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Abstract: This paper develops a monopolistic competition model to study the 
characteristics of products, such as the different consumption functions of products, 
vertical differentiation (quality) and horizontal differentiation (individuality), and the 
division of labor in production. Our model contributes in several aspects: first, in contrast 
to many vertical and horizontal product differentiation models which assume that each 
consumer demands one unit of the product, the quantity demanded in our model is 
determined by the market. Second, models of general purpose products suggest that, as an 
extension of Hotelling’s model, products with more functions will have higher production 
costs but lower per-unit-distance transaction costs, but no clear explanation is given. In 
our model, the consumption functions served by a product are represented by a functional 
interval, with the usage cost and production cost both variable. Third, we gave a simple 
production function which includes these product’s characteristics and has the economies 
of functional specialization. Last, these factors are analyzed systematically in a general 
equilibrium model. Moreover, through comparative static analysis, we examine the 
correlations between the products’ characteristics and the exogenous variables such as 
population and people’s preferences, transaction costs and management efficiency, and 
production technology. 
 
JEL classification: L11, L12,  
Keywords: product differentiation, general purpose products, division of labor, 
monopolistic competition,  
 

1. Introduction 
   
  In reality, markets not only determine the quantity and price of products, but also the 
characteristics of products. One might summarize these characteristics into three aspects. 
The first is the different consumption functions of products. For example, as functional 
generalization, computer provides more and more functions of media play (such as TV, 
CD, VCD and DVD) and communication (such as telephone, fax and Email).  On the 
other hand, thirty years ago, people used to wear a kind of canvas shoes for many sports 
items. As athletic shoes becoming more and more functionally specialized, you can buy 
any specialized athletic shoes for most sports items. The second is horizontal 
differentiation (Lancaster, 1979). Different people will prefer different products’ 
characteristics, such as style, design, size, color, and others which make no obvious cost 
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difference to the producers. The third is vertical differentiation (quality). Products with 
higher quality usually need more production costs. 
  In order to model the variation (the variety of differentiated products), two prevalent 
research streams evolved. The first is the class of spatial models in the spirit of Hotelling 
(1929) and Lancaster (1979). They use an interval or a circle to represent the 
characteristics space of products in which firms can compete in price, location (horizontal 
differentiation), and quality (vertical differentiation). It has been extensively treated in a 
series of papers, such as D’Aspremont, Gabszewicz and Thisse (1979), Gabszewicz and 
Thisse (1979 and 1986), Shaked and Sutton (1982, 1983 and 1987), Ferreira and Thisse 
(1996), De Frutos, Hamoudi and Jarque (1999) and others. 
  The second is the class of non-spatial models in the spirit of Chamberlin (1933), Spence 
(1976), and Dixit and Stiglitz (1977), Krugman (1980, 1981), Yang and Shi (1992) and 
others. They have endogenized the differentiation by formalizing a trade off between the 
economies of scale and the preference for diverse consumption.           
  Comparing the spatial with the non-spatial models, each framework has strong points.  
First, in the spatial models, consumers and products can be described intuitively by the 
characteristics space, while the degree of differentiation the non-spatial models is 
represented exogenously by the elasticity coefficient in a CES utility function. As a result 
of this difference, a consumer in spatial models will choose the best variety in 
characteristic space; while in non-spatial models, consumer may choose all the varieties. 
Second, for the convenience of computation, Liner and Singer (1937) assume that the 
demand function in spatial models is rectangular: each consumer demands one or zero 
unit of the product. And it has become a default assumption in many spatial models, 
while there is no such a constraint in non-spatial models. 
  As an extension of Hotelling’s model, Von Ungern-Sternberg (1988) and Weitzman 
(1994) study the general purpose products. They assume that the products with more 
general purpose will have higher production costs but less per-unit-distance transaction 
costs, the trade off between these two types of costs determines the degree of 
specialization of the product. However, no explanation is given on the reasons why there 
is a tradeoff between these two types of costs.      
  The purpose of this paper is to formalize these characteristics into a monopolistic 
competition model. Clearly, the explanation is not new as it comes from the Hotelling-
Lancaster spatial model. What we do is to make some improvements and extensions, and   
synthesize them into a general equilibrium framework. First, in contrast to the rectangular 
demand function assumption in many of the spatial models which misses the result that 
people’s trade off between the variety and quantity of products, the quantity demanded in 
our model is determined by the market. Second, to keep the intuition in Hotteling’s model, 
we use another circle with unit circumference to represent the products’ functions. The 
consumption functions served by a product are represented by a functional interval, with 
the usage costs and production costs both variable. Products with a wider range of 
functional interval will need more usage costs and variable costs but less fixed costs, and 
vice versa. This balance decides the boundary of products. Third, we gave a simple 
production function which includes these characteristics of products, and reveals the 
economies of functional specialization and economies of scale. Last, these factors are 
analyzed systematically in a general equilibrium model. Moreover, through comparative 
static analysis, we examine the effects of changes in the exogenous variables such as 
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population size, preferences, transaction costs and management efficiency, and 
production technology on the characteristics of products. 
  This paper is organized as follows. In section 2, we study the model and its main results. 
Five steps were taken in the analysis of the model. First, we introduce the utility function. 
Then, we introduce the production function. Third, through general equilibrium analysis, 
we find the equilibrium characteristics of products. Fourth, comparative-static analysis is 
undertaken. Section 3 is the discussion of results. This paper concludes in section 4, and 
section 5 contains all the proofs of propositions as an appendix. 
 

2. The Model 
 
  Suppose in an economy there are M identical individuals each with one unit of time 
endowment, and each kind of product has three characteristic indexes defined below. 
Suppose that there are two circles, C1 and C2, where C1 is unit circumference and C2 is l2 
in circumference; each kind can be represented as (s, s’]× t×x, with (s, s’]⊂C1, t∈C2 and 
x∈R+=[0, + ). Where C∞ 1 is the function space and each element of C1 is the index of 
the product function, and (s, s’] is the functional interval; C2 is the individuality space 
and t the index of individuality. l2 represents the extent of the diversity of individuality 
in the market; R+ is the quality space and x is the index of quality. (s, s’] × t × x 
represents the product which provides the function of (s, s’], individuality index t and 
quality index x.  For simplicity we suppose that different persons have different t values 
which uniformly distribute in C2. For convenience, we use t to represent individuals later. 
Denote m (=M/l2) as the density of population in individuality space. 
  There are some differences between the product of this paper with that of the others. In 
most economics model, the characteristics of a product is (partially) exogenous; while in 
our model, the characteristics of a product is endogenous by some characteristics 
variables, such as the function interval, individuality and quality indexes. Moreover, 
because these three indexes are represented by continuums, that will be more appropriate 
to analyse the variability of product. Furthermore, we use different function intervals in 
C1 to represent different kinds of products (differing in functions), and use the same 
function interval but different individuality or quality index in C2 to represent different 
varieties of products (differing in individuality). 
 
