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1. Introduction 
 
Time variation in the first and second conditional moments has been reported for many 

financial time series2. Concentrating on the second conditional moment in the 

multivariate framework, Bollerslev, Engle and Wooldridge (1988) have pioneered a 

multivariate GARCH model. The multivariate GARCH literature has grown and evolved 

ever since, with authors such as Bollerslev (1990), Engle and Kroner (1995) and Engle 

(2002) making the greatest impact and setting the course for further research. The main 

issue that one faces with a multivariate GARCH model is the number of parameters that 

need to be estimated. The systems are usually large with some of initial formulations 

containing over 70 parameters in just three variables. Researchers have thus focused on 

creating parameter restrictions so as to make the systems smaller while maintaining 

positive definite covariance matrices.  

In this paper, I propose a new model of the multivariate GARCH family. The 

specification derives variance parameter restrictions from the structure imposed on the 

mean equations. Because the model is derived from a structural VAR specification I refer 

to it as a structural GARCH. A structural GARCH differs from existing multivariate 

GARCH models in that it estimates structural variance rather than reduced form 

parameters. The difference between the structural and the reduced form conditional 

covariance matrices is analogous to the difference between the structural and the reduced 

form VAR systems.  The usual procedure to estimating a multivariate GARCH model is 

to fit either a univariate ARMA process to each series in question, as in Conrad, Gultekin 

and Kaul (1991), or to model the mean equations jointly via a reduced form VAR such as 

                                                 
2 See Pagan (1996) for a comprehensive review of the financial econometrics literature. 

 2



 

in Cha and Oh (2000). The covariance matrix is then estimated from the reduced form 

residual series. Therefore, it can be argued that the above mentioned techniques would 

produce reduced form parameters in both the mean and variance equations. As the 

structural GARCH estimates structural mean equations it also produces structural 

variance parameters. This point is further discussed in Section 3. A traditional analysis 

toolbox, including the impulse response and forecast error variance decomposition 

analyses, is easily adapted to accommodate the structural GARCH framework. Further, 

due to the nonlinearities present in the model, conditional impulse response function 

(CIRF) and conditional forecast error variance decomposition (CFEVD) are defined. The 

two are dependent on conditional volatility levels. Conditional impulse response 

functions are of particular interest as they quantify effects of interactions between 

different volatility regimes (eg. low vs. high volatility) and innovation shocks.    

As an empirical application of the model I examine the dependence structure in 

weekly returns on three size-sorted portfolios from the Australian stock market. The 

focus of this study is twofold. Firstly, I test for the lead-lag effect in portfolio returns as 

initially documented by Lo and McKinlay (1990). This hypothesis posits that small-firm 

portfolio returns lag large-firm portfolio returns but not the other way around. The 

approach taken here is innovative in that it specifies and tests structural parameters rather 

than those that are reduced form. Secondly, tests of the asymmetric volatility spill-over 

hypothesis of Conrad, Gultakin and Kaul (1991) are conducted. These authors propose 

and test the hypothesis that volatility spills over from large to medium and medium to 

small firms and not in any other direction. Although the hypothesis has been studied and 

tested in various forms and on different data sets the present application is different in 
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two ways. Utilizing the structural GARCH model I conduct the volatility spill-over tests 

on structural rather than the commonly tested reduced form variance parameters. 

Employing the Australian stock market data is interesting in its own right as the effect 

has been documented previously for several international stock markets. 

 I find evidence in support of both the Lo and MacKinlay lead-lag effect and Conrad, 

Gultakin and Kaul’s volatility spill-over hypothesis. In particular, I find statistically 

significant coefficients on lagged large cap index returns in small and medium firm 

portfolio equations. Similarly, volatility spills over from medium to small firm portfolio 

returns and not in any other direction. 

The rest of the paper is organised as follows. Section 2 presents a literature review. 

Section 3 develops the structural GARCH model while Section 4 presents empirical 

results from a study on three size-sorted portfolios.  The conclusion is in the final section. 

 
2.  Literature Review 
 
2.1 Modelling Time Series Dynamics in Short-Term2 Portfolio Returns 

 

The study of security returns has its roots in the seminal work of Louis Bachelier 

(1900) and his formulation of the random walk hypothesis. Bachelier’s hypothesis, 

nowadays better know as the random walk hypothesis, essentially implies that stock 

market returns are unpredictable. The theory has been studied and tested ever since. 

One of the first studies to question the random walk hypothesis in the context of size-

sorted portfolios is Lo and MacKinlay (1988). Using weekly data on five equally 

weighted size-sorted portfolios from the NYSE and AMEX they strongly reject the 

                                                 
2 Daily, weekly and monthly returns are regarded as short-term returns as in Fama (1991), p. 1578. 

 4



 

random walk hypothesis. The authors show that the portfolio returns exhibit strong 

positive correlations, even though individual returns are on average weakly and 

negatively autocorrelated. Lo and MacKinlay attribute their findings to cross-

autocorrelations between individual security returns. In a later study, Lo and MacKinlay 

(1990) document substantial differences in the behaviour of small and large cap 

portfolios. Firstly, they demonstrate that small cap portfolio returns are more predictable 

than the large firm portfolio returns. Secondly, they show that lagged returns on the 

portfolio of large market capitalisation firms explain a significant portion of the current 

returns on small stocks, but not the other way around. Thus, they document an 

asymmetry in the predictability of returns on small and large market cap portfolios. Other 

authors quickly followed in the steps of Lo and MacKinlay, examining the lead-lag 

relationships in different stock markets and for different time periods. Fargher and 

Weigard (1998) investigate the impact of technological and regulatory changes on the 

lead-lag effect and find that the lead-lag effect has diminished in the more recent past. 

