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Abstract

This paper considers an important practical problem in testing time-series data for
nonlinearity in mean. Most popular tests reject the null hypothesis of linearity too
frequently if the the data are heteroskedastic. Two approaches to redressing this size
distortion are considered, both of which have been proposed previously in the literature
although not in relation to this particular problem. These are the heteroskedasticity-
robust-auxiliary-regression approach and the wild bootstrap. Simulation results indi-
cate that both approaches are effective in reducing the size distortion and that the wild
bootstrap offers better performance in smaller samples. Two practical examples are
then used to illustrate the procedures and demonstrate the dangers of using non-robust
tests.
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1 Introduction

The empirical properties of econometric tests for nonlinearity in mean in time-series data

have been well documented in the literature (Lee et al., 1993, Teräsvirta et al., 1993 and

Barnett et.al., 1997). As a result it is reasonably well known that non-constant variance in

time-series data can cause problems for these tests. In particular, there is a tendency to over-

reject the null hypothesis of linearity in mean if the time series being tested is heteroskedastic.

In some cases it is important to distinguish between the rejection of the null hypothesis due

to neglected nonlinearity in mean and not merely the presence of heteroskedasticity. For

example, there is a growing literature on the importance of asymmetric loss functions in the

context of the conduct of monetary policy (Kim et al., 2002, Elliot et al., 2003). This type of

loss function could imply a nonlinear policy reaction function. It is likely that the estimation

of these reaction functions will require the use of macroeconomic variables that are known

to be heteroskedastic. In these situations a test for nonlinearity in mean is required that has

the correct size even when heteroskedasticity is present.

The basic test for nonlinearity that will be used in this paper is the neural network test

originally proposed by White (1989) as implemented Teräsvirta et al. (1993) because of its

suitability for use in the proposed testing strategy and also because it is known to have good

power against a number of nonlinear models. Of course the testing procedure outlined in

the paper can be used in conjunction with other well-known tests for nonlinearity. Lee et

al. (1993) conclude that the original version of the neural network test cannot distinguish

between nonlinearities in mean and non-constant variance, a result given limited empirical

support in the simulation exercises reported by Dahl (1999). On the other hand, Barnett

et.al. (1997), who included (G)ARCH processes into their single blind experiment, concluded

that only the neural network test was capable of providing such a distinction.The procedure

which is proposed here to correct for the size distortion suffered by tests for nonlinarity in

mean in the presesence of heteroskedasticity is to use the heteroskedastic-robust-regression

framwork outlined by Davidson and MacKinnon (1985). Clear expositions of this method in

the context of testing for nonlinearity can also be found in Granger and Teräsvirta (1993).
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Although this framework is capable of dealing with the potential presence of heteroskedas-

ticity of an unknown form, the type of heteroskedasticity used in the simulation design is

limited to the GARCH type (Engle, 1982, Bollerslev, 1986). This choice is determined by the

prevalence of this type of heteroskedasticity in economic and financial time-series data. In

addition, an appropriate bootstrapping technique will be investigated to see if this improves

the small sample performance of the test.

This paper makes a number of contributions to the current state of the literature. A

number of theoretical results are established. Amongst them the conditions of which need

to be imposed on a linear process in order to apply a robust regression version of the V23

test and the ability of the fixed-design wild bootstrap to approximate this distribution con-

sistently. From an the empirical perspective, the size and power of the robust-regression

approach to testing for nonlinearity in mean in the presence of non-constant variance is

evaluated. The procedure is shown to be an effective way of reducing the size distortion.

It is also demonstrated that the use of the wild bootstrap, proposed by Liu (1988), Mam-

men (1993) and Davidson and Flachaire (2000), in conjunction with the robust-regression

approach offers further small-sanple improvements to the size of the test. This result derives

from the ability of the wild bootstrap to replicate the lower-order moments of the empirical

distribution of residuals.

The rest of the paper is structured as follows. Section 2 is a brief perspective on the

testing problem that covers the heteroskedasticity-robust auxilliary regression approach to

testing for nonlinearity in mean and also introduces the wild bootstrap. Section 3 establishes

the required theoretical results. In Sections 4 and 5 of the paper the empirical performance

of the auxilliary regression using both the asymptotic distribution and the wild bootstrap to

determine the significance of the testing procedure is evaluated. In Section 6 the tests are

applied to the Yen/US$ exchange rate and the US 3-month Treasury Bill rate, being two of

the data sets examined by Lee et al. (1993) in their comprehensive comparison of tests for

nonlinearity. It is shown that ignoring the presence of heteroskedasticy can result in the null

of linearity in mean being rejected too easily. Section 7 is a brief conclusion.
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2 An overview of the testing problem

Consider the nonlinear time-series model

yt = g (yt−1;β) + εt εt ∼ i.i.d.
¡
0, h2

¢
(1)

where the mean function g (yt−1;β) may be decomposed into linear and nonlinear compo-

nents as follows

yt = yt−1β+φ (yt−1; δ) + εt. (2)

Note that yt−1 = (yt−1, . . . , yt−p)
0 which implies that the analysis is restricted to time-series

models1. In this specification, β and δ are (p× 1) and (q × 1) parameter vectors representing

the linear and nonlinear contributions to the mean respectively. The definition of linearity

in mean is φ (yt−1; δ) = 0. For most nonlinear models φ (yt−1; δ) can be reformulated so

that φ (yt−1; δ) = 0 if δ = 0. Sometimes it is even sufficient if one particular parameter

in the vector δ equals zero although this situation introduces the problem of the remaining

parameters in δ being unidentified under the null hypothesis.

In order to implement a test for nonlinearity in this framework, the form of the function

φ (yt−1; δ) must be specified, reflecting the nonlinear model that is envisaged under the

alternative hypothesis. A popular specification for φ (yt−1; δ) that has good power against

a range of alternative nonlinear models is use of second- and third-order cross products of

yt. This specification is a variant introduced by Teräsvirta et al. (1993) of the original test

proposed by White (1989) where the nonlinear model under the alternative hypothesis takes

the form of a neural network. The test regression is

yt = yt−1β +

pX
i=0

pX
j=i

δijyt−iyt−j +

pX
i=1

pX
j=i

pX
k=j

δijkyt−iyt−jyt−k + εt, (3)

and the associated null hypothesis of linearity is specified as

H0 : δij = δijk = 0 ∀ i, j, k

These restrictions may be tested by means of a familiar F-test when the additional assump-

tion is made that the error term, εt, is normally distributed. The test can also be conducted
1Extending the analysis to models including exogneous variables is straightforward.
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within a Lagrange Multiplier framework as follows. Let bβ be a consistent estimate of the
parameter vector under the null hypothesis of linearity and let the scores with respect to the

parameter vector δ be denoted

Ŝ
³
β̂
´
=
1

T

X ∂Lt

∂δ
.

If the relation is indeed linear then Ŝ
³
β̂
´
should be close to zero, and the LM test of this

hypothesis is given by

LM = T Ŝ0I
³
Ŝ
´−1

Ŝ. (4)

where the covariance of the scores is the information matrix, I
³
Ŝ
´
.

It is well known that this LM statistic is easily computed by means of an auxiliary

regression (see for example, MacKinnon, 1992, p109). Define bεt as the residuals estimated
from the linear model

yt = yt−1β+ εt. (5)

The LM test statistic may be computed as

LM = TR2. (6)

where the coefficient of determination R2 is calculated from the auxiliary regression which

regresses the residuals bεt on the explanatory variables and the partial derivatives of φt =
φ (yt−1; δ) with respect to the parameter vector β. The regression is given by

bεt = ztθ+ νt (7)

zt =
¡
y0t−1,d

0
t

¢0
where the vector dt is defined as

dt = ∂φt/∂δ. (8)

Essentially the vector dt comprises all the unique second- and third-order cross products of

yt−1. The advantage of using the LM test as opposed to the F-test stems from the fact that

the former does not require the residuals to be normally distributed in order for it to follow

its asymptotic χ2 (q) distribution.
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2.1 Heteroskedastic-robust regression

To this point the innovations, εt, of the nonlinear time-series model of equation (1) have

been assumed to be i.i.d. This assumption is now relaxed to allow for heteroskedasticity as

follows

yt = g (yt−1;β) + h (yt−1;γ) εt εt ∼ i.i.d. (0, 1) . (9)

The extension to nonconstant residual variance h2 (yt−1;γ) is straightforward, so long as

∂h2 (yt−1;γ) /∂β = 0, and h2 (yt−1;γ) is completely specified. The LM test for nonlinearity

may now be implemented as follows. Estimate the residuals from the heteroskedastic model

imposing the null hypothesis of linearity. This will provide estimates of the standardised

residuals eεt = bεtĥ−1 and also eyt−1 = yt−1ĥ
−1 and d̃t = dtĥ

−1. The LM test is again

calculated as TR2, with R2 now being the coefficient of determination from the auxiliary

regression with the standardised variables (Granger and Teräsvirta, 1993).