2.1 Utility functions 
  Suppose that there are I kinds of product and Ji varieties for each kind i, for 1≤i≤I and 
1≤j≤Ji, product ij represented as (si-1, si]× tij×xij, where (si-1, si] is product ij’s functional 
interval; tij is its individuality index and xij is its quality index. For simplicity, we also 
suppose that U 1

sN
=i (si-1, si]=C1 and (si-1, si]∩(sh-1, sh]=φ, for i≠h. That means all products 

consumed will cover the whole function space, and different products will not overlap in 
function.  
  For any t∈C2, suppose person t’s utility function is 

                  ij 1
- t -t

1 1( ,1 ,1 ) ( )Ji x i iJ s sI
ij i i j ij iju q i I j J e x qρ ρ −−

= =≤ ≤ ≤ ≤ = ∏ ∑                     (2.1) 
 Where qij is the quantity of product (si-1, si] × tij × xij, ρJ (ρJ>0) is the individuality 
coefficient, and ρx (ρx>0) is the quality elasticity coefficient.  
  Suppose person t’s budget constraint is  
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                              1( )
1 1
i I i iJ c s sI

i j ij ij tp ke q r−−
= =Σ =                                              (2.2)        

  Where pij is the mill price of product (si-1, si]× tij×xij which excludes transaction cost; 
there are transaction costs in the market, where k (k>1) is the transaction cost 
coefficient (when there is no transaction costs, k=1) and pijk is the price of product for 
which consumers need to pay; there are also usage costs when people consume products, 
where cI (cI>0) is the functional interval coefficient and ( ' )I i ic s s−e represents the usage 
costs. That means that consumers need to pay more usage costs for a product with a 
longer length of functional interval.  
  Person t will choose the products through: 

ij 1

1

- t -t
1 1

( )
1 1

max ( )

:

Ji x

i I i i

i iJ s sI
i j ij ij

J c s sI
i j ij ij t

e x q

st p ke q r

ρ ρ −

−

−
= =

−
= =

∏ ∑

Σ =
                                       (2.3) 

  (2.3) implies several properties.  
1. The function space represents all the necessary function in consumption. From (2.1) 
we know that, as a basic property of CD utility function, if the union of function intervals 
of product from which we consume doesn’t cover the whole function space, no mater 
how much we consume, the utility level is always zero. That means in this case we miss 
out on some essential products.  
2. In each kind of product, consumers (except marginal consumers) will choose only one 
variety of products according to their preference. From (2.3) we know that for each 
functional interval, consumer t will choose these Ji varieties by  

 
ij- t -t

1
max

J x

i

ij

j J
ij

e x
p

ρ ρ

≤ ≤
                                                    (2.4) 

  It implies that consumer t will just choose one variety of products unless more than one 
variety of products gets the maximum at the same time, a case where consumer t is a 
marginal consumer.                                                                                  
3. It is assumed that the consumer is indifferent to how the whole function space is 
covered by different combinations of different kinds of products, provided that the 
individuality and quality indexes are the same. For example, suppose that consumer t has 
two products, (s1, s2]× t1×x1 and (s2, s3]× t1×x1. They have the same individuality and 
quality indexes but different function intervals. The combination of these two kinds is (s1, 
s3] t× 1 × x1. Because 1 1 13 2 3 12 1t -t t - t -t

1 1 1 1 1 1( ) ( Jx x- -J J -t( ) )xs ss se x q x q e x qρρ ρ ρ s seρ ρ − −− = , From utility 
function (2.1) we know that Consumer t will get the same utility. 
4. The usage costs are economies of functional specialization. From budget line (2.2) we 
know that the usage cost in consuming q piece of products with functional interval (s1, s3] 
is . Suppose that s3 1( )( Ic s se − −1)q 1<s2<s3, from 3 2 3 12 1 ( ) ( )( ) 1I II c s s c s sc s se e e− −− + <

q
+

1)
, we have 

. That means the usage costs are economies 
of functional specialization. 

3 2 3 1( ) ( )) ( 1) (I Ic s s c s se q e− −− < −2 1( )( 1Ic s se q− − +

5. Each person has a particular preference for the style or individuality (which could be 
colour, size, etc.) of a product. Since ρJ>0, the lower is∣ti-t∣ , the distance of 
individuality index between the product and consumer, the higher the utility level. For 
example, suppose someone wears L size shirt, so he/she will get more satisfaction if the 
shirt he/she wears has the size closer to L. 
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6. Since ρx>0, from (2.1) we know that a product with higher quality will provide more 
utility. 
   
2.2 production function 
  In this model, we suppose that the factories are privately own firms. The owner’s goal is 
maximum profit. For the convenience of computation, we assume that labor time is the 
only input; the owner’s and all workers’ time is used in production; and the management 
cost is assumed to be proportional to the labor time.                                                                           
  Suppose that a factory which produces product (s, s’]× t×x has a pair of output, quantity 
and quality, and its production functions is  

    q x 1 2c (s'-s) c (s'-s)x+a +a (s'-s)=eLq +                                     (2.5) 
where q and x are the quantity and quality of the product. The marginal cost of quantity 
and quality, cq(s’-s)/e and cx(s’-s)/e, are assumed to vary in accordance to the functional 
interval, and cq and cx are called as marginal cost coefficients of quantity and quality, 
respectively; is the entry cost for each kind of product is taken to be [a1+a2(s’-s)]/e, where 
positive numbers a1 and a2 are the entry cost coefficients; labor time L is the only input 
in production, and e is the management efficiency coefficient, where 0<e<1. For L units 
of labor time, the factory need (1-e)L units of management time. 
  The definition of production function (2.5) implies two properties. 
1. The production functions reveal economies of functional specialization. From (2.5) we 
know that a1+a2(s’-s) is the entry cost in producing quantity and quality. A product with 
less length of functional interval (s’-s) will have less entry cost, so that functional 
specialization can improve productivity. 
2. The production functions display economies of scale. From (2.5) we know that when 
k≥1, the output (cqq+cxx) with kL input is more than the k times of output with L.  
 
2.3 Equilibrium analysis 
  The goal of this section is to find the characteristics of products, such as quality, the 
range of functional interval and the distribution of individuality indexes, in a symmetric 
equilibrium state. 
  Although we use static equilibrium analysis to deal with our model, strategies are 
arranged in three steps. First, each individual decides to become the owner of a factory or 
an employee. Second, each employee’s strategy is to work with one unit time for income, 
while an owner has four strategy variables to maximize profit: price (or equivalently the 
quantity) and the quality of the product; the individuality index (location) in individuality 
space C2; the last strategy variable is the functional interval. Third, individuals trade, 
distribute and consume.  
  For computational simplicity, our model only deals with the special case in which there 
is no overlapping of functional interval. Next, we suppose that each factory produces 
only one kind of products, (s, s’] × t × x, that means each factory chooses only one 
functional interval (s, s’], one individuality index t, and one quality index x. 
  Because all individuals are assumed identical and are free to decide to become the 
owner of a firm or become an employee, and production functions are unique, without 
loosing any generality, we assume that the wage rate is one, so that each employee will 
get one unit of income, and each owner will get one unit of profit in equilibrium states.  
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  Because all owners and employees have the same income in the equilibrium state, 
lemma 1 reveals a necessary condition of equilibrium solution. 
 
Lemma 1 Suppose that there are J factories in an industry, say industry i, and their 
positions in C2 is {ti1, ti2… tiJ │tiJ=ti0=0}. For 1≤j≤J, suppose that factory ij maximizes 
profit in (pij, xij, tij), where pij is the price and xij is the quality of product. For 1≤j≤J, if 
tij+1-tij-1don’t have the same value, then (pij, xij) will not be the same, and the maximized 
profit π(pij, xij, tij) will not have the same value.  
 
