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Abstract

Received literature have shown that if competing networks are restricted

to linear and uniform pricing, high access charges can facilitate collusion; a

result that breaks down if we allow for non-linear and discriminatory pricing,

however. We show that by adding unbalanced calling pattern to the model,

incentives for high access charges are restored. High access charges may make

the �rms collude on high prices. Moreover, when allowing for entry, we show

that incumbents can pro�tably charge high access prices as a device to deter

or soften entrants.
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1 Introduction

Telecom network charges typically involve discrimination against o¤-net tra¢ c, and

mobile telephony is a case in point. What matters for how much a person pays for

a call to somebody else is often not the physical distance between the two mobile

phones involved, but whether they subscribe to the same mobile phone operator

or not. Arguably, there might be cost components associated with tra¢ c between

networks only, and then the observed pricing pattern may re�ect the underlying

costs. This answer is not satisfactory, however: a closer inspection reveals that by

far the most important cost determinant of a marginal call to another network is

the access fee (termination charge) charged by the receiving network, increasing the

�economic�distance between subscribers of di¤erent networks. From an industry

perspective access fees are not real costs, since the access fees paid by one �rm are

parts of other �rms�revenues, and this give rise to another question: Why are the

access charges so high?1

Armstrong (1998) and La¤ont, Rey and Tirole (1998a) have suggested that access

charges are high because �rms want high prices, and high access charge makes

them charge high prices:2 In a model with linear and uniform pricing, high access

charges implies high perceived marginal costs and high prices, but the high costs are

then compensated for by correspondingly high access revenues. Consequently, high

access charges can be an instrument for collusive pricing. This is not a compelling

explanation in markets like the market for mobile telephony, however. La¤ont, Rey

and Tirole (1998b) demonstrate that if the operators can discriminate between on-

net and o¤-net tra¢ c and have access to two-part tari¤s, high access fees can no

longer be used to facilitate high prices.3 On the contrary, high access charges tend

1The same argument applies to ordinary telephony: before the services were automatized,

the costs of �producing� a call were an increasing function of the distance between the points

of origination and termination of the call, because long-distance calls had to pass more manual

switchboards. Today, however, practically all costs of producing telephone calls are �xed costs.

The downward trend in prices of international phone tra¢ c is a re�ection of this cost structure.
2For an exellent survey of the theory of access pricing and interconnection, see Armstrong

(2001).
3See also La¤ont and Tirole (2000, Section 5.5).
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to reduce equilibrium pro�ts, as the access charge makes the �rms distort consumer

prices with an implied welfare loss.4 With two-part tari¤s this means that the

consumers are willing to pay a smaller �xed fee.5 In many Telecom markets, linear

and uniform prices are the exception rather than the rule. It thus remains an open

question why we do observe high access charges and large price di¤erences between

on- and o¤-net tra¢ c in such markets.

We propose an answer to this puzzle based on the interaction between three

di¤erent features which we believe characterize the markets in question. The �rst is

the tari¤-mediated network externalities that arises when �rms discriminate against

o¤-net tra¢ c: Subscribing to a large network lowers the average price of calls. Tari¤-

mediated network externalities are already present in La¤ont, Rey and Tirole�s

(1988b) analysis and are not su¢ cient to facilitate collusive pricing on their own.

The second is the existence of exogenous switching costs: consumers have a rela-

tionship with one of the suppliers, and there are certain costs attached to switching

supplier. As shown by Klemperer (1987, 1995), such switching costs facilitate col-

lusive pricing, but with two-part tari¤s and non-uniform pricing, switching costs

do not call for ine¢ cient pricing: Marginal prices (access charges inclusive) should

equal marginal costs, and the market power that arises should be used to increase

the �xed fee of the two-part tari¤. Consequently, the existence of switching costs

alone is no reason to set high access charges.6

Third, despite the fact that mobile phone owners can reach millions of other

persons, they place their calls to a limited number of people, among which friends,

family and workmates comprise the bulk of the recipients. The notion of a calling

club captures the phenomenon that individuals do not place their calls randomly

across networks, but have a bias towards calling other members of their calling club

4In fact, recently Gans and King (2001) have shown that in this context access prices should

be subsidized, i.e., should be lower than marginal costs of terminating a call.
5In an attempt to restore the collusion e¤ect from high access charges Dessein (2003) introduces

heterogeneity in volume and subscription demand. However, neither of these features are su¢ cient

to restore the result of high access charges in equilibrium. Moreover, Dessein (2003) does not allow

networks to charge di¤erent prices for on-net and o¤-net calls.
6See also Gabrielsen and Vagstad (2002).
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(their �friends�). Since these are persons that are called regularly, it is reasonable to

assume that their network location is known by all club members.

The combination of calling clubs and tari¤-mediated network externalities works

as follows: with higher o¤-net than on-net prices, members of the same calling

club would bene�t from joining the same network, ceteris paribus. Once they have

coordinated on the same network, each member of the calling club has a preference

for remaining with that network, giving rise to similar e¤ects as if the products

were horizontally di¤erentiated (e.g. in the Hotelling sense). Switching to another

network will make it more expensive to reach one�s friends in the old network and by

that make it more expensive to make an average call, even if both networks charge

identical prices and have the same size (i.e. the same number of subscribers).7

Consequently, also this type of consumer lock-in will reduce competition, albeit

at a certain cost: as long as high access charges do not re�ect real costs, price

discrimination based on call termination is ine¢ cient and will reduce total surplus

compared to a situation in which �rms set all marginal prices at their marginal

costs. Clearly, if consumers are perfectly �exible and the �rms�products are perfect

substitutes, either �rm could poach all of the rival�s customers by lowering its o¤-

net price to zero. The undercutting �rm would double its customers base and could

even charge a higher �xed fee from all consumers due to increased consumer surplus.

Since all consumers switch there is no need to worry about a de�cit on access charges.

Therefore, in order to generate the equilibrium we are looking for, either the �rms�

products must be di¤erentiated in some sense, or some consumer in�exibility must

be assumed. This is the reason why we have incorporated exogenous switching costs

in our model.

