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Abstract

Recently there have been much discussion of the theory and applications of long memory

processes. In this paper we consider the standard linear model y = X� + u and assume that

the variance covariance matrix of the errors being generated from an ARFIMA (0; d; 0) model.

Following Banerjee and Magnus (1999) we investigate the sensitivity of the standard OLS slope

(BL) and sensitivity of variance estimates (DL) of the linear model near � = 0. We also

investigate the behavior of BL and DL under di¤erent short memory speci�cations (for example

AR(1) and MA(1) processes) of u. Recalling the Durbin-Watson statistic (DW or D1) was

related to the sensitivity measure for the OLS variance estimate against ARMA(p,q) errors (

Banerjee and Magnus (1999)).This gives us a method to discriminate between long memory and

short memory processes, by constucting staistics BL=1 and DL=1: In this we interpret DL=1 as

test for long memory process without the shortmemory e¤ects.

1 Introduction

The fractionally integrated autoregressive moving average (ARFIMA) model has recently received

considerable attention in economics, but also in other research areas. ARFIMA processes generalize

linear ARIMA models by allowing for non-integer di¤erencing powers and do thereby provide a more

�exible framework for analyzing time series data. This �exibility enables fractional processes to

model stronger data dependence than what is allowed in stationary ARMA models without resorting

to non-stationary unit-root processes. However, estimators of the fractional model exhibit larger

bias and are computationally more demanding. It is, therefore, bene�cial to discriminate fractionally

integrated processes from ARMA speci�cations in a robust modelling step. One way of that is to test
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the null-hypothesis of an integer di¤erencing power against a fractional alternative. For this purpose

the literature frequently utilizes the Geweke and Porter-Hudak (1983) test, the modi�ed rescaled

range test of Lo (1991) and Lagrange multiplier tests, see e.g. Agiakloglou and Newbold (1994). The

size and power of these asymptotic tests are investigated by Cheung (1993) and Agiakloglou and

Newbold. One �nding in their studies is the existence of non-negligible small-sample size-distortions.

Some econometricians has also focussed on the Durbin-Watson (DW) test, one of the most in-

tensely studied statistics in all of econometrics as an small sample alternative for testing for long

memory process. The properties of a modi�cation of the Durbin-Watson test, due to Nabeya and

Tanaka (1990), as a unit root test against short-range dependent alternatives have been studied

by Hisamatsu and Maekawa (1994), and against long-range dependent alternatives by Tsay (1998).

Nakamura and Tanaguchi (1999) investigate the asymptotics of a standardized Durbin-Watson sta-

tistic as a test for independence against fractionally integrated alternatives. They all found that

the statistic does well to discriminate between white noise and long-memory alternatives. Since DW

statistic was originally designed as a test against AR(1) disturbances, and does well against other

short memory alternatives. Therefore it is di¢ cult to distinguish between short memory processes

from long memory in �nite samples and econometricians hoped that an autocorrelation test will

easily detect long memory dependence, perhaps more easily than in the classical AR(1) case.

In this article we consider a di¤erent method to discriminate between long-memory and short-

memory disturbances. we use a method developed recently by Banerjee and Magnus (1999) who

investigated the sensitivity of the OLS estimators from the disturbances�white noise assumption.

They considered the standard linear regression model y = X� + u under the standard assumptions

and that u is normally distributed with mean 0 and covariance matrix is �2
(�), where �2 > 0 and

d are unknown. They proposed a pair of sensitivity statistics B1 and D1 to measure the sensitivity

of �̂(�) and the variance estimator �̂2(�) respectively with respect to changes in the autocorrelation

parameter � of a stationary AR(1) disturbance process. The authors derived the distribution of

B1, showed that D1 has the same form as the Durbin-Watson (DW) test statistic and showed by

a simulation experiment that B1 and D1 are nearly independent. Their main conclusions are i)

the predictor is not sensitive to covariance misspeci�cation, but �̂2(�) can be very sensitive. ii) the

statistic B1 and D1 can still be used for general ARMA(p,q) disturbances.

In this paper we are interested in the sensitivity of �̂(d) and the variance estimator �̂2(d)measured

by the statistic BL and DL respectively when the error process u is distributed ARFIMA(d): We

show that the properties BL and DL are di¤erent from D1 and B1 which were developed for short

memory error processes. Further we shall shall propose a sensitivity statistics BL=1 and DL=1 to

distinguish between ARFIMA(d) process and short- Memory processes.