  Actually, there are infinite symmetric solutions in our model, but all these solutions 
have the same structure. For this reason, two restrictions are added to our model so that 
we have only to consider one symmetric solution.  
  In the symmetric state where there are I kinds of goods and there are J varieties in each 
kind of goods, we suppose that, for 1≤i≤I, and 0≤j≤J-1, the kind of products produced by 
factory ij can be described as ( I

i 1− , I
i ]× 2

j
J l ×xij. This assumption adds two restrictions to 

the symmetric state. First, the functional interval of the first kinds of products begins at 
point 0 in C1. Next, in each C2, the first factory always stays at point 0 in C2.  
  If we relax these two restrictions, we will have infinite symmetric solutions. For 
example, for 1≤i≤I, and 0≤j≤J-1, we assume that the kind of products produced by factory 
ij can be described as ( 1i

I f− + , iI f+ ]× 2( )ij h l
J
+ ×xij. That means that the functional interval 

of the first kinds of products begins at point f in C1, and in industry i, the first factory 
stays at point hi in C2. It’s easy to see that all these symmetric solutions will have the 
same structure. 
 
Proposition 1 There is a unique solution in symmetric equilibrium state of monopolistic 
competition, which is decided by (2.6), (2.7), (2.8), (2.9) and (2.10). 

                                 2
0,ij i iJ

jlt where t t
J

= =                                                                 (2.6) 

21 1 1

2 2 2

1 [ ( ) 4
2I

I

a a ad
a a a c

= − + + ]                                                    (2.7) 

2 1
2

1 4[( ) ( ) ],  
2

I Ic d
x x

J
J J J I

a e knd n n n
c d me

ρ ρ
ρ ρ ρ

= + + + + =
I

                      (2.8) 

(1 )q I J Jc d d
p

e
ρ+

=                                                                      (2.9) 

(1 )I I

x J
c d

x J

medx
c ke dJ

ρ
ρ

=
+

                                                               (2.10) 

(1 ) I I

J
f c d

q J

medq
c ke dρ

=
+ J

                                                            (2.11) 

(1 ) I I

f
c c d

q J

Jq eq
JM c ke dρ

= =
+

                                                  (2.12) 
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where dI (=1/I) is the length of functional interval and dJ (=l2/J) is the distance of two 
neighbor indexes of individuality in C2, and qf and qc is respectively the quantity 
produced by each factory and the quantity consumed by each individual. 
 
  Proposition 2 shows that, although there are infinite asymmetric solutions for the 
equilibrium states, from the standard of social welfare, the symmetric solution is better 
than the asymmetric solutions mentioned.  
 
Proposition 2 when J is an even number, there is infinite asymmetric solutions. For 
example, for any -1<h<1, (2.13), (2.7), (2.8), (2.9) and (2.10) decide a solution of 
monopolistic competition. When h=0, it’s the symmetric solution of proposition 1; while 
h≠0, it’s the asymmetric solution. Moreover, the social average utility Eu(h) is a 
decreasing function of h .  

2
0

2

2                when  2 , where 

(2 1 )  when  2 1,  1 1

ij i iJ

ij

klt j k
J
k h lt j k
J

 = =
 + + = = +


t t

h

=

− < <
                     (2.13) 

 
2.4 Comparative static analysis  
  Through comparative static analysis, we will find the correlations between the products’ 
characteristics and the exogenous variables such as population size and individual 
preferences, transaction cost and management efficiency, and production technology. 
  To reduce complexity, we use some simple notes to represent the correlations. For 
example, if z is an increasing in x but decreasing in y, we will represent these relation 
with formula z=(x↑, y↓). Next example, in equation F(x, y)=0, if function F(x, y) is 
increasing in x but decreasing in y, we will denote as F(x↑, y↓)=0. This basic technique 
is often used in the proof of the propositions below. 
 
Lemma 2 (1) if F(z↓, x↑, y↓)=0, then z=(x↑, y↓)                                              (2.14) 
                 (2) if F(z↑, x↑, y↓)=0, then z=(x↓, y↑)                                               
 
Corollary 1 the equilibrium length of functional interval products satisfies: 

         1 2
1 ( , ,Id a a c
I

= = ↑ ↓ ↓)I

)

                                                        (2.15) 

1 2( , ,I I Ic d a a c= ↑ ↓ ↑                                                             (2.16) 
 
Corollary 2 the equilibrium varieties satisfy: 

                 2
1 2( , , , , , , ,J I J x

ld m e k c a a )
J

ρ ρ= = ↓ ↓ ↑ ↑ ↓ ↑ ↑ ↑                                (2.17) 

1 2( , , , , , , ,J J I J xd m e k c a aρ ρ ρ= ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑)

)

                                  (2.18) 
 
Corollary 3 the equilibrium quality satisfies: 
                                                        (2.19) 1 2( , , , , , , , ,I J x xx m e k c a a cρ ρ= ↑ ↑ ↓ ↓ ↓ ↑ ↓ ↑ ↓
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Corollary 4 the equilibrium quantity produced by each factory (qf) satisfies: 
                                                      (2.20) 1 2( , , , , , , , ,f I J x qq m e k c a a cρ ρ= ↑ ↑ ↓ ↓ ↓ ↑ ↓ ↑ ↓)

)q

 
Corollary 5 the equilibrium quantity consumed by each consumer (qc) satisfies: 

(1) q m                                                    (2.21) 1( , , , , , , ,f I J xe k c a cρ ρ= ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓

(2) 2 2
2

1

44( )( ) (1 ) ( ) 1x
c

J J I

a
n n a
ρ
ρ ρ

= ↑ ↓ ⇔ + + > < +q a                                          (2.22) 
c

We have qc= (a2↑) when me
k

is large enough, while ρJ is large enough we 

have qc= (a2↓). 
 
  The main conclusions from corollary 1 to 5 are summarized in table 1, where 
endogenous variables are set in column one while exogenous variables are set in row one. 
In table 1, sign “+” means the relevant variables have positive correlation, while “–” 
means negative correlation; sign “0” means no correlation between them and sign “+/-” 
means there are both positive and negative correlations between them. 
 