They explain their findings using the argument of improved market efficiency and better 

dissemination of information. McQueen, Pinegar and Thorley (1996) study directional 

asymmetry in response to good and bad news. Small firms appear to respond with a lag to 

good but not bad news. That is, adverse information appears to be impounded in the price 

of small firms instantaneously. Evidence is also found in support of the lead-lag effect in 

Asian markets. Chang, McQueen and Pinegar (1999) find cross-autocorrelations in six 

Asian markets including Hong Kong, Japan, Singapore, South Korea, Taiwan and 

Thailand. However they confirm McQueen, Pinegar and Thorly’s asymmetric reaction to 
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good news only for Taiwan. Chang, McQueen and Pinegar  do not find sufficient 

evidence to infer that the degree of cross autocorrelation has weakened since 1987.  

Investigating dependencies in the second conditional moment Conrad, Gultekin and 

Kaul (1991) find evidence of conditional autoregressive heteroscedasticity in size-sorted 

portfolio returns. They relate their empirical evidence to a theoretical model of Ross’ 

(1989), in which he associates price volatility with the rate of information flow. They also 

document asymmetric volatility spill-overs, where the volatility shocks of the large cap 

index affects the conditional volatility of the small cap index but not the other way 

around. In a later study Kroner and Ng (1998) confirm Conrad, Gultekin and Kaul’s 

findings utilizing several different versions of the multivariate GARCH model.  

 

2.2.  Theoretical Propositions 

Although researchers seem to agree on the stylised facts relating to size-sorted portfolios, 

there are substantial differences in the beliefs as to what causes them. Several theories 

have sprung up in attempts to provide an adequate explanation. Boudoukh, Richardson 

and Whitelow (1994) categorise the competing theories into three camps which they refer 

to as heretics, loyalists and revisionists.  

Heretics believe that the time series patterns occur because the prices of small firms 

either over-react or only partially adjust to common market information, while the large 

firms adjust to new information instantaneously. Thus the cross-autocorrelations are due 

to differences in the speed of adjustment to shocks in common factors. Amongst heretics 

Lo and MacKinlay (1990) and Jegadeesh and Titman (1995) are the two most prominent 

studies. More recent evidence in support of this theory comes from a Richardson and 
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Peterson (1999) article in which they show that the large cap index Granger causes small 

firm portfolio returns in the US markets. 

 The second group of theorists, the loyalists, believe that the market processes 

information rationally and that short horizon correlations are not due to fundamentals but 

market frictions and microstructure effects. Market imperfections such as non-

synchronous trading, bid-ask spread and various trading mechanisms such as market 

architectures, systematic changes in inventory holdings and information flows are 

commonly cited. Lo and MacKinlay (1990) examine nonsynchronous trading arguments 

and conclude that even after assuming excessively high levels of non-trading 

probabilities it is unlikely that non-synchronous trading causes the lead-lag effect. Mech 

(1993) is concerned with transaction costs as a cause of the lead-lag effect, a theory 

supported by his cross-sectional data tests. Boudoukh, Richardson and Whitelow (1994) 

themselves assume the loyalist position and develop a model that allows for heterogenous 

non-trading. However they conclude that non-synchronous trading cannot account for all 

of the lead-lag effect. 

Revisionists theorise that markets are efficient and that even in a completely 

frictionless market short-horizon returns can be autocorrelated. Changing risk premiums 

can be explained by intertemporal asset pricing models such as conditional versions of 

the APT and consumption based CAPM. In this literature Conrad and Kaul (1989) and 

Conrad, Gultekin and Kaul (1991) claim that predictable variations at short-horizons are 

attributable to variations in expected returns. Connoly and Conrad (1991) use 

cointegration and simulation tests to compare a time varying factor model to a lagged 

price adjustment model and find evidence in favour of the time varying factor model. 
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Hameed (1997) uses principal component analysis and the Kalman filter methodology to 

extract factors and shows that the time varying factor model provides a better fit than a 

price adjustment model. 

Given that each of the three theories is supported by some but not all empirical 

evidence, it is unclear which hypothesis explains the phenomena best. One could also 

suspect that not all theories are mutually exclusive. 

