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seeks an explanation for this empirical �nding by undertaking a comprehensive investigation of
the predictive ability of information accumulated over nights, weekends and holidays for a series
of global indices. We study this form of seasonal heteroscedasticity by employing a generalized
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series of empirical tests and conclude that the information accumulated over weekends and espe-
cially holidays is a predictor of subsequent daily volatility. The SV parameters are estimated by
implementing a Bayesian MCMC algorithm, which is adjusted for sampling the seasonal volatility
level e¤ects. We compute in-sample and out-of-sample density forecasts for assessing the ade-
quacy of the conditional distribution. We also use Bayes factors as a likelihood-based framework
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1 Introduction

Recent empirical evidence suggests that the weekend and holiday calendar e¤ects are much stronger
and statistically signi�cant in volatility as opposed to expected returns. This paper seeks an ex-
planation for this empirical �nding by undertaking a comprehensive investigation of the predictive
ability of information accumulated over nights, weekends and holidays for a series of global indices.
We study this form of seasonal heteroscedasticity by employing a generalized stochastic volatility
model, in which the conditional daily volatility is measured in calendar time from open-to-close of
the market, and depends on lagged close-to-open returns. We conduct a series of empirical tests and
conclude that the information accumulated over weekends and especially holidays is a predictor of
subsequent daily volatility. The SV parameters are estimated by implementing a Bayesian MCMC
algorithm, which is adjusted for sampling the seasonal volatility level e¤ects. We compute in-sample
and out-of-sample density forecasts for assessing the adequacy of the conditional distribution. We
also use Bayes factors as a likelihood-based framework for evaluating the SV speci�cations. Bayes
factors account for both estimation and model risk. We conclude by computing volatility forecasts
relevant for risk management.

We compute in-sample and out-of-sample density forecasts for assessing the adequacy of the
conditional distribution of the SV speci�cations. We explicitly test whether modelling the distinct
behaviour of di¤erent days and months results in better one-step ahead volatility and density fore-
casts. We also compute Bayes factors, which provide a framework for speci�cation diagnostics and
model selection over the set of SV models. Bayes factors account for both estimation risk by integrat-
ing out parameter uncertainty and for model risk, which arises from the uncertainty over selecting a
model speci�cation. More importantly, the Bayes factor diagnostic measures the statistical cost of
dimensionality due to the explicit accounting of all seasonal periodic e¤ects in returns and volatility.

Models of stochastic volatility have been used extensively in theoretical option pricing since the
contribution of Hull and White (1987) in generalizing the Black-Scholes option pricing scheme. Like
GARCH-type models, they are designed to capture the persistent and hence predictable component of
daily volatility (for a comparison of GARCH and SV models see Fleming and Kirby (2003)). However,
SV has a fundamental di¤erence with GARCH. The assumption of a stochastic second moment
introduces an additional source of risk that cannot be perfectly hedged using t � 1 information.
A GARCH speci�cation describes the conditional distribution of returns as being a function of
exclusively past information. In contrast, the SV model speci�es the joint conditional distribution of
both the return and the volatility process. Intuitively, SV allows for the possibility of random (but
rather small) contemporaneous volatility shocks due to news events and policy changes. In other
words, there may exist unobserved contemporaneous variables that a¤ect the volatility process, which
is not possible in GARCH.

Despite their parsimonious structure, intuitive appeal and popularity in theoretical option pricing,
SV models have been much less popular than GARCH in empirical applications. This is exclusively
due to the di¢ culties associated with estimating SV models using conventional Classical economet-
ric methods. Speci�cally, models of discrete-time stochastic volatility cannot be estimated with
likelihood-based methods because the likelihood function is not available analytically.1 Bayesian es-

1 In the Classical framework, Sandmann and Koopman (1998) propose a Monte Carlo Likelihood (MCL) method
for estimating simple (plain vanilla) SV models. For a Simulated Maximum Likelihood (SML) estimation method of
heavy-tailed SV models see Liesenfeld and Jung (2000).
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timation o¤ers a substantial computational advantage over any Classical approach because it avoids
tackling very di¢ cult, if not intractable, numerical optimization procedures. This has turned the
development of fast and e¢ cient Bayesian MCMC algorithms for the estimation of SV models into
one of the most promising and challenging tasks of modern time series analysis.2

The SV parameters are estimated by implementing the MCMC algorithm of Chib, Nardari and
Shephard (2002), which builds on the procedures developed by Kim, Shephard and Chib (1998).3

The speci�cation and model selection tests are based on the �ltering methods of Pitt and Shephard
(1999). The marginal likelihood input to the computation of Bayes factors is constructed as in Chib
(1995), and Chib and Jeliazkov (2001).

The paper is organized as follows. Section 2 describes the size and statistical signi�cance of the
overnight information in six international stock indices. Section 3 discusses the plain vanilla Gaussian
SV and the proposed information SV speci�cation (iSV ) models, which is designed to assess the
predictive ability of information accumulated over nights, weekends and holidays in global �nancial
markets. The SV speci�cations lead to the testing hypotheses presented at the end of Section 3.
A sketch of the MCMC algorithm is o¤ered in Section 4. Section 5 examines the in-sample and
out-of-sample conditional dynamics of the SV models and discusses Bayes factors as a diagnostic
tool for model selection. Section 6 discusses the results and Section 7 concludes.

2 Index Returns Data

In this paper, we measure the size and the predictive ability of the information accumulated over
nights, weekends and holidays, which impacts on the expected returns and volatility of global �nancial
markets. We use daily open and closing price data from 6 international stock indices, which we
selected on the basis of two criteria: (i) there are two indices representing each of the three main global
trading blocks: USA�s Dow Jones Industrial Average (DJIA) and Canada�s S&P/TSX Composite
from North America; UK�s FTSE 100 and Germany�s DAX 30 from Europe; and Japan�s Nikkei 225
and Hong Kong�s Hang Seng from Asia, and (ii) one index is from a major and one from a minor
market from each trading block. In other words, we assume that New York is a bigger market than
Toronto, London is bigger than Frankfurt, and �nally Tokyo is bigger than Hong Kong. This will
allow us to test not only if there are di¤erences in the way markets respond to pre-open information
by geography but also by relative size.

The start date of the samples and the number of observations for each index are shown in Table
1: The sample size of the available data for both open and closing prices ranges from 20 years in the
case of the FTSE 100 (5039 observations) to just 11 years for the Hang Seng (2658 observations).
The average sample size is approximately 16 years. The end date for all indices is December 31,
2003, except in the case of Hong Kong for which the available opening price data ends on September
28, 2001. For ease of identi�cation, we will be referring to the indices by their country name. The
source of the data is Datastream.