Table 1: correlation summary 
 m k e cI ρJ ρx a1 a2 cx cq 

dI 0 0 0 - 0 0 + - 0 0 
2

J
l  + - + - + - - - 0 0 

x + - + - - + - + - 0 
qc + - + - - - - +/- 0 - 
qf + - + - - + - + 0 - 

 
3 Discussion of results 

 
  The advantage of the synthetic analysis in our model is that it reveals how people 
tradeoff between the quantity and the characteristics of product, such as the range 
functional interval, the index of individuality and quality. In this section, we will explain 
the results in table 1 intuitively and also give examples in our daily life. 
  For endogenous variables, the range of functional interval, the variety, the quality and 
the quantity consumed by each person (dI, J/l2, x, qc) are four choice variables of 
consumption, which are directly affected by the factors from the demand side; while the 
former three variables and the quantity produced by each factory (dI, J/l2, x, qf) are four 
choice variables of production, which are directly affected by the factors of the supply 
side. 
  The exogenous variables are divided into two groups. The first four variables are (m, k, 
e, cI). Because they induce the entire endogenous variables to change in the same 
direction, we call these effects as growth effects. On the other hand, the last six variables 
(ρJ, ρx, a1, a2, cx, cq) will bring about mixed effects, the factor may be positively 
correlated with some variables but negatively correlated with the others.  
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3.1 Growth effects 
  Column m, k, e, and cI show the ‘growth effects’. The increase of density of population 
and management efficiency, and the decrease of transaction cost and usage cost will 
increase the quantity and improve all three characteristics indexes. Intuitively, with the 
condition of increase returns in production, the increase in the density of population, the 
decrease in transaction costs or usage costs will increase the demand and thus improve 
the production efficiency, while the increase of management efficiency will directly 
improve the production efficiency. Consequently, positive profit will attracts more 
producers to enter into the market and induce them to increase output and improve the 
characteristics indexes. 
  This conclusion throws some light on the intra-industry trade theory. Krugman (1980, 
1981) concludes that, with the condition of the economies of scale and identical 
endowment, there is no inter-industry trade, but lots of intra-industry trade which bring 
more variety of goods and benefit all income-earners. Nevertheless, our model points out 
that there is another factor, the individuality space, which will distort Krugman’s 
conclusion. For example, suppose that there are two identity countries, say A and C; there 
is only one kind of products, say clothes; they have the same production function which 
needs one kind of input, say labor and exhibit increasing returns; the only difference in 
these two countries is that the people of A have bigger stature, they wear clothes of XXL 
size; while the people of C wear M size. According Krugman’s conclusions, the common 
market of these two countries benefit all people with two varieties of clothes. But in 
reality, the people of A don’t need size M and the people of C don’t need size XXL, so 
the common market will not change the economic structures. In our model, it’s the 
special case where two countries have the same size but completely different 
individuality space. The common market will double both population and circumference 
and hence doesn’t change the density of population. As a result, there is no change in 
economic structures. More generally, if the common market is formed between two 
similar countries but with partially different individuality space, the common market will 
increase both the population and circumference which has the opposite effects to the 
density of population, and thus changes the effects of the common market.  
 
3.2 Other effects 
  While the variables above bring the ‘growth effects’, the three pairs of variables below 
have mixed effects on the quantity and the three characteristics indexes. 
  1. For variables ρJ and ρx, a larger ρJ means that individuals have a higher degree of 
preference on individual style of the product; a larger ρx means that their preference for 
higher quality increases, As shown in Table 1, either under the same production 
capability of the economy (general equilibrium analysis) or the same income level of the 
individuals (partial equilibrium analysis), they will accommodate their higher preference 
by reducing the other requirements on products.  
  2. As cq and cx represent respectively the marginal cost coefficient of quantity and 
quality, and hence the decrease of cq and cx, say as the dynamic effect of learning by 
doing, will increase the quantity and quality respectively. 
  3. As a1+ a2(s’-s) represent the entry cost of products with functional range (s, s’], a 
change in a1and a2 has several effects.  
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  First, formula (2.7) shows that the increase of ratio a1/a2 will enlarge the range of 
functional interval. Consumers need to buy all kinds of products. In they choose the 
situation of more kinds of products but less length of functional interval in each kind of 
products, they will pay more times of a1. Hence, when a1 is larger, people will prefer less 
kinds of goods but a larger length of functional interval. Intuitively, a1 represents the 
common component and a2 represent the different components in different products. The 
conclusion shows that different products which have larger portion of common 
component seem easier to be unified into one product, while a product with two 
independent components to a certain extent seems easier to be specialized into different 
products.  
  For example, as functional generalization, a computer provides more and more 
functions of media play (such as TV, CD, VCD and DVD) and communication (such as 
telephone and fax). It’s due to the fact that computers already have some equipment of 
media play and communication. To provide these functions, it just needs to add some 
software and improve the equipment. On the other hand, if computers keep in the narrow 
function range, more basic equipment will be used in different products. This tradeoff 
decides the boundary of the function of the computer.  
  Next example, athletic shoes is becoming more and more functional specialized. Thirty 
years ago, people used to wear the general athletic shoes, the canvas shoes, for many 
sports items. Nevertheless, each sports item emphasizes different part of the shoes. For 
example, because basketball players often jump, so the basketball shoes have thick and 
soft bottom with gap in it; football players often run in wet ground and control the ball 
with the bottom of shoes, so that the football shoes have a hard bottom with rubber nails 
on it. This difference, along with others, make it difficulty to produce a kind of general 
shoes which keep the advantage of both basketball and football, and hence make the 
general athletic shoes easier to be specialized. Now you can buy any specialized athletic 
shoes for most sports items. 
  Second, when a1 and a2 change in opposite direction, there is a tradeoff between the 
range of functional interval and the quality of products. As mentioned above, say when a1 
increase and a2 decrease, people will prefer more range of functional interval, for cost 
saving, they accept the lower quality. A large number of examples show that the tradeoff 
between the ranges of function intervals and the quality levels is ubiquitous. Here are 
several examples in our daily life. As mentioned above, the specialization of athletic 
shoes will improve their quality; the rice cooker offers people much more convenience in 
cooking rice than the general purpose cooker; there are many varieties of specialized 
automobiles, such as truck, bus, sedan and others, which perform better then the general 
purpose automobile. Conversely, although computer may offer the function as a media 
player, but its effect is not as good as the special audio and video equipment; today the 
mobile phone can take photo but its effect is not as good as the camera; supermarkets like 
Wal-Mart sell almost everything at low prices, but provides less service than the 
specialized stores; comparing with playing in outdoor court, people can play basketball, 
volleyball, badminton and other games in an indoor hall, but the overlapping area distorts 
players’ utility. 
  Third, as shown in column a1 and a2, the decrease of entry cost will increase the variety 
of products, and vice versa. The decrease of entry cost will increase the profit and hence 
induce more producers to enter the market, so that more varieties of products will be 
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provided. This means the cheaper products will have more varieties. For example, we 
have a lot of varieties of clothes or shoes, but comparatively, we have fewer varieties of 
cars or airplanes. 
 
3.3 Consistent tendency rule 
  Besides the opposite tendency of functional range and quality, rows x and qf in Tables 1 
show that producers tend to change their quality and quantity in the same direction, 
except for factors cx and cq which affect quality and quantity differently.  
  From the analysis above, we know that growth effects make producers change the 
quantity and quality in the same direction. For other effects, let’s see the endogenous 
variables one by one. First, because ρJ is positively correlated only with the variety of 
products, so it has the same qualitative effects on quantity and quality. Second, although 
ρx is negatively correlated with the quantity consumed by each person (qc) and the variety 
of products (J), but from the formulas (2.8) and (2.12) we know that the effect of J is 
dominating. From the formula qf=Mqc/J we know that the quantity produced by each 
factory is positively correlated to ρx and hence tend to change in the same direction as 
quality. Third, because the range of functional interval, quantity (qf) and quality are three 
substitutable variables within a factory, the change of a1 and a2 which enlarges the range 
of functional interval will reduce the quantity and quality. Last, it’s easy to understand 
why cx and cq will affect the quantity and quality respectively. Form the analysis of 
income and other effects, we conclude that the quantity and quality one of a producer 
tend to change in the same direction. 
  