 

2.3.  Multivariate GARCH Models 

Multivariate GARCH models were introduced by Bollerslev, Engle and Wooldridge 

(1988) in an application of the CAPM with time varying covariances. Since then several 

competing models have been developed. Some of the most frequently employed ones are: 

the VECH model of Bollerslev, Engle and Wooldridge (1988), the Constant Correlation 

model (CCC) of Bollerslev (1990), the BEKK model of Engle and Kroner (1995) and 

more recently the Dynamic Conditional Correlation model of Engle (2002). The VECH 

specification can be written as: 
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where yt is a vector of returns, xt represents a vector of explanatory variables and Ht is the 

conditional variance matrix. The VECH model has n(n+1)/2 + (p + q)n2/4 parameters, 

thus a model with three variables (n = 3) and p=q=1 has 78 GARCH parameters. Due to 

the large number of parameters in (1) Bollerslev (1990) proposed a Constant Conditional 
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Correlation model. CCC restricts the correlations between variables to be time invariant, 

thus modelling the conditional covariance structure as: 

jjtiitijijt HHH ρ=         (2a) 

where  is the ijijtH th element of the conditional Ht covariance matrix and ji ≠∀ . 

Conditional variances are defined as: 

( )'
111 −−− ++= ititiiitiiiit uuAHBH ϖ  .    (2b) 

This model has 3n+(n(n+1)/2) parameters, thus 15 variance parameters if n = 3. The 

CCC model is positive definite if the correlation matrix is positive definite. Another 

popular formulation is the BEKK model, which represents a solution to the positive 

definiteness problem. It is defined as: 

'  .     (3) ' '
111 AABBHH tttt −−− ++= εεω

As the second and the last term of the above equation are expressed in the quadratic form, 

given a positive definiteω , the conditional covariance matrix is guaranteed to be positive 

definite. This model has 5/2n2+n/2 parameters and there are 24 coefficients in a three 

variable system. As the most recent addition to the growing family of Multivariate 

GARCH models, Dynamic Conditional Correlation specification is a generalisation of 

Bollerslev’s (1990) CCC model where the constant correlation coefficients are made time 

varying: 

ttt RGGH =         (5a)  

is replaced by:  

tttt GRGH =         (5b) 
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where Ht is the conditional covariance matrix, { }tit hdiag ,=G  and R is the correlation 

matrix. The major advantage of DCC is that it directly parameterises conditional 

correlation, which is of primary interest to many financial applications.  

 
3.  Econometric Specification: Structural GARCH Model 
 
3.1.  Model Derivation 

 
Similar to the structural VAR specification, the structural GARCH is derived with an 

assumption that innovations are uncorrelated. However, the innovations are allowed to 

follow a GARCH type conditional volatility process. Thus, they are not necessarily 

independent and can be characterised by variances that may exhibit cross-equation 

dependences. The model can be derived from a pth order structural vector autoregression 

in the following way. If yt is an (n x 1) matrix of dependent variables:   
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where ut’s are structural shocks whose variances are modeled in a standard GARCH 

framework: 

( ) ( ) ( ) ( ) ( )qtqtptptpttt GdiagGdiaguuuuGdiag −−−−−− +++++= ββααω ........ 11111   (7) 
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where diag() operator stacks main diagonal elements into a column vector, and ‘ ’ is the 

element by element multiplication operator. A reduced form model can be obtained as: 
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From the above specification we can see that the reduced form errors tη  are 

contemporaneously correlated. Furthermore, the covariance matrix Ht is a linear 

combination of the structural covariance matrix Gt. This can be illustrated in a trivariate 

system as: 
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In the above equation, the variance matrix Ht is firstly written in its reduced form and 

secondly in its structural formulation. Should one estimate the variance matrix Ht in terms 

of the reduced form equations hijt, one will no longer be able to test structural parameters 

of Gt. This relationship is thus similar to that of the reduced and structural VAR systems.  

Given that the structural variance matrix Gt is correctly specified, the reduced form 

variance matrix is guaranteed to be positive definite due to the quadratic form of the 

inverse of B0 matrix. The number of parameters in the variance covariance matrix is 

( knnn
×+

−
2

2

) , where k is the number of parameters in each variance equation, 
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assuming each variance equation has the same number of parameters. The unconditional 

structural covariance matrix can be calculated from (7) as: 
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3.2.  Identification and Estimation Issues 
 
Estimation of (6) follows the standard theory of simultaneous equations. Due to the 

correlation structure between regressors and errors one cannot estimate (6) directly. A 

commonly used solution is the recursive approach, which involves imposing triangularity 

restrictions on the B0 matrix. In the multivariate GARCH context, the restrictions that 

(preferably) come from economic theory translate exogeneity in the mean equations into 

exogeneity in the structural variances. Assuming iid normally distributed structural 

innovations tε , a log-likelihood function can be specified as: 
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which simplifies to: 
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The likelihood function in (11) can be maximised numerically using the Berndt, Hall, 

Hall, and Hausman (1974) algorithm. Depending on the parameters of interest from (6), 

one could employ either a one-stage or a two-stage estimation technique. Should one be 

primarily interested in the parameters from the variance equation, the model can be 

consistently estimated in two stages3. In the first stage, specify a reduced form VAR 

equation (8b) and estimate it via OLS. Subsequently estimate the structural variance 
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matrix parameters via maximum likelihood from the residuals. Alternatively, if one is 

interested in testing hypotheses relating to the structural form mean equation parameters, 

then one could specify the log-likelihood in terms of parameters from (8a). Given that the 

log-likelihood function is correctly specified, the information matrix can be calculated as: 
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3.3.  Conditional Impulse Response Functions 
 