We present two closely related models. In the �rst � the duopoly model � two

networks that are symmetric in costs and customer bases �rst jointly set a common

access charge and then simultaneously and independently o¤er consumers two-part

7Apart for the literature on networks discussed above, our model also relate to the literature

on network compatibility (see for instance Katz and Shapiro (1985)). However, this literature is

more concerned with consumer expectations and the existence of multiple equilibria which is not

an issue here.
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tari¤s, possibly discriminating on the basis of call termination. The population

of consumers �belong� to either network from an unmodelled initial period, and

they incur exogenous switching costs if they want to switch supplier.8 With access

charges above the marginal termination cost, �rms will price discriminate against

o¤-net calls, implying that members of a calling club should choose to subscribe to

the same network. Moreover, if calling clubs are located in the same network, price

discrimination will tend to increase individual switching costs which may enable

�rms to charge higher �xed fees. We demonstrate that there are indeed situations

in which the two �rms can increase their pro�ts by setting access charges higher

than the true cost of access.

In the second model � the entry model � we expose the two duopolists of the

�rst model to an entry threat. It turns out that setting a high access may deter

entry, and it may also be bene�cial if entry is not deterred: high access charges makes

the entrant softer. Interestingly, entry is positively related to the level of exogenous

switching costs, a result that is easiest to interpret in terms of the Fudenberg-Tirole

(1984) taxonomy of business strategies: high switching costs make the incumbents

�fat cats.�

The paper is organized as follows. The next section contains the duopoly model

and derives the main results from this model. In Section 3 we present and analyze

the entry model. In Section 4 we discuss our modelling choices and the robustness

of our results, while Section 5 concludes. Proofs are relegated to the appendix.

2 The duopoly model

Consider a market with two �rms or networks denoted i = 1; 2. Each network shares

equally a unit mass of consumers from an unmodelled initial period. Each consumer

places one call.9 We assume that there are exogenous costs s attached to switching

8Although our analysis is couched in a switching cost framework, some of our results is robust

to alternative modes of competition. The switching costs in our model can be reinterpreted as the

transport cost in a Hotelling type di¤erentiation model.
9Equivalently, each consumer places a unit mass of calls, distributed according to the description

below.
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supplier. s is uniformly distributed on [0; s] with density g(s) = 1
s
and CDF G(s) =

s
s
over the entire support.10 Hence, G(s) is the proportion of a �rm�s consumers

whose cost of switching to the other �rm�s product is less than or equal to s.11

Utility (gross of payments) of a quantity y of a call equals

u(y) =

8<: y � 1
2
y2 if 0 � y � 1

1
2

if y > 1
(1)

This utility function yields rather simple linear demand, and the utility does not

depend on who is the recipient of the call.12 If the price of the call is p per unit, (1)

yields the following demand function:

y(p) =

8<: 1� p if 0 � p � 1
0 if p > 1

(2)

and the maximum utility (gross of any �xed fees) from the call is given by the

following indirect utility function:

v(p) =

8<: 1
2
(1� p)2 if 0 � p � 1
0 if p > 1

(3)

We assume that the �rms have zero marginal costs and that they can discriminate

between on-net and o¤-net calls.13 The �rms jointly decide the marginal access

charge a and then independently and simultaneously o¤er consumers two-part tari¤s.

A tari¤ fk; p; qg consists of a �xed fee k, a marginal price p for calls terminated in
10Other distributions yield qualitatively similar results, as long as the distribution is smooth,

atomless and has a positive density at s = 0 (cf. Klemperer, 1987).
11The interpretation of s can either be the traditional switching cost interpretation (assuming

that the products are ex-ante homogeneous but ex-post di¤erentiated) or the transportation cost

interpretation (with products being both ex-ante and ex-post di¤erentiated, e.g. like in Hotelling

type di¤erentiation models).
12This latter feature of the speci�ed utility function helps us get rid of a lot of problems associated

with price discrimination based on consumer heterogeneity and customer base composition. See

Gabrielsen and Vagstad (2001) for an analysis of price discrimination based on customer base

composition.
13The setup is easily generalized to situations with symmetric constant marginal costs, and it is

not di¢ cult to encompass situations in which there are real costs of access as well.
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the originating network (internal/on-net price) and a price q for calls terminated in

the rival�s network (export/o¤-net price).

Next, we assume that with probability � the call is to a member of one�s calling

club, and with (1 � �) the call is to an arbitrary person. For tractability, we will
assume that � = 1

2
:14 Moreover, the following assumptions are made about the

calling clubs:

A1. Members of the same calling club initially belong to the same network.

A2. There is no overlap between calling clubs.

A3. Members of the same calling club have identical exogenous switching

costs.

A4. Members of the same calling club do not coordinate their switching be-

havior.

The most obvious economic explanation of assumption A1 is perhaps that if

it has been common to discriminate against o¤-net tra¢ c, friends have eventually

coordinated on the same network in order to save on calling expenditures15, but it

may also simply be because friends are more likely to have similar preferences and

therefore tend to subscribe to similar services.16 Assumptions A2 and A3 simpli�es

the technical analysis. Assumption A4 is essential: if friends can coordinate their

switching behavior, the existence of calling clubs does not a¤ect the model.17 To

simplify discussion, in what follows we will assume that a calling club consists of

14Most of our results go through with any �: However, some results require that � is above a

certain critical value, this citical value being lower than 1
2 : In our setting it seems natural that at

least 50% of all calls are to one�s own calling club, hence assuming � = 1
2 is just a simpli�cation.

15Having p < q will generate tari¤-mediated network externalities and consumers have incentives

to sort when choosing their network: friends will coordinate on the same network in local calling

clubs. Complete sorting could happen when p < q e.g. if friends enter sequentially and in pairs

and that the �rms charge identical prices.
16Alternatively, friends may have acquired mobile phones at the same times by responding to

campaign o¤ers by one of the networks.
17Cherdron (2001) has a model that is similar in spirit to our duopoly model. However, he works

under the assumption that some members of each calling club has in�nite switching costs while

the others have no switching costs. He allows them to coordinate, but coordination is no big deal

if some of the members cannot move.
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only two persons (subsequently called �friends�), but this is not restrictive as long as

each calling club has a negligible mass of consumers.

For a given tari¤ fk; p; qg the equilibrium utility of a representative consumer of
network i is given by

ui = �v(p)| {z }+(1� �) (xiv(p) + (1� xi)v(q))| {z }� k|{z} (4)

friends others �xed fee

where xi is �rm i�s market share:The corresponding pro�t of �rm i is given by

�i = xi (�y(p)p+ (1� �) (xiy(p)p+ (1� x)y(q)(q � a)) + k) + T (a; q0) (5)

where T (a; q0) = (1 � �)xi(1 � xi)ay(q0) is the access revenues from the other net-

work�s consumers, when the other network has set export price q0.