4. Conclusion 
   
  This paper shows the correlations between the quantity and the characteristics of 
products, such as the functional range, the quality and variety of products, and the 
exogenous variables such as population and people’s preferences, transaction costs and 
management efficiency, and production technology. As its applications, we reveal how 
the market decides the boundary of functional range of the products, how the market 
decides the variety of differentiated products, and how differences in the preference for 
individual styles affect the results of a common market. Besides, benefiting from the 
multifactor analysis, this paper also offers a map to describe how people tradeoff among 
the quantity and the characteristics of products. For example, our model shows that the 
functional range and quality tend to move in opposite direction as exogenous variables 
change, and the quantity and quality of each producer tend to change in the same 
direction.  
  Nevertheless, as the cost of an integrative model, we have to simplify some assumptions 
which induce inevitably the gap between the model and reality. Here are two aspects. 
  First, in our model, there is only one kind of goods for any given function, but in reality, 
people may use different kinds of goods for the same function. For example, people may 
use mobile phone to take photo for convenience or use camera for higher quality.  For 
more realism, one may wish to relax the assumption that the functional interval of 
different kinds of goods do not interact. Next, one may wish to relax the symmetry 
assumption in our model, or to check whether there is any asymmetric solution in our 
model. There may be asymmetric solutions even in a symmetric system. In our model we 
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just have proved that there is only one symmetric solution, but have not shown whether 
there are asymmetric solutions. 
  The second aspect is the multi-products problem in Hotelling’s framework. Our model 
assumes that each factory produces only one variety of products, while in reality each 
factory may produce several varieties of products.    
  As our model shows, there is a tradeoff between functional generalization and the 
quality of products. Similarly, the effort to more realism is blocked by computation 
complexity; model specialization is an easier way out.   
   

5. Appendixes 
 
Lemma 1 Suppose that there are J factories/producers in an industry, say industry i, their 
position in C2 is {ti1, ti2… tiJ │tiJ=ti0=0}. For 1≤j≤J, suppose that factory ij maximizes 
profit in (pij, xij, tij), where pij is the price and xij is the quality of product. For 1≤j≤J, if 
tij+1-tij-1don’t have the same value, then (pij, xij) will not be the same, and the maximized 
profit π(pij, xij, tij) will not have the same value.  
Proof:  From (2.4) we know that consumer t chooses product (s, s’]× tij×xij iff  

'j
2Jij

- -t- t -t

, for 1 j' J
JJ x x
l

ij

ij

e x e x
p p

ρρ ρ ρ

≥ ≤ ≤                                                                               (5.1) 

  It reveals that t is belonging to an interval ( 1ijt r− , 2ijt r+ ) and the radius satisfies:               

   
ij+1ij

1

- t -t- t -t

1

JJ xx
ijij

ij ij

e xe x
p p

ρρ ρρ
+

+

≥                                                                                                (5.2)   

1
ij 2 ij+1 2

1

(t ) ln( ) (t - ) ln( )
x x
ij ij

J J
ij ij

x x
r r

p p

ρ ρ

ρ ρ +

+

+ − = −                                                                    (5.3) 

2 1 12 ( ) [ln( ) ln( )] [ln( ) ln( )]J J ij ij x ij ij ij ijr t t x x p p 1ρ ρ ρ+ += − + − − − +                                       (5.4) 

2 1 1
1 1( ) [ln( ) ln( )] [ln( ) ln( )]
2 2 2

x
ij ij ij ij ij ij

J J

r t t x x p p 1
ρ
ρ ρ+ += − + − − − +                                   (5.5) 

  For simple computation below, denote 1
ik

ik

z
p

= , where k=j, j+1, we have: 

2 1 1
1 1( ) [ln( ) ln( )] [ln( ) ln( )]
2 2 2

x
ij ij ij ij ij ij

J J

r t t x x z z 1
ρ
ρ ρ+ += − + − + − +

                                    (5.6) 

  For the same reason, we have 

1 1 1
1 1( ) [ln( ) ln( )] [ln( ) ln( )]
2 2 2

x
ij ij ij ij ij ij

J J

r t t x x z z 1
ρ
ρ ρ− −= − + − + − −

                                    (5.7) 

1 1 1 1 1 1
1 2

ln( ) ln( ) ln( ) ln( )1[ln( ) ] [ln( ) ]
2 2

ij ij ij ij ij ijx
ij ij

J J

t t x x z z
r r x zρ

ρ ρ
+ − + − + −− +

+ = + − + −
2
+

     (5.8) 

  Because everyone has one unit of income when people begin to trade in step three, from 
utility function (2.4) we know the demand function of factory ij is  
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D(zij, xij, tij, dI)= 1 2 1 2

2

( ) ( )
I I I I

I ij I ij
c d c d

r r Md z r r md z
l ke ke
+ +

=  

                       1 1 1 1( ) ln( ) ln( )
[ln( ) ]

2 2I I I I

I ij ij ij x I ij ij ij
ijc d c d

J

md z t t md z x x
x

ke ke
ρ

ρ
+ − + −− +

−= +                      (5.9) 

                           1 1ln( ) ln( )
[ln( ) ]

2I I

I ij ij ij
ijc d

J

md z z z
z

ke ρ
+ −+

+ −  

where dI (=s’-s) is the length of the functional interval of the products, Its revenue 
function is  

R(zij, xij, tij, dI)= 1 2 1 2

2

( ) ( )
I I I I

I I
c d c d

r r Md r r md
l ke ke
+ +

=  

                       1 1 1 1( ) ln( ) ln( )
[ln( ) ]

2 2I I I I

I ij ij ij ijx I
ijc d c d

J

md t t x xmd x
ke ke

ρ
ρ

+ − + −− +
−= +                        (5.10) 

                           1 1ln( ) ln( )
[ln( ) ]

2I I

ij ijI
ijc d

J

z zmd z
ke ρ

+ −+
+ −  

  From (2.5) we know that  
1 2q I x I Ic qd c xd a a dL

e e e
= + + +

e
                                                                                     (5.11)                 

  Because the wage rate is one, so that we have: 

C(q, x)=L-1= 1 2 1q I x I Ic qd c xd a a d
e e e e

+ + + −                                                                  (5.12) 

C(zij, xij, tij, dI)=L-1= ij ij ij 1 2
D(z , x , t , )

1q I I x I Ic d d c xd a a d
e e e e

+ + + −                               (5.13) 

π(zij, xij, tij, dI)=R(zij, xij, tij, dI)-C(zij, xij, tij, dI) 
1 1 1 1

1 1 1 2

( ) ln( ) ln(
(1 ) (1 )[ln( ) ]

2 2
ln( ) ln( )

(1 )[ln( ) ] 1
2

I I I I

I I

I ij ij q I ij q I ij ij ijx I
ijc d c d

J

q I ij ij ij x ij II I
ijc d

J

md t t c d z c d z x xmd x
ke e ke e

c d z z z c x dmd a a dz
ke e e e e

ρ
ρ

ρ

+ − + −

+ −

− +
= − + − −

+
+ − − − − − +

)

          (5.14)  

For simple computation, denote 
1 2ˆ, ( 1), ,

I I I I I Ic d c d c d
q I ikJ J J x ikI

ikik

I I

c d zke ke ke c xa a da x
md md e e me e
ρ π ρ ρπ = = + − = =z                 (5.15) 

where k=j-1, j, j+1, then we have: 
1 1ˆ ˆln( ) ln( )