Due to the nonlinear structure of the model, conditional impulse response functions can 

be defined for both the first and second moment equations. The mean equation impulse 

response function is calculated with respect to a standard deviation shock to an 

orthogonal innovation. Because conditional heteroscedasticity is explicitly modelled, the 

response of the dependent variable will be affected, amongst other things, by volatility 

levels. Thus, one may be interested to see how different volatility regimes (eg. low vs. 

high) influence the response functions. The standard, unconditional, impulse response 

function can also be calculated by evaluating the response function at an unconditional 

volatility level. In order to see how a structural shock j at time period t affects variable i, s 

periods ahead, at time t+s one can re-write equation (8b) in its MAR form as: 
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whereπ is the VAR constant term, s'φ are the VAR parameters, ψ ’s are MAR parameters 

and . Assuming a GARCH (1,1) specification in the variance equations, it ttgB ε1
0
−

tη =

                                                                                                                                                 
3 See Pagan (1986). 
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can be seen that the total effect on variable i, s periods after the shock to the orthogonal 

innovation j is given by the following partial derivative:  
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The impulse response function is defined as the conditional expectation of the above 

quantity: 
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The above impulse response function can be estimated by simulating (8b). Because the 

first quantity in (15) includes the conditional expectation of gt, which is known at time 

period t, the impulse response function depends on conditional volatility as well as the 

time lag k. The initial response to one standard deviation shock to t1ε  is given by: 
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where one would use the estimated value  to make the above operational. tg1ˆ

Another interesting issue is how a shock to a structural factor j at time t affects 

conditional variance i at some future time period t+k. The impulse response function for 

the variance equation of variable i is defined as: 
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The expectation is conditional on all information up to the time period t, thus the quantity 

can be estimated though simulation of (7) by setting the initial value of gt-1 to its 

estimated value and shocking one of the squared error terms, while setting the rest to 

zero.  

 
3.4.  Conditional Forecast Error Variance Decomposition 
 
From the MAR representation in (13) it can be seen that a k step forecast error variance 

can be written as: 
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One could make this quantity operational by replacing required quantitiesG ’s by their 

forecasts made at time t, . A conditional version of the variance decomposition can 

be defined as:  
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Further, it is possible to calculate two versions of the conditional variance decomposition. 

Firstly, one could calculate the contribution of the ith orthogonal innovation to the 

forecast error variance as: 
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where refers to the column i of standard deviation matrix gtkitg ,ˆ + t. Quantities calculated 

in such fashion can be thought of as proportions of the forecast error variance due to each 

of the orthogonal innovations. 

Secondly one could calculate percentage contributions of each structural innovation 

shock to the forecast variance. Contribution of innovation i on variable j’s forecast 

variance is given by: 
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4.  Empirical Application: Size-sorted portfolios and the structural GARCH      
     specification 
 
4.1.  Motivation  
 
The structural GARCH framework is utilised to model dependencies in three size-sorted 

portfolios based on an argument of diversification. The portfolios contain securities from 

three different market capitalisation groups and are labelled as the large, medium and 

small cap indices. The large cap index consists of the top twenty stocks listed on the 

Australian Stock Exchange. As such firms tend to be well diversified, both operationally 

and regionally, authors such as Lo and MacKinlay (1990) show that they exhibit no 

significant autocorrelations. Thus, these firms tend to adjust to new information 

instantaneously. Being well diversified and depending only on macro economic news the 

large cap index is assumed to be driven by a latent factor in the form of the error term. 

The less diversified medium cap index is assumed to be driven by two factors. Firstly, it 

depends on the market wide information through contemporaneous dependence on the 

large cap index. Secondly it is affected by its own latent factor, information irrelevant for 

the large firm portfolio. The least diversified small cap index depends on three factors. 

Contemporaneous returns on the large cap index and the medium cap index enter its 

mean equation. News idiosyncratic to small firms is represented by an error term. Each of 

the three equations is augmented with lagged values of all three portfolios in order to 

capture any additional dynamics and test the lead-lag hypothesis of Lo and MacKinlay 

(1990). The second conditional moments are modelled by assuming the structural 
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innovations to be uncorrelated but exhibit a GARCH structure, thus justifying the use of 

the structural GARCH model. In the matrix format the model is as follows: 
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where Yt is a 3x1 vector containing the large, medium and small firm-size portfolio 

returns, in that order. GARCH (1,1) specification is used for the three structural variance 

equations. Furthermore, in order to test for volatility spillover effects each variance 

equation is augmented with squared lagged volatility shocks from other variables. 
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4.2.  Data Definitions and Statistical Summary 
 
The data set consists of 466 companies that constituted the All Ordinaries Share Price 

Index as of 26 October 2002 and spans the time period from December 1987 to April 

2003. It includes 3996 daily observations on the following variables: daily closing price, 

market capitalisation and dividends paid. I use the All Ordinaries Share Price Index 
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because although it accounted for only 28 per cent of the total number of companies 

listed on the Australian Stock Exchange in October 2002, it represented 99 per cent of the 

total market capitalisation. Simple percentage weekly return series were created for each 

company, using Wednesday closing prices and dividends paid ending up with 799 weekly 

observations. Weekly returns, rather than daily, were constructed in order to lessen 

market microstructure effects such as large bid-ask spreads, non-synchronous trading and 

complications arising from seasonality issues such as the day-of-the-week effect. 