We will, unless explicitly stated, restrict attention to cases in which s � 1
2
, i.e.

the the upper bound on the switching costs is not too high. (If this condition is

not satis�ed, the two �rms will behave like perfect monopolists even without any

markup on access, cf. Gabrielsen and Vagstad, 2002). As indicated, our primary

interest is in whether it pays for the �rms to set a markup on access, i.e., a > 0.

Thus we have to compare the outcomes for di¤erent values of a.

When a = 0 Gabrielsen and Vagstad (2002) have shown the following result

(which is a relatively straightforward extension to Klemperer (1987)):

Proposition 1 When a = 0, and s � 1
2
there exist a unique pure strategy equilib-

rium involving

p = q = 0 (6)

��(0) =
1

2
k =

1

2g(0)
=
1

2
s (7)

The intuition is straightforward: when a = 0 there are no reasons for the �rms to

set ine¢ cient marginal prices, hence p = q = 0 for both �rms, in order to maximize

social surplus. Competition only a¤ects the �xed fees. As usual in switching costs

models, whether or not an equilibrium in pure strategies exists depends on the distri-

bution and size of the consumers�switching costs (see Klemperer, 1987). Moreover,

8



when such an equilibrium exists, the equilibrium �xed fees will depend on the con-

sumers�switching costs. When switching costs are high (i.e., when s � 1
2
) the �rms

are able to extract all consumers�surplus through the �xed fees. For lower switching

costs (s < 1
2
) competition ensures that consumers are left with a strictly positive

surplus. The uniform distribution of switching costs turns out to be su¢ cient to

secure the existence and uniqueness of this equilibrium in pure strategies.18

Next suppose a 2 (0; 1). If an equilibrium in pure strategies exists, it must entail
p = 0 and q = a: That is, �rms will discriminate between on- and o¤-net calls because

the latter have higher perceived costs. Moreover, this pricing creates tari¤-mediated

network externalities that will work like a positive switching cost for each individual

consumer, who will hesitate to relocate away from his or her friends. Then we can

follow the reasoning in Klemperer (1987) to the conclusion that any pure-strategy

equilibrium must entail a �xed fee that extracts all consumer�s surplus. However,

for small access charges this proposed equilibrium is vulnerable to poaching. We

will show that for positive, but small values of a there are often no pure-strategy

equilibria. There will then be mixed-strategy equilibria, however, but these are

complicated to characterize even in a relatively simple model like the present one.19

Consequently, if a pure-strategy equilibrium exists we must have (each �rm having

a 50% market share)

k = �v(0) + (1� �)
�
1

2
v(0) +

1

2
v(a)

�
=
1

4

�
1

2
+ 1

�
+
1

4

1

2
(1� a)2 (8)

while equilibrium pro�t equals

��(a) � 1

2
k + T (a; a) =

1

4
� 1

16
a2 (9)

This will constitute an equilibrium if no �rm can make a pro�table deviation by

undercutting its rival.

There are basically two ways to undercut one�s rival: one either tries to poach

all of the rival�s customers, or one goes after only a fraction of the rival�s customers.

18See Gabrielsen and Vagstad (2002) for details.
19See Shilony (1977) for an example of how to characterize mixed-strategy equilibria of a model

similar to the present one.
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In the latter case, the undercutting �rm will attract customers with low exogenous

switching costs from the other �rm.

In principle, it may be more di¢ cult to attract the �rst of the rival�s customers

than later customers. Two e¤ects are at play here: The �rst customers to switch

have low switching cost, while later switchers have higher switching costs but an

advantage of joining a larger network. A priori it is not clear which e¤ect dominates.

The following Lemma establishes that the former e¤ect dominates. (The result turns

out to apply to both the duopoly model of this section and the entry model of next.)

Lemma 1 In both models, in any equilibrium and for any optimal ways to deviate

from an equilibrium, if customers with a given exogenous switching cost s0 are willing

to switch, so are also all consumers with switching costs s < s0.

Proof. See the appendix.

The following two Lemmas describe the pro�t-maximizing ways to follow each of

these strategies. First we consider the case in which a �rm poaches all of the rival�s

customers, and let �A(�s) denote a �rm�s pro�t from such a deviation.

Lemma 2 When a > 0, poaching all involves p = 0; k = �A(�s) � 1
2
� �s:

Proof. See the appendix.

This Lemma simply states that in order to poach all of your competitor�s cus-

tomers, it is both su¢ cient and necessary to o¤er a mechanism that pays the switch-

ing cost for the customer with the highest possible switching cost �that is, s. Next,

we investigate whether it can be pro�table to poach only a fraction of the rival�s

customers. Let �S(�s; a) denote a �rm�s pro�t from deviating by poaching some of

the rival�s customers. Then we can show

Lemma 3 When a > 0, poaching some is pro�table when 1
6
+ 1

6
a2 < �s < 1

2
� 1

32
a2.

If �s is in this interval, then the optimal poaching strategy involves p = q = 1
2
(1�x)a,

where x = x(�s; a) 2 (1
2
; 1).

Proof. See the appendix.
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This Lemma is more complicated. First, if �s is outside the given interval, the

optimal market share of the poaching �rm is either 1 (if �s is below the interval)

or 1
2
(if �s is above the interval). In other words, if switching costs are low it is

optimal to poach all, and if switching costs are high it is never optimal to try to

poach any of the rival�s customers. Second, note that when it is optimal to poach

only a fraction of the rival�s customers, optimal undercutting entails equal on-net

and o¤-net prices. At �rst glance this may seem surprising. The reason is that

customers come in pairs in this model. The virtue of having p = q is to have the last

two customers being equally di¢ cult to attract, and this consideration dominates

other e¤ects. The expressions for x(�s; a) and �S(�s; a) are given in the appendix.

We are now ready to present the main results of this section.

Proposition 2 For a > 0, the proposed equilibrium is indeed an equilibrium i¤

��(a) � max
�
�A(�s); �S(�s; a)

	
:

Given the de�nitions in Lemmas 2 and 3, Proposition 2 is obvious and therefore

stated without a proof. Its implications, however, deserves some comments, which

will be given below.

Proposition 3 For some values of �s, there exist values of a 2 (0; 1) denoted a� such
that i) there exists a pure-strategy equilibrium for a = a�, and ii) ��(a�) > ��(0).

Proof. See the appendix.

A perhaps more intriguing question is whether one would expect pro�table

markup on access to be the rule or the exception. The answer is neither, as il-

lustrated by Figure 1 below.
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Figure 1: Pure strategy equilibria with a > 0:

On the vertical axis we have a 2 (0; 1) and on the horizontal axis we have �s 2 [0; 1
2
]:

The rightmost curve in the �gure shows combinations of a and �s such that the

two equilibria (with a = 0 and a > 0, respectively) yield the same pro�t, i.e.

