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Abstract

It is well known that in a two stage duopoly model of product choice with quadratic
transportation cost, the firms locate at the extreme endpoints of the market. This paper
examines this model in an infinite horizon setting where in the initial period the firms choose
locations and in subsequent periods choose prices. The firms collude in prices and share
the profits on the profit possibility frontier. It is shown that under very general conditions,
both the firms locating at the center is an equilibrium. It is not necessarily unique and
multiple symmetric equilibria can exist. So, the products are not minimally differentiated
and the degree of differentiation can vary. Sufficient conditions for three types of equilibria
are given: a unique equilibrium at the center of the market, multiple symmetric equilibria
and multiple asymmetric agglomerated equilibria. The first two cases obtain if the firms
share profits equally when they are located at the same point and the last case otherwise.



1 Introduction

The literature on product differentiation originating from Hotelling (1929) is by now vast.

d’Aspremont et al. (1979) and Neven (1985) have shown that, in a two stage model with

quadratic transportation cost, where duopolists first choose locations and then compete in

prices, the equilibrium locations are at the extreme endpoints of the market segment. In recent

years, this model has been examined in a supergame setting. The firms choose locations in

the initial period and prices in subsequent infinite periods. A justification for this is that

redesigning the product is often more difficult than a change of price.

Even though locations are chosen independently, the firms can tacitly collude in the

price setting stage. Friedman and Thisse (1993) (FT, henceforth) has termed this “partial

collusion.” In general, the optimal locations chosen in the beginning by the firms will depend

on the collusive prices charged subsequently.

In Jehiel (1992) the prices are determined by the Nash (1950) bargaining solution at

each pair of locations. In FT, the firms share profits on the profit possibility frontier (PPF)

in proportion to the Nash equilibrium profits of the one–shot game. In both the cases, central

agglomeration is the unique subgame perfect equilibrium (SPE) outcome.

The reason for this minimum differentiation is well known. In the one–shot game the

firms locate at the market extremes to minimize competition and earn higher profits through

higher prices. In a repeated setting with price collusion, competition is softened and each firm

finds it advantageous to move towards the other. So, both firms locate at the market center.

Rath and Zhao (2003) (RZ, henceforth) shows that if the prices are determined either by

the egalitarian [Kalai (1977)] or the Kalai–Smorodinski (1975) bargaining solutions then there

are multiple symmetric equilibria. An inward move by a firm results in a lower price that does

not compensate for the increase in market share. Profit goes down and the firms locate off the

center. So, in equilibrium, the products are not necessarily minimally differentiated.

This paper focuses on these minimal and nonminimal product differentiation results.

FT provides a set of sufficient conditions on profit sharing which ensure central agglomeration

as the unique equilibrium outcome. Unfortunately, the conditions in FT are too strong, in

the presence of some mild continuity requirements, there is exactly one profit sharing rule

that satisfies those conditions. Under this, the firms charge identical prices at each pair of

locations. Furthermore, this sharing rule cannot be supported as a SPE outcome at every pair
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of locations. This motivates a weakening of the conditions to capture a wider class of profit

sharing rules. However, slightly weakened conditions may be insufficient for uniqueness. An

example in section 5 demonstrates this. The conditions in FT are ordinal. A condition of a

cardinal nature is given in section 6 for a unique equilibrium at the market center.

If the firms are colluding on the PPF then under very general conditions both the firms

locating at the center is an equilibrium. The required conditions are: (a) the profits of the two

firms be identical if they are symmetrically located and (b) the profit ratio be bounded above

or below 1 at distinct asymmetric locations, depending on how asymmetrically the firms are

located. In some cases, this equilibrium at the center of the market is the unique one as well.

However, in some other cases, in addition, there may be multiple symmetric equilibria or, the

firms can agglomerate at the same point off the center.

As is well known, if the firms locate together then the profit of each firm is indeterminate.

This is a primary motivation behind Simon and Zame (1990) and it shows that alternative

criteria for breaking ties have a critical bearing on the existence and nature of equilibria.

Profit sharing rules if the firms are at the same location have an important influence on

the nature of equilibrium locations. Two such conditions which arise naturally are explored

below. In one, the firms share the profits equally if they are identically located. Typically, this

introduces a discontinuity in the profit functions at locations off the the center. As a result, in

the presence of symmetry, any such location does not survive as an equilibrium. Therefore, all

equilibria are symmetric. In some cases, the equilibrium at the center emerges as the unique

one and in others there are multiple symmetric equilibria. In the other variant, the profit of

each firm is determined by the limit of the profit as one firm approaches the other. Continuity

of profits is retained in this case. If one of the profits is decreasing, then the firms will not

agglomerate off the center. However, if the profits are increasing as the firms approach each

other, the firms can agglomerate off the center and asymmetric equilibria can exist.

The paper is organized as follows. The one–shot model is given in the next section.

Conditions on profit sharing are given in section 3 and possible equilibria are derived. Section 4

is devoted to characterization of prices, i.e., which consumer pays the reservation price when.

In section 5, the conditions provided by FT for a unique equilibrium at the center of the market

are discussed and an example is given to show that the conditions are not sufficient. Section 6

gives a sufficient condition for a unique equilibrium at the center of the market. This is in
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the form of a lower bound on the derivative of the profit ratio. Section 7 gives conditions for

existence of multiple symmetric equilibria. Section 8 deals with agglomerated equilibria off the

center. Some aspects of sustaining collusion are discussed in section 9. Section 10 concludes.

2 The Model

The consumers are uniformly distributed over the unit interval [0, 1]. The reservation price of

the consumers is A. The quadratic transportation cost parameter is t. Each consumer buys a

unit of the product per unit time (subject to the reservation price) from the producer with the

lowest delivered price (price plus the transportation cost).

The producers are located at x1 and x2, x1 ≤ x2. The production costs are zero. When

x1 < x2, if the prices are p1 and p2, the consumer z who faces the same price from the two

firms is

characterized by p1 + t(z − x1)
2 = p2 + t(z − x2)

2. The solution gives

z =
p2 − p1

2t(x2 − x1)
+

x1 + x2

2

Each consumer in the market segment [0, z] buys a unit from Firm 1 and each consumer in [z,

1] buys a unit from Firm 2. The profits of the two firms are Γ1 = p1z and Γ2 = p2(1 − z).

For each pair of locations a Nash equilibrium in prices exists. When x1 < x2 the Nash

equilibrium profits are Γ1N = t(x2−x1)(2+x1 +x2)
2/18 and Γ2N = t(x2−x1)(4−x1−x2)

2/18.

Let α denote the profit ratio Γ1/Γ2. The following preliminary claim will be useful later.