Lo and MacKinlay (1990) have shown that there are statistically significant serial 

correlations in equally-weighted but not in value-weighted CRSP-NYSE-AMEX return 

indices. Given that an equally-weighted index gives more weight to smaller stocks than a 

value-weighted index does, they conclude that firm-size plays an important role in the 

stock return predictability. Table 1 presents summary statistics on the equally weighted 

and value weighted portfolios, constructed from the 466 securities included in the sample.  

 
Table 1.     
Autocorrelation in weekly equally weighted and value weighted portfolio returns 

 Mean  
(% x 100) 

St. Dev  
(% x 100) 

Rho(1) Rho(2) Rho(3) Rho(4) Rho(5) Q(5) 
 

 
  Equally Weighted 

 

 
0.381 

 
1.928 

 
0.24 

 
0.18 

 
0.09 

 
0.07 

 
0.01 

 
81.29 

  Value Weighted 0.351 1.495 -0.02 0.06 0.01 -0.03 0.00 3.55 

 
Autocorrelation coefficients and Ljung-Box Q-statistics for equally weighted and value weighted portfolios consisting of 
466 securities from the All Ordinaries Share Index for the sample period 31 January 1987 to 2 February 2003. 
Asymptotic standard errors are given by 035.0/ =T1 , Q-critical (5% level) = 11.07. 

 

As can be seen from the above table, the Ljung & Box Q-statistic for autocorrelation is 

highly significant for the equally weighted but not the value weighted portfolio. Equally 

weighted portfolio return autocorrelation coefficients range from 0.24 to 0.01, with the 

first four being statistically significant at the 5 per cent level. On the other hand, only the 
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second order autocorrelation is statistically significant for the value weighted return 

series. Proceeding in the steps of Lo and MacKinly (1988), I divide the sample into size-

sorted portfolios to further investigate the impact of size classification.  

Three size-sorted portfolios, each consisting of twenty stocks of small, medium and 

large market capitalisation are obtained for every half-year (end of June and end of 

December) period within the sample timeframe. The same number of securities was 

included in each portfolio in order to maintain the same signal to noise ratios. The large 

firm portfolio consists of the top twenty stocks that account for about 60 per cent of the 

total sample market value. The medium cap portfolio includes the first twenty stocks 

above 11 per cent of the cumulative sample market value while the smallest capitalisation 

portfolio is comprised of the twenty stocks above 2.5 per cent of cumulative value. While 

the large stock portfolio mirrors the ASX’s Large Cap Index, the cutoff points for the 

medium and small stock portfolios roughly coincide with median cumulative percentage 

market values of the Medium Cap and Small Cap Market indexes published by the 

Australian Stock Exchange4. Portfolios are re-balanced every half-year in order to 

monitor the firm-size in each portfolio. Weekly portfolio returns are created by equally 

weighting individual security returns, using Wednesday closing prices and dividends 

paid. Caution was exercised to alleviate the non-synchronous trading problem, as first 

mentioned in Fisher (1966). According to this argument, autocorrelation in portfolio 

returns is due to the use of stale prices, that is, prices of securities that did not trade 

during a trading session. Such prices do not accurately reflect all available market 

                                                 
4 The Small cap index includes about 200 smallest securities with the market value of about 6 per cent of 
the total market capitalisation. The Mid Cap market index consists of 50 middle size companies comprising 
about 10per cent market value, while the Large Cap index consist of the 20 largest companies (Source: 
ASX, http://www.asx.com.au; last viewed: October 2003) 
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information and will appear to lag the rest of the market in trading time as their price 

adjusts to the new information. To prevent the spurious autocorrelations due to non-

synchronous trading, only the securities that have traded in two most recent sessions are 

used in the calculation of portfolio returns. A similar procedure was originally applied in 

Mech (1993). Table 2 reports autocorrelations for each of the size-sorted portfolios.  

 
Table 2. 
Summary statistics of weekly realised returns and squared returns of three size portfolios 

 Mean Return  
(% x 100) 

 

St. Dev.  
(% x 100) 

Rho(1) Rho(2) Rho(3) Rho(4) Q(4) JB 

Small 
 

0.27 
 

2.29 
 

0.236 
 

0.135 
 

0.038 
 

-0.036 
 

61.34 
(0.00) 

64.77 
(0.00) 

Medium 
 

0.23 
 

1.79 
 

0.153 
 

0.078 
 

0.018 
 

0.009 
 

23.95 
(0.00) 

33.13 
(0.00) 

Large 
 

0.25 
 

2.05 
 

0.018 
 

0.025 
 

0.022 
 

-0.025 
 

1.62 
(0.80) 