Often, however, not enough information is available to specify the variance function

h2 (wt;γ) and it is desirable to cater for unspecified heteroskedasticity when testing the

linearity of the conditional mean. A regression-based approach to achieve this was proposed

by Davidson and MacKinnon (1985). It is best described by the following steps

1. Estimate the restricted residuals bεt from equation (5).

2. Let D be the (T × q) matrix of the stacked vectors dt. Regress the q elements in D

individually on Y, which is the (T × p) matrix of the stacked vectors yt−1. Save the q

resulting residual vectors r (Dj |Y ), where Dj indicates the jth column (j = 1, . . . , q)

of D.

3. Compute the weighted residuals r̃t (Dj |Y ) = rt (D
j |Y )bεt and

4. Regress a (T × 1) vector of ones, 1, on the q regressors computed in step 3, r̃ (Dj |Y ),

j = 1, . . . , q. The test statistic is computed as the explained sum of squares or T−RSS

from this regression2.

2This is numerically equivalent to calculating the test statistic bε0MYD
³
D0MY

bΩMYD
´−1

D0MY bε as in
Davidson and MacKinnon (1985) and Godfrey and Orme (2004).
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Wooldridge (1990) provides the conditions under which this testing procedure will result

in a test statistic whos asymptotic distribution under the null hypothesis is χ2q . As previously

noted, in the context of the V23 test, the vector dt comprises all the unique second- and

third-order cross products of the lagged dependent variable. It follows, therefore, that this

test will have the required asymptotic distribution if and only if the process {yt} satisfy the

conditions established by Wooldridge (1990). The existence of the asymptotic distribution

for the V23 test is established in Section 3.

2.2 Wild bootstrap

Notwithstanding the existence of the asymptotically the distribution of the V23 test, related

work by Godfrey and Orme (2004) has indicated a persistent small-sample size distortion

in the heteroskedastic-robust testing framework. The heteroskedastic processes of interest

here, namely (G)ARCH processes, are known to be near epoch dependent (NED) functions

of mixing processes (Sin and White, 1996, Davidson, 2000). It has recently been established

that the block (Künsch, 1989)and stationary bootstrap (Politis and Romano, 1994) deliver

consistent inference on parameter estimates when applied in the context of NED processes

(Goncalves and White, 2000, 2001).Unfortunately this result is not useful in the present

context, since these two bootstrap techniques not only preserve the structure in the resid-

ual variance but will potentially also capture nonlinear dependence in the data. They are,

therefore, not suitable in the context of testing for nonlinear dependence in mean where the

null hypothesis is that of linearity, as it is paramount that the bootstrapping technique com-

plies with the restrictions imposed by the null hypothesis. In these circumstances the wild

bootstrap proposed by Liu (1988), Mammen (1993) and Davidson and Flachaire (2000) ap-

pears to be the only suitable alternative. The wild bootstrap has been shown to particularly

useful in bootstrapping (G)ARCH processes (Gonçalves and Killian, 2004). In conjunction

with the robust-regression approach, therefore, the wild bootstrap may offer improvements

to the size of the V23 test in small samples, given that the heteroskedasticity-robust V23

test statistic is asymptotically pivotal.

The intuition of the wild bootstrap is to preserve the observed time pattern in the resid-
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ual variance. This is achieved by resampling the residuals in such a way that (at least)

the first two moments of the observed regression residuals are maintained. Consider the

residuals {eεt} , t = 1 . . . T defined by ε̃t = δε̂t − ε̄, where ε̂t is the OLS residual from

the model estimated under the null hypothesis and ε̄ = 1/T
P

δε̂t. The rescaling factor

is δ =
p
T/(T − k) with k being the number of estimated parameters (Mammen, 1993,

Flachaire, 1999, Bergström, 1999).The general resampling scheme for the wild bootstrap is

given by

ε∗t = vt · g(ε̃t) (10)

where g(ε̃t) = |ε̃t| and

vt =

½
1 with probability 0.5
−1 with probability 0.5

. (11)

which is the algorithm suggested by Davidson and Flachaire (2000). The limited simulation

simulation evidence provided by Godfrey and Orme (2001) tends to support the choice of

this choices for g(ε̃t) and vt.

There are methods for creating bootstrap samples using the wild bootstrap in the context

of autoregressive models, namely, the fixed-design wild bootstrap, FDWB, and the recursive

wild bootstrap, RWB (Gonçalves and Killian, 2004). The former generates the bootstrap

realisations from

y∗t = yt−1β̂ + ε∗t ,

whereas the latter requires the recursive scheme

y∗t = y
∗
t−1β̂ + ε∗t .

For the latter starting values for y∗0 are required. In order to negate any significant impact

of the choice of starting values a series that is longer than required is generated and then

the initial redundant observations discarded.

Gonçalves and Killian (2004) show that both versions of the wild bootstrap (recursive

and fixed-design) allow consistent inference over the regression parameter vector β, when

the data follow a range of (G)ARCH processes. They present empirical and theoretical

evidence. It is interesting to note that, while the RWB, enjoys theoretical justification for
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a smaller class of GARCH families, it performs just as well as the FDWB, even in cases

where it is lacking theoretical support. This section will establish that approximating the

null distribution of TR2u by its fixed design wild bootstrap equivalent is a consistent strategy.

3 Theoretical results

This section will establish the following two important theoretical results

1. Given a set of assumptions on the data generating process for {yt}, the heteroskedastic-

robust version of the V23 test has an asymptotic χ2q distribution.

2. The wild boostrap will generate a consistent estimate of this distribution.

Before proceeding to establish these results it is necessary to set up a series of required

assumptions on the DGP for {yt} .

3.1 Process assumptions

When imposing the null hypothesis, the data generating process for {yt} is

yt = yt−1βl + εt (12)

where, as before, yt−1 = (yt−1, . . . , yt−p)
0. An alternative formulation is

β (L) yt = εt

where the lag polynomial β (L) is assumed to have all roots outside the unit circle. In order

to prove the theoretical results required for consistent inference by the V23 test, a number of

assumptions on the residual sequence {εt} are required. In essence these conditions require

that the higher order moments of the residual sequence are well behaved. Note that these

assumptions are stronger than those of Gonçalves and Killian (2004) who establish that the

wild bootstrap can be used improve the small sample coverage probabilities of confidence

intervals for the parameter vector of the linear model.

The following Assumptions A1 - A10 establish the necessary conditions.
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Assumption (A1) E (εt |Ft−1 ) = 0, almost surely, where Ft−1 = σ (εt−1, εt−2, ...) is the

σ-field generated by {εt−1, εt−2,...} .

Assumption (A2) E (ε2t ) = σ2 <∞

Assumption (A3) limT→∞ T−1
PT

t=1E (ε
2
t |Ft−1 ) = σ2 > 0 in probability.

Assumption (A4) E (εt−kεt−lεt−m) = σ3τk,l,m for any k, l andm ≥ 1 and all t is uniformly

bounded.

Assumption (A5) limT→∞ T−1
PT

t=1E [εt−k|Ft−k−1] εt−lεt−m = σ3τk,l,m in probability for

any k, l and m ≥ 1 and m, l ≥ k.

Assumption (A6) E(εt−kεt−lεt−mεt−r) = σ4τk,l,m,r for any k, l,m and r ≥ 1 and all t is

uniformly bounded. Note that τk,l,m,r = 0 if m 6= r and m, r 6= k, l due to the m.d.s.

property of {εt}. This is therefore the same as assumption (iv) in GK.

Assumption (A7) limT→∞ T−1
PT

t=1E [εt−k|Ft−k−1] εt−lεt−mεt−r = σ4τk,l,m,r in probabil-

ity for any k, l,m and r ≥ 1, where l,m, r ≥ k.

Assumption (A8) E (ε2t εt−k1 · . . . · εt−ki) = σi+2τk1,...,ki for any k1, . . . , ki ≥ 0 and all t is

uniformly bounded for i = 3, . . . , 6. Note that τk1,...,ki = 0 if ki 6= ki−1 and ki, ki−1 6=

k1, . . . , ki−2 due to the m.d.s. property of {εt}.

Assumption (A9) limT→∞ T−1
PT

t=1E [ε
2
t |Ft−k1−1] εt−k2 · . . . · εt−ki = σi+2τk1,...,ki in prob-

ability for any k1, . . . , ki ≥ 0, for i = 3, . . . , 6.

Assumption (A10) E |εt|8r is uniformly bounded, for some r > 1.

It is demonstrated in Deo (2000) that a number of GARCH and stochastic volatility

models satisfy these assumptions, conditional on innovations which possess an appropriate

number of higher moments. Based on these assumptions the required theoretical results may

now be established.
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3.2 Consistency of the V23 test

The relevant theory is provided by Wooldridge (1990). Here the relevant theorem from

Wooldridge is adapted for application to the V23 test. Let λt (yt−1) represent a q-dimensional

vector of misspecification indicators. In this case λt (yt−1) = dt, the vector of unique second

and third-order cross products of the p elements in yt−1, which does not depend on any

parameter estimates or other nuisance parameters, thus simplifying the analysis considerably.