��(a) = ��(0). To the left of this curve, ��(a) > ��(0). The two other curves relate

optimal undercutting pro�ts with ��(a): The leftmost curve shows combinations of

a and �s such that a �rm is indi¤erent between its equilibrium pro�t with a > 0

and poaching all of its rival�s customers, i.e. ��(a) = �A(s). To the right of this

curve ��(a) > �A(s). The intermediate curve shows combinations of a and �s such

that ��(a) = �S(s; a); i.e. that render the �rms indi¤erent between earning the

equilibrium pro�ts with a > 0 and poaching only a fraction of the rival�s customers.

Hence in the shaded area the parameters are such that a pure strategy equilibrium

exists, and at the same time the �rms earn more pro�t than if they had rather set

a = 0: In other words, the shaded area represents instances of pro�table markup on

access.

First we note that high values of �s improves the prospects of reaching a stable

equilibrium, as usual. Second, for low values of a; �S(�s; a) > �A(�s), implying that for

such low values of a it is most tempting to poach only some of the rival�s customers.

For high values of a, the reverse is true i.e. �S(�s; a) < �A(�s) meaning that the
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relevant undercutting strategy is to poach all your rival�s customers.20 Finally, note

that while the value of a is irrelevant for equilibrium existence if �s is su¢ ciently low

(no pure strategy equilibrium exists) or high (a pure-strategy equilibrium always

exists), there is a region inbetween for which existence of a pure-strategy equilibrium

depends on the value of a. It seems like higher values of a promotes the existence,

but the reverse can also be true. Finally, since �s is a given parameter of the two

�rms�problem while a is a decision variable, we can �maximize out� the latter,

thereby concluding that for �s between (approx.) :3 and :5, a carefully designed

markup on access is pro�table, while the opposite applies for �s outside this interval.

To summarize this section, we have demonstrated that high access charges can

dampen competition by creating endogenous switching costs for people hesitant to

relocate away from their friends. Moreover, for some parameterizations of the model,

the bene�t from reduced competition is larger than the losses stemming from loss

of e¢ ciency associated with marginal prices that are distorted away from their �rst

best level. In the next section we will point at another bene�t from the high access

charges: they make entry more cumbersome.

3 The entry model

In this section there are two incumbent �rms i = 1; 2 and one potential entrant

denoted by subscript e: As before we assume that each incumbent �rm has locked-in

one half of the unit mass of consumers with exogenous switching costs uniformly

distributed on (0; �s): Thus the share of consumers with switching costs less than

or equal to s is x = G(s) = s
�s
: The timing is as follows. First the incumbent

�rms agree on an access price a; 0 � a < 1: Then simultaneously each incumbent

�rm o¤ers contracts fpi; qi; kig and the entrant o¤ers fpe; qe; keg: Finally consumers
choose where to buy from. To simplify the analysis we assume that there are no

�xed costs of entry.21

20In the �gure the two curves merge for high values of a. Technically, for a higher than about

:9, the optimal way to poach some is to poach all.
21It is clear that the qualitative results hold also with non�zero costs of entry. Technically, the

only e¤ect of a �xed cost of entry is to shift the entrant�s pro�t function by a constant, thereby
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3.1 The entrant�s problem

Assuming pe � qe and pi � qi and supposing that a share x of all consumers switches
to the entrant we can formulate the maximization problem of the entrant as follows:

�e(a; s) = max
ke;pe;qe

fx [ke + �(1� pe)pe + (1� �) (x(1� pe)pe

+(1� x) y(qe) (qe � a))] + Te(a; qi; x)g

s.t. �v(pi) + (1� �)
�
1�x
2
v(pi) +

1+x
2
v(qi)

�
� ki + x�s

� �v(qe) + (1� �) (xv(pe) + (1� x) v(qe))� ke
(10)

�v(qi) + (1� �)
�
1�x
2
v(pi) +

1+x
2
v(qi)

�
� ki + x�s

� �v(pe) + (1� �) (xv(pe) + (1� x) v(qe))� ke
(11)

pe � qe

where Te(a; qi; x) = (1��)a(1�qi)x(1�x) are the termination revenues that accrue
to the entrant.22

Lemma 1 demonstrated that when the pair of customers with switching costs xs

are willing to switch (henceforth called the marginal pair of customers), so are all

consumers with lower switching costs. Constraint (10) in the program above secures

that one of the marginal pair of consumers will switch and (11) that his friend will

switch to the entrant�s network. Obviously, if on-net and o¤-net prices are equal

(i.e. pi = qi and pe = qe) the two constraints collapse to one. To decide which of

them is binding when on-net prices are lower than o¤-net prices suppose (10) binds

and (11) is slack. Then the di¤erence between the two left-hand sides must be larger

than the di¤erence between the two right-hand sides. That is,

v(pi)� v(qi) > v(qe)� v(pe) (12)

which always holds when pi < qi and pe < qe. Therefore, for pi � qi and pe � qe

constraint (10) will be binding and (11) will be slack, or both will collapse to the

making it easier to deter entry.
22With probability 1��(= 1

2 ) the call is to an arbitrary person, the revenues from such a call is

a(1� qi), x is the probability that the call is terminated in the entrant�s network and (1� x) the
probability that the call is originated in one of the incumbents�network.
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same condition. The intuition is that when on-net prices are lower than o¤-net

prices it is more di¢ cult to attract the marginal consumer than his friend. The

reason is that once the marginal consumer has moved, his friend has nothing to gain

by staying at the incumbent �rm because he will get cheaper calls to his friend when

if he moves. Substituting for the indirect utility functions and assuming that (10)

binds, yields the condition

3� x
8

(1� pi)2+
1 + x

8
(1� qi)2� ki+x�s =

2� x
4

(1� qe)2+
x

4
(1� pe)2� ke (13)

This constraint implicitly de�nes ke as a function of x; a; ki; �s and the marginal

prices of the �rms. It turns out to be more convenient to formulate the entrant�s

maximization problem as one of choosing x; pe and qe: Doing this we can write

�e(a; s) = max
x;pe;qe

fx [ke + � (1� pe) pe + (1� �) (x (1� pe) pe

+(1� x) (1� qe) (qe � a))] + Te(a; qi; x)g (14)

s.t. (13)

pe � qe

3.2 The incumbents�problem

Each incumbent�s maximization problem is similar to the entrant�s problem:

�i = max
xi;pi�qi

�
1� x
2

�
ki + � (1� pi) pi + (1� �)

�
1� x
2

(1� pi) pi

+
1 + x

2
(1� qi) (qi � a)

��
+ Ti(a; qj; qe; x)

�
(15)

s:t (13)

where Ti(a; qj; qe; x) = a12
1�x
2

�
1�x
2
(1� qj) + x(1� qe)

�
are the termination revenues

that accrues to each incumbent. (As with the entrant we have formulated the

maximization problem as one of choosing x instead of ki.)