45.99 
(0.00) 

Sqr(Small) 
 

5.33 
 

9.69 
 

0.167 
 

0.022 
 

0.017 
 

0.021 
 

23.23 
(0.00) 

 
 

Sqr(Medium) 
 

3.25 
 

5.40 
 

0.104 
 

0.055 
 

0.146 
 

0.07 
 

32.11 
(0.00) 

 

Sqr(Large) 
 

4.24 
 

7.56 
 

0.133 
 

0.124 
 

0.09 
 

0.069 
 

37.05 
(0.00) 

 
 

Small, Medium and Large refer to weekly portfolio returns on the small, medium and large firm portfolios. The Q-statistics tests 
the hypothesis that all autocorrelations up to lag 4 are jointly zero. The JB-statistic is the Jarque-Bera test for normality, with p 
values in brackets. Asymptotic standard errors are given by 035.0/ =T1 . 
 

 
Medium and small firm portfolios exhibit statistically significant serial correlations as 

evidenced by large Q-statistics. For the small firm-size portfolio, the first order 

autocorrelation is 0.236, indicating that a little over 5 per cent of the variation in this 

portfolio is explained by its first lag. The large cap index, on the other hand, shows no 

discernable serial correlation pattern. After squaring portfolio returns all three series 

appear to be strongly autocorrelated. This finding can be interpreted as evidence of time 

varying volatility. 

Time-series properties of the size-sorted portfolios can also be characterised by their 

cross correlations as in Table 3. The cross-autocorrelations exhibit familiar 

monotonically decreasing pattern. This structure implies that lagged returns on small 
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firms are more strongly correlated with current returns on large firms than the other way 

around. For example, the third entry in column one shows the correlation between the 

small firm portfolio return and the lagged value of the large firm portfolio return is 20.8 

per cent. We can compare this value with the first element of the last column from the 

same table (–1 per cent), which represents the correlation between the return on the large 

firm portfolio and the lagged return on the small firm portfolio. The above mentioned 

asymmetries exist throughout Table 3. 

Table 3. 
Cross-autocorrelations in size-sorted portfolio returns 

 Small(t) Medium(t) Large(t)  

Small(t-1) 0.236 0.136 -0.010  
Medium(t-1) 0.245 0.153 0.004  
Large(t-1) 0.208 0.165 0.018  

 Small(t) Medium(t) Large(t)  

Small(t-2) 0.135 0.022 -0.093  
Medium(t-2) 0.195 0.078 0.032  
Large(t-2) 0.205 0.065 0.025  

 Small(t) Medium(t) Large(t)  

Small(t-3) 0.038 0.063 0.011  
Medium(t-3) 0.072 0.017 -0.029  
Large(t-3) 0.137 0.041 0.022  

           Small, Medium and Large refer to weekly portfolio returns on the small, 
              medium and large firm portfolios. 
 
 
4.3.    Mean Equation Estimates 

Table 4 contains estimated coefficients from the mean equations as specified by (22) and 

(23). A second order VAR system was chosen according to the AIC and BIC selection 

criteria. 
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Table 4.           
Structural GARCH estimates - mean equations        

Large cap index mean equation   Medium cap index mean equation  Small cap index mean equation  

 Coef. t-stat Prob.  Coef. t-stat Prob.   Coef. t-stat Prob.  

Constant 0.237 3.445 0.001 Constant 0.09 1.74 0.082 Constant 0.011 0.156 0.876
Large(t-1) 0.01 0.231 0.817 Large(t-1) 0.081 2.517 0.012 Large(t-1) 0.075 1.607 0.108
Medium(t-1) -0.027 -0.54 0.588 Medium(t-1) 0.069 1.779 0.075 Medium(t-1) 0.138 2.626 0.009
Small(t-1) 0.009 0.227 0.821 Small(t-1) 0.046 1.696 0.11 Small(t-1) 0.072 1.874 0.061
Large(t-2) 0.026 0.568 0.57 Large(t-2) -0.002 -0.059 0.953 Large(t-2) 0.1 2.042 0.041
Medium(t-2) 0.073 1.467 0.143 Medium(t-2) 0.049 1.228 0.22 Medium(t-2) 0.084 1.673 0.094
Small(t-2) -0.084 -2.21 0.027 Small(t-2) 0.021 0.75 0.453 Small(t-2) 0.06 1.662 0.097

    Large(t) 0.423 17.09 0 Large(t) 0.304 7.602 0 
       Medium(t) 0.281 6.031 0 

 
All contemporaneous beta coefficients are highly significant giving support to the 

structural GARCH model hypothesis. For every 1 per cent increase (decrease) in the large 

portfolio return, the medium cap index return increases by 0.42 per cent and the small 

firm portfolio return by 0.3 per cent. For every 1 per cent increase in the medium firm 

portfolio return, the small stock portfolio return increases by 0.28 per cent in the same 

period. The lagged coefficients in the large cap index equation are all statistically 

insignificant with the exception of the small cap index return lagged two periods. This 

confirms a low level of predictability in portfolio returns on large firms. Large and 

medium firm portfolio returns lagged one period are statistically significant at the 10 per 

cent level in the medium cap index equation. Small firm portfolio returns appear to be 

predictable from all lagged returns at the 10 per cent significance level. Overall, 

empirical evidence is consistent with the international findings and suggests that the lead-

lag effect is present in the Australian market. Given the fact that the structural GARCH 

model allows us to control for contemporaneous effects and that all lagged statistically 

significant coefficients in the second and third equations are in fact positive, it appears 

that the medium and small cap indices initially under-react to information shocks. Using 
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Boudoukh, Richardson and Whitelow’s terminology, this finding can be interpreted as 

evidence in support for the lead-lag hypothesis or heretic explanation.  