2 Preliminaries

We consider the standard linear regression model

y = X� + u; (2.1)
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where y is an T � 1 random vector of observations, X a non-random T � k matrix of regressors, �
a k � 1 vector of unknown parameters and u an T � 1 vector of random disturbances. We assume

that X has full column-rank k. The stochastic component ut follows an Long Memory process, with

normal innovations,

(1� L)d ut = "t t = 0; 1 : : : ; T

ut = 0; t < 0: (2.2)

with "1; : : : ; "T � iid N(0; �2); where �2 > 0:Formally, for any real d;

(1� z)�d =
1X
h=0

� (h+ d)

� (h+ 1)� (d)
zj

with � (:) denoting the Gamma Function. This leads to a autocovariance function (Beran (1994)) of

h (d) = �
2 (�1)h � (1� 2d)
� (h� d+ 1)� (1� h� d) :

The correlations are equal to

�h (d) =
� (1� d) � (h+ d)
� (d) � (h+ 1� d) (2.3)

Therefore using (2.3) we can write the variance matrix of u as,


(d) = �2d

T�1X
h=0

�h (d)T
(h) (2.4)

where we denote by T (h); 0 � h � T � 1, the T � T symmetric Toeplitz matrix with

T (h)(i; j) =

(
1 if ji� jj = h;
0 otherwise:

:

Di¤erentiating both sides of (2.4) with respect to d at d = 0; then yields

AL =
@
(d)

@d
jd=0=

T�1X
h=1

1

h
T (h): (2.5)

3 Sensitivity of the predictor and the variance estimate

If d is known, then the parameters � and �2 can be estimated by generalized least squares. Thus,

�̂(d) = (X 0
(d)�1X)�1X 0
(d)�1y (3.1)

and

�̂2(d) =
(y � ŷ(d))0
(d)�1(y � ŷ(d))

T � k ; (3.2)
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where ŷ(d) denotes the predictor for y, that is,

ŷ(d) = X�̂(d): (3.3)

We wish to assess how sensitive (linear combinations of) �̂(d) are with respect to small changes in d

when d is close to 0. The predictor is the linear combination most suitable for our analysis. Since any

estimable linear combination of �̂(d) is a linear combination of ŷ(d), and vice versa, this constitutes

no loss of generality.

De�nition 1 We de�ne the sensitivity of the predictor ŷ(d) (with respect to d) as

zL =
@ŷ(d)

@d

����
d=0

: (3.4)

The sensitivity of �̂(d) (with respect to d) is then

@�̂(d)

@d

�����
d=0

= (X 0X)�1X 0zL:

In order to use the (normally distributed) T � 1 vector zL as a sensitivity statistic, we transform
it into a quadratic form in the usual way. We thus propose

BL =
z0L(CLC

0
L)
�zL

(T � k)�̂2(0)
; (3.5)

as a statistic to measure the sensitivity of the predictor ŷ(d) with respect to d. (The notation A�

denotes a generalized inverse of A.), where M = IT �X(X 0X)�1X 0 be the usual idempotent matrix

and

CL = (IT �M)ALM (3.6)

Large values of B indicate that ŷ(d) is sensitive to small changes in d when d is close to 0 and

therefore that setting d = 0 is not justi�ed. The statistic BL depends only on y and X and can

therefore be observed. Since the distribution of y depends on d, so does the distribution of B. We

now state our main result.

In order to assess the sensitivity of the variance estimator �̂2(d) with respect to small changes in

d.

De�nition 2 We de�ne the sensitivity of �̂2(d) (with respect to d) as

�L =
@�̂2(d)

@d

����
d=0

: (3.7)

Upon scaling we �nd

DL =
�L

�̂2(0)
=
@ ln �̂2(d)

@d

����
d=0

(3.8)
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as a suitable statistic for our purpose.