3.3 Equilibrium in the entry model

Solving these two maximization problems enables us to give a full characterization

of the equilibrium.

15



Proposition 4 Suppose pi � qi and pe � qe: Then the equilibrium contracts have

marginal prices

pi = 0

qi = a

pe = qe =
1

2
(1� x) a

and �xed fees

ki = 11x�s� 2xa2 � 3�s+ 3
2
a

ke =
1

2
a+

1

2
ax+

1

4
a2 � 7

4
xa2 + 7x�s� 2�s

where the entrant�s equilibrium market share x is given by

x = x(a; �s) =
1

a2

�
2a2 � 12�s+

p
144�s2 � 40�sa2 + 5a4 � 4a3

�
Proof. See the appendix.

Whereas the incumbents set marginal prices equal to marginal costs, the entrant

equate the prices for on- and o¤-net calls. This rather surprising result deserves

some comments.23 Why does the price structure di¤er between the two? The key to

understand this puzzle is found in exploring the di¤erent incentives the �rms have.

All �rms are concerned with e¢ ciency, and this consideration pulls toward pricing

according to perceived marginal costs. However, incumbents are concerned with

keeping customers whereas the entrant is concerned with attracting customers. As

customers come in pairs, we might expect the incumbents to price in a way that

make friends reluctant to split, whereas the entrant might be expected to price in a

way that make the two members of a pair equally di¢ cult to attract. This is exactly

what happens. By equating on- and o¤-net prices the entrant make the friends

equally di¢ cult to attract, and this feature turns out to dominate the e¢ ciency

23Given that the two prices set by the entrant are equal, it is less of a surprise that the common

price is inbetween the marginal cost of internal and external calls. The general expression for the

entrant�s marginal prices is pe = qe = (1� �)(1� x)a: From this we see that when the probability

of a call being to a friend increases or the entrant�s market share increases the marginal prices are

closer to zero and vice versa when � is small or the entrant has a small market share.
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consideration pulling in the direction of setting p = 0 and q = a. In fact, if the

entrant chooses to price e¢ ciently, the e¢ ciency gain goes to the switchers, who get

a lower �xed fee in order to make the �rst in the pair switch. The incumbents, on

the other hand, have no such incentives, and stick to marginal cost pricing.

Proposition 5 The entry equilibrium has the following comparative statics

@x(a; �s)

@a
< 0;

@x(a; �s)

@�s
> 0

Proof. See the appendix.

It turns out to be hard to �nd analytical expressions for how the equilibrium

pro�ts of the three �rms change as we vary the two underlying parameters a and �s.

We will therefore study some examples in more detail.

3.4 Examples

In what follows we will �x the upper bound on the exogenous switching costs, �s, in

order to isolate the e¤ects of changing the other parameter a. this section we will

work with three di¤erent levels of the exogenous switching costs, �s 2
�
1
4
; 1
3
; 1
2

	
: Let

us �rst look at the equilibrium market share of the entrant. Figure 2 below plots

x(a; �s) for �s 2
�
1
4
; 1
3
; 1
2

	
: We have that x(a; �s) � 0 in our examples when

x(a;
1

4
) � 0 =) a � 2�

p
2 = 0:585 79

x(a;
1

3
) � 0 =) a � 2� 2

3

p
3 = 0:845 30

x(a;
1

2
) � 0 =) holds for all x 2 [0; 1]

17



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.2 0.4 0.6 0.8 1
a

x(a,s)

3
1

=s 4
1

=s

2
1

=s

Figure 2: Equilibrium market share of the entrant.

The lowest line represents �s = 1
4
; the middle line �s = 1

3
and the upper line

is for �s = 1
2
: We see that the entrant�s market share is decreasing in the access

charge; a su¢ ciently high access charge may deter entry if switching costs are not

too high. Note also that the entrant�s market share is increasing in the switching

costs, meaning that higher switching costs makes entry more di¢ cult to deter. At

�rst sight it may seem surprising that higher switching costs induces more entry.

The key to understand this is that high switching costs turn incumbents into �fat

cats�charging high �xed fees and thus creating leeway for the entrant to capture

a relatively large fraction of the consumers with the lowest switching costs (cf.

Fudenberg and Tirole, 1984).

Similarly, Figure 3 below plots the entrant�s pro�t as a function of access charge

for di¤erent levels of switching costs.24 We have that �e(a; s) � 0 when
24Clearly, if we add a �xed cost of entry, the entrant�s pro�t would be reduced by the same

amount, reducing the value of a that is needed to make the entrant�s pro�t negative.
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Figure 3: The entrant�s pro�t as a function of the access

charge.

The lowest line represents �s = 1
4
; the middle line �s = 1

3
and the upper line is for

�s = 1
2
:When a is low enough, entry will occur, and in this case the entrant�s pro�t is

increasing in consumers�switching costs. The intuition is as indicated above: when

entry occurs, higher switching costs make the incumbents charge high �xed fees,

resulting in higher market share and pro�t for the entrant.

Then �nally, look at the incumbent�s pro�t as a function of a. As noted above,

for su¢ ciently high a the entrant may be deterred. For such a high a we are back in

the equilibrium in the duopoly model where each incumbent earns ��(a) = 1
4
� 1

16
a2:

For su¢ ciently high �s this duopoly equilibrium is stable. In order to avoid having

to deal with situations involving mixed-strategy equilibria, we will restrict attention
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to the following two cases: �s = 1
3
and �s = 1

2
.25

When �s = 1
3
we know that when a � 0:4926 the duopoly equilibria are stable (see

Proposition 3). Moreover, we have that when a � 2 � 2
3

p
3 = 0:845 30 the entrant

will enter with a non-negative market share. Thus for a � 2� 2
3

p
3 the incumbents�

pro�ts are increasing in a; and at a = a � 2� 2
3

p
3 the equilibrium switches to the

duopoly equilibrium which is stable. This is illustrated in Figure 4 below.

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.2 0.4 0.6 0.8 1 a

Incumbent’s profit

)
3
1

,(aiπ

)(* aπ

Figure 4: Incumbents�pro�t as a function of a when �s = 1
3
:

For intermediate switching costs our model predicts high mark-up on access and

entry deterrence.