     
4.4. Variance Equation Estimates and Volatility Spillover Tests 
 
Structural GARCH is particularly suitable for volatility spill-over tests as it directly 

identifies orthogonal error terms in the presence of conditional heteroscedasticity. 

Volatility spill-overs are defined as transmissions of volatility between variables within a 

system. The simplest way of testing for the effect is by including lagged squared errors 

for security j as an exogenous variable in the conditional variance equation of security i. 

As can be seen from Table 5, a large number of lagged coefficients in volatility equations 

are statistically significant. This implies that beside their own lagged shocks, volatilities 

in size-sorted portfolios are also predictable from other portfolios’ volatility innovations. 

Table 5.        
Structural GARCH estimates – variance equations     

Large cap index variance equation  Medium cap index variance equation Small cap index variance equation  

 Coef. t-stat Prob.  Coef. t-stat Prob.   Coef. t-stat Prob.  

Constant 0.278 1.759 0.079 Constant 0.111 2.039 0.041 Constant 0.872 2.235 0.025
Arch Large(t-1) 0.089 3.3 0.001 Arch Large(t-1) -0.005 -0.873 0.383 Arch Large(t-1) 0.077 2.419 0.193
Arch Medium(t-1) -0.007 -0.41 0.681 Arch Medium(t-1) 0.074 3.264 0.001 Arch Medium(t-1) 0.078 1.301 0.016
Arch Small(t-1) 0.017 1 0.318 Arch Small(t-1) 0.004 0.497 0.619 Arch Small(t-1) 0.047 1.251 0.211
Garch(t-1) 0.831 14.62 0 Garch(t-1) 0.879 23.33 0 Garch(t-1) 0.52 4.319 0 

 

In the above table ARCH terms refer to volatility shocks whereas GARCH quantities 

relate to coefficients on the lagged volatility series. In the large firm portfolio volatility 

equation its own ARCH and GARCH coefficients are highly significant at the 1 per cent 

significance level. This indicates that the large cap index volatility is affected by both its 

own history as well as by its lagged volatility shock. Lagged volatility shocks of medium 

and small firm portfolios have no statistically significant impact on the large firm 

portfolio variance. The second equation tells a similar story: the ARCH and GARCH 
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coefficients are significant at the 1 per cent significance level whereas other lagged terms 

are not significant at any conventional level. This time however, large and small firm 

portfolio volatility shocks contribute no additional information to the variance equation. 

Lastly, the small firm portfolio volatility appears to be dependent on its own history but 

also on lagged volatility shocks from the medium cap index. All three conditional 

variances are stationary as evidenced by Table 5 and Figure 1 below.   

   Figure 1. 
   Estimated structural volatilities for large, medium and small capitalisation indices 
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4.5.  Conditional Impulse Response Functions in Returns 
 
Although Table 5 above gives an indication as to how portfolio returns are affected by 

their lagged values, it does not tell us how a shock to any of the structural errors transmit 

through the system. For example, a shock to the orthogonal innovation in the large cap 

index equation will affect all three portfolios contemporaneously, however it will produce 

perturbations of different magnitudes and durations for each of the portfolios. As 

explained in section 3.3., impulse response functions in a structural GARCH model are 

dependent on volatility levels. Thus Figures 2 to 4 present impulse responses at three 

different levels of volatility: high, medium and low. High and low levels are dated from 
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Figure 1 as 12 November 1997 and 7 February 2001 respectively. I have chosen to use 

the unconditional variance matrix as a proxy for the medium level of market volatility. In 

order to emphasise the impact of volatility on impulse response functions the next three 

sets of graphs are ordered according to volatility levels.  

Figure 2. 
Conditional Impulse Response Functions to a shock in the Large Cap Index evaluated at high, medium and 
low volatility levels. 
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The above figure presents conditional impulse response fuctions for large, medium and 

small capitalisation index returns to one standard deviation shock in the large cap index 

structural innovation. The three graphs present impulse responses at high, medium and 
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low levels of volatility. Volatility plays a crucial role in the impulse response analysis as 

evidenced by the above graphs. As expected, due to the low order of dependence in the 

return equations (two lags), most of the response in the return series disappears after a 

short period of time, five weeks in the above case. However, volatility levels affect the 

magnitudes and signs of the responses. A one standard deviation shock to innovation 1 or 

market wide news has the greatest impact during times of high volatility. The response of 

the large firm portfolio return is equal to its estimated standard deviation at the time of 

initial shock (see (16)), which is above 3 per cent. For the periods of medium and low 

levels of volatility the initial responses of Portfolio One are about 2 per cent and 1.5 per 

cent. Similar patterns are found in the other two portfolios’ response functions. 