Claim 1 Suppose that min{p1, p2} ≥ 2t(x2 − x1), the entire market is served at these prices

and the profit of each firm is positive. Then each profit function is decreasing in own price and

increasing in the other price. Consequently, α is decreasing in p1 and increasing in p2.

This can be proved by noting that the derivatives of z with respect to the two prices are

−1/[2t(x2 − x1)] and 1/[2t(x2 − x1)] respectively.

3 Some Conditions on Profit Sharing

Let the time periods be given by {0, 1, 2, . . .}. Suppose that the firms choose locations in

period 0 and in subsequent infinite periods compete in prices. Some general conditions on

profit sharing by the two firms and possible equilibrium outcomes are examined below.
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(C1) For any x1 ≤ x2, (Γ1, Γ2) is on the PPF.

(C2) For any x1 ≤ x2, Γ1 = Γ2 if x1 + x2 = 1.

(C3) For any x1 < x2, Γ1/Γ2 < 1 if x1 + x2 < 1 and Γ1/Γ2 > 1 if x1 + x2 > 1.

At any pair of locations the profit allocation is Pareto optimal by (C1). Lemma 3 in FT

shows that if A ≥ 3t then at any PPF prices the entire market is served. This assumption A

≥ 3t will be maintained throughout. If A ≥ 3t, then (C1) is equivalent to the conditions that

at a pair of prices the entire market is served and some consumer pays the reservation price.

(C2) is the symmetry condition. This requires that the profits be identical if the firms are

symmetrically located. In both (C1) and (C2) the firms can agglomerate at the same point. In

case of the latter it can only be at the center. The firms are located at distinct points in (C3).

It provides an upper or lower bound on the profit ratio depending on the type of asymmetry,

i.e., the sign of 1 − x1 − x2.

The profits need to be specified if the firms are located at the same point x1 = x2 6= 1/2.

Two possible alternative conditions are examined. Let x∗

1
= x∗

2
.

(C4) Γ1(x
∗

1
, x∗

2
) = Γ2(x

∗

1
, x∗

2
).

(C5) α(x∗

1
, x∗

2
) = limx1→x∗

2
α(x1, x

∗

2
) = limx2→x∗

1
α(x∗

1
, x2).

(C4) stipulates that whenever the firms are located at the same point their profits are

identical. (C5), on the other hand, requires that if the firms are located at the same point the

profit ratio is determined by the limit of the profit ratios as one firm gradually moves towards

the other. It is presupposed that these limits exist and are identical.

(C4) can always be exogenously imposed by the modeler. (C5), on the other hand,

determines profit endogenously by the structure of the model. If limx1→x2
α 6= 1 then (C4)

introduces a discontinuity in the profit functions if the firms are located at the same point

and if limx1→x2
α = 1 then the choice between (C4) and (C5) is inconsequential. This is true

for some specific solutions such as the Nash, Kalai–Smorodinski and egalitarian bragaining

solutions. The implications of both these conditions are worth examining.

Lemmas 1 and 2 characterize possible equilibrium outcomes. These show that under

(C1)–(C4), the equilibrium outcomes are the symmetric ones inside the market quartiles. A

similar result is presented in Proposition 1 in RZ. These Lemmas can be proved along similar

lines and the proofs are omitted. (C3) above is weaker than (P4) in RZ. So these results are

more general than Proposition 1 in RZ.
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If a particular pair of locations is claimed to be an equilibrium below, it is made under

the caveat that it can be sustained in a repeated setting. This aspect is examined in section 9.

Lemma 1 Suppose that (C1)–(C3) hold.

(i) x1 = x2 = 1/2 is an equilibrium. Furthermore, any x1 < x2 = 1/2 or 1/2 = x1 < x2

is not an equilibrium.

(ii) Let x1 ≤ 1/2 ≤ x2. If x1 + x2 < 1 then Γ1(x1, x2) < Γ1(1 − x2, x2). If x1 + x2 > 1

then Γ2(x1, x2) < Γ2(x1, 1 − x1). So, 1 − x1 − x2 6= 0, x1 ≤ 1/2 ≤ x2 is not an equilibrium.

(iii) Any symmetric pair of locations (x1, 1 − x1) with x1 < 1/4 is not an equilibrium.

If (C1)–(C3) hold then (1/2, 1/2) is an equilibrium. Part (ii) rules out asymmetric

equilibria on opposite sides of the center of the market. The other candidates for equilibrium

are the symmetric locations (x1, 1 − x1) with 1/4 ≤ x1 < 1/2 and locations on the same side

of the center of the market, x1 < x2 < 1/2 or, 1/2 < x1 < x2 or, x1 = x2 6= 1/2. These

asymmetric equilibria can be ruled out if (C4) holds.

Lemma 2 Let (C1) and (C4) hold. (a) If (C2) holds then x1 = x2 6= 1/2 is not an equilibrium.

(b) If (C3) holds then neither x1 < x2 < 1/2 nor 1/2 < x1 < x2 can occur in equilibrium.

Thus, if (C1)–(C4) hold then (1/2, 1/2) is an equilibrium and the other candidates for

equilibrium are the symmetric locations (x1, 1 − x1) with 1/4 ≤ x1 < 1/2.

In some cases, asymmetric equilibria can be ruled out without the aid of (C4). Suppose

that (C1)–(C3) and (C5) hold. If Γ′

1
is negative for all 1/2 < x1 < x2 then Firm 1 will not

locate at x1 ∈ (1/2, x2].

If a similar condition also holds for the profit function of Firm 2 then under (C1)–(C3)

and (C5), (1/2, 1/2) is an equilibrium and the other candidates for equilibria are the symmetric

ones (x1, 1 − x1) with 1/4 ≤ x1 < 1/2.

A geometric intuition for multiple symmetric equilibria is given in RZ, section 5. As a firm

moves inwards from symmetric locations (x1, x2), the symmetric profit pair ([A − tx2
1
]/2, [A −

tx2
1
]/2) no longer belongs to the PPF, i.e., an inward move may result in a lower profit. So,

firms may stay put at locations off the center and multiple equilibria can appear.
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4 Characterization of Prices

If the firms collude in prices on the PPF then the prices fall into three possible cases, depending

upon the consumer paying the reservation price. It is useful to know which of these cases obtains

under which circumstances. (C3) above provides a bound on the profit ratio in one direction.

A bound in the other direction helps in characterizing the collusive prices.

Claim 2 Let locations x1 < x2 be fixed and suppose that the hypothesis of Claim 1 holds.

Then p1 ≤ p2 iff (x1 + x2)/(2 − x1 − x2) ≤ Γ1/Γ2.