Let POt and PCt denote the daily open and closing values of each international price index,
respectively. Then, the continuously compounded open-to-close percent day returns are constructed

2For a general reference on MCMC methods in �nancial econometrics see Johannes and Polson (2002).
3For an alternative reference on Bayesian analysis of SV models see Jacquier, Polson and Rossi (2002).
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simply as

rDt = 100 log
PCt
POt

(2.1)

We isolate the pre-opening information by de�ning the lagged close-to-open night returns as

rNt�1=2 = 100 log
POt
PCt�1

(2.2)

For convenience we denote days with time integers and nights with half integers. Hence, if Tuesday
is day 2 and Wednesday is day 3, then the period from Tuesday close to the Wednesday open
is period 212 . Hence the information available to the econometrician at the start of period t is
Ft =

�
rt�1=2;rt�1; :::; r1; r1=2

	
.

We further distinguish four mutually exclusive types of lagged overnight close-to-open informa-
tion: (i) rWN

t�1=2 is the close-to-open weeknight return for the Monday, Tuesday, Wednesday and

Thursday nights, unless there is an intervening holiday; for example, the Monday weeknight rWN
t�1=2

is the overnight period from the Monday close to the Tuesday open; (ii) rWE
t�1=2 is the close-to-open

weekend return measured from the Friday close to the Monday open, unless there is an intervening
Friday or Monday holiday; (iii) rHt�1=2 is the close-to-open holiday return measured from the pre-

holiday close to the post-holiday open, if there is no intervening weekend; and �nally (iv) rLWt�1=2 is
the close-to-open long weekend return measured from the pre-holiday close to the post-holiday open,
if the non-trading holiday is either a Friday or a Monday. All four are de�ned such that there is no
overlap; for example, long weekends count as neither weekends nor holidays. The sum of the returns
of all weeknights, weekends, holidays and long weekends gives the night return.

2.1 Descriptive Statistics and Overnight Information

Table 1 presents the descriptive statistics of the day and night returns and volatility. Panel A
indicates that all average night and day returns are positive with three notable exceptions. For
Hong Kong the average night return is negative. More importantly, for Germany and Japan the
mean day return is negative, whereas the mean night return is positive. In addition, for the United
States the mean night return is essentially zero. In all cases, the day returns have higher standard
deviation than the night returns, but (with the exception of Japan) the night returns have much
higher kurtosis. Finally, the correlation of day and lagged night returns ranges from -3% in the UK
to 23% in Japan, with �ve of the six correlations being positive.

Panel B presents the results for absolute returns. Here, we use absolute returns as a simple
model-free proxy to daily volatility, which we will formally model in the next section. In all cases,
the average absolute day returns are higher than the average absolute night returns. Further, with
the exception of Japan, the mean absolute night returns have higher positive skewness and kurtosis
than the mean absolute day returns. Finally, the correlation between day and lagged night absolute
returns ranges from -5% for Germany to 33% for Canada, with four of the six correlations being
positive. Note that the average correlation between day and night across the six countries is 9% for
returns and 11% for absolute returns.

Table 2 presents the proportions of volatility due to the information accumulated during the day
and during the night. The day and night volatility proportions are de�ned as
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vpD =
1

T

TX
t=1

jrDt j
jrDt j+ jrNt�1=2j

(2.3)

and

vpN =
1

T

TX
t=1

jrNt�1=2j
jrDt j+ jrNt�1=2j

(2.4)

For the three minor markets (Canada, Germany and Hong Kong) the volatility proportions are
remarkably similar at around 40% for the night proportion and 60% for the day proportion. For
the two major markets outside North America (UK and Japan) they become 30%-70%. For the US,
the night proportion falls to just 7%.

2.2 Statistical Signi�cance and Bootstrapping

We assess the statistical signi�cance of the day and night e¤ects by performing formal hypothesis
tests based on bootstrapping. Our null hypotheses are all one-sided and test whether (for example)
the day returns are higher (or in the case of Germany and Japan lower) than the night returns. Each
variable is tested against its complement: day vs. night, weekend vs. non-weekend nights, holiday
vs. non-holiday nights, and long weekend vs. non-long weekend nights. Each hypothesis is tested
at 90%, 95%, and 99% con�dence levels. The details on forming one-sided hypothesis tests using
bootstrapping are in Appendix A (also see Hansen (2004)). In assessing statistical signi�cance, we
have excluded the returns data from the two weeks of October 19-23, 1987 and September 10-14, if
applicable. For the US DJIA data we have also excluded September 17, 2001, which was the �rst
trading day in the US after 9/11. This ensures that our results are not driven by very few outliers
and guarantees there are no biases depending on (i) whether a data sample starts before or after
October 1987, or (ii) how many days a market was closed for 9/11.

The evidence on statistical signi�cance is presented in Table 3. In expected returns, days are
statistically di¤erent to nights all with at least 95% con�dence in four of the six countries, the
exceptions being Canada and the UK. The weekend e¤ect is signi�cant in 3 countries, the holiday
e¤ect in 2, and the long weekend e¤ect in 1 country index.

The strongest data-based result is displayed in Panel B of Table 3: for all six indices day volatility
is statistically di¤erent to night volatility with 99% con�dence. In addition, for all four countries
outside of North America, the weekends are statistically di¤erent to their complements. For Canada
only long weekends are signi�cant and for the US only holidays. Long weekends are signi�cant in
�ve countries, the only exception being the US. This is not surprising because for most Canadian
long weekends, the US market is open and hence Canada responds stongly to the information ac-
cumulating in its large neighbour. In contrast, the US appears to be sensitive only to information
generated within the US, and therefore does not respond to information accumulated abroad during
US weekends and long weekends. In fact, the US holiday, which is the only overnight e¤ect that
statistically di¤erent to its complement in the US, is smaller that its complement. In other words,
the US in general does not respond to overnight information, but during holidays it responds even
less! On average, of the three night e¤ects, 1 is statistically signi�cant in expected returns (or 0.67
with at least 95% con�dence) versus 1.67 in volatility (or 1.33 with at least 95% con�dence).

4



Figure 1 presents the boostrap distribution of the day and night expected returns for the six
indices. Figure 2 does the same for the day and night volatilities and demonstrates that in all
countries the day volatility is much higher and very statistically di¤erent to the night volatility.
Figures 1 and 2 o¤er a visual inspection of (i) the overlap of the two bootstrap distributions for
each day and night mean, and (ii) the position of a sample mean in the bootstrap distribution of its
complement. Similarly, �gures 3 and 4 plot the boostrap distribution of the strongest night e¤ect
against the distribution of its night complement for the expected returns and volatility, respectively.
We can see that the strongest mean e¤ects are less strong relative to the strongest volatility e¤ects:
there is more overlap in the mean boostrap distributions as opposed to the volatility distributions.