Figure 3. 
Conditional Impulse Response Functions to a shock in the Medium Cap Index evaluated at high, medium 
and low volatility levels. 
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Figure 3 presents impulse responses due to a shock in orthogonal innovation 2, that is the 

medium firm portfolio innovation. This error was interpreted as the market information 

relevant to less diversified medium size firms but not the large firms. A shock to this 

innovation has the biggest effect on the large firm portfolio return during the period of 

medium volatility. It produces an increase in the large portfolio returns of just over 0.5 

per cent. Its effect on the large firm portfolio is however negative during times of low 

volatility one week after the initial shock. This could be caused by investors moving into 

medium size firms following a positive news announcement. It is also interesting to see 

that during the medium and low levels of volatility medium and small firm portfolio 

returns respond in exactly opposite directions to a shock in this innovation. 

Figure 4. 
Conditional Impulse Response Functions to a shock in the Small Cap Index evaluated at high, medium and 
low volatility levels. 
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A news shock to the small cap index structural innovation has a positive impact on the 

portfolio of small firms during periods of large volatility and a slightly negative effect at 

times of medium and low volatilities a week after the shock. The observation of positive 

versus negative responses could possibly be explained by an overreaction hypothesis 

reported in Lehmann (1990). Firm prices adjust to an initial overreaction, however, 

during times of high volatility there is enough momentum in the market to lessen the 

adjustment and still produce a positive response. 

  
4.6.  Conditional Impulse Response Functions in Volatilities 
 
Given the small order of dependence in the variance equations (one lag) one would 

expect monotonically decreasing impulse response functions in the variance equations. 

Figure 5 shows impulse response functions during a medium level of volatility. 
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Figure 5. 
Conditional impulse response functions in variance equations 
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The above figures presents conditional impulse response fuctions in variance equations of 

the large, medium and small cap indexes measured in standard deviation units due to 

shocks in large, medium and small cap index innovations. An interesting observation that 
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can be made from the above graphs is the length of time it takes for a shock in one 

structural factor to transmit through the system. It takes about 150 time periods, that is 

150 weeks or just under three years for a shock to lose its effect. Thus, although 

stationary, structural variances exhibit strongly persistent dynamics. Furthermore, it 

appears that a shock transmits though the system more quickly in the portfolio of small 

firms than in any other portfolio. 

 
4.7.  Conditional Forecast Error Variance Decomposition 

 
Figure 6 shows a percentage contribution of each structural innovation to the forecast 

variances as given by (21). About 70 per cent of the total impact of structural innovation 

one transfers to the forecast variance of the large firm portfolio, while the remaining 30 

per cent is split between the medium and small cap indices. 

Figure 6. 
Conditional forecast error variance decompositions 
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The above graphs represent percentage contributions of one standard deviation  
shocks to structural innovations in the Large, Medium and Small Cap Indices to  
forecast error variances of the three portfolio.  

 

Medium cap index innovation two has its largest impact on its own portfolio forecast 

error variance, accounting for more than 90 per cent of the one step ahead MSE, with its 

contribution decreasing to about 87 per cent for the nine step ahead forecast. Its effect on 

the MSE of the small cap portfolio increases from about 3 per cent to more than 10 per 

cent. Its effect on the forecast error variance of the portfolio of large firms is marginal at 

about 1.5 per cent relative to other portfolio variances. Small cap index innovation 

transmits most uncertainty to its own index with its effect ranging from about 100 per 

cent for a one week ahead MSE to just under 93 per cent for a nine step ahead forecast 

error variance.  

 
5. Conclusion 
 

This paper has introduced a new model of the multivariate GARCH type, namely the 

structural GARCH model. Structural GARCH is derived from a structural VAR model, 

where it is assumed that structural shocks have time dependent variance structures. 

Conditional impulse response and conditional variance decomposition analyses are 

derived. They are both dependent on volatility levels. Conditional forecast variance 

analysis is innovative in that it is calculated using forecasted covariance matrices.  
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A triangular version of structural GARCH is fitted to weekly returns on three size-

sorted portfolios from the Australian Stock Exchange from 1988 to 2003. Evidence is 

found in support of the lead-lag hypothesis of Lo and MacKinlay (1990). In particular, it 

is shown that small firm portfolio returns depend on lagged large and medium size firm 

portfolio returns, even after controlling for contemporaneous effects. The medium firm 

portfolio returns are only dependent on their own past and the part returns of large firm 

portfolio returns. The large cap index appears to exhibit no autocorrelation and only a 

small proportion of its returns is explained. These findings are generally consistent with 

international evidence. Conrad, Gultakin and Kaul’s (1991) volatility spill-over 

hypothesis is also tested. The volatility spill-over hypothesis is conducted on structural 

rather than the reduced form variances. Although no volatility spill-over is found from 

the large to medium firm portfolios, evidence is found for volatility spill-over from 

medium and small cap indices.  
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