Furthermore let

µt

³
yt−1, bβ´ ≡ E

⎡⎣⎛⎝∂
h
εt
³
yt,yt−1, bβ´i
∂β

⎞⎠ |yt−1
⎤⎦ = −yt−1

where the last equality follows from the linearity of the model under the null hypothesis.

Wooldridge’s Theorem 2.1 can now be restated as follows.

Theorem 1 (Wooldridge 2.1) Assume the following conditions hold under the null hy-

pothesis:

(i) Regularity conditions A.1 (Wooldridge, 1990, Mathematical Appendix, p 40)

(ii) For some β0 ∈ int (Φ) ,

(a) E [εt (yt,yt−1,β0) |yt−1 ] = 0, t = 1, 2, . . . , T ;

(b) T 1/2
³bβ − β0´ = Op (1) .

Then

eξT = T−1/2
TX
t=1

£
λ0t − µ0tB0T

¤
ε0t + op (1)

where

B0
T ≡

Ã
TX
t=1

E
£
µ00t µ

0
t

¤!−1 TX
t=1

E
£
µ00t λ

0
t

¤
.

Further,

TR2u
d→ χ2q,

where R2u is the uncentered R
2 from the regression

1 on bε0t hbλt − bµt
bBT

i
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estimating eξT and bBT from

eξT = T−1/2
TX
t=1

hbλt − bµt
bBT

ibεt
and bBT ≡

Ã
TX
t=1

bµ0tbµt

!−1 TX
t=1

E
hbµ0tbλt

i
.

respectively.

Proof. See Wooldridge (1990, p 41).

Closer inspection reveals that the auxilliary regression outlined in this theorem is in fact

identical to that outlined earlier in the context of the heteroskedastic-robust implementation

of the V23 test, recognising that
hbλt − bµt

bBT

i
is the residual obtained by regressing the

elements in bλt on bµt = yt−1. This theorem therefore provides the necessary proof of the

existence of the asymptotic χ2q distribution for the V23 test, provided that the conditions

required by the theorem are satisfied in the current context. This is now established in the

following Lemma.

Lemma 2 Given assumptions A1 - A10, the conditions A.1 in Wooldridge (1990, p 40) are

fulfilled.

Proof. Appendix

3.3 Consistency of the wild bootstrap

Having established that the V23 test, in its robust implementation, has an asymptotic χ2q dis-

tribution, it is now necessary to prove that wild bootstrap will provide a consistent estimate

of this distribution. Gonçalves and Killian (2004) have recently shown that both versions of

the wild bootstrap (recursive and fixed-design) allow consistent inference over the regression

parameter vector β, when the data follow a range of (G)ARCH processes. The task here

is to extend these results to approximating the asymptotic χ2q distribution of the V23 test.

The proof provided here applies only to the fixed-design wild bootstrap because stronger
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conditions are required for the recursive bootstrap and, in any event, the existing evidence

suggests that there are no significant differences in the empirical performance of the two

resampling schemes.

Theorem 3 Under the assumptions A1 - A10 it follows that

sup
x∈R+

¯̄
P ∗
¡
TR2∗u ≤ x

¢
− P

¡
TR2u ≤ x

¢¯̄ p→ 0

where P ∗ is the probability measure induced by the fixed design wild bootstrap. TR2u and TR
2∗
u

are the robust regression test statistics based on the data and the fixed design wild bootstrap

replications respectively.

The proof, provided in the Appendix, draws on the Wooldrige’s (1990) demonstration

that

T−1/2
TX
t=1

(λt − µtBT )
0bεt d→ N (0,ΞT ) .

It the context of the bootstrap what is required is the similar result that

T−1/2
TX
t=1

(λ∗t − µ∗tB∗T )
0 ε∗t

d→ N (0,ΞT )

where λ∗t , µ
∗
t and B

∗
T refer to bootstapped quantities. Of course, an important part of the

proof is to establish that

Ξ∗T
p→ Ξ0T .

Proof. Appendix

4 Design of the simulation experiments

The data generating processes included in the experiment fall naturally into two categories

each with six different models.

1. Size simulations (linear-in-mean processes):

These include standard normal random numbers (RNDN) and an autoregressive model

of order one (AR1) as models linear in mean and in variance; and two ARCH and two

GARCH models as models which are linear in mean, but nonlinear in variance.
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2. Power simulations (nonlinear processes):

A bilinear model (BILIN), a threshold autoregressive model (TAR), a sign autoregres-

sive model (SAR), a nonlinear autoregressive model (NAR), a bilinear autoregressive

model (BILINAR) and the logistic smooth transition autoregressive model (LSTAR)

as models with nonlinear dynamics.

In the simulations the null hypothesis is represented either by an autoregressive model

of order one (RNDN, AR1, TAR, SAR, NAR, ARCH and GARCH) or of order two (BILIN,

BILINAR and LSTAR). All linear models are estimated with a constant. The exact specifi-

cations are given in Appendix A. The sample size is set to be either 50, 100 or 200 and the

size and power results are based on 5, 000 simulations. The bootstrap tests are applied with

400 bootstrap replications.

Size and power simulations were conducted using normaly distributed perturbations

when simulating the processes. In order to investigate the sensitivity of the robust regres-

sion approach and the wild bootstrap approach, the size simulations were repeated using

standardised χ2 (2) and t (5) random deviates. The results will supplement the empirical

investigation by Godfrey and Orme (2001) who investigate the robustness of several wild

bootstrap mechanisms to nonnormality. Both variations of the wild bootstrap,FDWB and

RWB, are applied.

Before simulation results are reported it is required to establish whether the moment

requirements set up earlier are fulfilled. In particular the existence of the 8th moment has

to be established.

Lemma 4 A GARCH(1,1) process, of the form yt = γ yt−1 + εt, εt = ztht and h2t = α0 +

α1ε
2
t−1+βh

2
t−1, where zt ∼ iid, has finite 8th moment if β4+4β3α1E

¡
z2t−1

¢
+6β2α21E

¡
z4t−1

¢
+

4βα31E
¡
z6t−1

¢
+ α41E

¡
z8t−1

¢
< 1.

Proof. Appendix.

In order to check this condition for the simulated GARCH and ARCH processes (the

latter being a special case of the general GARCH process with β = 0) it is required to draw
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on the moments of the standard normal-, χ2 (2)- and t (5)-distributed deviates. It is well

known that only the first 4 moments of the t (5) distribution are finite (Abramowitz and

Stegun, 1972) and hence the (G)ARCH models simulated with leptokurtotic innovations do

not comply with the imposed moment restrictions.

Lemma 5 The ARCH2 and GARCH2 process with N (0, 1) innovations have finite 8th mo-

ments. The ARCH1 and GARCH2 processes with N (0, 1) innovations and all ARCH and

GARCH processes with t (5) and χ2 (2) innovations do not have finite 8th moments.

Proof. Appendix.

While the theoretical results provided in this paper do not support the application of the

fixed-design bootstrap to the GARCH processes with non-normal innovation process, it is

instructive to include these processes into the simulation design for two reasons. First they

were included, in a different context by Godfrey and Orme (2001, 2004), who established that

the wild bootstrap has the potential to be robust to the types of non-normalities introduced

by these two innovation processes. Second, it is not always straightforward to establish

whether the innovation process follows a particular distribution, especially when there is

uncertainty about the process specification. Of course this paper deals with a particular type

of specification testing and it is therefore natural to investigate some robustness properties

of the wild bootstrap procedure.

5 Simulation Results

In all the simulation results to follow the asymptotic V23 test is denoted simply as V23,

the test based on the robust regression is denoted, V23hc, and the wild-bootstrap version of

the robust-regression test is denoted V23wb, where REC (FD) indicates that the recursive

(fixed design) algorithm has been applied. The size simulation results are reported Table 1.

A number of conclusions are immediately apparent.

1. First, the asymptotic V23 test rejects the correct null hypothesis far too frequently

when there is heteroskedasticity in the data. The size distortions are especially dra-
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matic for those processes which have a strong ARCH component (ARCH1, ARCH2

and GARCH1).

2. The heteroskedastic-robust-regression test reduces substantially the size distortion of

the simple V23 test. The V23hc, however, does tend to be overly conservative, when

the nominal size is small (α = 0.01 or α = 0.05). This is the case for all simulated

processes although, as expected, the size distortion diminishes with increasing sample

size. A similar result has been obtained by Godfrey and Orme (2004) in the context

of testing several linear restrictions,

3. The wild-bootstrap version of the test, on the other hand, has the correct empirical

size in all cases. These results suggest that the bootstrap can deal quite comfortably

with heteroskedasticity of an autoregressive-conditional type.

In general, it appears that simple robust-regression approach does offer potential benefits

in correcting the size distortion suffered by tests of nonlinearity in the presence of ARCH.

The benefit can be substantially enhanced by employing the wild bootstrap to determine

the significance of the test statistic, particularly in smallish-samples.