In short, there is strong quantitative and visual evidence that in the six selected global indices
there is clear misspeci�cation if we do not explicitly condition on the overnight information and
distinguish the weeknight e¤ect from the weekend, holiday and long weekend overnight e¤ects. In
the next section, we will formally model the e¤ect of overnight information on conditional returns
and volatility and we will investigate its forecasting.

3 Stochastic Volatility

3.1 The Plain Vanilla SV model

In the stochastic volatility (SV) framework, the plain vanilla SV model typically presents the bench-
mark against which model comparisons are conducted. According to this plain vanilla SV benchmark,
the daily index returns are assumed to follow a univariate discrete-time AR(1) process and are driven
by Gaussian innovations:

rDt = �+ �Dr
D
t�1 + "tvt, "t � NID (0; 1) (3.1)

The persistence of the stochastic conditional volatility vt is captured by the latent log-variance
process hDt , which is modelled as a dynamic Gaussian variable:

vt = exp
�
hDt =2

�
(3.2)

hDt = �+ �
0Xt + �

�
hDt�1 � �

�
+ ��t, �t � NID (0; 1) (3.3)

In the plain vanilla model, return and volatility innovations are independent: f"tg ? f�tg.
Further, the model assumes (and the estimation algorithm imposes) j�j; j�j < 1 so that both returns
and their volatility are stationary processes.4 Finally, the simple SV speci�cation reduces �0Xt =

Dr

D
t�1. In words, if 
D < 0 the lower the return shock, the higher the conditional variance in the

next few periods. This simple speci�cation allows for a level component measured by 
Dr
D
t�1, as well

as a dynamic component measured by �j
Dr
D
t�j .

4 In practice, the stationarity restrictions are never violated for daily returns data.
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3.2 Information Stochastic Volatility (iSV )

The information SV (iSV ) speci�cation conditions both the return and the volatility equations on
the information contained in the returns of (i) the lagged open-to-close period (preceding day),
and (ii) the lagged close-to-open period (preceding weeknight, weekend, holiday, or long weekend).
Speci�cally, we model the returns as follows:

rDt = �+ �Dr
D
t�1 + �Nr

N
t�1=2 + "tvt, "t � NID (0; 1) (3.1)

�Nr
N
t�1=2 = �WNr

WN
t�1=2D

WN
t�1=2 + �WEr

WE
t�1=2D

WE
t�1=2 + �Hr

H
t�1=2D

H
t�1=2 + �LW r

LW
t�1=2D

LW
t�1=2 (3.2)

where
n
DWN
t�1=2; D

WE
t�1=2; D

H
t�1=2; D

LW
t�1=2

o
is the set of dummy variables in f0; 1g, taking the unit value

if the previous close-to-open period is a weeknight, weekend, holiday or long weekend, respectively.
Similarly, the persistent and stochastic conditional volatility vt conditions on lagged day, week-

night, weekend, holiday, and long weekend returns:

vt = exp
�
hDt =2

�
(3.3)

hDt = �+ 
Dr
D
t�1 + 
Nr

N
t�1=2 + �

�
hDt�1 � �

�
+ ��t, �t � NID (0; 1) (3.4)


Nr
N
t�1=2 = 
WNr

WN
t�1=2D

WN
t�1=2 + 
WEr

WE
t�1=2D

WE
t�1=2 + 
Hr

H
t�1=2D

H
t�1=2 + 
LW r

LW
t�1=2D

LW
t�1=2 (3.5)

The main assumptions of the plain vanilla SV model are also valid for the iSV speci�cation.
Here, the MCMC algorithm must provide estimates of the three sets of parameters � = f�1; �2; �3g,
where �1 = f�; �D; �WN ; �WE ; �H ; �LW g is the set of parameters of the conditional mean, �2 =�
�; �; �2

	
is the set of parameters of the plain vanilla Gaussian log-variance process, and �3 =

f
D; 
WN ; 
WE ; 
H ; 
LW g is the set of volatility parameters which measure the relative e¤ect of
overnight information. All � parameters are time invariant.

For comparative purposes we aslo estimate a simpler iSV speci�cation without separate night
e¤ects. Speci�cally, for the iSVn speci�cation, the return equation conditions on a single overnight
e¤ect �Nr

N
t�1=2. Similarly for the volatility equation which assumes as single source of vernight

information 
Nr
N
t�1=2.

3.3 Testing Hypothesis

It is important to explore two types of tests: (i) hypothesis tests regarding the statistical signi�cance
of the parameter estimates which capture the predictive ability of the information accumulated in
the close-to-open periods, and (ii) assessing the overall performance of the plain vanilla SV versus
the two informational SV speci�cations (iSV and iSVn) by ranking them using the toolkit discussed
in the next two sections.

The information SV framework enables the formal testing of two hypotheses on parameter sig-
ni�cance. The �rst hypothesis examines whether the overnight close-to-open information has sta-
tistically signi�cant predictive power on both returns and volatility. The second one tests for the
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need to di¤erentiate between the weeknight, weekend, holiday and long weekend e¤ects. These are
summarized by two separate null hypotheses:

Hypothesis 1: Overnight information has no predictive abillity in returns and volatility:

HA
0 : �Nr

N
t�1=2 = 
Nr

N
t�1=2 = 0 (3.1)

or �WN = �WE = �H = �LW = 0 (3.2)

and 
WN = 
WE = 
H = 
LW = 0 (3.3)

H1 : otherwise

Hypothesis 2: There is no need to di¤erentiate between WN , WE, H, LW

HB
0 : �WN = �WE = �H = �LW = �N (3.4)

and 
WN = 
WE = 
H = 
LW = 
N (3.5)

H1 : otherwise

In addition to tests on the parameter estimates, we also assess the conditional dynamics of all SV
speci�cations by computing one-step ahead density forecasts. We evaluate the relative performance of
each speci�cation by ranking all SV models according to the likelihood-based Bayes factor criterion.
Note that all SV speci�cations are run on a set of adjusted samples, which have excluded the daily
returns data for the two full weeks encompassing the October 1987 Crash and the 9/11 attacks for
the reasons explained in the previous section. The next two sections discuss the set of tools we use
for estimation, assessing the SV conditional dynamics and model evaluation.