Finally, when �s = 1
2
we know that all duopoly equilibria with a > 0 are stable, but

that absent the threat from entry, incumbents will prefer the duopoly equilibrium

with a = 0: However, no a � 1 can deter entry (cf. Fig. 3), and the optimal entry
equilibrium for the incumbents is the one with a = 1: The incumbents agree on an

access charge that e¤ectively disconnect the networks, in order to reduce entry to a

25When �s = 1
4 , the entry equilibrium has the normal properties, with the incumbent�s pro�t

being increasing in a. However, when a is high enough, entry does not take place, and the resulting

duopoly has no pure-strategy equilibrium.
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minimum. This is illustrated in Figure 5 below.
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Figure 5: Incumbents�pro�ts as a function of a when

�s = 1
2
:

4 Concluding remarks

Previous literature have shown that high access charges between competing Tele-

com networks can be used as a device for facilitating collusion, but only as long

as attention is restricted to uniform, linear pricing: If �rms can o¤er two-part tar-

i¤s and can discriminate between on- and o¤-net calls, high access charges are no

longer pro�table; it will only induce ine¢ cient prices and thereby loss of revenues

for the networks. An apparent puzzle therefore is why networks typically charge a

substantial markup on access, leading to ine¢ cient prices of o¤-net calls.

The contribution of this paper is to demonstrate that by introducing exogenous

switching costs in combination with local calling clubs, incentives to charge a markup

on access are restored. Higher o¤-net than on-net prices gives consumers an incentive

to locate on the same network as friends. Once there, consumers will be loyal to this

network in so far as �for equal prices �there are switching costs associated with

relocating away from friends. For �rms, increased loyalty give room for higher prices

and thereby higher pro�t. This must of course be balanced against the distortions
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costs of high export prices �a cost that tends to be born by the �rms if consumers are

relatively homogeneous and two-part tari¤s can be used. In our duopoly model we

have shown that the bene�ts from access markup may dominate the losses. Alas, the

opposite may also be true, perhaps suggesting that this cannot explain the almost

universal practice of charging a markup on access.

However, we have also identi�ed an alternative motive for charging a markup

on access: The consumer lock-in associated with high access will make it harder for

entrants to get consumers sign up for their services � high access charges may deter

or at least soften potential entrants to the market. In our entry model we �nd that

a markup on access is always pro�table: the value of reduced or eliminated entry

always dominates the pro�t loss stemming from less e¢ cient consumption. Clearly,

as an explanation of the observed practice this is more satisfactory.

We conclude with a comment about the relationship between the model presented

here and La¤ont et al. (1998b). The fundamental di¤erence between their model

and ours is that we assume the existence of local calling clubs where friends may

coordinate on the same network. We �nd this assumption especially compelling

when it comes to exploring equilibria where �rms discriminate against o¤-net calls.

The existence of coordinated calling clubs tend to bias the calling pattern in favor

of on-net calls, a feature not present in La¤ont et al (1998b). Whether consumers

are �locked-in�to a network with switching costs or by transportation costs (as in

La¤ont et al.) this calling bias will increase the individual costs of switching supplier

and therefore support higher �xed fees. The simple reason is that when considering

to switch, a larger fraction of your calls will have to be o¤-net calls, or reversely,

staying with your original network creates a high consumers�surplus because a large

fraction of your calls are on-net calls at a low marginal price. As it turns out, this

feature may be su¢ cient to tilt the equilibrium in favor of high access charges and

discrimination based on call termination.

5 Appendix

Proof of Lemma 1.
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The proof is in two parts. First consider the duopoly model. Let RD(x) denote

the net gain in utility of a customer with switching costs x�s when he switches from

his present supplier i (who gives him zero net utility) to the undercutting opponent

j with market share x:

RD(x) =
1

2
v(qj) +

1

2
(xv(pj) + (1� x)v(qj))� kj � xs (16)

Di¤erentiating with respect to x yields

R0D(x) =
1

2
(v(pj)� v(qj))� s < 0 (17)

since �s � 1
4
by assumption, v(p)� v(q) � 1

2
.

Next consider the entry model. Let RE(x) denote the net gain in utility of a

customer with switching costs x�s who switches from one of the incumbents to the

entrant with market share x:

RE(x) =

�
1

2
v(qe) +

1

2
(xv(pe) + (1� x) v(qe))� ke

�
� x�s

�
�
1

2
v(pi) +

1

2

�
1� x
2
v(pi) +

1 + x

2
v(qi)

�
� ki

�
(18)

Di¤erentiating with respect to x yields

R0E(x) =
1

2

�
v(pe)� v(qe) +

1

2
v(pi)�

1

2
v(qi)

�
� �s < 0 (19)

which holds in equilibrium, since then v(pe) � v(qe) = 0, 12v(pi) �
1
2
v(qi) � 1

4
, and

�s � 1
4
.

R0D(x) < 0 and R0E(x) < 0 means that in both models the net gains from

switching is decreasing with the amounts of switching, that is, the discouragement

that lies in the increased switching cost is stronger than the encouragement that

comes with the larger network. �

Proof of Lemma 2.

With a < 1 there are several ways to undercut. If poaching all, the undercutting

�rm will set q = 0: (This eases the switching constraints without giving rise to

any access de�cit, since there will eventually be no external calls.) Then the after
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switching utility of any of the poached customer equals v(0) � k � �s. A su¢ cient
condition to make all switch is to make the pair with the highest switching costs

switch. That is, to have

v(0)� k � s � 0 or k � v(0)� s = 1

2
� s � �A(�s) (20)

Stability then requires (necessary condition)

1

2
� s � 1

4
� 1
8
a2
1

2
, s � 1

4
+
1

16
a2 (21)

In order to stop poaching all, the switching costs must be large enough. Reducing

the markup on access relaxes this constraint and thereby requires less. The intuition

is clear: high a reduces equilibrium pro�t without a¤ecting undercutting pro�t.

Therefore, higher switching costs are needed to deter this form of undercutting. �

Proof of Lemma 3.