From Claim 1, Γ1/Γ2 = p1z/[p2(1 − z)] is decreasing in p1 and increasing in p2. When

p1 = p2, z = (x1 + x2)/2. So, Γ1/Γ2 = z/(1 − z) = (x1 + x2)/(2 − x1 − x2).

(C6) Let x1 < x2. Then (x1+x2)/(2−x1−x2) ≤ Γ1/Γ2 if x1+x2 < 1 and (x1+x2)/(2−x1−x2)

≥ Γ1/Γ2 if x1 + x2 > 1.

Lemma 3 Let x1 < x2 and suppose that (C1), (C3) and (C6) hold. (a) If x1 + x2 < 1 then

p1 ≤ p2. In this case, p1 = A− tx2
1

cannot hold. So, p2 = A− t(1−x2)
2 or p2 = A− t(z −x2)

2

for some z ∈ (0, 1). (b) If x1 + x2 > 1 then p2 ≤ p1. In this case, p2 = A − t(1 − x2)
2 cannot

hold. So, p1 = A − tx2
1

or p1 = A − t(z − x1)
2 for some z ∈ (0, 1).

(C1), (C3) and (C6) ensure that the hypothesis of Claim 1 is fulfilled. If x1 +x2 < 1 then

(x1 + x2)/(2 − x1 − x2) ≤ Γ1/Γ2 by (C6). From Claim 2, p1 ≤ p2. Since p2 ≤ A − t(1 − x2)
2,

if p1 = A − tx2
1

then p1 − p2 ≥ t(1 − x2)
2 − tx2

1
> 0, a contradiction.

All the solutions discussed below satisfy (C6). If the firms charge the prices determined

by the Kalai–Smorodinski or the egalitarian bargaining solutions then (C6) is satisfied. It

can be shown that if the profits are determined by the Nash bargaining solution then (C6) is

violated. However, it is true that under the Nash bargaining solution some customer of Firm

1 (Firm 2) pays the reservation price if x1 + x2 > 1 (x1 + x2 < 1). Therefore, (C6) is sufficient

for the conclusions of Lemma 3, it is not necessary.

Some effects of an increase in market share as a firm changes its location on the profit

ratio are captured in the following claim.

Claim 3 Suppose that (C1), (C3) and (C6) hold and z is an increasing function of x1 and x2.

Let x1 < x2, x1 + x2 − 1 6= 0.
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If any of the following conditions holds then for small increases in the location of a firm

Γ1 increases and Γ2 decreases, consequently Γ1/Γ2 increases.

(i) p1 + t(z − x1)
2 = p2 + t(z − x2)

2 = A and either x1 or x2 increases.

(ii) p2 = A − t(1 − x2)
2 and x1 increases.

(iii) p1 = A − tx2

1
and x2 increases.

Consider two pairs of locations (x1, x2) and (x̄1, x2), x1 < x̄1 < x2. Denote the market

share of Firm 1 at these locations by z and z̄ respectively. Then z < z̄.

Suppose that p2 = A− t(z−x2)
2. Then Γ2(x1, x2) = [A− t(z−x2)

2](1− z) > [A− t(z̄−

x2)
2](1− z̄) = Γ2(x̄1, x2). Γ1(x1, x2) = [A− t(z −x1)

2]z < [A− t(z̄ −x1)
2]z̄ < [A− t(z̄ − x̄1)

2]z̄

= Γ1(x̄1, x2). This proves (i).

Suppose that p2 = A−t(1−x2)
2. By (C6), x1+x2−1 < 0 and p1 ≤ p2. So, 2z−x1−x2 ≥

0. Γ2(x1, x2) = [A−t(1−x2)
2](1−z) > [A−t(1−x2)

2](1−z̄) = Γ2(x̄1, x2). Since 2z̄−x1−x2 > 0,

2z̄−x1−x2 > 2z̄−x̄1−x2 and x2−x1 > x2−x̄1 > 0. Γ1(x1, x2) = [p2−t(x2−x1)(2z−x1−x2)]z

< [p2 − t(x2 − x1)(2z̄ − x1 − x2)]z̄ < [p2 − t(x2 − x̄1)(2z̄ − x̄1 − x2)]z̄ = Γ1(x̄1, x2). This proves

(ii). (iii) can be shown in analogous fashion.

5 Discussion on Some Conditions for a Unique Equilibrium

A combination of (a subset of) conditions (C1)–(C6) presented above guarantee the existence of

an equilibrium at the center. To ensure the uniqueness of equilibrium some further conditions

are needed. A set of such conditions are postulated in FT (p. 641–642). The implications of

those conditions are examined in this section.

(C7) For any x1 ≤ x2, Γ1 > Γ1N and Γ2 > Γ2N .

(C8) Γ1/Γ2 is increasing in Γ1N/Γ2N .

(C9) z/(1 − z) is increasing in Γ1N/Γ2N .

(C7) is a very intuitive condition. It requires that at any location pair the profit of each

firm be higher than the corresponding Nash equilibrium profit. Its primary role is to ensure the

existence of discount factors less than one to sustain collusion by reversion to Nash equilibrium

profits. This is discussed in section 9, it is basically implied by (C1)–(C3) and (C6).

It is claimed in FT that if (C1), (C7) and (C8) hold then locations with x1 +x2 = 1 and

x2 − x1 ≤ 1/2 are the candidates for equilibrium. However, one of (C4) or (C5) is also needed.
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FT mentions on p. 634 that if the firms are located at the same point then the profits are

determined by their limits, i.e., by (C5). But in the proof of Lemma 6, (C4), equal division, is

actually used when the firms are located at the same point.

Two further claims are made in FT. (i) (C9) implies (C8) [possibly in the presence of

(C1), (C2) and (C7)]. (ii) If (C1), (C2), (C4), (C7), (C8) and (C9) hold then (1/2, 1/2) is the

only equilibrium.

The first claim is false. The example given later shows that (C9) does not imply (C8).

Under some mild continuity requirements, which are invariably met, the second claim is false

as well. There is exactly one profit sharing rule that satisfies (C1), (C8), (C9) and continuity.

Under this sharing rule the prices are identical at each pair of locations and this sharing rule

cannot be supported in a repeated setting as a SPE outcome at every pair of locations.

Continuity: If x1 < x2 then (a) Γ1/Γ2 is continuous in x1 for fixed x2 and continuous in

x2 for fixed x1; (b) z/1 − z is continuous in x1 for fixed x2 and continuous in x2 for fixed x1.

These continuity requirements are extremely mild and plausible. If the location of one firm is

held fixed then the ratio of profits and market shares are continuous functions in the location

of the other firm as long as the firms are not agglomerated together. Essentially, continuity

and (C8) and (C9) imply that the firms charge identical prices at each pair of locations.