4 Bayesian MCMC Estimation

We perform Bayesian MCMC estimation by constructing a Markov chain whose limiting distribution
is the target posterior density of interest. This Markov chain is a Gibbs sampler in which all
parameters are drawn sequentially from their full conditional posterior distribution. The chain
is then iterated a large number of times and the sampled draws, beyond a burn-in period, are
treated as variates from the target distribution. For the iSV model, the Bayesian MCMC algorithm
produces estimates of the posterior means of (i) the set parameters of the return equation �1 =
f�; �D; �WN ; �W ; �H ; �LW g, (ii) the set of parameters of the plain vanilla Gaussian log-variance
process �2 =

�
�; �; �2

	
, and (iii) the set of volatility parameters which measure the relative e¤ect of

overnight information �3 = f
D; 
WN ; 
W ; 
H ; 
LW g .
The key to estimating the iSV models is the e¢ cient sampling of the overnight level e¤ects �3

in the conditional variance. The paper uses the simple Gibbs step addition of Tsiakas (2004) to
the Chib, Nardari and Shephard (2002) algorithm, in which the 
j vector is drawn conditional on
the log-volatilities fhtg using a precision-weighted average of prior information and the conditional
likelihood. The details on sampling 
j are summarized in Appendix B.
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4.1 MCMC Diagnostics

The mean of the MCMC draws is an asymptotically e¢ cient estimator of the posterior mean of �
(see Geweke (1989)). The Numerical Standard Error (NSE) is the square root of the asymptotic
variance of the estimator:

NSE =

s bS
M

(4.1)

bS = b
0 + 2 BMX
j=1

K (z)b�j (4.2)

Here, M = 5; 000 is the number of iterations (beyond the initial burn-in of 1,000 iterations), j =
1; :::; BM = 500 lags is the set bandwidth, z = j

BM
, and b�j is the sample autocovariance of the

MCMC draws of each estimated parameter cut according to the Parzen kernel K (z).
The NSE diagnostic is distinct from the MCMC standard deviation reported in the legend of

Tables 4 and 5. The latter is simply a measure of the variation in the MCMC parameter draws. In
contrast, NSE is a measure of variation of the posterior mean estimate across many MCMC chains
that can be potentially run. In other words, NSE measures how much di¤erence one should expect
in the estimate of the posterior mean if the experiment were to be repeated, and hence provides a
measure of convergence.

The Relative Numerical Ine¢ ciency (RNI) is given by

RNI = 1 + 2

BMX
j=1

K (z) � (j) (4.3)

where � (j) is the autocorrelation in the MCMC draws at lag j for the parameter of interest. RNI
accounts solely for the variance in�ation (ine¢ ciency) due to the serial correlation of the MCMC
parameter draws (see Geweke (1992) for the details). In general, the lower the serial correlation, the
lower the number of iterations needed to attain a given level of numerical accuracy. For example,
if RNI were to be halved, one would need half the number of iterations to attain the same level of
numerical accuracy. The relatively low RNI values reported in legend of Tables 4 and 5 re�ect the
e¢ ciency of the Metropolis-Hastings algorithm used to sample �2.

4.2 Volatility Estimates

The conditional dynamics of the SV model are essentially driven by the persistent, latent and
Gaussian log-volatility process fhtg. The tools of Chib, Nardari and Shephard (2002) allow the
simulation of three distinct estimates of the fhtg vector. First is the smoothed volatility. The

MCMC chain samples from the density h(i) j FT ; �(i). In words, it samples the
n
h
(i)
t

o
vector at a

given iteration i = 1; :::;M conditional on the information FT from the full dataset (hence smoothed)
and the parameter vector draw �(i).

Second is the �ltered volatility. The Auxiliary Particle Filter of Pitt and Shephard (1999) samples

from the density hjt j Ft; �. In words, it generates a j = 1; :::;M = 2; 000 vector of log-volatilities (the
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�particles�) at each t, given the information set Ft and the true values of � proxied by the MCMC
posterior mean estimates. This is a non-trivial task performed by an Auxiliary Sampling-Importance
Resampling algorithm. The SV application of the algorithm is also detailed in Chib, Nardari and
Shephard (2002).

Third is the one-step ahead predictive volatility. This samples from hjt+1 j Ft; �. Given a vector of
j = 1; :::;M = 2; 000 particles from the �ltered density hjt j Ft; � it is straightforward to compute the
one-step ahead vector of particles from the predictive density using the Gaussian evolution equation:

hjt+1 = �+ �
0rCOt�1=2 + �

�
hjt � �

�
+ ��jt+1; �jt+1 � NID (0; 1) (4.4)

4.3 Log-Likelihood

The likelihood function of SV models is not available analytically and hence must be simulated.

L (�; r) = f (r1;:::; rT j F0; �) =
TY
t=1

f (rt j Ft�1; �) (4.5)

Speci�cally, the log-likelihood function is evaluated under the predictive density as

log bL = TX
t=1

log bf (rt j Ft�1; �) = TX
t=1

log bft (rt j ht; �) (4.6)

where ht is the one-step ahead predictive volatility ht j Ft�1; �, and � is taken as the posterior mean
estimate from the MCMC simulations.

5 Performance Evaluation

A statistical model will not be empirically successful unless it is well speci�ed. For example, a risk
manager may be interested in the average probability with which an event arises. This is determined
by a well-speci�ed unconditional distribution. More importantly, however, managing day-to-day risk
involves making decisions conditional on all available information at time t. This requires a well-
speci�ed conditional distribution. This section formally tests whether the iSV model (i) performs
well in capturing the in-sample and out-of-sample conditional dynamics of the daily index returns
and volatility period-by-period, and (ii) is better speci�ed than the SV benchmark using Bayes
factors as the criterion for model selection.

5.1 Density Forecasts and Conditional SV Dynamics

Kim, Shephard and Chib (1998) form a set of diagnostic tests for assessing the adequacy of the
conditional distribution of SV models using the simple Rosenblatt (1952) transformation. This
de�nes SV residuals as

ut+1 = Pr (Rt+1 � rt+1 j ht+1; �) � UID [0; 1] (5.1)

where rt+1 is the ex-post realized return and � is the posterior mean estimate. The probability is
evaluated using the ex-ante forecasted cumulative distribution function, where fht+1g is the one-step
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ahead predictive log-volatility ht+1 j Ft; �. The uniform residuals are then mapped to a normal
distribution simply because there is a larger battery of speci�cation tests available for a normal
random variable. Then, under the null that the model is correctly speci�ed, nt+1 = f�1 (ut+1) should
be Gaussian white noise. Note that the normalized residuals fnt+1g contain the same information
as the uniform fut+1g.

Using these normalized residuals as a basis for diagnostic testing is not restricted to SV mod-
els. Berkowitz (2001) suggests the use of nt+1 (also known as density forecasts) for evaluating the
performance of generic risk models. An important advantage of density forecasts is that there are
as many of them as data observations. In contrast, for example, the popular value-at-risk (VaR)
calculation measures the frequency of tail events and hence produces too few tail observations for
reasonable sample sizes. Further, note that density forecasts also account for the size of observations,
not just their frequency. In short, therefore, density forecasts o¤er statistical power that is missing in
VaR calculations, while using information from the entire conditional distribution, not just a single
quantile.