The power results for the four test statistics are reported in Table 2. Perhaps the most

striking result is that the NAR process is not detected particularly reliably by any version

of the test. This is not surprising as the NAR process is known to be notoriously difficult to

detect. For the other data generating processes, especially the SAR, BILINAR and LSTAR,

all the tests seem to have acceptable power. Furthermore the empirical power reported here

is comparable to results reported in other studies (Lee et al., 1993, Dahl, 1999).

From a purely practical point of view it seems that using the robust-regression versions of

the test when the data are not in fact heteroskedastic does not appear to result in significant

decrease in power. This statement has one caveat. It appears that for the BILIN class of

models (BILIN and BILINAR) the power of the robust approaches is significantly less than

for the test based on the asymptotic distribution. This power leakage is less noticeable for

the wild bootstrap versions of the test and further decreases as the sample size increases to

200.
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RNDN AR1 ARCH1 ARCH2 GARCH1 GARCH2
T = 50

V23 0.01 0.005 0.006 0.179 0.089 0.198 0.012
0.05 0.042 0.032 0.308 0.190 0.323 0.048
0.10 0.088 0.072 0.389 0.271 0.405 0.097

V23wb 0.01 0.013 0.015 0.018 0.016 0.015 0.015
REC 0.05 0.054 0.058 0.056 0.052 0.050 0.058

0.10 0.104 0.103 0.106 0.102 0.106 0.107
V23wb 0.01 0.013 0.010 0.021 0.018 0.012 0.011
FD 0.05 0.050 0.046 0.073 0.064 0.056 0.051

0.10 0.108 0.089 0.129 0.116 0.106 0.106
V23hc 0.01 0.002 0.002 0.003 0.002 0.003 0.002

0.05 0.026 0.025 0.038 0.034 0.037 0.027
0.10 0.080 0.075 0.100 0.094 0.105 0.072

T = 100

V23 0.01 0.008 0.007 0.291 0.140 0.318 0.021
0.05 0.042 0.038 0.426 0.265 0.450 0.075
0.10 0.089 0.080 0.506 0.347 0.529 0.128

V23wb 0.01 0.012 0.012 0.019 0.011 0.013 0.013
REC 0.05 0.049 0.053 0.059 0.054 0.057 0.053

0.10 0.098 0.101 0.110 0.101 0.109 0.106
V23wb 0.01 0.014 0.011 0.024 0.018 0.014 0.013
FD 0.05 0.055 0.048 0.069 0.066 0.059 0.049

0.10 0.108 0.097 0.131 0.116 0.113 0.096
V23hc 0.01 0.003 0.004 0.005 0.004 0.005 0.004

0.05 0.030 0.032 0.045 0.043 0.040 0.036
0.10 0.083 0.083 0.113 0.107 0.108 0.086

T = 200

V23 0.01 0.007 0.009 0.419 0.205 0.152 0.032
0.05 0.046 0.041 0.543 0.337 0.269 0.104
0.10 0.092 0.084 0.618 0.425 0.357 0.171

V23wb 0.01 0.012 0.013 0.015 0.014 0.014 0.013
REC 0.05 0.049 0.048 0.056 0056 0.053 0.051

0.10 0.099 0.102 0.107 0.104 0.108 0.106
V23wb 0.01 0.012 0.012 0.023 0.017 0.014 0.011
FD 0.05 0.053 0.052 0.074 0.063 0.056 0.053

0.10 0.105 0.104 0.126 0.116 0.109 0.106
V23hc 0.01 0.004 0.004 0.006 0.004 0.004 0.004

0.05 0.034 0.041 0.048 0.041 0.046 0.039
0.10 0.085 0.092 0.118 0.104 0.099 0.094

Table 1: Size of the V23 test for nonlinearity in mean
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BILIN TAR SAR NAR BILINAR LSTAR
T = 50

V23 0.01 0.578 0.094 0.205 0.015 0.589 0.360
0.05 0.752 0.263 0.446 0.066 0.791 0.572
0.10 0.825 0.396 0.591 0.122 0.870 0.681

V23wb 0.01 0.050 0.173 0.318 0.022 0.123 0.124
REC 0.05 0.166 0.367 0.557 0.080 0.318 0.328

0.10 0.284 0.482 0.690 0.139 0.457 0.471
V23wb 0.01 0.053 0.175 0.305 0.023 0.127 0.153
FD 0.05 0.180 0.361 0.538 0.082 0.311 0.349

0.10 0.296 0.480 0.675 0.146 0.464 0.510
V23hc 0.01 0.002 0.059 0.128 0.005 0.009 0.015

0.05 0.059 0.261 0.430 0.045 0.131 0.175
0.10 0.184 0.427 0.627 0.113 0.318 0.375

T = 100

V23 0.01 0.939 0.224 0.562 0.028 0.957 0.814
0.05 0.980 0.460 0.801 0.101 0.986 0.916
0.10 0.991 0.593 0.883 0.179 0.995 0.951

V23wb 0.01 0.249 0.353 0.655 0.037 0.461 0.612
REC 0.05 0.493 0.587 0.850 0.118 0.715 0.825

0.10 0.633 0.697 0.919 0.187 0.830 0.905
V23wb 0.01 0.262 0.381 0.673 0.040 0.447 0.631
FD 0.05 0.502 0.603 0.866 0.116 0.702 0.833

0.10 0.641 0.718 0.934 0.190 0.823 0.907
V23hc 0.01 0.071 0.210 0.491 0.012 0.169 0.353

0.05 0.345 0.507 0.803 0.082 0.548 0.732
0.10 0.569 0.662 0.905 0.166 0.750 0.865

T = 200

V23 0.01 0.997 0.525 0.928 0.047 1.00 0.994
0.05 1.00 0.756 0.984 0.157 1.00 0.999
0.10 1.00 0.845 0.995 0.254 1.00 1.00

V23wb 0.01 0.604 0.697 0.943 0.071 0.854 0.981
REC 0.05 0.786 0.859 0.986 0.189 0.957 0.996

0.10 0.859 0.908 0.995 0.285 0.974 0.998
V23wb 0.01 0.626 0.690 0.952 0.079 0.863 0.983
FD 0.05 0.787 0.849 0.989 0.188 0.950 0.997

0.10 0.858 0.910 0.997 0.284 0.974 0.999
v23hc 0.01 0.429 0.557 0.891 0.003 0.693 0.953

0.05 0.737 0.807 0.979 0.147 0.916 0.994
0.10 0.861 0.889 0.994 0.253 0.968 0.998

Table 2: Power of the V23 test for nonlinearity in mean
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Finally in terms of the relative merits of the V23hc and V23wb tests, there appears little

to choose between them when the nominal size is set at 10%. There does appear to be some

difference between the tests when the nominal size is reduced. Here the conservative nature

of the V23hc procedure, hinted at in the discussion of the size results, seems to manifest itself

in a significant loss of power. If anything, therefore, the power results reinforce the conclusion

reached previously that the bootstrap implementation of the robust-regression test is to be

preferred. This conclusion ignores any computational considerations as bootstrapping of the

heteroskedasticity-consistent auxiliary regression is far more demanding in a computational

sense then merely using the asymptotic distribution.

The Tables 3 and 4 illustrate how V23hc and V23wb fare when residuals are not normaly

distributed. As discussed previously, it is not necessary to assume normality in order to

apply these tests and it is interesting to investigate their empirical properties when residuals

are either leptokurtotic or skewed3. A comparison of the results in Table 1 and those in

Table 3 indicate that the tendency of the robust regression approach to be conservative is

slightly enhanced when t (5) random deviates are used in the simulation. The V23wb, on

the other hand, appears to be unaffected by the use of leptokurtotic errors in all simulated

sample sizes. On balance it appears as if the recursive wild bootstrap test fares better for

the models applied in this paper. The effects of skewed residuals are as expected with the

performance of the robust regression V23 test being unaltered. This result is consistent

with the observation that the absence of skewness is not a condition for the validity of the

robust regression approach. As far as the wild bootstrap is concerned, the results reported

by Godfrey and Orme (2001) are confirmed. They report that the particular version of the

wild bootstrap applied in this paper is robust to skewed residuals in small samples. As

sample sizes increase, however, a significant size distortion appears. When residuals display

skewness in large samples it might be wise to apply the bootstrap algorithm described in

equations (10) and (??) which also reproduces the skewness of the observed residuals.