( , , , ) [ln( ) ](1
2

ij ij
ij ijij ijij I x

x x
z x t d x zπ ρ + − )

+
= − −                                                (5.16)  

                            1 1 1 1ˆ ˆln( ) ln( ) ( )(1 )
ˆ[ln( ) ](1 )

2 2
ijij ij J ij ij

ij ij ij
z z t t z

z z
ρ+ − + −+ − −

− + − x a−+ −  

For maximum profit π(zij, xij, tij, dI), we have the first and second-order conditions:  

ˆ

ˆ(1 )
ˆ 1

ˆ
x ij

x
ij

z
x

ρ
π

−
′ = −                                                                                                          (5.17) 
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1 1 1
ˆ

ˆ ˆ ˆ ˆln( ) ln( ) ln( ) ln( )
ˆ ˆ ˆ[ln( ) ] [ln( ) ]

2 2
ij ij ij ij

z x ij ij

x x z z
x zπ ρ + − ++ +

′ = − − − − 1−                                (5.18) 

        1 1 ˆ( ) (1
ˆ2

)J ij ij ij

ij

t t z
z

ρ + −− −
− +  

ˆˆ ˆ ˆ0 (1x ij x )ijx zπ ρ′ = ⇔ = −                                                                                                (5.19) 

ˆˆ 0zπ ′ = ⇔                                                                  

1 1 1 1 1ˆ ˆˆ ˆ(1 ) ln( ) ln( ) ln( ) ln( ) ( )
ˆ ˆ[ln( ) ] [ln( ) ]

ˆ 2 2
ij ij ij ij ij J ij ij

x ij ij
ij

z x x z z t
x z

z
1ˆ

2
tρ

ρ + − + − +− + +
= − + − + −−

(5.20) 

We have the second-order derivation matrix: 

2

2

ˆ(1 )
ˆ ˆˆ ˆ

ˆ
ˆ ˆ ˆ(1 )

ˆ ˆ

x ij x

ij ijxx xz

xz zz ijx

ij ij

z
x x

z
x z

ρ ρ
π π

π
π π ρ

− 
 

′′ ′′  ′′ = = −  ′′ ′′ +    
 


                                                                  (5.21) 

2 1ˆ0
1ij

x

zπ
ρ

′′ < ⇔ <
+

                                                                                                    (5.22) 

That means if 2 1ˆ
1ij

x

z
ρ

<
+

, the solution ( , from (5.19) and (5.20) will maximize 

profit; while

ˆˆ )ij ijz x

2ˆijz
1

1 xρ
>

+
, the ( ,  will not maximize profit.  ˆˆ )ij ijz x

From (5.16) and (5.19) we have  
2ˆ(1 )

ˆˆ( ) ( , , , ) (1 )
ˆ
ij

ij ij ij ij I x ij
ij

z
z z x t d z

z
π π ρ

−
= = − − a−                                                       (5.23) 

  From (5.23) we know that ( ijzπ ) is a decreasing function when 2 1ˆ
1ij

x

z
ρ

<
+

, it covers the 

range of the solution ( , which satisfies the first and second-order conditions  ˆˆij ijz x )
  So we can conclude that: for 1≤j≤J, if tij+1-tij-1don’t have the same value, then the 
maximization solutions ( ,  will not have the same value. It’s easy to prove. For 
1≤j≤J, suppose ( , are the same, then form (5.19) and (5.20) we have all t

ˆˆ )ij ijz x
ˆˆ )ij ijz x ij+1-tij-1 are 

the same. From (5.23), because ( ijzπ ) is a decreasing function, so that different ( ,  

implies different

ˆˆ )ij ijz x

( )ijzπ .  

  Translate  to (pˆˆ( , )ij ijz x ij, xij), and π  to profit π, we get the Lemma. 
 
Proposition 1 There is a unique solution in symmetric equilibrium state of monopolistic 
competition, which is decided by (2.6), (2.7), (2.8), (2.9) and (2.10). 

                                 2
0,ij i iJ

jlt where t t
J

= =                                                                 (2.6) 
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21 1 1

2 2 2

1 [ ( ) 4
2I

I

a a ad
a a a c

= − + + ]                                                    (2.7) 

2 1
2

1 4[( ) ( ) ],   
2

I Ic d
x x

J
J J J I

a e knd n n n
c d me

ρ ρ
ρ ρ ρ

= + + + + =
I

                    (2.8) 

(1 )q I J Jc d d
p

e
ρ+

=                                                                      (2.9) 

(1 )I I

x J
c d

x J

medx
c ke dJ

ρ
ρ

=
+

                                                               (2.10) 

(1 ) I I

J
f c d

q J

medq
c ke dρ

=
+ J

                                                            (2.11) 

(1 ) I I

f
c c d

q J

Jq eq
JM c ke dρ

= =
+

                                                 (2.12) 

Proof: Suppose in a symmetric state, there are I kinds of products and J varieties in each 
kind of product. For 1≤i≤I, and 1≤j≤J, suppose that factory ij produces product 
( I

1−i , I
i ]× 2

j
J l ×x, and all factories have price p. The idea to prove this symmetric state is a 

equilibrium solution is that, for each factory ij, given the variables of other factories, 
when any factory ij takes the strategy variables of the assumed symmetric state, it will 
gets the maximum profit, and this profit level equals the income of all workers and 
owners.    
  Because of

, , , , ,
max ( , , , ) max{max ( , , , )}
ij ij ij I I ij ij ij

ij ij ij I ij ij ij Iz x t d d z x t
z x t d z x t dπ π= , three steps will be taken. 

First, look for the unique solution of
, ,

( ) max ( , , ,
ij ij ij

I ijz x t
d z x )ij tij Idπ π= . Second, look for the 

unique solution of max ( )
I

Id
dπ . Third, prove that there is a unique solution of the 

monopolistic competition equilibrium. 
  First, we will prove that there is a unique solution for 

, ,
max ( , , , )
ij ij ij

ij ij ij Iz x t
z x t dπ with the 

method that there is a unique solution of the first-order conditions which has negative 
second-order derivation matrix.  
  From (5.14) we know that tij doesn’t affect profit π(zij, xij, tij, dI), but does affect the 
profit π(zik, xik, tik, dI), where k=j-1 and j+1. As a requirement of a symmetric solution, 
we set  

 2
0,ij i iJ

jl here t
J

=t w                                                                                                  (5.24) t=

  From the first-order condition (5.20) we have 1ˆ ˆ
1ij

J J

z z
dρ

= =
+

, hence we have 

(1 )1 q I J Jc d d
p

z e
ρ+

= =                                                                                                  (5.25) 

  And from the first-order condition (5.19) we have ˆ ˆ
1
x J J

ij
J J

dx x
d

ρ ρ
ρ

= =
+

, hence we have: 
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(1 )I I

x J
c d

x J

medx
c ke dJ

ρ
ρ

=
+

                                                                                                    (5.26) 

  From the second-order condition (5.22) we have: 
2 1ˆ0 (1 )

1ij J J x
x

z d 2 1π ρ
ρ

′′ < ⇔ < ⇔ + > +
+

ρ                                                                  (5.27) 