Table 6 reports the speci�cation tests for the in-sample and out-of-sample fnt+1g diagnostics.
We follow the notation of Bowman and Shenton (1975) and de�ne

p
b1 = m3=m

3=2
2 and b2 = m4=m

2
2,

where mj is the jth centralized sample residual moment. Then, we de�ne SKEW and KURT to
be the asymptotic standard normal test statistics of

p
b1 and b2 respectively:

SKEW =

r
T

6

p
b1 � N (0; 1) (5.2)

KURT =

r
T

24
(b2 � 3) � N (0; 1) (5.3)

The identi�cation of skewness and excess kurtosis in the density forecasts is very important. As it
becomes increasingly di¢ cult to capture the properties of higher order moments, misspeci�cation
occurs more often at the tails of the predictive density. It is straightforward to prove that if the
observed data rt is fat-tailed relative to the SV model, then the density forecasts will be fat-tailed
relative to the standard normal.5

5.2 Model Risk and Bayes Factors

Model risk arises from the uncertainty over selecting a model speci�cation. Bayes factors can account
for model risk by providing a framework for speci�cation diagnostics over a set of given models.
Speci�cally, a Bayes factor o¤ers a summary of the evidence provided by the data in favour of
a scienti�c theory represented by a statistical model.6 Consider the two competing hypotheses
(models) M1 and M2. Using Bayes theorem, it is straightforward to show that the Bayes factor B21
(in favour of model M2) is the ratio of posterior to prior odds

B21 =
p (M2 j r)
p (M1 j r)

� (M1)

� (M2)
(5.4)

5For the proof see Berkowitz (2001).
6See Kass and Raftery (1995) for a review of Bayes factors.
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and is computed as the ratio of the marginal likelihoods

B21 =
p (r jM2)

p (r jM1)
(5.5)

The marginal likelihood of a model is de�ned as

p (r jMj) =

Z
�
p (r; � jMj) d� =

Z
�
p (r j �;Mj)� (� jMj) d� (5.6)

Note that the marginal likelihood is an averaged and not a maximized likelihood. This implies
that the Bayes factor is an automatic �Occam�s Razor� in that it integrates out parameter uncer-
tainty.7 Further, the marginal likelihood is simply the normalizing constant of the posterior density.
Suppressing the model index Mj for simplicity, the marginal likelihood can be written as

p (r) =
f (r j �)� (�)
� (� j r) (5.7)

where f (r j �) is the likelihood, � (�) the prior density, � (� j r) the posterior density, and � is
evaluated at the posterior mean estimate ��. Since � is drawn in the context of Gibbs MCMC
sampling, the posterior density � (� j r) is computed using the technique of reduced conditional
MCMC runs of Chib (1995). For the parameter blocks of � (the log-variance parameters and the
degrees of freedom) which are sampled in the MCMC chain by implementing a Metropolis-Hastings
algorithm, the posterior density is computed as in Chib and Jeliazkov (2001).

To assess the information provided by a Bayes factor, it is useful to consider twice its natural
logarithm so as to be on the same scale as the likelihood ratio statistics. To make the interpreta-
tion more familiar, Table 7a presents the range of the values of 2 ln (B21) that constitute evidence
against the null hypothesis M1. Finally, note that model comparisons based on Bayes factors are
asymptotically equivalent to evaluations based on the Schwartz (or equivalently the BIC) criterion.8

6 Results and Discussion

6.1 Parameter Estimates

See Tables 4-5.

6.2 Bayes Factor Diagnostics and Density Forecasts

See Tables 6-7.
7Occam�s razor is just the principle of parsimony. For an econometrician, the most useful statement of the principle

is �among two competing theories, which make exactly the same prediction, the simplest one is best�.
8The Schwartz criterion is de�ned as S = log p

�
r j b�2;M2

�
� log p

�
r j b�1;M1

�
� 1

2
(d2 � d1) log (T ), where dj is

the dimension of �j . As T ! 1 the Schwartz criterion satis�es S�logB21
logB21

! 0 and thus may be viewed as a rough
approximation to the log of the Bayes factor. Note that BIC = �2S. Again, see Kass and Raftery (1995) for the
details.
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7 Concluding Remarks

To be completed
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A APPENDIX A

A.1 One-Sided Hypothesis Testing using Bootstrapping9

Our methodology is based on bootstrapping and the tools described below can be applied to the
investigation of seasonality in both expected returns (by focusing on average daily returns) and
volatility (by analyzing average daily absolute returns). Our formal hypotheses are all one-sided.
Since we know whether each calendar e¤ect is higher or lower than its complement, we wish to test
the statistical signi�cance of that di¤erence only in the direction it is actually observed.

We test the one-sided hypothesis

H0 : �1 = �2 or �1 � �2 = 0 (A.1)

H1 : �1 < �2 or �1 � �2 < 0

at size �. We construct the test statistic

T =
b�1 � b�2

s
�b�1 � b�2� (A.2)

and reject in favour of H1 if T < c. The standard error in testing for the di¤erence between two
sample means for unequal sample sizes, di¤erent population variances, and independent groups is
computed as

s
�b�1 � b�2� =

s b�21
T1 � 1

+
b�22

T2 � 1
(A.3)

The critical value c is selected so that Pr (T < c) = a or c = q�, where q� is the quantile of the
empirical distribution of test statistic T at the signi�cance level �. Since q� is unknown, a bootstrap

9For the details on hypothesis testing using bootstrapping see Hansen (2003).
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test replaces it with the bootstrap estimate qB� and the test rejects if T < qB� . Similarly, if the
alternative is H1 : �1 > �2 or �1 � �2 > 0, the bootstrap test rejects if T > qB1��:

Computationally, the critical value can be estimated from a bootstrap simulation by sorting the
bootstrap t-statistics

T =

�b��1;b � b��2;b�� �b�1 � b�2�
s
�b��1 � b��2� (A.4)

where b��1;b is the sample mean of �1 in the b�th of a total of B bootstrap samples. It is important

to note that the bootstrap test statistic is centered at the estimate b�1 � b�2, and the standard error
s
�b��1 � b��2� is calculated on the bootstrap samples as
s
�b��1 � b��2� =rV ar �b��1 � b��2�; V ar

�b��1 � b��2� = 1

B

BX
b=1

n�b��1;b � b��2;b�� �b��1 � b��2�o2 (A.5)

where b��1 is the average of the bootstrap means across all the B bootstrap samples. Note that even
though we generate the same number of bootstrap samples B for both variables, b�1 and b�2 (and henceb��1;b � b��2;b) are constructed using di¤erent original sample sizes T . We set B = 10; 000 bootstrap
samples. These t-statistics are then sorted to �nd the estimated quantiles qB� or q

B
1��.