When a �rm tries to attract only a fraction of his competitor�s customers, the

market share after undercutting is x 2
�
1
2
; 1
�
. Assume that a share t = G(z) 2 (0; 1)

of the consumers switch to the undercutting network, meaning that consumers with

switching costs less than or equal to z switch. The share t will depend on the

undercutter�s p; q and k in a continuous way. Moreover, t is functionally related to

x:

x =
1 + t

2
=
1 +G(z)

2
, G(z) =

z

�s
= 2x� 1, z = (2x� 1)�s (22)

The undercutting �rm solves the following program:

max
p;q;k;x

�
x

�
1

2
y(p)p+

1

2
(xy(p)p+ (1� x)y(q)(q � a)) + k

�
+ T

�
s:t: 1

2
v(q) + 1

2
(xv(p) + (1� x)v(q))� k � z (23)

1
2
v(p) + 1

2
(xv(p) + (1� x)v(q))� k � z (24)

z = (2x� 1)�s

where (23) secures that the consumer with switching cost of exactly z will switch,

and (24) that his friend will switch. Moreover, the access revenues can be written

T = x(1� x)1
2
y(a)a

24



We will �rst show that optimal undercutting entails p = q: Suppose p = 0 and

q = a are part of a solution to this problem. Then it is easy to see that the only

relevant constraint is constraint (23). Suppose next that we change p and k but

keeps entry unchanged. The e¤ect on pro�t is then

@�

@p
= x

��
1

2
+
1

2
x

�
(y(p) + py0(p)) +

1

2
xv0(p)

�
= x

�
1

2
�
�
2
1

2
+ x� x1

2

�
p

�
> 0 for p = 0

Hence the optimal undercutting p is positive. Its exact value (assuming that con-

straint (23) is still the only binding constraint) is

1

2
�
�
2
1

2
+ x� x1

2

�
p = 0, p =

1

x+ 2

Di¤erentiating with respect to q yields

@�

@q
= x

�
1

2
(1� x)y(q)(q � a) + 1

2
v(q) +

1

2
(1� x)v(q)

�
= x

�
1

2
(1� x)(a� q)� 1

2
(1� q)

�
< 0 for q � a

@2�

@q2
= x

�
1

2
(1� x)(�1) + 1

2

�
=
1

2
x2 > 0

Hence it is clear that @�
@q
< 0 for all q and therefore that optimal undercutting cannot

involve q > p.

Next, suppose that optimal undercutting entails q < p. Then only constraint

(24) is relevant. Following the steps of the above analysis then reveals that optimal

undercutting involves q > p, a contradiction again. (The proof is omitted.) There

is only one remaining possibility: optimal undercutting must involve p = q.

With q = p the undercutting �rm�s problem simpli�es a lot:

max
p;q;k;x

�
x

�
y(p)p� 1

2
(1� x)y(q)a+ k + (1� x)1

2
y(a)a

��
s.t. v(p)� k = z = �s(2x� 1)

or, after using the constraint to eliminate k and substituting for y( ),

max
p;x

�
x

�
(1� p)p� 1

2
(1� x)(a� p)a+ 1

2
(1� p)2 � �s (2x� 1)

��
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Letting I(p; x) � x
�
(1� p)p� 1

2
(1� x)(a� p)a+ 1

2
(1� p)2 � �s (2x� 1)

�
denote

the expression to be maximized, di¤erentiating w.r.t. p yields

@I

@p
= x

�
�p+ a� ax� a1

2
+ a

1

2
x

�
= 0, p =

1

2
(1� x) a 2 (0; a)

@2I

@p2
= �x < 0

Substituting the optimal price yields

J(x) � I
�
1

2
(1� x) a; x

�
=
1

2
x

�
1� 2�s (2x� 1)� a2 (1� x) 1

2

�
1

2
� 1
2
x+ x+ 1

��
and di¤erentiating w.r.t. x yields:

@J

@x
=

1

2
� 4�sx+ �s+ 1

2
a2
�
�1
2

��
1

2
� 41

2
x+ 3

1

2
x2 � 3x2 + 1

�
= 0

@2J

@x2
= �4�s+ a21

2

�
2
1

2
� 31

2
x+ 3x

�
=
5

4
a2 � 4s� 1

4
a2x

Interior solutions require

@J

@x
=

1

2
� 4�sx+ �s� 3

8
a2 +

3

8
a2x2 +

1

2
a2x = 0

m

x =
1

3a2

�
�2a2 + 16�s�

p
13a4 � 88�sa2 + 256�s2 � 12a2

�
This can be a valid solution only if x 2 (1

2
; 1):

1

2
<

1

3a2

�
�2a2 + 16�s�

p
13a4 � 88�sa2 + 256�s2 � 12a2

�
< 1

m
1

6
a2 +

1

6
< �s <

1

2
� 1

32
a2

For subsequent reference, substituting the solution for x into the expression for the

undercutting �rm�s pro�t yields the following pro�t expression:

�S(�s; a) = � 1

108

�
�2a2 + 16�s�

p
13a4 � 88�sa2 + 256�s2 � 12a2

�
�

�12a2 + 11a4 � 56�sa2 + 128�s2 � (8�s� a2)
p
13a4 � 88�sa2 + 256�s2 � 12a2

a4
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�

Proof of Proposition 3.

This result can be proved by an example. If e.g. �s = :4, then it is easily veri�ed

that a = a� = :5 yields a pure-strategy equilibrium with higher payo¤ than does the

equilibrium resulting from a = 0. �

Proof of Proposition 4.

Consider the e¤ect on the entrant�s pro�t in (14) of a marginal increase in pe.

@�e
@pe

= x

�
@ke
@pe

+
1

2
(1� 2pe) +

1

2
x (1� 2pe)

�
= x

�
�1
2
x (1� pe) +

1

2
(1� 2pe) +

1

2
x (1� 2pe)

�
= x

�
1

2
(1� 2pe)�

1

2
xpe

�
>From this we have that @�e

@pe

���
pe=0

= x1
2
> 0, hence optimal pe > 0. Now, look at

the e¤ect on the entrant�s pro�ts from a marginal increase in qe:

@�e
@qe

= x

�
@ke
@qe

+
1

2
(1� x) (1� 2qe + a)

�
= x

�
�1
2
(1� qe)�

1

2
(1� x) (1� qe) +

1

2
(1� qe) (1� 2qe + a)

�
= x

�
1

2
(1� x) (a� qe)�

1

2
(1� qe)

�
We have that @�e

@qe

���
qe=a

= x
�
�1
2
(1� a)

�
< 0, hence optimal qe < a. Moreover, @�e@qe

is negative when

x

�
1

2
(1� x) (a� qe)�

1

2
(1� qe)

�
< 0() a <

1� qex
1� x

which holds as qe < 1: Hence, @�e
@qe

< 0 for all a 2 [0; 1]. Consequently, it pays to
reduce qe, and then no equilibrium may involve pe < qe. Hence we have established

that pe = qe under the conditions in the proposition.