3It should, however, be recalled that all but the ARCH2 and GARCH2 process with normal innovations
were shown to violate the process assumptions AA.
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RNDN AR1 ARCH1 ARCH2 GARCH1 GARCH2
T = 50

V23 0.01 0.013 0.010 0.176 0.105 0.049 0.018
0.05 0.046 0.035 0.286 0.197 0.128 0.058
0.10 0.095 0.071 0.365 0.270 0.200 0.108

V23wb 0.01 0.016 0.013 0.021 0.015 0.014 0.012
REC 0.05 0.057 0.057 0.062 0.059 0.054 0.054

0.10 0.109 0.106 0.111 0.110 0.104 0.105
V23wb 0.01 0.013 0.012 0.023 0.020 0.012 0.013
FD 0.05 0.050 0.053 0.076 0.068 0.056 0.054

0.10 0.108 0.094 0.127 0.123 0.106 0.100
V23hc 0.01 0.001 0.001 0.002 0.003 0.002 0.001

0.05 0.021 0.021 0.030 0.026 0.032 0.021
0.10 0.066 0.061 0.085 0.080 0.085 0.066

T = 100

V23 0.01 0.014 0.007 0.288 0.173 0.090 0.036
0.05 0.052 0.032 0.412 0.281 0.192 0.092
0.10 0.096 0.069 0.490 0.367 0.272 0.145

V23wb 0.01 0.014 0.012 0.016 0.016 0.011 0.013
REC 0.05 0.057 0.048 0.054 0.053 0.050 0.054

0.10 0.107 0.096 0.105 0.108 0.102 0.102
V23wb 0.01 0.014 0.010 0.025 0.022 0.014 0.012
FD 0.05 0.055 0.048 0.074 0.064 0.059 0.053

0.10 0.108 0.092 0.126 0.117 0.113 0.101
V23hc 0.01 0.003 0.002 0.007 0.002 0.004 0.002

0.05 0.025 0.021 0.036 0.028 0.042 0.028
0.10 0.068 0.060 0.097 0.086 0.097 0.074

T = 200

V23 0.01 0.014 0.008 0.412 0.272 0.151 0.053
0.05 0.045 0.035 0.537 0.386 0.276 0.134
0.10 0.094 0.070 0.617 0.470 0.366 0.202

V23wb 0.01 0.014 0.013 0.021 0.014 0.014 0.012
REC 0.05 0.057 0.057 0.062 0.055 0.054 0.054

0.10 0.109 0.106 0.111 0.107 0.104 0.105
V23wb 0.01 0.012 0.011 0.039 0.021 0.014 0.014
FD 0.05 0.053 0.052 0.103 0.065 0.056 0.048

0.10 0.105 0.105 0.166 0.119 0.109 0.099
V23hc 0.01 0.002 0.002 0.006 0.004 0.005 0.002

0.05 0.023 0.025 0.042 0.039 0.038 0.026
0.10 0.066 0.068 0.108 0.098 0.100 0.075

Table 3: Size of the V23 test for nonlinearity in mean when residuals are t(5) distributed.
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RNDN AR1 ARCH1 ARCH2 GARCH1 GARCH2
T = 50

V23 0.01 0.012 0.009 0.142 0.816 0.048 0.013
0.05 0.044 0.035 0.276 0.172 0.124 0.047
0.10 0.083 0.070 0.366 0.254 0.198 0.093

V23wb 0.01 0.014 0.017 0.027 0.024 0.011 0.020
REC 0.05 0.057 0.060 0.089 0.079 0.050 0.076

0.10 0.107 0.119 0.148 0.134 0.102 0.129
V23wb 0.01 0.011 0.010 0.021 0.017 0.012 0.012
FD 0.05 0.055 0.047 0.082 0.067 0.056 0.055

0.10 0.106 0.098 0.150 0.128 0.106 0.109
V23hc 0.01 0.003 0.003 0.004 0.002 0.002 0.002

0.05 0.029 0.025 0.045 0.035 0.032 0.028
0.10 0.071 0.068 0.119 0.099 0.088 0.082

T = 100

V23 0.01 0.017 0.008 0.276 0.147 0.097 0.022
0.05 0.056 0.029 0.411 0.272 0.198 0.076
0.10 0.101 0.062 0.503 0.375 0.280 0.133

V23wb 0.01 0.013 0.018 0.035 0.036 0.012 0.026
REC 0.05 0.054 0.060 0.098 0.089 0.054 0.073

0.10 0.109 0.115 0.153 0.143 0.105 0.131
V23wb 0.01 0.012 0.012 0.032 0.022 0.014 0.017
FD 0.05 0.053 0.047 0.095 0.075 0.059 0.058

0.10 0.100 0.099 0.158 0.132 0.113 0.110
V23hc 0.01 0.005 0.003 0.010 0.008 0.004 0.006

0.05 0.034 0.029 0.058 0.053 0.037 0.039
0.10 0.077 0.075 0.130 0.114 0.097 0.089

T = 200

V23 0.01 0.014 0.007 0.423 0.259 0.159 0.038
0.05 0.048 0.038 0.563 0.406 0.278 0.112
0.10 0.088 0.073 0.634 0.498 0.364 0.190

V23wb 0.01 0.014 0.023 0.036 0.034 0.014 0.026
REC 0.05 0.057 0.065 0.096 0.088 0.053 0.084

0.10 0.109 0.118 0.155 0.137 0.108 0.140
V23wb 0.01 0.014 0.012 0.039 0.026 0.014 0.021
FD 0.05 0.054 0.054 0.103 0.087 0.056 0.064

0.10 0.108 0.102 0.166 0.145 0.109 0.117
V23hc 0.01 0.004 0.005 0.015 0.015 0.004 0.007

0.05 0.031 0.037 0.073 0.066 0.041 0.044
0.10 0.070 0.087 0.144 0.126 0.100 0.095

Table 4: Size of the V23 test for nonlinearity in mean when residuals are CHI square dis-
tributed with 2 degrees of freedom.
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6 Empirical illustration

In order to illustrate the practical implementation of the robust tests for nonlinearity de-

scribed in the paper, two data sets used by Lee et al. (1993) — LWG hereafter — are used,

namely, the Japanese Yen/US Dollar exchange rate (monthly observations, 1974:1-1990:7)

and the US three month Treasury bill interest rate (monthly observations, 1959:1-1990:7).

They assumed that the residuals of the respective models under the null hypothesis were

homoskedastic, although they recognised the implications for the size of the test should this

assumption be violated. The results reported by LWG are now revisited and subjected to

the three versions of the V23 test.

Turning first to the Yen / US$ exchange rate, the residuals from an AR(1) regression

on the continuously-compouned returns are displayed in Figure 1. In testing these data for

nonlinearity in mean LWG found that a number of tests failed to reject the null hypothesis of

linearity. These included the Neural Network test (White, 1989), the RESET test (Ramsey,

1969), the McLeod-Li test (McLeod and Li, 1983) and the BDS test (Brock et al., 1996).

Only one test, the Bispectrum test (Hinich, 1982) rejected the null hypothesis of a linear

AR(1) model for the exchange rate returns.

Since there is no clear indication of heteroskedasticity, at least in terms of volatility

clustering, in the data, it is expected that the robust and non-robust versions of the V23

test come to the same conclusion. This indeed turns out to be the case as all three versions

of the test fail to reject the null hypothesis of an AR(1) model. The p-values of the test

statistics are as follows: V23 — 0.747, V23hc — 0.554, V23wb — 0.638. It seems reasonably

safe to conclude that the log returns of the Yen/US$ exchange rate are linear in mean.

The situation is slightly different for the US 3-month Treasury Bill rate. The SIC cri-

terion chooses an AR(6) model of the interest rate changes as the linear model under the

null hypothesis and the residuals from this regression are plotted in Figure 2. A visual in-

spection clearly suggests the presence of autoregressive conditional heteroskedasticity in the

interest rates. In particular the early 1980s are characterised by increased volatility, a fact

which is widely attributed to the Federal Reserve’s monetary experiment. The suspicion of
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US-Yen exchange rate, AR(1) residuals
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Figure 1: Residuals from an AR(1) model of the monthly changes of the logarithm of the
US-YEn exchange rate.

heteroskedastic residuals is reinforced by the test results reported by LWG. The McLeod-Li

(p-value of 0.00) and BDS (p-value of 0.00) tests, both of which are known to have power

against ARCH, are highly significant.

Given the presence of heteroskedasticity, the results of the other non-robust tests for

nonlinearity in mean reported by LWG, all of which indicate a solid rejection of linearity,

are to be interpreted with extreme care. This note of caution is reinforced by the results of

the V23 test in its various forms. The asymptotic V23 test records a p-value of 0.00 clearly

in line with the results reported by LWG. The V23hc while not allowing rejection of the

null at the 1%, as is the case for all the tests reported by LWG, is significant at the 5%

level. The preferred wild-bootstrap version of the V23 test, however, records a p-value of

0.154, indicating that the null hypothesis of a linear specification for the mean cannot be

rejected even at a 10% significance level. The application of a heteroskedasticity robust test

for nonlinearities appears to be crucial in the context of this interest rate data set.
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US 3 month T-bill rate, AR(6) residuals
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Figure 2: Residuals from an AR(6) model of the monthly changes of the US 3 month T-bill
rate.