10

B APPENDIX B: Sampling the informational Level Volatility Ef-
fects

We perform Bayesian MCMC estimation by constructing a Markov chain whose limiting distribution
is the target posterior density of interest. This Markov chain is a Gibbs sampler in which all
parameters are drawn sequentially from their full conditional posterior distribution. The chain
is then iterated a large number of times and the sampled draws, beyond a burn-in period, are
treated as variates from the target distribution. For the iSV model, the Bayesian MCMC algorithm
produces estimates of the posterior means of (i) the set parameters of the return equation �1 =
f�; �D; �N ; �W ; �H ; �LW g, (ii) the set of parameters of the plain vanilla Gaussian log-variance process
�2 =

�
�; �; �2

	
, and (iii) the set of volatility parameters which measure the relative e¤ect of overnight

information �3 = f
D; 
N ; 
W ; 
H ; 
LW g .
The key to estimating the iSV models is the e¢ cient sampling of the overnight level e¤ects �3

in the conditional variance. The paper uses the simple Gibbs step addition of Tsiakas (2004) to
the Chib, Nardari and Shephard (2002) algorithm, in which the 
j vector is drawn conditional on
the log-volatilities fhtg using a precision-weighted average of prior information and the conditional
likelihood. The details on sampling 
j are summarized in Appendix B.

The parameters of all SV models examined in this paper are estimated using the Bayesian MCMC
tools of Chib, Nardari and Shephard (2002), which build on the procedures developed by Kim,
Shephard and Chib (1998). The algorithm constructs a Markov chain whose limiting distribution
is the target posterior density of interest. Here, the Markov chain is a Gibbs sampler where all

10For more details on hypothesis testing using bootstrapping see Hansen (2004).
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parameters are drawn sequentially from their full conditional posterior distribution. The Gibbs
sampler is iterated a large number of times and the sampled draws, beyond a burn-in period, are
treated as variates from the target distribution.

The information SV speci�cation require estimation of a relatively high-dimensional parameter
vector. In particular, for the iSV model, the Bayesian MCMC algorithm produces estimates of the
posterior means of (i) the set parameters of the return equation �1 = f�; �D; �N ; �W ; �H ; �LW g,
(ii) the set of parameters of the plain vanilla Gaussian log-variance process �2 =

�
�; �; �2

	
, and

(iii) the set of volatility parameters which measure the relative e¤ect of overnight information �3 =
f
D; 
N ; 
W ; 
H ; 
LW g. The key to estimating the high-dimensional iSV model is the e¢ cient
sampling of the the overnight volatility e¤ects. This is done using a simple Gibbs step of Tsiakas
(2004) where the �3 vector is drawn conditional on the log-variance vector

�
hDt
	
using a precision-

weighted average of prior information and the conditional likelihood.

B.1 A brief sketch of the MCMC algorithm

1. Initialize �; s; �; � and transform the data into r�t = log
�
!t
��1t

+ c
�
, c = 0:001 to put the model

in state-space form. The �o¤set�constant c eliminates the inlier problem.

2. Sample all the log-volatility parameters from their full conditional posterior density: �2 j r�; s; 
.
This posterior is not available analytically. We use the Kalman �lter to compute the log-
likelihood of transformed data r�t as a function of � (conditional on st) and then optimize this
conditional log-posterior. We generate a proposal from a t-distribution t (m;V; �) wherem is the
mode, V is the inverse of the negative Hessian and � a tuning parameter. The proposal is then
accepted according to the Metropolis-Hastings algorithm. The optimization step makes this an
independence chain M�H algorithm and goes a long way in reducing the autocorrelation in the
draws of the MCMC chain. For more details on the M-H algorithm see Chib and Greenberg
(1995).

3. Sample the seasonal coe¢ cients in the log-variance equation from their full conditional posterior

 j r�; D; h; s using the Gibbs step detailed below separately.

4. Sample the log-volatility vector fhtg in one block from the full conditional posterior distribu-
tion: h j r�; s; �. This step uses the de Jong and Shephard (1995) simulation smoother which
is an algorithm designed for e¢ cient sampling of the state vector in a state-space model.

5. Sample the degrees of freedom parameter of the conditional distribution from the full condi-
tional density: � j r; h; �. Again, we optimize the conditional log-posterior with respect to �
and then use the mode and a scaled inverse of the negative Hessian to generate a proposal
that is accepted according to the Metropolis-Hastings algorithm. This independence chain
M-H algorithm is also crucial in contributing to low Relative Numerical Ine¢ ciencies for the
parameters of interest.

6. Sample � j r; h; � directly from its posterior:

�t j rt; ht; � � Gamma
�
� + 1

2
;

2

� + !2t =v
2
t

�
(B.6)
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7. Sample all the conditional mean coe¢ cients (including the seasonal coe¢ cients in the mean)
�1; � j r;D; h; � simply using a precision-weighted average of a set of normal priors and the
normal conditional likelihood. Then update the transformed data r�t = log

�
!2t
��1t

+ c
�
, c =

0:001.

8. Finally, sample the mixture indicator variable s j r�; h; � directly from its posterior:

Pr (st j r�t ; ht) _ Pr (st)�
�
r�t j ht + 
0Dt +mst; �

2
st

�
, t � T (B.7)

9. Go to step 2 and iterate.
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Table 1
Descriptive Statistics of Day and Night Returns and Volatility

Panel A: Daily Returns (%)

Canada
(TSX Comp)

Germany
(DAX 30)

HongKong
(Hang Seng)

Japan
(Nikkei 225)

UK
(FTSE 100)

USA
(DJIA)

Start 1/1/1986 1/1/1989 1/1/1991 1/1/1986 1/1/1984 1/1/1992

Obs
(T )

4528 3752 2658 4434 5039 3018

DAY NIGHT DAY NIGHT DAY NIGHT DAY NIGHT DAY NIGHT DAY NIGHT

Mean 0.014 0.009 −0.025 0.055 0.052 −0.007 −0.041 0.037 0.017 0.013 0.039 8e− 5
Std Dev 0.708 0.515 1.23 0.715 1.21 1.20 1.33 0.362 0.963 0.500 1.03 0.155

Min −9.94 −8.90 −9.10 −9.64 −8.57 −12.0 −16.1 −2.75 −5.89 −9.50 −7.44 −2.06
Max 5.82 5.42 7.40 4.94 7.00 12.8 12.4 2.42 5.90 6.09 6.21 4.37

Skewness −0.810 −2.15 −0.194 −0.965 −0.347 −0.150 −0.090 0.223 −0.196 −1.80 −0.275 7.14

Kurtosis 17.9 42.09 9.07 19.6 7.28 15.9 12.4 7.56 6.84 66.6 7.67 244.0

Corr (rt, rt−1) 0.072 −0.028 −0.029 −0.051 −0.056 −0.002 −0.026 0.041 −0.015 −0.062 −0.007 −0.030
Corr (rt, rt−2) −0.002 −0.048 −0.017 −0.027 −0.021 −0.061 −0.073 −0.039 −0.006 −0.039 −0.016 −0.027
Corr (rt, rt−3) 0.009 −0.003 0.002 −0.015 0.051 0.057 0.021 −0.021 −0.055 −0.001 −0.011 0.043