Γ1N/Γ2N = (2 + x1 + x2)
2/(4 − x1 − x2)

2. Therefore, Γ1N/Γ2N increases iff x1 + x2

increases.

Suppose that (C1), (C8), (C9) and continuity (a) and (b) hold. Let x1 < x̄1 < x̄2 < x2

and x1 + x2 = x̄1 + x̄2. If the ratio of collusive profits Γ1/Γ2 at (x1, x2) is less than that at

(x̄1, x̄2) then by continuity, for some ε > 0, the collusive profit ratio at (x1 + ε, x2) is still less

than that at (x̄1, x̄2). This contradicts (C8) since x1 + ε+x2 > x̄1 + x̄2. Similarly, by (C9) and

continuity, the ratio of market shares are also the same at (x1, x2) and (x̄1, x̄2). The ratio of

collusive profits is the ratio of collusive prices times the ratio of market shares, so, the ratio of

collusive prices p1/p2 and p̄1/p̄2 at the two pairs of locations (x1, x2) and (x̄1, x̄2) are the same.

Since p2 = p1 + t(x2 − x1)(2z − x1 − x2) and p̄2 = p̄1 + t(x̄2 − x̄1)(2z − x̄1 − x̄2) = p̄1 +

t(x̄2 − x̄1)(2z − x1 − x2), p1/p2 = p̄1/p̄2 implies that [p̄1(x2 − x1) − p1(x̄2 − x̄1)](2z − x1 − x2)

= 0. In particular, let x̄1 = (2x1 + x2)/3 and x̄2 = (x1 + 2x2)/3. Then x̄1 < x̄2, x1 + x2 = x̄1

+ x̄2 and x2 − x1 = 3(x̄2 − x̄1). Since p̄1 ≥ A − t and p1 ≤ A, 3p̄1 > p1, 2z − x1 − x2 = 0, z

= (x1 + x2)/2 and p1 = p2. So, the firms charge identical prices at each pair of locations. The
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profit ratio α = (p1/p2)[z/(1 − z)] = z/(1 − z) = (x1 + x2)/(2 − x1 − x2) and it tends to zero

and infinity as x1 + x2 tends to zero and two respectively.

To show that this sharing rule cannot be obtained in a repeated setting as a SPE outcome

at every pair of locations, consider 0 < δ < 1 and let x2 = 1. Choose 1/2 < x1 < x2 such that

1

1 − δ
(A − tx2

1
)
2 − x1 − x2

2
< A − t

The inequality holds if x1 = x2 = 1 and hence for some x1 < x2. Since 1/2 < x1, p1 = A− tx2
1

= p2 and 1 − z = (2 − x1 − x2)/2. The LHS is the discounted profit of Firm 2 from the

collusive prices. The RHS is the one–shot defection profit (from capturing the entire market).

(One need not consider the profit from the continuation path following the defection.) This

shows that this profit sharing rule cannot be supported in the repeated setting. The reason

for this result is that under this sharing rule the market share of the firm at the edge of the

market becomes arbitrarily small (α → ∞) and hence it has a strong incentive to undercut. [A

similar situation also arises with linear cost, fixed locations and repeated pricing setting. All

SPE equilibrium paths for some location are nonstationary, Rath (1998, section 5).]

The important ramification of this is that these conditions cannot be used to charac-

terize equilibrium outcomes. Specifically, if the profits are shared in proportion to the Nash

equilibrium market shares, Γ1/Γ2 = (2 + x1 + x2)/(4 − x1 − x2), or, in proportion to the Nash

equilibrium profits, Γ1/Γ2 = (2+x1 +x2)
2/(4−x1 −x2)

2 [as in Schmalensee (1987), FT], then

(C8) is satisfied. In neither case Γ1/Γ2 = (x1 +x2)/(2−x1 −x2). Therefore, (C9) cannot hold.

There is a unique equilibrium at the market center under each of these sharing rules. But the

result obtains not because these sharing rules satisfy the conditions discussed above.

The difficulty with (C8) and (C9) is that only the sum x1 + x2 matters in determining

the ratio of profits and market shares. A natural question that emerges is: can one weaken

these conditions and still obtain the uniqueness result. The example given below shows that

this is not the case under a slight weakening of these conditions.

(C8∗) If x1 < x2 then Γ1/Γ2 is increasing in x1 for fixed x2 and in x2 for fixed x1.

(C9∗) If x1 < x2 then z/(1 − z) is increasing in x1 for fixed x2 and in x2 for fixed x1.

Consider the following example. Let 0 ≤ µ ≤ 1. Suppose that at any distinct pair of

locations the firms remain on the PPF and charge prices such that

z =
1

2
+

tµ

A
(x1 + x2 − 1)
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Clearly, the sharing rule satisfies symmetry. Let x1 + x2 − 1 > 0. Then z < (x1 + x2)/2

is equivalent to (tµ/A)(x1 + x2 − 1) < (x1 + x2 − 1)/2 which follows from tµ/A ≤ 1/3. This

implies that p1 > p2. Since z ≥ 1/2, Γ1/Γ2 > 1, i.e., (C3) holds. Since p1 > p2, (C6) holds.

Since tµ/A ≤ 1/3, z ≤ 5/6 and z/(1− z) ≤ 5. From p1 = p2 − t(x2 − x1)(2z − x1 − x2),

p1/p2 ≤ 2. One can show that 1/10 ≤ Γ1/Γ2 = p1z/[p2(1 − z)] ≤ 10. Arguments in section 9

can be used to show that (C7) holds.

As x1 → x2, p1 → p2 but z does not tend to 1/2 if x2 > 1/2 and µ > 0. So, limx1→x2

α(x1, x2) 6= 1. So, whether (C4) or (C5) is assumed can make a difference in equilibrium

outcomes. For the time being (C4) is assumed. The implications of (C5) are examined later.

By Lemmas 1 and 2, (1/2, 1/2) is an equilibrium and the other candidates for equilibria

are the symmetric ones in [1/4, 3/4]. If µ = 0, x1 + x2 − 1 ≥ 0 and 1/4 ≤ x1 < x2 ≤ 3/4 then

p1 = A − tx2

1
and z = 1/2. For an inward move, price decreases and market share does not

increase. So, all symmetric locations in [1/4, 3/4] are equilibria.