7 Conclusion

This paper has addressed an important practical problem faced when testing for nonlinear-

ity in mean in time-series data, namely that tests reject the null hypothesis of linearity too

frequently when the data have non-constant variance. This is a particularly acute problem

given the prevalence of autoregressive conditional heteroskedasticity in most economic and

financial time series. A testing strategy based on the heteroskedastic-robust-auxiliary re-

gression and the wild bootstrap is proposed and its empirical performance evaluated in this

paper. Monte Carlo experiments verify that the approach has the potential to eliminate the

observed size distortion and that this improvement comes without significant loss of power in

most cases. If anything the results indicate a slight preference for the wild bootstrap version

of the heteroskedastic-consistent test. Two empirical examples of the testing strategies are

provided which emphasise the need for caution in interpreting the results of nonlinearity

tests which are not robust to the presence of heteroskedasticity.
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In order to come to these conclusions, a number of theoretical results had to be estab-

lished. First the applicability of the V23 test to GARCH type processes was investigated

and necessary process assumptions established. It was then shown that these assumptions

do not allow for the particular non-normalities introduced by the chosen t- and χ2- distri-

bution. Last, it was shown that, given an asymptotic χ2- distribution of the V23 test, the

fixed-design wild bootstrap can consistently replicate this distribution.

Several issues warrant further investigation. In this paper attention has been focussed on

a single test for nonlinearity. Further simulation with other suitable tests will provide more

evidence on the efficacy of both these robust testing strategies. Finally, it is important to

note that the heteroskedasticity examined in this paper is limited to the GARCH class. Self-

evidently the robustness of the tests to GARCH cannot automatically be taken to extend to

other types of heteroskedasticity.

A Simulated DGPs

All but the ARCH and GARCH data generating processes in this study have been used

before in either Lee et al. (1993) or Teräsvirta et al. (1994).

Autoregressive model (AR1):

yt = 0.6 yt−1 + εt

Bilinear model (BILIN):

yt = 0.7 yt−1εt−2 + εt

Threshold autoregressive model (TAR):

yt = 0.9 yt−1 + εt for |yt−1| ≤ 1

= −0.3 yt−1 + εt for |yt−1| > 1

Sign autoregressive model (SAR):

yt = sgn(yt−1) + εt

where sgn(x) = 1 for all x > 1, sgn(x) = 0 for x = 0 and sgn(x) = −1 for all x < 1.
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Nonlinear autoregressive (NAR):

yt = (0.7 |yt−1|)/(|yt−1|+ 2) + εt

Bilinear autoregressive model (BILINAR):

yt = 0.4 yt−1 − 0.3 yt−2 + 0.5 yt−1εt−1 + εt

Logistic smooth transition autoregssion (LSTAR):

yt = (0.0 + 0.02Ft) + (1.8− 0.9Ft) yt−1

+(−1.06 + 0.795Ft) yt−2 + εt

where Ft = [1 + exp (100 (yt−1 − 0.02))]−1

and εt ∼ N(0, 0.022)

ARCH :

yt = 0.5 yt−1 + εt, where εt ∼ N(0, ht)

ARCH1 : ht = 1 + 0.8 ε
2
t−1

ARCH1 : ht = 1 + 0.5 ε
2
t−1

GARCH :

yt = 0.5 yt−1 + εt, where εt ∼ N(0, ht)

GARCH1 : ht = 1 + 0.85 ε
2
t−1 + 0.1 ht−1

GARCH2 : ht = 1 + 0.1 ε
2
t−1 + 0.85 ht−1

If not stated otherwise the error term εt was drawn from a standard normal distribution.

B Technical Results

Lemma 6 (DGP) Given the DGP φ (L) yt = εt where the polynomial order is known and

all roots outside the unit circle, the (p× 1) vector yt−1 = (yt−1, . . . , yt−p)0 can be represented

as follows:

yt−1 =
∞X
j=1

cεt−j
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where bj =
¡
ψj−1, . . . , ψj−p

¢0
. Further note that the second and third order cross products of

yt can be written as follows:

yt−kyt−l =
∞X
j=0

ψjεt−k−j

∞X
n=0

ψnεt−l−n =
∞X
j=0

∞X
n=0

ψjψnεt−k−jεt−l−n

yt−kyt−lyt−m =
∞X
i=0

ψiεt−k−i

∞X
j=0

ψjεt−l−j

∞X
n=0

ψnεt−m−n

=
∞X
i=0

∞X
j=0

∞X
n=0

ψiψjψnεt−k−iεt−l−jεt−m−n.

Proof. The proof of the first part is from Gonçalves and Killian (2004). The process

under consideration is

β (L) yt = εt (13)

where the autoregression coefficient lag polynomial of known order p is β (L) = 1 − β1L −

β2L
2− . . .−βpLp, assuming that βp is non-zero and all roots outside the unit circle. Further

process assumptions are those used by GK in their set of assumptions A. The assumption

are general enough to allow for a GARCH(p,q) error process but does exclude some more

complicated asymmetric GARCH-type processes. Given stationarity the process in (13) can

be represented by an infinite order MA process

yt = β−1 (L) εt = ψ (L) εt (14)

where ψ (L) =
P∞

j=0 ψjL
j. A further necessary piece of notation is bj =

¡
ψj−1, . . . , ψj−p

¢0
,

noting that ψ0 = 1 and ψj = 0 for all j < 0. Define the (p× 1) vector yt−1 = (yt−1, . . . , yt−p)0

and note that yt−1 can be restated as

yt−1 = (ψ (L) εt−1, . . . , ψ (L) εt−p)
0 =

Ã ∞X
j=0

ψjεt−1−j, . . . ,
∞X
j=0

ψjεt−p−j

!0
=

∞X
j=1

bjεt−j.

The second part of the Lemma follows immediately.

Lemma 7 (A5a1) Given Assumptions A,
©
y0t−1yt−1

ª
satisfies the UWLLN and UC as-

sumption.
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Proof. Gonçalves and Killian (2004, Theorem 3.1) establish that T−1
PT

t=1 y
0
t−1yt−1 ≡

A1T
p→ A, where A = σ2

P∞
j=1 bjb

0
j.

Lemma 8 (A5a2) Given Assumptions A,
©
y0t−1λt

ª
satisfies the UWLLN and UC assump-

tion.

Proof. This will be shown elementwise. The vector λt contains 2nd and 3rd order cross

products of the p elements in yt−1. y0t−1λt therefore contains 3rd and 4th order cross prod-

ucts.

Consider first a typical 3rd order product yt−kyt−lyt−m with 1 ≤ k, l,m ≤ p. It will be

demonstrated that (i) E (yt−kyt−lyt−m) = B3 = σ3
P∞

i=0

P∞
j=0

P∞
n=0 ψiψjψn and further

that (ii) B3T ≡ T−1
PT

t=1 yt−kyt−lyt−m
p→ B3.To show (i): B3 = E[

P∞
i=0

P∞
j=0

P∞
n=0 ψiψjψn

εt−k−iεt−l−jεt−m−n] from Lemma DGP. B3 =
P∞

i=0

P∞
j=0

P∞
n=0 ψiψjψnE [εt−k−iεt−l−jεt−m−n]

and B3 = σ3
P∞

i=0

P∞
j=0

P∞
n=0 ψiψjψnτk,l,m follow immediately from assumption A4. Do

show (ii) define, for any fixedm ∈ N , Bm
3T ≡ T−1

PT
t=1 yt−k,mλt,m, where yt−k,m =

Pm
i=0 ψiεt−k−i

and λt,m =
Pm

i=0

Pm
j=0 ψiψjεt−l−iεt−m−j. According to Brockwell and Davis (1991) Propo-

sition 6.3.9 it is sufficient to show that (a) Bm
3T → Bm

3 as T → ∞ for all fixed m; (b)

Bm
3 → B3 as m → ∞ and (c) limm→∞ lim supT→∞ P (|B3T −Bm

3T | ≥ η) = 0 for all η > 0.

For (a) we have Bm
3T ≡ T−1

PT
t=1

Pm
i=0

Pm
j=0

Pm
n=0 ψiψjψnεt−k−iεt−l−jεt−m−n and therefore

Bm
3T ≡

Pm
i=0

Pm
j=0

Pm
n=0 ψiψjψnT

−1PT
t=1 εt−k−iεt−k−jεt−k−n. To investigate further write

T−1
PT

t=1 εt−k−iεt−l−jεt−m−n − σ3τk,l,m

= T−1
PT

t=1 zt + T−1
PT

t=1E [εt−k−iεt−l−jεt−m−n|Ft−k−1]− σ3τk,l,m

where zt = εt−k−iεt−l−jεt−m−n −E [εt−k−iεt−l−jεt−m−n|Ft−k−1] and l ≥ k; m ≥ k.

recognise that {zt} is a martingale difference series and therefore , by application of An-

drew’s LLN T−1
PT

t=1 zt
p→ 0. By means of the assumption A5 the remainder disappears.It

is thus shown that Bm
3T

p→ σ3
Pm

i=0

Pm
j=0

Pm
n=0 ψiψjψnτk,l,m as required. (b) can be shown

to be valid, as in Gonçalves and Killian (2004, Theorem 3.1) by means of the dominated

convergence theorem. It remains to establish (c). Recognise that by Markov’s inequality

P (|B3T −Bm
3T | ≥ η) ≤ E |B3T −Bm

3T | /η and therefore (for any given η) it suffices to show
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thatE |B3T −Bm
3T |→ 0. Note thatB3T−Bm

3T =
P∞

i>m

P∞
j=0

P∞
n=0 ψiψjψnT

−1PT
t=1 εt−k−iεt−l−jεt−m−n

and that by assumption A5 the last summand will be bounded but dependent on k, l and

m, hence B3T − Bm
3T =

P∞
i>m

P∞
j=0

P∞
n=0 ψiψjψnK (k, l,m). Further recognise that by the

stationarity assumption for the process under the null hypothesis
P∞

n=0 |ψi| < ∞, leaving

B3T − Bm
3T =

P∞
i>m ψi

eK (k, l,m), which clearly → 0 as m → ∞. This establishes the ap-

plicability of Brockwell and Davis’ Propoaition 6.3.9 which in turn proves the LLN condition

required by Wooldridge.