  From (5.31) we know that ρJdJ-ρx>0 which implies (1+ρJdJ)2>1+ρx, so that we have 
negative definite second-order derivation matrix, it implies that the symmetric solution (p, 
x) of (5.25) and (5.26) maximizes the profit.   
  From (5.9) and (5.25) we have  

( , , , )
(1 ) I I I I

I J J
f I c d c d

q J

md d z medq D z x t d
ke c ke dρ
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ij ij ij
I ij ij ij Iz x t
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ke e e e e
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           1 2( ) 1
(1 ) I I

I J J J x I
c d

q J J

md d d a a d
c ke d e e

ρ ρ
ρ
−

−
+

= −  +

  Second, we also use the first and second-order conditions to look for the max ( )
I

Id
dπ  

 2(1 ) ( )
(1 ) I I I

I I J J J x
d c d

q J J

m c d d d a
c ke d e

ρ ρπ
ρ

− −′ =
+

−                                                                            (5.30) 

  We have the first-order condition:  

  2( )0
(1 ) 1

I I

I

c d
J J J x

d
J J I

med d a e
k d c

ρ ρπ
ρ

−′ = ⇔ =
+ − Id

                                                                       (5.31) 

  From (5.30) we have the negative second-order condition, 0
Id

π ′′ < . So that from (5.31) 
we get the maximize solution.  
  Since every individual can choose to become the worker or the owner freely, at the 
equilibrium state, the owner and worker will have the one unit of income each. So we 
have 

1 2( ) ( )( ) 1
(1 )

I Ic d
J J J x I

I
J J I

med d e a a dd
k d d

ρ ρπ
ρ

− +
= ⇔ =

+
                            (5.32) 

  Third, from (2.6), (2.7), (2.8), (2.9) and (2.10) we get the solution of the symmetric 
equilibrium, now we will prove that the solution is unique.    
From (5.31) and (5.32) we have  

2 1 2

1
I

I I I

a a a
c d d

+
=

−
d

)I I

=

                                                                                                       (5.33) 

2 1 2( )(1I Ia d a a d c d= + −                                                                                             (5.34) 
2

2 1 1 0I I I Ia c d a c d a+ −                                                                                                  (5.35) 

21 1 1

2 2 2

1 [ ( ) 4
2I

I

a a ad
a a a c

= − + + ]                                                                                      (5.36) 
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We know that there is only one positive dI. From (5.35) we know that  
2

21 I I I I

a
c d c d

=
−

1a                                                                                                               (5.37) 

Denote 1
2

I Ic d

I I

a e kn
c d me

=                                                                                                         (5.38)    

From (5.31) (5.37) and (5.38) we have:  
ρJdJ

2-(ρx +nρJ)dJ-n=0                                                                                                      (5.39) 
There is only one positive solution:  

21 [( ) ( ) ]
2

x x
J

4

J J J

nd n nρ ρ
ρ ρ ρ

= + + + +                                                                              (5.40) 

After proving the uniqueness of dI and dJ, from (5.36) and (5.40) we can get the 
uniqueness of p and x and other variables in the symmetric equilibrium. Moreover, we 
have the quantity consumed by each consumer: 

 f
c

f

J

q J q
q

M md
= =                                                                                                            (5.41) 

From (5.28) we have: 

(1 ) I Ic c d
q J

eq
c ke dρ

=
+ J

                                                                                                 (5.42) 

 
Proposition 2: When J is an even number, and for any -1<h<1, (2.13), (2.7), (2.8), (2.9) 
and (2.10) decide a solution of monopolistic competition. When h=0, it’s the symmetric 
solution of proposition 1; while h≠0, it’s the asymmetric solution. Moreover, the social 
average utility Eu(h) is a decreasing function of h .  

                     

2
0

2

2                when  2 , where 

(2 1 )   when  2 1,  1 1

ij i iJ

ij

klt j k
J
k h lt j k
J

 = =

+ + = = +


t t

h

=

− < <


                                     (2.13)     

Proof: when h=0, (2.6) and (2.13) are the same, so that the solution is the symmetric 
solution in proposition 1; while in the case of h≠0, although the set of tij from (2.13) 
distribute asymmetrically in C2, but they keep tij+1-tij-1 the same value for 1≤j≤J. 
consequently. From the proof of proposition 1 we know that, the rest variables will be the 
same as that in the symmetric equilibrium state in proposition 1, so that (2.13), (2.7), 
(2.8), (2.9) and (2.10) will determine an asymmetric equilibrium solution.  
  In the equilibrium state with -1<h<1, tij distribute according (2.13), and hence we know 

that, when j=2k, factory ij locates in 2kl
J

2  and its market range is 

[ 2(4 1 )
2

k h
J

− + l , 2(4 1 )
2

k h
J

+ + l ]; when j=2k+1, factory ij locates in 2(1 )h l
J
+  and its market 

range is [ 2(4 1 )
2

k h
J

+ + l , 2(4 3 )
2

k h
J

+ + l ]. Because the market range of each factory 

distributes regularly on C2, so that the social average utility equals the average utility in 
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the market range of one factory, say factory i1.When t belong to this market range, 
consumer t has the utility 

2
J

(1 )( )

cu(t)=e x qx
h lt
J

ρ ρ
+

−
                                                                                                     (5.43) 

22 2
J

2 2

(1 )(3 ) (3 ) ( )
2 22 2

(1 ) (1 ) c
2 2

Eu(h)= ( ) e x q
J J

x

h lh l h l t
JJ J

h l h l
J J

l lu t dt dt
ρ ρ

++ +
−

+ +=∫ ∫                                                     (5.44) 

J

1
2

1c
2

Eu(h)=(x q ) ex

h
s

h dsρ
−

+
−∫

ρ                                                                                                (5.45)                             

  From (5.45) we have the result that Eu(h) is a decreasing function of h . 
 
Lemma 2 (1) if F(z↓, x↑, y↓)=0, then z=(x↑, y↓)                                               (2.14) 
                 (2) if F(z↑, x↑, y↓)=0, then z=(x↓, y↑)                                               
Proof: it’s easy to prove. 
 
Corollary 1 the equilibrium length of functional interval products satisfies: 

         1 2
1 ( , ,Id a a c
I

= = ↑ ↓ ↓)I

)

                                                         (2.15) 

                                     c d                                                              (2.16) 1 2( , ,I I Ia a c= ↑ ↓ ↑
Proof:  they come from (2.7). 
 