Assume that µ > 0. The equilibrium outcomes are characterized in Appendix 1. The

set of equilibria is the symmetric locations in an interval. If µ ≤ 4A/(16A− t) then any pair of

symmetric locations in [1/4, 3/4] is an equilibrium. If µ ≥ 2A/(4A − t) then (1/2, 1/2) is the

unique equilibrium. As µ increases, the set of equilibria becomes smaller. If 4A/(16A − t) < µ

< 2A/(4A − t) then the set of equilibria is a proper subset of [1/4, 3/4]. In particular, when µ

≤ 1/2 < 2A/(4A − t) there are multiple equilibria.

If µ > 0 then z is increasing in x1. If x1 + x2 − 1 > 0 then α = Γ1/Γ2 > 1. If µ = 0

then z = 1/2 and limx1→x2
α(x1, x2) = 1. So, for low µ, α is decreasing if x1 is close to x2.

Therefore, an increasing z does not imply an increasing α. A different argument (also based on

continuity with respect to µ) is given in Appendix 1. This means (C9∗) does not imply (C8∗).

Moreover, in this example (C9) is satisfied. So, (C9) does not imply (C8) either.

Because of Claim 3, to determine whether α is increasing or not, one needs to consider

x1 < x2, x1 + x2 − 1 > 0 and p1 = A − tx2
1
. Since z increases with µ, Γ1 is increasing and

Γ2 is decreasing in µ. So, for higher µ, α is increasing. It turns out that if µ ≥ 2/5 then α is

increasing in x1. However, if µ = 2/5 then there are multiple equilibria. So, both z and α are

increasing do not imply that there is a unique equilibrium, i.e., (C8∗) and (C9∗) together with

the other conditions are not sufficient for uniqueness. The details are given in Appendix 1.

The preceding discussion shows that conditions like (C8), (C9), (C8∗), (C9∗) etc. do not

10



help in characterizing equilibria (unique or not). In the subsequent sections conditions based

on the derivative of the profit ratio are developed to characterize different types of equilibria.

6 A Sufficient Condition for a Unique Equilibrium

A sufficient condition for a unique equilibrium involving the derivative of α is given in the

next theorem. It is worth noting that typically the profit functions are not differentiable at

symmetric locations. Nevertheless, α might be differentiable. Derivatives with respect to x1

are denoted by the prime symbol. Since only inward moves need to be examined because of

Lemma 1 (ii), the derivatives are usually the right hand side derivatives at symmetric locations.

Theorem 1 Suppose that (C1)–(C4) hold. Let x1 ∈ [1/4, 1/2) and α be differentiable in x1.

If α′ ≥ t(1+2x1)/(A− tx2
1
) at (x1, 1−x1) then the pair is not an equilibrium. So, (1/2, 1/2) is

the unique equilibrium if α′ ≥ t(1 + 2x1)/(A− tx2
1
) at all symmetric locations x1 ∈ [1/4, 1/2).

By Lemmas 1 and 2, the possible equilibria are the symmetric ones in [1/4, 3/4]. The

lower bound on α′ ensures that the profit of Firm 1 is increasing at symmetric locations off the

center. So, (1/2, 1/2) emerges as the unique equilibrium. The proof is given in Appendix 2.

t(1 + 2x1)/(A − tx2
1
) is an increasing function of x1 and equals 8t/(4A − t) when x1 =

1/2. Since A ≥ 3t, 8t/(4A − t) ≤ 8/11. Therefore, if α′ ≥ 8/11 for all x1 ∈ [1/4, 1/2) then

central agglomeration is the unique equilibrium.

If the firms share profits on the PPF in proportion to the one–shot Nash equilibrium

profits, the case examined in FT, then α = (2 + x1 + x2)
2/(4 − x1 − x2)

2. If x2 6= 1/2 then α

does not tend to 1 as x1 tends to x2. So, one needs to assume (C4). Clearly, (C2) and (C3)

are satisfied. α′ = 12(2 + x1 + x2)/(4 − x1 − x2)
3 and equals 4/3 at symmetric locations. So,

central agglomeration is the unique equilibrium. α = (2 + x1 + x2)/(4 − x1 − x2) if the profits

are shared in proportion to the Nash equilibrium market shares [Schmalensee (1987), FT]. If

(C4) is assumed then all the conditions are satisfied. At symmetric locations, α ′ = 2/3. If A

≥ 4t then central agglomeration is the only equilibrium.

From (5), p1α
′ = [4p1 − 2t(1 − 2x1)]z

′ + t(1 − 2x1) at symmetric locations. So, p1α
′ ≥

t(1+2x1) ⇔ [4p1 − 2t(1− 2x1)]z
′ ≥ 4tx1. In the example of the preceding section, this reduces

to µ ≥ 4Ax1/[4p1 − 2t(1 − 2x1)]. The RHS is increasing in x1. Letting x1 = 1/2 yields µ ≥

2A/(4A − t). This is exactly the bound obtained earlier for a unique equilibrium.

11



7 A Necessary and Sufficient Condition for Symmetric Equi-

libria Off the Center

Let σ = [A − t(1 − x2)
2]/[2(A − tx2

1
)] and

Q =
A − t(1 − x2)

2

2[A − tx2
1
+ t(x2 − x1)(2σ − x1 − x2)](1 − σ)

Theorem 2 Let (C1)–(C4) hold. Suppose that α(x1, x2) = 1/α(1 − x2, 1 − x1). A pair of

symmetric locations (1−x2, x2), 1/2 < x2 ≤ 3/4 is an equilibrium iff α(x1, x2) ≤ Q(x1, x2) for

all 1 − x2 < x1 < x2.

A pair of symmetric locations is an equilibrium if inward moves by neither firm is prof-

itable. α(x1, x2) = 1/α(1 − x2, 1 − x1) means that if the locations are flipped in a certain way

then the profit ratio reverses, i.e., it is enough to check for inward moves of only one firm.

The intuition behind Theorem 2 is as follows. If p1 = A−tx2

1
then p1σ = A−t(1−x2)

2/2.

So, if p1 = A − tx2

1
and the market share of Firm 1 is σ then Q is the ratio of the profits. If

x1 + x2 − 1 > 0 then σ < (x1 + x2)/2. Therefore, p1 > p2 and Q < (x1 + x2)/(2 − x1 − x2). If

p2 = A− t(1−x2)
2 for some x1 +x2 − 1 > 0 then p1 ≤ A− tx2

1
< A− t(1−x2)

2 and the profit

ratio is greater than (x1 + x2)/(2 − x1 − x2). Therefore, α ≤ Q implies that p1 = A − tx2

1
.

If (1−x2, x2) is an equilibrium then Γ1(1−x2, x2) ≥ Γ1(x1, x2) for all x1 ∈ (1−x2, x2).