Now consider a typical 4th order product yt−kyt−lyt−myt−r with 1 ≤ k, l,m, r ≤ p. It will

be demonstrated that (i) E (yt−kyt−lyt−myt−r) = B4 = σ4
P∞

i=0

P∞
j=0

P∞
n=0

P∞
o=0 ψiψjψnψo

and further that (ii) B4T ≡ T−1
PT

t=1 yt−kyt−lyt−myt−r
p→ B4. The proof is along the same

lines as that for the typical 3rd order product utilising assumptions A6 and A7.

Lemma 9 (A8c1) Given Assumptions A, {λ0tεtε0tλt} satisfies the UWLLN and UC as-

sumption.

Proof. The elements in the (1× q) vector λ0tεt are of the following form: eλ(k,l)t−1 =P∞
i=0

P∞
j=0 ψiψjεt−k−iεt−l−jεt for 2nd order cross products in λt and eλ(k,l,m)t−1 =

P∞
i=0

P∞
j=0P∞

n=0 ψiψjψnεt−k−iεt−l−jεt−m−nεt for 3rd order elements in λt. Elements in {λ0tεtε0tλt}will

then be cross products of eλ(k,l)t−1 and eλ(k,l,m)t−1 . It is apparent that this will result in terms with

cross products of the form {ε2teεt−1} where eεt−1 is a cross product of either order 5 or 6.
In order to show that {λ0tεtε0tλt}satisfies a WLLN the arguments in Lemma A5a2 can be

repeated drawing on the asumptions A8 and A9.

assumptionS: A8: E (ε2t εt−ki · . . . · εt−ki) = σi+2τk1,...,ki for any k1, . . . , ki ≥ 0 and all t

is uniformly bounded for i = 3, . . . , 6. Note that τk1,...,ki = 0 if ki 6= ki−1 and ki, ki−1 6=

k1, . . . , ki−2 due to the m.d.s. property of {εt}. A9: limT→∞ T−1
PT

t=1E [ε
2
t |Ft−k1−1] εt−k2 ·

. . . · εt−ki = σi+2τk1,...,ki in probability for any k1, . . . , ki ≥ 0, for i = 3, . . . , 6.

Lemma 10 (A8c2) Given Assumptions A,
©
y0t−1εtε

0
tλt

ª
satisfies the UWLLN and UC as-

sumption.

Proof. Given the definition of λt it is apparant that there will be terms of the form

{ε2teεt−1} where eεt−1 is a cross product of either order 3 or 4. Using the same arguments as in
29



Lemma A5a2 and assumption A8 and A9 it can be shown that
©
y0t−1εtε

0
tλt

ª
can be applied

to a WLLN.

Lemma 11 (A8b) Under Assumptions A
¡
λ0t − µ0tB0T

¢0
ε0t follows a CLT.

Proof. The sequence
©
λ0t − µ0tB0T

ª
= {λt − yt−1BT} is a series of regression residuals

calculated on the basis of information contained in yt−i, where i ≥ 1 and therefore, following

Lemma DGP, information contained in εt−i, with i as before. By assumption A1, this implies

that
¡
λ0t − µ0tB0T

¢0
ε0t is again a m.d.s. and he applicability of a CLT can be established as in

Gonçalves and Killian (Lemma A1). This, however, requires the stronger moment condition

A10, due to the presence of third-order cross products in λt

Proof. Lemma 3. Wooldridge (1990, pp 41) spells out the following assumptions

required for Theorem 1 to be applicable.

(i) Φ ⊂ Rp is compact and has nonempty interior.

(ii) β0 ∈ int (Φ).

These are very standard regularity conditions which are routinely assumed for the linear

GARCH processes under consideration.

(iii) (a) {εt (yt,yt−1,β) : β ∈ Φ} is a sequence of scalar functions such that εt (·,β) is Borel

measurable for each β ∈ Φ and εt (yt,yt−1, ·) is continuously differentiable on the interior of Φ

for all yt,yt−1, t = 1, 2, . . .. Assumption A assumes measurability of εt wrt to the σ-field Ft−1

and continuous differentiability is apparent from the linear specification of εt (·) = yt−mt (·).

(iii) (b) Define µt (yt−1,β) ≡ E [∂/∂β (εt (yt,yt−1,β0)) |yt−1 ] for all β0 ∈ int (Φ). Assume

that µt (yt−1, ·) is continuously differentiable on the interior of Φ for all yt−1, t = 1, 2, . . ..

Due to the linearity of mt (·), it follows that µt

³
yt−1, bβ´ = yt−1 and hence this condition is

trivially fulfilled.

(iii) (c) In these assumptions Wooldridge imposes requirements on a weighting vector, Ct,

which is set to be identical to 1 for all observations in the current application. All imposed

assumptions regards measurability, symmetry, positive semidefiniteness and differentiability

are hence fulfilled.
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(iii) (d) {λt (yt−1,β) : β ∈ Φ} is a sequence of 1 × q vectors satisfying the measurability

requirements and λt (yt−1, ·) is differentiable on int (Φ) for all yt−1, t = 1, 2, . . .. Given that

for the V23 test λt

³
yt−1, bβ´ is the vector of unique second and third order cross-products of

elements in yt−1, and therefore is independent of any parameter values, the latter condition

is again trivially given. For the former it is important to note that as per process assump-

tions yt is measurable and it follows from Theorem 3.33 in Davidson (1994) that it’s cross

products are measurable as well.

(iv) (a) T 1/2
³bβ − β0´ = Op (1). This assumption is routinely fullfilled by an ML estimate

such as the usual OLS estimate bβ.
(iv) (b) is not required due to the absence of any nuisance parameters.

(v) (a)
©
µt (β)

0µt (β)
ª
=
©
y0t−1yt−1

ª
and

©
µt (β)

0 λt (β)
ª
=
©
y0t−1λt

ª
satisfy the UWLLN

and UC conditions. See Lemma A5a1 and A5a2.

(v) (b) T−1
PT

t=1E
£
µ0t (β)

0µ0t (β)
¤
= T−1

PT
t=1 y

0
t−1yt−1 is uniformly positive definite. This

is an empirical variance covariance matrix and therefore is positive definite.

(vi) (a)
©
µt (β)

0 ∂/∂β (εt (β))
ª
=
©
y0t−1yt−1

ª
(see also (v) (a)), satisfy the UWLLN and UC

conditions. The remaining sequences in Wooldridge are {0} as they involve derivatives of

the form ∂/∂γ (at (γ)), where at (·,γ) = at (·) for all t = 1, 2, . . ..

(vi) (b) T−1/2
PT

t=1E
£
µ0t (β)

0
t εt (β0)

¤
= T−1/2

PT
t=1E

£
y0t−1εt (β0)

¤
= Op (1) is given by As-

sumption A1.

(vii) {λ0t∂/∂φ (εt (β))} = {λ0tyt−1} (see also (v) (a)) satisfy the UWLLN and UC conditions.

The remaining sequences in Wooldridge are {0} as they involve derivatives wrt to a nuisance

parameter which is not present in the case of the V23 test.

(viii) (a)
n
Ξ0T ≡ T−1

PT
t=1E

h¡
λ0t − µ0tB0T

¢0
ε0t ε

00
t

¡
λ0t − µ0tB0T

¢io
is uniformly positive defi-

nite.

(viii) (b) Ξ
0−1/2
T T−1/2

PT
t=1

¡
λ0t − µ0tB0T

¢0
ε0t

d→ N (0, IQ). The applicability of a CLT to¡
λ0t − µ0tB0T

¢0
ε0t is proven in Lemma A8b.

(viii) (c) {λ0tεtε0tλt},
©
y0t−1εtε

0
tλt

ª
and

©
y0t−1εtε

0
tyt−1

ª
satisfy the UWLLN and UC condi-

tions. The UC condition is trivially fulfilled as none of the terms is dependent on β. It was

shown in GK’s Theorem 3.1 that
©
y0t−1εtε

0
tyt−1

ª
satisfies a WLLN. See Lemma A8c1.
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Proof. Theorem

Two things need to be established.