Corollary 2 the equilibrium varieties satisfy: 

                 2
1 2( , , , , , , ,J I J x

ld m e k c a a
J

ρ ρ= = ↓ ↓ ↑ ↑ ↓ ↑ ↑ ↑)

)

                               (2.17) 

1 2( , , , , , , ,J J I J xd m e k c a aρ ρ ρ= ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑                                   (2.18) 

Proof: From (2.8) we have 2 ( , ,J J x
ld
J

ρ ρ= = ↓ ↑ ↑)n                                                  (5.46) 

From (2.8)  1 1
2 ( )

I I I Ic d c d
I

I I I I

a e k a c e k
c d me c d me

= = 2n                                                                           (5.47) 

Because 0<cIdI<1, so we have 2 2 (
I Ic d

I I
I I

e c d
c d

)= ↓                              (5.48) 

From (2.16) we have 1
22 ( ,

( )

I Ic d
I

I I

a c e k mea
c d me k

= = ↑ )↓n                           (5.49) 

From (2.8) and (5.37) we have 2 (
(1 )

I Ic d

I I
I I

a e kn
c d me

)c d= =
−

↑

)

                                        (5.50) 

From (2.16) and (5.50) we have n c 1( ,I a= ↑ ↑                              (

)
5.51) 

From (5.49) and (5.51) we have n m 1 2( , , , , ,Ie k c a a= ↓ ↓ ↑ ↑ ↑ ↑               (5.52) 
From (5.46) and (5.52) we have 

2
1 2( , , , , , , ,J I J x

ld m e k c a a
J

ρ ρ= = ↓ ↓ ↑ ↑ ↓ ↑ ↑ ↑)                                                       (5.53) 

 18



From (2.8) we have 21 [( ) ( ) 4 ]
2J J x J x J Jd n nρ ρ ρ ρ ρ= + + + + nρ

)

)

, and it is easy to get  

1 2( , , , , , , ,J J I J xd m e k c a aρ ρ ρ= ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑                                                          (5.54) 
 
Corollary 3 the equilibrium quality satisfies: 
                                                        (2.19) 1 2( , , , , , , , ,I J x xx m e k c a a cρ ρ= ↑ ↑ ↓ ↓ ↓ ↑ ↓ ↑ ↓

Proof: From (2.10) we have
(1 )I I

x J
c d

x J

medx
c ke dJ

ρ
ρ

=
+

; from (2.10) and (2.17) we know:                                        

2( , , ,J x xx aρ ρ= ↓ ↑ ↑ ↓)c                                                                                            (5.55) 

From (2.10) and (5.32) we know 1 2(
( )

x

x I J J x

a a dx
c d d

)Iρ
ρ ρ
+

=
−

                                                (5.56) 

From (2.15) and (2.18) we know (mex
k

)= ↑                                                               (5.57) 

From (2.8) we have:  
2( ) ( ) 41

2
J x J x

J

n n
d n

Jnρ ρ ρ ρ− + + + +
=

ρ
                                                                   (5.58) 

2

2 (1 )1
( ) ( ) 4 (1

J x
J

J x J x J J
d n n n )x

ρ ρρ
ρ ρ ρ ρ ρ

+
+ =

− + − + + ρ
                                                  (5.59) 

From (2.8) and (5.37) we have: 
1 2

2 (1 )

I I I Ic d c d

I I I I

a e k a e kn
c d me c d me

= =
−

                                                                                           (5.60) 

 
21 1 2

2 2

2 (1 )1( )
(1 )( ) ( ) 4

(1 )

I I

I I
I I I I

c d J x
J c d

J c d c dJ J x
x x

I I I I I I

d a k a k a e ke e
c d me c d me c d me

e ρ ρρ
ρ ρ ρρ ρ

−
− −

+
+ =

+
− + − +

−

    (5.61) 

From (2.16) we have                                                                  (5.62) 1( ,I Ic d
xe a cρ − = ↓ ↓)I

From (2.6) we have 

1 1 21
2

4
(

2
I I

I I

a c a c aa
c d

+ +
= 2 )                                                                                      (5.63) 

So that 1
12 ( ,J

I
I I

a k a c
c d me

)ρ
= ↑ ↑                                                                                        (5.64) 

From (2.16) we have 2
1

(1 ) ( ) ( ,
(1 )

I Ic d
x

I I I
I I

a e k c d a c
c d me

ρ− + )= ↓ = ↓ ↓
−

                                    (5.65) 

From (5.62), (5.64) and (5.65) we have: 

1
1( ) ( ,I Ic d

J
J

e a
d

ρ+ = ↑ ↑)Ic

)

                                                                                          (5.66) 

From (2.10) and (5.66) we know that 1( ,Ix c a= ↓ ↓                                                  (5.67) 
From (5.55), (5.57) and (5.67) we have  
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1 2( , , , , , , , ,I J x xx m e k c a a cρ ρ= ↑ ↑ ↓ ↓ ↓ ↑ ↓ ↑ ↓)

)q

                                                       (5.68) 
   
Corollary 4 the equilibrium quantity produced by each factory (qf) satisfies: 
                       q m                                (2.20) 1 2( , , , , , , , ,f I J xe k c a a cρ ρ= ↑ ↑ ↓ ↓ ↓ ↑ ↓ ↑ ↓

Proof: from (2.11) we know
(1 ) I I

J
f c d

q J

medq
c ke dρ

=
+ J

)q

)q

, it has the same proof and conclusion 

as x, except the change from cx to cq, so that we have:     
1 2( , , , , , , , ,f I J xq m e k c a a cρ ρ= ↑ ↑ ↓ ↓ ↓ ↑ ↓ ↑ ↓                                                     (5.69)                             

 
Corollary 5 the equilibrium quantity consumed by each consumer (qc) satisfies: 
(1) q m                                                         (2.21) 1( , , , , , , ,c I J xe k c a cρ ρ= ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓

(2) 2 2
2

1

44( )( ) (1 ) ( ) 1x
c

J J I

a
n n a
ρ
ρ ρ

= ↑ ↓ ⇔ + + > < +q a                                                (2.22) 
c

 We have qc=(a2↑) when me
k

is large enough; if ρJ is large enough, we get qc=(a2↓). 

Proof: (1) From (2.12) we have
(1 ) I Ic c d

q J

eq
c ke dρ

=
+ J

)q

, from (2.16) and (2.18) we have: 

1( , , , , , , ,c I J xq m e k c a cρ ρ= ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓                                                               (5.70) 
(2) From (2.8) we have:      

2( ) ( ) 4
2

J x J x
J J

n n
d Jnρ ρ ρ ρ

ρ
+ + + +

=
ρ

                                                                  (5.71) 

2( 1) (( ) ( ) 4
2

I I
I I

c d
c d

J J J x J x J
ee d n n nρ ρ ρ ρ ρ+ = + + + + + 2)ρ                                     (5.72) 

Denote function 2ln(( ) ( ) 4 2)I I J x J x Jf c d n n nρ ρ ρ ρ ρ+ + + + + +                         (5.73) 

2 2

2
( ) 4 ( ) 4

I

I

J d I J I I
d I I

I IJ x J J x J

n c n c df c c
c dn n n n

ρ ρ

ρ ρ ρ ρ ρ ρ

′ −′ = + = −
+ + + +

                         (5.74) 

From (2.7) we know that 2

1

2 1I I

I I I

c d a
c d a c
−

= +
4                                                             (5.75) 

2 2

1

4( )0 ( ) 4 ( ) 1
Id J x J J

I

af n n n
a c

ρ ρ ρ ρ′ > < ⇔ + + > < +                                  

2 2

1

44(1 ) ( ) 1x

J J I

a
n n a
ρ
ρ ρ

⇔ + + > < +
c

                                                                          (5.76) 

From (2.15) we know that dI=(a2↓), so that  

qc= (a2↑)(↓) (
Id
f )0′⇔ > < 2 2

1

44(1 ) ( ) 1x

J J I

a
n n a
ρ
ρ ρ

⇔ + + > < +
c

                              (5.77) 

 20



  From (2.8) we know that when me  is large enough and hence n is small enough, we 

have , so that q
k

0
Id
f ′ > c= (a2↑); while when ρJ is large enough, we have , so that 

q
0

Id
f ′ <

c= (a2↓). 
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