If for some such x1, p2 = A − t(1 − x2

2
) then z > (x1 + x2)/2 and Γ1(x1, x2) = [p2 − t(x2 −

x1)(2z − x1 − x2)]z > p2/2 = Γ1(1 − x2, x2). Therefore, p1 = A − tx2

1
for all x1 ∈ (1 − x2, x2).

p1σ = (A − tx2

1
)σ = [A − t(1 − x2)

2]/2 is the profit of Firm 1 when the two firms are

located symmetrically at (1−x2, x2). Thus, if the prices and market share (p1, p2, z) at (x1, x2)

satisfies z ≤ σ, then Γ1(x1, x2) = p1z ≤ p1σ = [A − t(1 − x2)
2]/2 and vice versa.

Since p1 = A− tx2

1
and p2 = p1 + t(x2−x1)(2z−x1−x2), α = p1z/[p2(1−z)] is a strictly

increasing function of z. Hence, z ≤ σ iff α ≤ Q. This proves the Theorem.

If α = (2 + x1 + x2)
2/(4 − x1 − x2)

2 then Q < α iff 2(2 + x1 + x2)
2[A − tx2

1
+ t(x2 −

x1)(2σ − x1 − x2)](1 − σ) − (4 − x1 − x2)
2[(A − t(1 − x2)

2] > 0. At symmetric locations, the

LHS is zero and its derivative is positive, i.e., the LHS is positive at near symmetric locations.

So, Q < α for some 1 − x2 < x1 < x2 and there is a unique equilibrium at the center.

If z = (1/2) + (tµ/A)(x1+x2−1) then z ≤ σ leads to A(1+x1−x2)−2µ(A−tx2

1
) ≥ 0. The

LHS is increasing in x1. Solving as an equality at symmetric locations yields tµx2

1
+ Ax1 −Aµ

= 0 which determines the set of equlibria in (1).
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8 Existence of Asymmetric Equilibria

For some profit sharing rules, limx1→x2
α 6= 1 for some x2 6= 1/2. To preserve the continuity

of α, (C5) can be imposed instead of (C4). As Lemma 2 suggests, (C4) primarily rules out

asymmetric equilibria. Without (C4) it may not be possible to rule those out. So, asymmetric

equilibria can exist and the firms may agglomerate at a point off the center.

Theorem 3 Let (C1)–(C3) and (C5) hold. Suppose that α(x1, x2) = 1/α(1 − x2, 1 − x1). If

for some fixed x2, α′/α2 ≥ t(1 + 2x1)/(A − tx2
2
) at all x1 < x2 then (x2, x2) is an equilibrium.

This is proved in Appendix 2. The proof shows that Γ′

1
> 0, i.e., Γ1(x1, x2) < Γ1(x2, x2)

if x1 < x2. So, (x2, x2) is an equilibrium.

If α = (2 + x1 + x2)
2/(4 − x1 − x2)

2 then α′/α2 = 12(4 − x1 − x2)/(2 + x1 + x2)
3 and

(α′/α2) − [t(1 + 2x1)/(A − tx2
2
)] is decreasing in x1 and x2. To identify the equilibria one

needs to solve [3(2 − x2)/(1 + x2)
3] − [t(1 + 2x2)/(A − tx2

2
)] ≥ 0. If A ≥ 3t then any point

in the interval [0.4, 0.6] is an equilibrium. If A ≥ 9t then any point in the interval [0, 1] is an

equilibrium. This also underscores the role of (C4), that the profits are identical if the firms

are located together, to obtain central agglomeration as the unique equilibrium.

Let µ = 1 in the example of section 5. Then Γ′

1
= (A − tx2

1
)(t/A) − 2tx1z > 0 if 1/2 =

x1 < x2. So, there is an interval containing 1/2 such that any point in it is an equilibrium.

Therefore, if µ is large then the firms may locate together off the center.

9 Sustaining Collusion

Let the firms choose locations in the initial period and prices in subsequent infinite periods. To

obtain a specific pair of locations as a SPE outcome of the supergame, it needs to be shown that

the collusive prices yield a SPE outcome of the repeated game for any given pair of locations.

In this context, one can examine

optimal punishment paths as in Abreu (1988). However, for existence purposes reversion

to Nash equilibrium prices of the one–shot game is sufficient.

Concentrate on Firm 1 with discount factor δ. Let ΓD
1

denote the defection profit from

the collusive profits (Γ1,Γ2). The relevant inequality is [1/(1 − δ)]Γ1 ≥ ΓD
1

+ [δ/(1 − δ)]Γ1N ,

or equivalently, δ ≥ (ΓD
1
− Γ1)/(Γ

D
1
− Γ1N ). So (C7) is a necessary condition for 0 < δ < 1.

13



Let s = inf{Γ1 − Γ1N} and S = sup{ΓD
1
− Γ1N} for all x1 ≤ x2. If s > 0, then collusion

can be sustained by letting δ ≥ (S − s)/S.

To ensure this, let 1/r ≤ Γ1/Γ2 ≤ r for all x1 ≤ x2, 1 < r < ∞. Suppose that (C1)–(C3)

and (C6) hold. Suppose further that either (C4) or (C5) holds. Then s ≥ t/(1 + r) > 0.

If x1+x2−1 ≥ 0, then by (C1)–(C3) and (C4) or (C5), Γ1 ≥ (1/2)(Γ1+Γ2) ≥ (1/2)(A−t)

≥ t and Γ1N = t(x2−x1)(2+x1 +x2)
2/18 ≤ t/2. If x1 +x2−1 < 0 then Γ1 ≥ (Γ1 +Γ2)/(1+r)

≥ (A− t)/(1+ r) ≥ 2t/(1+ r). Γ1N ≤ t(x2 −x1)/2 ≤ tx2/2. If x2 ≤ 2/(1+ r) then Γ1 −Γ1N ≥

t/(1 + r). Therefore, suppose that x2 > 2/(1 + r). By (C6), Γ1/Γ2 ≥ (x1 + x2)/(2 − x1 − x2),

i.e., Γ1 ≥ (Γ1 + Γ2)(x1 + x2)/2 ≥ t(x1 + x2). So, Γ1 − Γ1N ≥ tx2/2 ≥ t/(1 + r).

Some type of bounds on the profit ratio are required to ensure that the collusive profits

exceed the one–shot Nash equilibrium profits. It is important to verify this, especially because

Theorems 1–3 do not require (C6) per se. All the examples considered above satisfy (C6).

10 Conclusion

This paper has explored the nature of equilibria when the firms noncollusively choose locations

and set prices so as to be on the PPF. Under fairly general conditions both the firms locating

at the center is an equilibrium. However, other symmetric locations or agglomeration off the

center can emerge as equilibria as well.