Given that the sensitivity measures exist, and since we are interested in knowing how close are

�̂2(d) and �̂2(0) (or for the matter �̂(d) and �̂(0) ) we need to study how close DL (or BL) is to

zero. The DL (or BL) will generally be random variables1. So it will be useful to study the following

probabilities as a measure of �closeness�to zero,

� (d; : S) = Pr
d
(jSj � z�) ; S = DL(orBL), (3.9)

where Prd is the probability measure associated with the random variable u � N (0; �2
 (d)) ; and
z� is obtained from the equation,

Pr
0
(jSj � z�) = � , 0 < � < 1: (3.10)

where Pr0 is the probability measure associated with white noise. � (d)is essentially a robustness

function of the DL (or BL) statistic, against long memory error process. The probabilities give an

indication of how close to zero the sensitivity measures are. The greater the probability mass of the

sensitivity measures around zero, closer is the distance between �̂2(d) and �̂2(0) (or �̂(d) and �̂(0) ):

In order to have a sharper bound for the sensitivity we will choose a lower value of � (in this paper

we chose � = 0:05): Higher the value of � (d) ; higher is the probability of sensitivity of DL (or BL):

In this sense the sensitivity of the relevant statistic increases when � (d) increases. The statistic DL

can be seen as an long memory equivalent of the Durbin-Watson statistic.

Theorem 3 We have

1. zL = �CLy;

2. BL =
y0WLy
y0My

; WL = C
0
L(CLC

0
L)
�CL;

3. If 0 < rL < T � k and the distribution of y is evaluated at d = 0, then

BL � Beta(rL=2; (T � k � rL)=2):

Theorem 4 We have

(a) �L = �y0MALMy
T�k ;

(b) DL = �y0MALMy
y0My

;

(c) If the distribution of y is evaluated at d = 0, then

DL = �v0P 0ALPv
v0v ;

where P is an T � (T � k) matrix containing the T � k eigenvectors of M associated with the

eigenvalue 1, that is, M = PP 0; P 0P = IT�k, and v � N(0; IT�k).
1See Section 5 where �(1)l (A) = 0; A = A1; A2; when the deterministic component is linear (dt = �1 + t�2) :
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Using Pitman�s Lemma we can obtain the moments of DL exactly.

Lemma 5 (Pitman (1937), Laha (1954)). Let x1; : : : ; xT be identically and independently distributed
random variables with a �nite second moment. Then

P
i aixi=

P
i xi and

P
i xi are independent if

and only if each xi follows a gamma distribution.

A consequence of Pitman�s Lemma is that when u � N(0; IT ), then

u0MALMu

u0u
is independent of u0u: (3.11)

which leads to

E

�
u0MALMu

u0u

�s
=
E (u0MALMu)

s

E (u0u)s
: (3.12)

Hence

Theorem 6 If u � N(0; IT ), then

1.

E (DL) = 0 and var (DL) = trace (ALM)
2 ;

2. further

lim
T!1

var (DL) �
�2

6
with the equality holding when if X = 0:

Proof. (later)
We known from Theorem 3 that BL follows a Beta distribution and 4 and 4 gives us the properties

of DL when the disturbances are white noise. The logical next step is to ask how BL and DL behaves

when the disturbances follows ARFIMA(0,d,0) long memory stationary process.

We have 10 data sets; (see Table 1 for details) . For each dataset we calculate � (d : BL) and

� (d : DL) such that � = 0:05 under the assumption that the disturbances are ARFIMA(0,d,0) for

values of d between 0 and 1/2. As noted before, the DL-statistic is essentially the long memory

equivalent of the short memory DW statistic. As a result, � (d : DL) can be interpreted as the power

of DL in testing d = 0 against d > 0. Alternatively we can interpret � (d : DL) as the sensitivity of

�̂2 with respect to d. In the same way, BL measures the sensitivity of ŷ (and �̂) with respect to d.

One glance at Figure 2 shows that BL is quite moderately sensitive, respect to d. This is in contrast

to the results of the sensitivity analysis of the B1 statistic obtained in (Banerjee and Magnus 1999),

where they show that the ŷ (and �̂) in most cases are insensitive to ARMA type processes. The �gure

for DL also shows high sensitivity of the variance estimator �̂
2. The �gures shows the probabilities

for n = 100 The main conclusion is that not only DL is sensitive to d but also BL shows moderate

sensitivity in around 30-40% of the cases.