Corr (rt, rt−10) 0.015 0.019 −0.028 0.011 0.023 −0.003 0.023 0.019 −0.009 0.023 0.027 0.063

Corr (rt, rt−25) 0.010 0.029 0.001 −0.009 −0.003 0.004 0.026 0.018 0.002 0.014 −0.049 −0.043
Corr rDt , r

N
t−1/2 0.04 0.13 0.12 0.23 −0.03 0.05

Panel B: Daily Absolute Returns (%)

Mean 0.479 0.304 0.797 0.470 0.875 0.755 0.933 0.240 0.693 0.254 0.740 0.045

Std Dev 0.521 0.416 0.937 0.541 0.835 0.939 0.948 0.273 0.669 0.431 0.721 0.148

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.001 0.00 0.00 0.00 0.00 0.00

Max 9.94 8.90 9.10 9.64 9.22 12.8 16.1 2.75 5.90 9.50 7.44 4.37

Skewness 3.99 5.99 2.67 3.92 2.40 3.51 3.21 2.31 2.38 7.25 2.50 12.5

Kurtosis 40.2 77.7 13.1 40.3 13.9 27.6 28.51 10.4 11.9 101.0 14.4 276.0

Corr (rt, rt−1) 0.293 0.326 0.367 0.323 0.131 0.374 0.213 0.343 0.215 0.351 0.165 0.271

Corr (rt, rt−2) 0.249 0.310 0.418 0.305 0.171 0.321 0.211 0.337 0.266 0.259 0.197 0.321

Corr (rt, rt−3) 0.229 0.296 0.413 0.314 0.156 0.312 0.212 0.373 0.258 0.251 0.199 0.279

Corr (rt, rt−10) 0.224 0.221 0.380 0.257 0.098 0.211 0.146 0.343 0.217 0.232 0.189 0.313

Corr (rt, rt−25) 0.156 0.166 0.357 0.256 0.067 0.183 0.101 0.348 0.177 0.160 0.142 0.256

Corr rDt , r
N
t−1/2 0.33 −0.05 0.21 0.10 −0.008 0.06

The Day variable denotes all the open to close periods and the Night variable contains all the lagged close to open periods. In computing these descriptive
statistics, we use the entire sample of available data. We include all zero night returns for which the day return is non-zero and vice versa. The end date for all
indices is December 31, 2003, except in the case of Hong Kong for which the available opening price data ends at 28/9/2001.
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Table 2
Volatility Proportions

NIGHT -V P DAY -V P

Canada 40% 60%
Germany 43% 57%
Hong Kong 43% 57%
Japan 26% 74%
UK 29% 71%
USA 7% 93%

We de�ne DAY -V P as the average volatility proportion over days: vpD = 1
T

TP
t=1

jrDt j
jrDt j+jrNt�1=2j

.

Similarly the NIGHT -V P is de�ned as vpN = 1
T

TP
t=1

jrN
t�1=2j

jrDt j+jrNt�1=2j
.
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Table 3
Statistical Signi�cance of Days, Nights, Weekends, Holidays and Long Weekends

Panel A: Expected Returns

Canada Germany Hong Kong Japan UK USA

Day 0:017
(:008; :034)

�0:022���
(�:054; :010)

0:053��
(0:014; 0:091)

0:038���
(�:070; �:004)

0:021
(�:007; :043)

0:042��
(:011; :072)

Night 0:011
(�:002; :023)

0:055���
(:035; :073)

�0:005��
(�:044; :033)

0:037���
(:028; :046)

0:015
(:004; :026)

0:002��
(�:004; :005)

Weekend �0:016��
(�:044; :011)

0:027
(�:028; :080)

0:007
(�:096; :107)

0:046
(:020; :071)

�0:055���
(�:088; �:022)

0:011�
(�:001; :027)

Holiday 0:101
(�:035; :234)

0:153
(�:012; :321)

0:307�
(�:054; :694)

0:126���
(:069; :186)

0:032
(�:147; 0:205)

�0:004
(�:018; 0:008)

Long Weekend 0:029
(�:069; :132)

�0:032
(�:232; :165)

�0:094
(�:412; :228)

0:151���
(:074; :231)

�0:006
(�:124; :097)

0:003
(�:019; :027)

Panel B: Volatility

Day 0:475���
(:463; .487)

0:793���
(:769; :818)

0:875���
(:849; :902)

0:927���
(:902; :946)

0:688���
(:673; :703)

0:739���
(:717; :760)

Night 0:300���
(:290; :310)

0:470���
(:456; :485)

0:752���
(:723; :782)

0:240���
(:233; :247)

0:249���
(:241; :259)

0:045���
(:041; :050)

Weekend 0:299
(:277; :321)

0:544���
(:503; :588)

0:861���
(:785; :941)

0:283���
(:264; :303)

0:278��
(:250; :309)

0:044
(:032; :060)

Holiday 0:309
(:217; :412)

0:546
(:430; :671)

0:959
(:688; 1:26)

0:245
(:201; :294)

0:335
(:200; :492)

0:020���
(:011; :034)

Long Weekend 0:450���
(:379; :527)

0:583�
(:448; :730)

1:04��
(:815; 1:29)

0:350���
(:291; :411)

0:332�
(:244; 432)

0:053
(:033; :075)

The expected returns are proxied by the average daily returns and volatility is proxied by the average absolute

daily returns. The Day variable denotes all the open to close periods and the Night variable contains all the lagged close

to open periods. Weekend is the Friday close to a Monday open, Holiday is the pre-holiday close to the post-holiday

open, and Long Weekend is close to open period which contains both a weekend and a (Friday or Monday) holiday.