One critical condition is the sharing of profits when the firms are located at the same

point. If limx1→x2
α = 1, then the choice of (C4) or (C5) is immaterial. With (C4), all equilibria

are symmetric and Theorem 1 gives a sufficient condition for a unique equilibrium at the center.

Without (C4), asymmetric equilibria can exist and firms may agglomerate off the center.
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to James W. Friedman for helpful comments on an earlier draft.
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Appendix 1

Derivatives with respect to x1 are denoted by the prime symbol. Suppose that p1 =

A − tx2
1
. Then Γ1 = (A − tx2

1
)z, Γ′

1
= −2tx1z + (A − tx2

1
)z′ and Γ′′

1
= −2tz − 4tx1z

′ < 0.

p2 = p1 + t(x2 −x1)(2z −x1 −x2). So, p′
2

= −2tx1 + t(x1 +x2 − 2z)+ t(x2 −x1)(2z
′ − 1)

= −2tz + 2t(x2 − x1)z
′ and p′′

2
= −4tz′. Since Γ2 = p2(1 − z), Γ′

2
= p′

2
(1 − z) − p2z

′ =

−[p2 − 2t(x2 − x1)(1 − z)]z′ − 2tz(1 − z) and Γ′′

2
= p′′

2
(1 − z) − 2p′

2
z′ = −2z′[p′

2
+ 2t(1 − z)] =

−2z′[−2tz + 2t(x2 − x1)z
′ + 2t(1 − z)] = −4tz′[(x2 − x1)z

′ + 1 − 2z].

(1) To determine equilibria, one needs to examine inward moves, i.e., x1 + x2 − 1 > 0

and x2 ≤ 3/4. By (C6), p1 = A − tx2
1
.

Since Γ′′

1
< 0, to determine equilibria one needs to solve Γ′

1
≤ 0 at symmetric locations,

i.e., (A − tx2
1
)(tµ/A) − tx1 ≤ 0. The LHS is decreasing in x1. Therefore, it suffices to solve

tµx2
1
+ Ax1 − Aµ = 0. The quadratic formula gives

x1 =
−A +

√

A2 + 4Atµ2

2tµ
(1)

The set of equilibria is given by the symmetric locations in the interval [x1, 1− x1]. The

RHS of (1) is increasing in µ. So, as µ increases, the set of equilibria becomes smaller.

If x1 = 1/4 in (1) then µ = 4A/(16A − t) > 1/4 and if x1 = 1/2 in (1) then µ =

2A/(4A − t) > 1/2. This determines the set of equilibria.

(2) Let 1/2 < x1 < x2. Then p1 = A − tx2
1
. Γ1/Γ2 is increasing or decreasing depends

upon whether Γ2Γ
′

1
− Γ1Γ

′

2
is positive or negative.

Γ2Γ
′

1
− Γ1Γ

′

2
= Γ2(−2tx1z + p1z

′) − Γ1[p
′

2
(1 − z) − p2z

′]

= Γ2p1z
′ + Γ1p2z

′ − 2t(x2 − x1)(1 − z)Γ1z
′ + 2tz(1 − z)(p1z − p2x1)

When µ = 0, z = 1/2 and z′ = 0. In that case, Γ2Γ
′

1
− Γ1Γ

′

2
= (t/2)[(p1/2) − p2x1] =

(t/4)(p1 − 2p2x1) = (t/4)[p1(1 − 2x1) + 2t(x2 − x1)(x1 + x2 − 1)x1]

Let x1 = 3/4 and x2 = 1. Since p1 ≥ 2t, Γ2Γ
′

1
−Γ1Γ

′

2
= (t/4)[−(p1/2)+(2t/4)(3/4)(3/4)]

= (t/4)[−(p1/2) + (9t/32)] = (t/128)(−16p1 + 9t) ≤ −(23t2/128) ≤ −(t2/6).

So, Γ2Γ
′

1
− Γ1Γ

′

2
is bounded away from zero when µ = 0, x1 = 3/4 and x2 = 1. Since it

is continuous in µ, it is also negative at those locations when µ is positive but small.

If µ is positive then z is increasing, i.e., (C9∗) is satisfied. Since z is strictly increasing

if µ is positive and Γ1/Γ2 can be decreasing, (C9∗) need not imply (C8∗).
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(3) First it is shown that Γ2Γ
′

1
− Γ1Γ

′

2
is decreasing in x1, i.e., Γ2Γ

′′

1
− Γ1Γ

′′

2
< 0.

Γ2Γ
′′

1
− Γ1Γ

′′

2
= −2tΓ2(z + 2x1z

′) + 4tΓ1z
′[(x2 − x1)z

′ + 1 − 2z]. Since z′ = tµ/A ≤ 1/3,

(x2−x1)z
′−z < 0. So, it suffices to show that −Γ2z+2Γ1(1−z)z′ = −p2z(1−z)+2p1z(1−z)z′

< 0.

This holds if 3p2 − 2p1 > 0 and follows from p1 = p2 − t(x2 − x1)(2z − x1 − x2) < p2 +

t(x2

2
− x2

1
) ≤ p2 + t ≤ 3p2/2.

It is enough to show that Γ2Γ
′

1
−Γ1Γ

′

2
> 0 when x1 = x2. In that case, p1 = p2. Ignoring

p1, Γ2Γ
′

1
−Γ1Γ

′

2
= (1− z)(−2tx2z + p1z

′)+ z[2tz(1− z)+ p2z
′] = p1z

′ +2tz(1− z)(z −x2). p1z
′

= tµ(A− tx2

2
)/A > t/4 when µ ≥ 2/5. On the other hand, z(1 − z) ≤ 1/4 and |z − x2| ≤ 1/2.

So, if µ ≥ 2/5 then α is increasing. So, both z and α are increasing do not imply that

there is a unique equilibrium.
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Appendix 2

Before the proof of Theorem 1, the expressions for Γ′

1
for all possible prices are derived.