(a) Ξ∗T
p→ Ξ0T and

(b)

T−1/2
TX
t=1

(λ∗t − µ∗tB∗T )
0 ε∗t

d→ N (0,ΞT )

just as

T−1/2
TX
t=1

(λt − µtBT )
0bεt d→ N (0,ΞT ) ,

which is demonstrated in Wooldridge’s proof to Theorem 2.1. Note that under the fixed

design bootstrap scheme λ∗t = λt, µ∗t = µt and B
∗
T = BT . To show (a)

Ξ∗T = T−1
TX
t=1

E
£
(λt − µtBT )

0 ε∗t ε
∗0
t (λt − µtBT )

¤
= T−1

TX
t=1

E
£
(λt − µtBT )

0 (bεtvt) (vtbεt)0 (λt − µtBT )
¤

= T−1
TX
t=1

E
£
(λt − µtBT )

0bεtbε0t (λt − µtBT )
¤
.

The second line is from the definition of the wild bootstrap residuals, ignoring the asymp-

totically neglegible rescaling. The last equality is due to the unit variance characteristic of

vt. It is shown in Wooldridge’s proof to Theorem 2.1, that under his Conditions A.1, the

last term converges in probability to Ξ0T .

To show (b) (Version 1) first note that T−1/2
PT

t=1 (λ
∗
t − µ∗tB∗T )

0 ε∗t = T−1/2
PT

t=1(λt −

µtBT )
0bεtvt. It was again demonstrated inWooldridge’s proof that T−1/2PT

t=1 (λt − µtBT )
0bεt

d→ N (0,ΞT ) which in conjunction with the properties of vt (independence and unit variance)

establishes (b).
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To show (b) (Version 2) note that

T−1/2
TX
t=1

(λ∗t − µ∗tB∗T )
0 ε∗t

= T−1/2
TX
t=1

(λt − µtBT )
0bεtvt

= T−1/2
TX
t=1

(λt − µtBT )
0 εtvt − T−1/2

TX
t=1

(λt − µtBT )
0 (εt −bεt) vt

= T−1/2
TX
t=1

(λt − µtBT )
0 εtvt − T−1

TX
t=1

(λt − µtBT )
0 yt−1vtT

1/2
³bβ − β´

≡ A∗1 +A∗2

using bεt = εt−
³bβ − β´y0t−1. It needs to be established that A∗2 P∗→ 0. This can be achieved

by noting that T 1/2
³bβ − β´ is O (1) and

T−1
TX
t=1

(λt − µtBT )
0 yt−1vt

P∗→ 0

due to the iid properties and the fact that yt−1 is orthogonal to (λt − µtBT ) by construction

of BT . It remains to establish that A∗1
dP∗→ N (0,ΞT ) .Let Z∗t = η0 (λt − µtBT )

0 εtvt where

η ∈ Rq and η0η = 1. Since vt is independent of η0 (λt − µtBT )
0 εt, E∗

³
T−1/2

PT
t=1 Z

∗
t

´
= 0

and

V ar∗

Ã
T−1/2

TX
t=1

Z∗t

!
= η0T−1

TX
t=1

(λt − µtBT )
0 (λt − µtBT ) ε

2
tη

due to vt having unit variance. An asteriks subscript in the expectations and variance oper-

ator indicates that expectations are to be taken with respect to the bootstrap distribution.

An appropriate CLT has to be applied, allowing for {εt} and hence {Z∗t } being a martingale

difference sequence. Let

α∗2T = η0
TX
t=1

(λt − µtBT )
0 (λt − µtBT ) ε

2
tη;

and it should be noted that T−1α∗2T
P→ ΞT . If for some r > 1

α∗−2rT

TX
t=1

E∗ |Z∗t |
2r P∗→ 0 (15)
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then α∗−1T

PT
t=1 Z

∗
t
dP∗→ N (0, 1) (this is as in GK, Proof to Theorem 3.3). If the latter result

is valid then Slutsky’s Theorem (Davidson, 1994, Th. 18.10) can be used to establish that

T−1/2
PT

t=1 Z
∗
t
dP∗→ N (0, η0ΞTη), which is sufficient to show that A∗1

P ∗→ N (0,ΞT ). It remains

to be checked whether the Lyapounov condition in (15) is satisfied.

α∗−2rT

TX
t=1

E∗ |Z∗t |
2r = α∗−2rT

TX
t=1

E∗
¯̄
η0 (λt − µtBT )

0 εtvt
¯̄2r

= α∗−2rT

TX
t=1

¯̄
η0 (λt − µtBT )

0 εt
¯̄2r

E∗ |vt|2r

=

µ
α∗2T
T

¶−r
T−r

TX
t=1

¯̄
η0 (λt − µtBT )

0 εt
¯̄2r

E∗ |vt|2r .

As the first term converges to ΞT (see above) it is necessary to establish that

T−r
TX
t=1

|η0(λt − µtBT )
0εt|2r E∗ |vt|2r → 0.

E∗ |vt|2r ≤ ∆ < ∞ by assumption for the bootstrap random process. If further |η0(λt −

µtBT )
0εt|2r ≤ ∆ < ∞ is valid, the sum will be bounded and the multiplication with T−r

where r > 1 ensures convergence to 0. In order to establish
¯̄
η0 (λt − µtBT )

0 εt
¯̄2r ≤ ∆ <

∞ it is necessary to recall that µt = yt−1 and that λt is a vector of all unique second-

and third order cross-products of elements in yt−1. From Lemma 3 it is obvious that the

highest order of εt−j to appear in (λt − µtBT )
0 is ε3t−j and therefore assumption A10 ensures¯̄

η0 (λt − µtBT )
0 εt
¯̄2r ≤ ∆ <∞.

Proof. Lemma 4.. This proof is a straight application of results established in He

and Teresvirta (1999) for GARCH processes of the type εt = ztht where hkt = g (zt−1) +

c (zt−1)h
k
t−1. This general specification simplifies to the GARCH(1,1) model for k = 2,

g (zt−1) = α0 and c (zt−1) = β + α1z
2
t−1. Their Theorem 1 establishes that the kmth un-

conditional moment of εt exists if E (c (zt−1)
m) < 1 . For the GARCH(1,1) model we have

k = 2 , and therefore the existence of the 4th [8th] moment requires E
¡
c (zt−1)

2¢ < 1

[E
¡
c (zt−1)

4¢ < 1].
The Lemma follows immediately from:

E
¡
c (zt−1)

2¢ = ¡β + α1z
2
t−1
¢2
= β2 + 2βα1E

¡
z2t−1

¢
+ α21E

¡
z4t−1

¢
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and

E
¡
c (zt−1)

4¢ =
¡
β2 + 2βα1E

¡
z2t−1

¢
+ α21E

¡
z4t−1

¢¢2
=

¡
β2 + 2βα1E

¡
z2t−1

¢
+ α21E

¡
z4t−1

¢¢ ¡
β2 + 2βα1E

¡
z2t−1

¢
+ α21E

¡
z4t−1

¢¢
= β4 + 4β3α1E

¡
z2t−1

¢
+ 6β2α21E

¡
z4t−1

¢
+ 4βα31E

¡
z6t−1

¢
+ α41E

¡
z8t−1

¢
.

Moment existence conditions for ARCH(1) models can be regarded as special cases of these

conditions with β = 0.

Proof. Lemma 5.. Substituting the parameter values for ARCH1, ARCH2, GARCH1

and GARCH2 with standard normal innovations, zt, for which E
¡
z2t−1

¢
= 1, E

¡
z4t−1

¢
= 3

and E
¡
z6t−1

¢
= E

¡
z8t−1

¢
= 0, into the moment existenmce condition established in Lemma

4, immediately shows the result in the Lemma.

The results for the processes with innovations zt−1 ∼ t (5) follows from the nonexistence of

even moments with order larger than the degrees of freedom.

The results for GARCH processes driven by χ2 (2) innovations depends on the moments of

the innovation distribution. As higher moments of the gamma distribution are easily derived

it is useful to make use of the following relation between chi-square and gamma distributed

random variables: 1/2 · χ2 (n) = γ (n/2) and hence 1/2 · χ2 (n) = γ (1). Let eωt = 1/2 ωt. Aseωt ∼ γ (1), E (eωr
t ) = Γ (r + 1) /Γ (1) and with Γ (1) = 1 it follows that E (ωr

t ) = 2
r Γ (r + 1).

Recognising that for integer n the gamma function Γ (n) = n!, it is easy to derive the non-

central moments for ωt from E (ωr
t ) = 2

r ·r!. The innovations used in this paper are, however,

not random variables ωt but rather zt = ωt−E (ωt) and it is therefore required to derive the

central moments rather than the non-central moments. The relation between central and

non-central moments is (Abramowitz and Stegun, 1972):

Ec (ω
r
t ) =

rX
j=0

µ
r
j

¶
(−1)r−j E

¡
ωj
t

¢
E (ωt)

r−j .

This yields the following higher moments for zt : E
¡
z2t−1

¢
= 4, E

¡
z4t−1

¢
= 144, E

¡
z6t−1

¢
=

16, 960 and E
¡
z8t−1

¢
= 3, 797, 248. Applying these results to the moment existence condition

in Lemma 4 establishes the result of this Lemma.
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