Statistical signi�cance is assessed by forming one-sided bootstrap-based hypothesis tests, which compare each variable

to its complement: day vs. night, weekend vs. non-weekend nights, holiday vs. non-holiday nights, and long weekend

vs. non-long weekend nights. The numbers in parenthesis are the 5% and 95% quantiles for the means generated

by 10,000 bootstrap samples. The superscripts *, **, and *** indicate that the relevant one-sided null hypothesis is

rejected at signi�cance level � = 10%, � = 5%, and � = 1%, respectively. In assessing statistical signi�cance, we

have excluded the returns data from the two weeks of October 19-23, 1987 and September 10-14, if applicable. For the

US DJIA data we have also excluded September 17, 2001, which was the �rst trading day in the US after 9/11.
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Table 4
Posterior Means of all iSV parameters

Panel A: Conditional Mean Parameters

Canada Germany Hong Kong Japan UK USA

� 0:025���
(:013; :037)

�0:007
(�:022; :009)

0:057���
(:025; :090)

�0:053���
(�:075; �:030)

0:032���
(:015; :051)

0:047���
(:024; :070)

�D 0:130���
(:104; :156)

�0:064���
(�:091; �:036)

�0:056���
(�:089; �:023)

�0:026��
(�:051; �:001)

�0:031��
(�:057; �:006)

0:007
(�:024; :039)

�WN 0:039�
(�:006; :084)

0:180���
(:150; :210)

0:045��
(:003; :086)

0:714���
(:615; :810)

�0:058��
(�:106; �:012)

0:251��
(:013; :493)

�WE 0:162���
(:068; :256)

0:262���
(:214; :312)

0:114���
(:047; :179)

0:395���
(:266; :527)

�0:142���
(�:227; �:059)

�0:003
(�:060; :063)

�H 0:361�
(�:078; :789)

0:142�
(�:028; :317)

0:018
(�:203; :235)

1:98���
(1:37; 2:61)

0:503��
(:064; :777)

0:479
(�1:08; 2:04)

�LW 0:151��
(:001; :304)

0:375���
(:221; :496)

0:043
(�:084; :181)

1:24���
(:926; 1:55)

�0:255��
(�:477; �:031)

0:998�
(�:102; 2:09)

Panel B: Log-Variance Parameters

� �1:18���:
(�1:37; �:990)

�0:907���
(�1:42; �:438)

0:100
(�:101; :313)

�0:094
(�:275; :084)

�0:399���
(�:562; �:239)

�0:173�
(�:381; :042)

� 0:972���
(:963; :980)

0:992���
(:988; :996)

0:968���
(:954; :980)

0:968���
(:960; :976)

0:981���
(:976; :986)

0:978���
(:970; :985)

�2 0:041���
(:031; :052)

0:025���
(:019; :031)

0:036���
(:025; :050)

0:042���
(:033; :053)

0:019���
(:015; :023)

0:023���
(:017; :030)


D �0:076���
(�:100; �:051)

�0:043���
(�:058; �:027)

�0:017�
(�:038; :003)

�0:087���
(�:103; �:072)

�0:057���
(�:073; �:041)

�0:098���
(�:119; �:078)


WN �0:164���
(�:243; �:085)

�0:096��
(�:166; �:024)

0:006
(�:040; :050)

�0:068
(�:198; :057)

�0:141��
(�:240; �:042)

0:123
(�:192; :430)


WE �0:491���
(�:643; -:342)

�0:303���
(�:385; �:222)

�0:059
(�:149; :031)

�0:208��
(�:381; �:030)

�0:122��
(�:216; �:030)

�1:46���
(�2:08; �:683)


H 0:132
(�:708; :988)

0:221
(�:199; :656)

0:096
(�:141; :341)

0:762��
(:108; 1:43)

0:858�
(�:017; 1:77)

0:046
(�1:57; 1:69)


LW �0:412��
(�:710; �:104)

�0:637��
(�1:19; �:059)

0:195��
(:036; :367)

�0:202
(�:669; :266)

�0:229
(�:745; :265)

0:250
(�:908; 1:43)

The posterior means are the Bayesian MCMC estimates. The MCMC chain run for 5,000 iterations after an initial

burn-in of 1,000 iterations. The numbers in parenthesis indicate the 5% and 95% percentiles of the MCMC draws. The

MCMC results are based on a set of adjusted samples, which have excluded the returns data from the two weeks of

October 19-23, 1987 and September 10-14, if applicable. For the US DJIA data we have also excluded September 17,

2001, which was the �rst trading day in the US after 9/11.
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Table 5
Night vs. Weeknight E¤ects

Conditional Mean Log-Variance

iSVn iSV iSVn iSV

�N �WN 
N 
WN

Canada 0:073���
(:033; :112)

0:039�
(�:006 :084)

�0:249���
(�:319; �:179)

�0:164���
(�:243; �:085)

Germany 0:201���
(:174; :226)

0:180���
(:150; :210)

�0:177��
(�:227; �:126)

�0:096��
(�:166; �:024)

Hong Kong 0:065���
(:031; :098)

0:045��
(:003; :086)

0:006
(�:032; :043)

0:006
(�:040; :050)

Japan 0:676���
(:601; :753)

0:714���
(:615; :810)

�0:057
(�:157; :046)

�0:068
(�:198; :057)

UK �0:084���
(�:125; �:043)

�0:058��
(�:106; �:012)

�0:128���
(�:192; �:065)

�0:141��
(�:240; �:042)

USA 0:232��
(:018; :449)

0:251��
(:013; :493)

�0:089
(�:374; :200)

0:123
(�:192; :430)
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Table 6
Conditional SV Dynamics

Log-Likelihood Density Forecasts fnt+1g
log�L V AR SKEW KURT BL(30)

Canada SV �5704:2 1:52 5:86 82:9 79:9

iSVn �5670:2 1:53 2:54 83:4 80:9

iSV �5663:8 1:49 �1:44 73:4 81:3

Germany SV �9538:5 2:93 13:9 92:0 210:6

iSVn �10030:3 3:00 13:1 89:1 201:1

iSV �10358:4 3:15 14:2 87:7 212:7

Hong Kong SV �4686:3 1:27 �2:72 44:8 53:7

iSVn �4681:3 1:25 �5:29 36:7 48:7

iSV �4648:4 1:24 �5:46 36:1 50:1

Japan SV �8774:4 1:50 6:99 87:8 65:4

iSVn �8520:8 1:49 7:41 89:2 52:4

iSV �8508:1 1:47 7:70 90:3 50:1

UK SV �7506:0 1:40 �0:03 66:0 114:9

iSVn �7474:5 1:38 �2:32 62:0 113:7

iSV �7470:8 1:38 �2:39 62:0 114:6

USA SV �4451:1 1:21 �3:03 29:2 62:7

iSVn �4467:1 1:22 �3:39 30:9 62:9

iSV �4441:0 1:20 �2:98 30:6 63:7

BL(30) is the Box-Ljung statistic at 30 lags. Note that �2 (30; :90) = 40:3 and �2 (30; :95) = 43:8.
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Table 7a
Interpreting Bayes Factors

2 ln (B21) B21 Evidence against Model M1

0 to 2 1 to 3 Not worth more than a bare mention
2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
> 10 > 150 Very strong

Table 7b
Bayes Factors (2 lnBij)

iSVn vs. SV iSV vs. SV iSV vs. iSVn

Canada 52:9 41:9 �11:0
Germany �1000 �1683 �683
Hong Kong �5:19 31:1 36:3

Japan 496 496 �0:60
UK 47:1 30:3 �16:7
USA �39:3 �0:20 �39:1
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