Figure 1

Figure 2
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We shall also investigate the question of how BL and DL when the disturbances follow a stationary

AR(1) and MA(1) process. For each dataset in Figure 2 and 3 we have calculated

� (� : S) = Pr
�
(jSj � z�) ; S = DL(orBL), (3.13)

where Pr� is the probability measure assuming the error disturbances are distributed as an AR(1)

process with parameter �:for values of � between 0 and 0.5.

Figure 3

Figure 4

We see from Figure 3 and Figure 4 that BL shows no sensitivity against AR(1) process and DL shows

only a moderate amount of sensitivity against the short memory AR(1) process.

Similarly in Figure 4 and 5 we calculate

� (� : S) = Pr
�
(jSj � z�) ; S = DL(orBL), (3.14)

under the assumption that the disturbances are MA(1) with parameter �:for values of � between 0

and 0.5.

Figure 5

Figure 6

From Figure 5 and Figure 6 we see that the BL statistic shows no sensitivity against MA(1)

disturbances.2

In the next section we shall try to devise a sensitivity statistic which can discriminate between

Long memory and short memory processes. This implies we need a statistic which would show more

sensitivity toward long-memory process than short memory process.

4 Long Memory Sensitivity without Short Memory

The �rst step away from white noise disturbances is an AR(1) process or in general the ARMA(p,q)

processes, which are in general classi�ed as short-memory process since the decay of the autocorrela-

tion functions decay faster than the ARFIMA(0,d,0) processes. In a seminal paper, Hosking (1984)

observes that a long-memory process can be approximated by an ARMA(1,1) process reasonably well

when the approximating ARMA process has both roots close to the unit circle. Although no rigorous

justi�cation of this assertion is given in his paper,simulation studies conducted in Hosking (1984)

indicate the validity of this assertion. Recently a paper by Basak, Chan and Palma (2001) proposed

a mean square error criterion based approximation a long-memory time series by a short-memory

2The probabilities were all calculated using our own adaptation of Imhof�s (1961) routine in Gauss which is avail-

ablevia internet under http://www.american.deu/academic.depts/cas/econ/gaussres/Gausidx.htm.

7



ARMA(1, 1) process. Here we shall use or sensitivity measures to see whether we can discriminate

between short-memory and long memory processes.

In order to measure the sensitivity of �̂2(�) the variance estimator �̂(�) the slope estimator

respectively with respect to changes in the autocorrelation parameter, � of a stationary AR(1) (or

MA(1) or indeed ARMA(1,1)) disturbance process, Banerjee and Magnus (1999) proposed a pair of

sensitivity statistics

D1 =
û0T (1)û

û0û
(4.15)

and

B1 =
û0W (1)û

û0û
such thatW (1) = C(1)0(C(1)C(1)0)�C(1) (4.16)

where C(1) = (IT � M)T (1)M , respectively The authors derived the distribution of B1 which is
similar to Theorem 3. They also showed that D1 has the same form as the Durbin-Watson (DW)

test statistic rather the alternative DW statistic proposed by King (1981).3

The asymptotic properties of DW statistic under long memory processes was studied by Tsay.

(1998), Nakamura and Taniguchi (1999). A recent paper by Kleiber and Kramer (2004) studies the

�nite sample properties of DW under ARFIMA(0,d,0). These studies conclude that the DW statistic

is a powerful test. This implies that the D1 by (4.15.) is highly sensitive to long memory process.

So the question remains can we distinguish between short-memory and long memory processes

using our sensitivity measures B1, BL;D1 and DL: One obvious way is to distinguish to take the e¤ect

of the short memory process out of the long memory process by subtracting the relevant statistics.

De�nition 7 We de�ne the sensitivity of �̂2(d) (with respect to d; the long memory parameter)
without the short memory e¤ect as

DL=1 = DL �D1

De�nition 8 We de�ne the sensitivity of the predictor ŷ(d) (with respect to d;the long memory
parameter) without the short memory e¤ect as

BL=1 = BL �B1

We can therefore write

DL=1 =
û0AL=1û

û0û

where AL=1 = AL � T (1); and

BL=1 =
û0WL=1û

û0û

where WL=1 = WL �W (1):

Theorem 9 If u � N(0; IT ), then
3See Appendix for the statements of the theorems.
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1.