From the definition of α, p1z = p2(1 − z)α. Therefore,

p1z
′ + zp′

1
= p2(1 − z)α′ + α[p′

2
(1 − z) − p2z

′] (2)

If p2 = A − t(1−x2)
2 then p′

2
= 0. p1 = p2− t(x2−x1)(2z−x1−x2) and p′

1
= 2t(z−x1)

− 2t(x2 − x1)z
′. Since p2(1 − z) = p1z/α and Γ′

1
= p1z

′ + zp′
1
, (2) yields

z′ =
p1z(α′/α) − 2t(z − x1)z

p1 − 2t(x2 − x1)z + p2α

Γ′

1

αz
=

p1(α
′/α2)[p1 − 2t(x2 − x1)z] + 2t(z − x1)p2

p1 − 2t(x2 − x1)z + p2α
(3)

If p1 + t(z − x1)
2 = A = p2 + t(z −x2)

2 for some z ∈ (0, 1) then p′
1

+ 2t(z −x1)(z
′ − 1)

= 0 and p′
2

+ 2t(z − x2)z
′ = 0. From (2),

z′ =
p1z(α′/α) − 2t(z − x1)z

p1 − 2t(z − x1)z + α[p2 + 2t(z − x2)(1 − z)]

Γ′

1

αz
=

p1(α
′/α2)[p1 − 2t(z − x1)z] + 2t(z − x1)[p2 + 2t(z − x2)(1 − z)]

p1 − 2t(z − x1)z + α[p2 + 2t(z − x2)(1 − z)]
(4)

If p1 = A − tx2
1

then p′
1

= −2tx1. p2 = p1+t(x2−x1)(2z−x1−x2) and p′
2

= 2t(x2−x1)z
′

− 2tz. From (2),

z′ =
p1z(α′/α) − 2tz(1 − z)α + 2tzx1

p1 + [p2 − 2t(x2 − x1)(1 − z)]α
(5)

Γ′

1

αz
=

p2
1
(α′/α2) − 2tp1(1 + x1 − z) + 2t2(x2 − x1)x1(x1 + x2 + 2 − 4z)

p1 + [p2 − 2t(x2 − x1)(1 − z)]α
(6)

Proof of Theorem 1 From Lemmas 1 and 2, (1/2, 1/2) is an equilibrium and the other

candidates for equilibria are the symmetric ones with 1/4 ≤ x1 < 1/2. To eliminate these

consider a pair of symmetric locations (x1, x2). Let x∗

1
∈ (x1, x2). Then x∗

1
+ x2 − 1 > 0.

Suppose that p2 = A− t(1 − x2)
2 at some x∗

1
. Since p1 ≤ A− tx∗2

1
, p2 − p1 > 0 and z >

(x∗

1
+ x2)/2 > x∗

1
. Since α′ > 0, (3) shows that Γ′

1
> 0.
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So, assume that p1 = A− tx∗2

1
at all x∗

1
∈ (x1, x2). At symmetric locations, z = 1/2 and

α = 1. From (6), Γ′

1
> 0 if p2

1
α′ − tp1(1 + 2x1) + 2t2(1 − 2x1)x1 > 0 which follows from α′ ≥

t(1 + 2x1)/(A − tx2

1
) and p1 = A − tx2

1
. Therefore, Γ1 increases at symmetric locations and

(x1, 1 − x1) is not an equilibrium. So, (1/2, 1/2) is the unique equilibrium.

Proof of Theorem 3 In order to show that (x2, x2) is an equilibrium it needs to be shown

that Γ1(x1, x2) < Γ1(x2, x2) if x1 < x2.

First suppose that x2 > 1/2. Lemma 1 shows that if x1 + x2 − 1 < 0 then Γ1(x1, x2) <

Γ1(1 − x2, x2). Therefore, suppose that x1 + x2 − 1 ≥ 0.

Consider the three cases for the prices.

If p2 = A− t(1− x2)
2 then as argued in the proof of Theorem 1, z − x1 > 0. Since α′ >

0, Γ′

1
> 0 from (3). If p1 = A − t(z − x1)

2 then z − x1 > 0 and (4) shows that Γ′

1
> 0. If p1 =

A − tx2
1
, by (6), Γ′

1
> 0 if

α′

α2
>

2t

p2

1

[p1(1 + x1 − z) − t(x2 − x1)x1(x1 + x2 + 2 − 4z)]

The RHS is a decreasing function of z. p1 = A−tx2
1
, p2 > A−tx2

2
, so, p1z+p2(1−z) > A−tx2

2
.

(C3) ensures that p1z > (A− tx2
2
)/2 and z > (A− tx2

2
)/[2(A − tx2

1
)] = z∗, say. Then z∗ < 1/2

and the RHS is less than 2t(1 + x1 − z∗)/p1. It is easily verified that 2t(1 + x1 − z∗)/(A− tx2
1
)

< t(1 + 2x1)/(A − tx2
2
). Therefore, if α′/α2 ≥ t(1 + 2x1)/(A − tx2

2
) then Γ′

1
> 0.

If x2 ≤ 1/2 then p2 = A − t(1 − x2)
2. If z ≥ x1 then Γ′

1
> 0 from (3). If z < x1 then

p1 > p2. Γ′

1
> 0 if (α′/α2)[p1 − 2t(x2 − x1)z] > 2tx1. Since 1 + 2x1 > 4x1, this is true if

2[p1 − 2t(x2 − x1)z] > A − tx2
2

which follows from p1 > p2 = A − t(1 − x2)
2 and A ≥ 3t.

18



References

Abreu, D. (1988): “On the Theory of Infinitely Repeated Games with Discounting,” Economet–

rica, 56, 383–396.

d’Aspremont, C., J. J. Gabszewicz and J. –F. Thisse (1979): “On Hotelling’s Stability in

Competition,” Econometrica, 47, 1145–1150.

Friedman, J. W. and J. –F. Thisse (1993): “Partial Collusion Fosters Minimum Product Dif-

ferentiation,” Rand Journal of Economics, 24, 631–645.

Hotelling, H. (1929): “Stability in Competition,” Economic Journal, 39, 41–57.

Jehiel, P. (1992): “Product Differentiation and Price Collusion,” International Journal of Indu–

strial Organization, 10, 633–641.

Kalai, E. (1977): “Proportional Solutions to Bargaining Situations: Interpersonal Utility Com-

parisons,” Econometrica, 45, 1623–1630.

Kalai, E. and M. Smorodinsky (1975): “Other Solutions to Nash’s Bargaining Problem,”

Econometrica, 43, 513–518.

Nash, J. F. (1950): “The Bargaining Problem,” Econometrica, 18, 155–162.

Neven, D. (1985): “Two–Stage (Perfect) Equilibrium in Hotelling’s Model,” Journal of Indu–

strial Economics, 33, 317–325.

Rath, K. P. (1998): “Stationary and Nonstationary Strategies in Hotelling’s Model of Spatial

Competition with Repeated Pricing Decisions,” International Journal of Game Theory,

27, 525–537.

Rath, K. P. and G. Zhao (2003): “Nonminimal Product Differentiation as a Bargaining Out-

come,” Games and Economic Behavior, 42, 267–280.

Schmalensee, R. (1987): “Competitive Advantage and Collusive Optima,” International Journal

of Industrial Organization, 5, 351–367.

Simon, L. K. and W. R. Zame (1990): “Discontinuous Games and Endogenous Sharing Rules,”

Econometrica, 58, 861–872.

19


