.5 0.37 0.40 0.50 0.46 0.33 0.25

5.0 7.39 6.12 5.01 157 38.5 17.4

10.0 13.3 10.5 10.0 303 85.2 64.9
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Table 6: 95% coverage of copulas with Normal margins: Number of samples=250

Sample sizes

true value 50 samples 100 samples 250 samples

AMH copula

-0.8 95.1 96.4 97.4

-0.4 94.9 95.9 94.3

0.4 88.7 92.4 94.7

0.8 81.6 88.3 92.8

Clayton copula

0.221 84.3 92.9 95.3

0.822 94.7 93.7 94.2

3.055 94.4 94.0 95.6

5.050 94.3 95.1 94.9

Frank copula

-4.5 94.6 94.4 95.5

-2.5 94.4 94.7 95.7

1.5 97.1 94.0 95.7

4.5 95.6 96.1 94.4

Gumbel copula

2 94.3 94.8 93.6

4 95.8 95.9 96.1

8 95.1 95.3 95.5

10 94.8 93.1 96.4

Joe copula

1.4 93.2 93.2 92.9

2.2 94.5 93.2 94.1

3.8 93.7 93.6 95.2

4.6 95.3 94.2 95.3

Plackett copula

1 90.8 93.9 96.4

3 93.7 96.0 97.8

7 95.9 98.2 99.1

9 96.6 98.1 99.7
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Table 7: 95% coverage of copulas with t-distribution margins: Number of sam-

ples=250

Sample sizes

true value 50 samples 100 samples 250 samples

AMH copula

-0.8 94.1 97.1 97.6

-0.4 93.9 94.8 93.3

0.4 89.1 91.2 95.3

0.8 81.6 90.3 92.7

Clayton copula

0.221 85.0 92.2 94.5

0.822 94.3 94.9 94.2

3.055 92.9 94.7 95.7

5.050 93.6 94.8 95.4

Frank copula

-4.5 95.5 95.4 95.4

-2.5 94.9 93.6 95.8

1.5 96.8 95.3 94.8

4.5 95.5 93.6 95.0

Gumbel copula

2 93.2 94.3 94.3

4 95.2 94.9 95.4

8 93.9 95.4 95.8

10 93.4 94.5 95.0

Joe copula

1.4 93.3 94.1 95.0

2.2 93.7 93.8 95.0

3.8 94.4 94.1 94.0

4.6 95.7 94.0 94.5

Plackett copula

1 90.9 95.1 96.5

3 93.1 94.1 96.8

7 95.2 97.8 99.2

9 97.8 98.6 99.7
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Table 8: 95% coverage of copulas with t-distribution and skew-t distribution

margins: Number of samples=250

Sample sizes

true value 50 samples 100 samples 250 samples

AMH copula

-0.8 95.5 96.5 96.8

-0.4 94.1 95.9 93.2

0.4 89.2 93.7 93.1

0.8 81.1 89.9 94.1

Clayton copula

0.221 84.5 92.8 95.4

0.822 94.0 93.9 94.6

3.055 94.3 94.2 95.6

5.050 92.9 95.1 94.9

Frank copula

-4.5 95.8 95.6 94.4

-2.5 94.9 94.8 95.8

1.5 96.2 94.5 96.3

4.5 95.2 94.0 95.0

Gumbel copula

2 95.7 93.7 94.4

4 96.3 95.7 93.8

8 94.2 95.9 95.4

10 92.7 96.7 95.5

Joe copula

1.4 94.1 92.0 94.9

2.2 93.4 94.1 94.9

3.8 95.8 95.5 95.1

4.6 94.8 94.4 93.0

Plackett copula

1 92.9 92.9 96.6

3 93.7 94.5 97.9

7 97.1 98.0 99.3

9 96.9 98.7 99.7
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Table 9: 95% coverage of copulas with t-distribution and χ2 distribution margins:

Number of samples=250

Sample sizes

true value 50 samples 100 samples 250 samples

AMH copula

-0.8 94.9 96.7 97.8

-0.4 92.9 94.9 93.7

0.4 89.2 90.6 94.1

0.8 79.9 89.9 92.8

Clayton copula

0.221 83.7 92.8 95.0

0.822 93.4 94.7 95.0

3.055 94.5 95.2 95.5

5.050 93.2 95.2 94.8

Frank copula

-4.5 95.6 96.2 94.1

-2.5 95.1 95.2 94.9

1.5 97.9 94.4 96.0

4.5 93.9 93.3 95.1

Gumbel copula

2 95.5 93.2 91.6

4 95.4 94.9 93.8

8 93.3 95.7 95.6

10 94.6 95.0 96.0

Joe copula

1.4 92.8 93.6 94.1

2.2 96.1 93.9 94.8

3.8 94.3 93.2 93.4

4.6 94.0 94.3 94.9

Plackett copula

1 92.8 94.7 96.9

3 93.9 94.2 97.0

7 96.0 98.1 98.9

9 96.4 98.1 99.7
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Table 10: Parametric Estimations under different marginal assumptions

normal distributions t distributions skew-t distributions

Copula model IFM MLE IFM MLE IFM

Clayton 0.446 0.419 14.361 14.399 7.707

Frank 2.470 2.505 29.189 29.266 9.511

Joe 1.394 1.417 14.517 16.148 1.133

Table 11: Goodness of Fit tests

Parameter Chi-square

Copula estimate statistic P-value

Semiparametric Method

Clayton 0.396 39.895 0.011

Frank 2.384 22.990 0.402

Joe 1.469 31.172 0.093

IFM

Clayton 0.446 38.202 0.004

Frank 2.470 23.862 0.160

Joe 1.394 32.0117 0.022

MLE

Clayton 0.419 38.9825 0.003

Frank 2.505 24.2927 0.146

Joe 1.417 31.4839 0.025
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Figure 1: Histogram of Housing Expenditure
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Figure 2: Histogram of 1-Food Expenditure
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Figure 3: Scatter diagram of Housing and 1-Food expenditure
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Figure 4: Scatter diagram of Empirical distributions of Housing and 1-Food expenditure
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Figure 5: λ functions
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Figure 6: Clayton copula pdf surface when θ=0.396
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Figure 7: Clayton copula cdf surface with empirical cdf when θ=0.396
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Figure 8: Frank copula pdf surface when θ=2.384
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Figure 9: Frank copula cdf surface with empirical cdf when θ=2.384
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Figure 10: Joe copula pdf surface when θ=1.469
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Figure 11: Joe copula cdf surface with empirical cdf when θ=1.469
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