Corr
�
DL=1; D1

�
=
trace(DL=1PD1P )

n� k
where P = I �M;

2. further

Cov
�
DL=1; D1

�
= 0

when X = 0:

Theorem 3, implies thatDL=1 andD1 are nearly independent statistics. Therefore the information

contained in DL=1 is independent of the outcome of the D1 (DW tests). Therefore we can think

DL=1 as a way of measuring the pure long-memory content of the error process.

As before we shall also investigate the question of how BL=1 behave when the disturbances fol-

low a stationary are ARFIMA(0,d,0), AR(1) and MA(1) process. To do that we have calculated

� (d : S) ; � (� : S) and � (� : S) where S = BL=1 or DL=1:

Figure 7

Figure 8

Figure 9

Figures 7 -9 plots the sensitivity of the BL=1 statistic. and

Figure 10

Figure 11

Figure 12

Figures 10- 12 plots the sensitivity of theDL=1 statistic when the error disturbances are ARFIMA(0,d,0),

AR(1) and MA(1) respectively. One interesting fact is that the DL=1 statistic shows no sensitivity

to short memory processes (AR(1) and MA(1))4 but highly sensitive to the long memory process

(ARFIMA(0,d,0) which implies that the DL=1 statistic can distinguish between long memory and

short memory processes. On the other hand when we look at the sensitivity statistic of the predictor

namely the BL=1 statistic it fails to distinguish between AR(1) and Long memory processes, though

the BL=1 shows insensitivity under MA(1) process.

Recall � (� : D1) can be interpreted as the power of D1 or DW in testing � = 0 against � > 0.

Similarly we can interpret �
�
: : DL=1

�
as a power curve for testing for long memory against short-

memory alternatives.

4This is in accordance with King and Evans (1988).
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5 Conclusion

In this article we have introduced a new sensitivity measures, BL and DL, which is designed to

decide whether the predictor and the variance estimators are sensitive long memory (in particular

ARFIMA(0,d,0)) misspeci�cation. Our results show that the OLS estimator �̂ (or predictor ŷ) are is

moderately sensitive ARFIMA(0,d,0) misspeci�cation, which is in contrast to the results of Banerjee

and Magnus (1999) where they conclude that the OLS slope estimator is robust to short memory

ARMA speci�cation. The DL statistic which measures the sensitivity of the variance as expected

shows non-robustness ARFIMA(0,d,0) and moderately robust against AR(1) disturbances, but shows

very little sensitivity against MA(1) disturbances.

We then device a sensitivity measures BL=1 andDL=1 for the predictor and the variance estimators

which removes the short-memory e¤ects and purely measures the long memory misspeci�cation.

And indeed we �nd that DL=1 statistic shows no sensitivity to short memory processes but is highly

sensitive to the long memory process . Unfortunately, BL=1 statistic it fails to distinguish between

short memory and Long memory processes.

Therefore we conclude that DL=1 will be a useful statistical measure to distinguish between long

memory and short-memory processes.
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7 Appendix:

7.1 Tables
X Regressors (T=100)
1 Constant;Time Trend;Random Numbers � N (0; 1)
2 Constant;Time Trend;Random Numbers � Beta

�
1
2
; 1
2

�
3 Constant;Time Trend;Random Numbers � Gamma (2)
4 Constant;Random Numbers � N (0; 1) ;Random Numbers � Beta

�
1
2
; 1
2

�
5 Random Numbers � Beta

�
1
2
; 1
2

�
;Random Numbers � Gamma (2) ; Dummy variable � I [U (0; 1) > 0:5]

6 Time Trend;Random Numbers � N (0; 1) ;Dummy variable generated by I [U (0; 1) > 0:5]
7 Time Trend;Random Numbers � N (0; 1) ;Random Numbers � Gamma (2)
8 Time Trend;Random Numbers � N (0; 1) ;Random Numbers � Beta

�
1
2
; 1
2

�
9 Random Numbers � N (0; 1) ;Random Numbers � Beta

�
1
2
; 1
2

�
;Random Numbers � Gamma (2)

10 Time Trend;Random Numbers � Beta
�
1
2
; 1
2

�
;Random Numbers � Gamma (2)

7.2 Figures:
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Figure 3
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Figure 5
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Figure 7
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Figure 9
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