Next, consider the e¤ect on an incumbent�s pro�t in (15) of a marginal increase
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in the on-net price, i.e.

@�i
@pi

=
1� x
2

�
@ki
@pi

+
1

2
(1� 2pi) +

1

2

1� x
2

(1� 2pi)
�

=
1� x
2

�
�1
2
(1� pi)�

1

2

1� x
2

(1� pi) +
1

2
(1� 2pi) +

1

2

1� x
2

(1� 2pi)
�

=
1� x
2

�
1

2
(1� 2pi � 1 + pi) +

1

2

1� x
2

(1� 2pi � 1 + pi)
�

= �1
2
pi

�
1

2
+ 1� x1

2

�
= 0

which establishes pi = 0 as the unique solution (it is easily veri�ed that @2�i=@p2i <

0). Similarly,

@�i
@qi

=
1� x
2

�
@ki
@qi

+
1

2

1 + x

2
(1� 2qi + a)

�
=

1� x
2

�
�1
2

1 + x

2
(1� qi) +

1

2

1 + x

2
(1� 2qi + a)

�
=

1� x
2

1

2

1 + x

2
(a� qi) = 0

establishing qi = a as the unique solution (it is easily veri�ed that @2�i=@q2i < 0).

When pi = 0; qi = a and qe = pe the maximization problem of the entrant reduces

to

max
x;pe=qe

�
x

�
ke + (1� pe) pe �

1

2
(1� x) (1� pe)a

�
+ a(1� a)1

2
x(1� x)

�
s.t. ke = 1

2

�
1
2
(1� pe)2 � 1

2

�
+ ki � x�s+ 1

2

�
(1� pe)2 � 1�x

4
� 1+x

4
(1� a)2

�
Maximizing with respect to pe yields the �rst-order condition (it is easily veri�ed

that @2�e=@p2e < 0)

@�e
@pe

= x

�
@ke
@pe

+ (1� 2pe) +
1

2
(1� x) a

�
= x

�
� (1� pe) + (1� 2pe) +

1

2
(1� x) a

�
= x

�
�pe +

1

2
(1� x) a

�
= 0, pe =

1

2
(1� x) a

The �nal step in our derivation of an equilibrium consists in �nding the equilib-

rium �xed fees for the �rms. With the marginal prices from above, the problem of

28



the entrant reduces to

max
x

�
x

�
ke + (1� pe) pe �

1

2
(1� x)a(a� pe)

��
s:t: ke =

1
2
(1� pe)2 � 1

2
+ ki � x�s

pe =
1
2
(1� x) a

or, when inserting for the �xed fee,

max
x

�
x

�
1

2
(1� pe)2 �

1

2
+ ki � x�s+ (1� pe) pe

�
� x1

2
(1� x)a(a� pe)

�
(25)

s:t: pe =
1
2
(1� x) a

Under the same assumptions, the incumbents�maximization problems reduce to

max
x

�
1� x
2

�
ki + a

1

2

�
1� x
2
(1� a) + x(1� pe)

���
s:t: ki = ke +

1
2
� 1

2
(1� pe)2 + x�s (26)

pe =
1
2
(1� x) a (27)

with �rst order conditions

� 3
16
x2a2 � 1

8
xa2 � 1

2
a+

1

4
xa+

5

16
a2 � x�s� 1

2
ke +

1

2
�s = 0 (28)

Similarly, (25) yields �rst order conditions

�3
8
a2 +

1

2
xa2 +

3

8
x2a2 + ki � 2x�s = 0 (29)

Solving (26), (28) and (29) for x; ki;and ke (using (27)) we get

x = x(a; �s) =
1

a2
�
2a2 � 12�s+ 
(a; �s)

�
ki = 11x�s� 2xa2 � 3�s+ 3

2
a

ke =
1

2
a+

1

2
ax+

1

4
a2 � 7

4
xa2 + 7x�s� 2�s

where 
(a; �s) =
p
144�s2 � 40�sa2 + 5a4 � 4a3

�
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Proof of Proposition 5.

>From Proposition 4 we have that the equilibrium outcome of the entry model

can be described as follows:

x(a; �s) =
1

a2
�
2a2 � 12�s+ 
(a; �s)

�
� 0

�i(a; �s) =
1

8

�
a2 � 12�s+ 
(a; �s)

�
�

�5a3 + 8a4 + 240�s2 � 84�sa2 + (�20�s� a+ 4a2) 
(a; �s) + 12�sa
a4

�e(a; �s) = �1
4

�12�s+ 2a2 + 
(a; �s)
a4

��
�4a3 +

�
5a2 � 28�s

�

(a; �s) + 11a4 � 108�sa2 + 336�s2

�

(a; �s) =

p
144�s2 � 40�sa2 + 5a4 � 4a3 � 0

First consider the entrant�s market share. The market share must be non-negative,

hence we must have that x(a; �s) = 1
a2

�
2a2 � 12�s+

p
144�s2 � 40�sa2 + 5a4 � 4a3

�
�

0: This holds when

2a2 � 12�s+
p
144�s2 � 40�sa2 + 5a4 � 4a3 � 0

which can, after some steps of tedious calculus, be rewritten as

a � 2� 2
p
(1� 2�s) or �s � 1

8
a (4� a)

Furthermore, x(a; �s) is decreasing in a when

@x(a; �s)

@a
= 2

12�s
(a; �s)� 144�s2 + 20�sa2 + a3
a3
(a; �s)

< 0

This holds whenever

144�s2 � 40�sa2 + 5a4 � 4a3 <

�
144�s2 � 20�sa2 � a3

12�s

�2
m

0 < 8�s
�
4�s (9� 10a) + 5a2

�
+ a3 (30)
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We see that a su¢ cient condition for this to hold is that a � 9
10
: For a 2 ( 9

10
; 1] the

right hand side inequality (30) above is strictly decreasing in �s: Hence, if it holds

for �s = 0 it will hold for every �s 2 (0; 1
2
]:When �s = 0 the condition obviously holds,

hence the condition holds for every a 2 [0; 1] and �s 2 [0; 1
2
]:

Next look at the e¤ect of a marginal increase in consumer switching costs on the

entrant�s market share:

@x(a; �s)

@�s
= �43
(a; �s)� 36�s+ 5a

2

a2
(a; �s)
> 0

m
p
144�s2 � 40�sa2 + 5a4 � 4a3 <

36�s� 5a2
3

m
20

9
a < 4() a <

9

5

which is always true, hence increased switching costs increases the market share of

the entrant. �
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