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Abstract
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ing such restrictive assumptions, thus permitting a wider class of latent
variable models to be considered. This paper proposes an accurate yet
computationally efficient numerical filtering algorithm (based on a dis-
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sidered within the context of the stochastic volatility model. It is found
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in term of volatility forecasting.
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1 Introduction

The Kalman filter has proved extremely useful in estimating the parameters

of dynamic latent factor models in econometrics where the model is either lin-

ear or can be transformed and treated as linear (see, for example, Harvey,

1981, 1989). Kitagawa (1987) demonstrated how the same basic filtering cy-

cle of prediction and update could be used in a general nonlinear framework.

Despite the potential for being a powerful tool at the disposal of the applied

practitioner, the prohibitive computational burden imposed by the numerical

techniques required to implement Kitagawa’s algorithm has meant that it has

not been widely used. The contribution of this paper is to introduce a compu-

tationally efficient method for implementing the nonlinear filter. The proposed

method is based upon a fixed discretisation of the state space of the latent

factor that permits the necessary nonlinear filtering equations to be solved by

means of a simple yet accurate numerical integration scheme. The performance

of the proposed method, which is called the discrete nonlinear filter (DNF), is

illustrated in Monte Carlo simulation experiments and in an application based

on an important problem in financial econometrics, namely that of estimating

the parameters of stochastic-volatility models.

The paper is structured as follows. Section 2 outlines the general non-linear

filtering framework, and describes estimation method employed by Kitigawa

(1987). The proposed DNF method is described in Section 3 where the differ-

ences between the current and previous approaches are also discussed. Section

4 defines the general stochastic volatility framework and Section 5 reports the

results of a number of Monte-carlo experiments to ascertain the relative perfor-

mance of the DNF method when applied to the parameter-estimation problem

in the stochastic volatility problem. Section 6 consider the application of the

DNF to estimating SV models. Results are based on FX futures data, with the

performance of the DNF method compared to two competing volatility models.

Section 7 provides concluding remarks and suggests avenues for future research.
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2 Kitagawa’s Algorithm

Consider a system described by the state-space model

yt = H (xt, ut| θ), xt = F (xt−1, wt| θ) (1)

where:

yt is an observed data series conditional on the value of the (unobserved)

state variable x;

ut and wt are (possibly correlated) observation and system noise terms; and

θ is an unknown the parameter vector to be estimated.

In the event of H (·) and F (·) being linear and with ut ∼ N(0, σ2u) and wt ∼
N(0, σ2w), standard linear Kalman-filtering techniques may be used to generate

maximum likelihood estimates of the unknown parameters, θ, by means of the

prediction-error decomposition of the likelihood. In the more general case where

linearity does not apply, the maximum likelihood estimates of θ are computed

as

bθML = argmax
θ

h
f
³
{yt}Tt=1 | θ

´i
(2)

= argmax
θ

∙Z
· · ·
Z

f
³
{yt}Tt=1 | {xt}Tt=1

´
f
³
{xt}Tt=1 | θ

´
dx1 . . . dxT

¸
.

which is a T− fold integration problem that cannot generally be solved by

analytical means.

Kitagawa (1987) suggests that the evaluating the integral in equation (2)

be accomplished in terms of a recursive prediction-update algorithm. For this

purpose it is useful to express the state-space model in equation (1) in terms of

two conditional distributions

yt ∼ r (.|xt, θ) xt ∼ q (.|xt−1, θ) (3)

where r (.|xt) is the conditional distribution of y on x, and q (.|xt−1) is the con-
ditional distribution of xt on xt−1. The prediction-update algorithm proceeds

as follows.
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Prediction step

The one-step ahead prediction of the distribution of xt conditional on yt−1,

f (xt |yt−1, θ), is given by

f (xt |yt−1, θ) =
Z ∞

−∞
q(xt |xt−1, θ) f (xt−1 |yt−1, θ) dxt−1. (4)

Update step

The form of the probability distribution of the state variable at time t,

conditional on information at time t is then given by

f (xt| yt, θ) = r(yt|xt, yt−1, θ) f (xt |yt−1, θ)
f (yt| yt−1, θ) . (5)

where the denominator of equation (5) is the likelihood of observing yt given

yt−1 and θ

f (yt| yt−1, θ) =
Z ∞

−∞
r(yt|xt, θ) f (xt| yt−1, θ) dxt. (6)

There are two important by-products obtained by recursing through equa-

tions (4) and (5) for all observations T. In the first instance the the log-likelihood

function to be maximised to obtain the ML estimates of θ is obtained directly

from equation (5) and is given by

lnL =
TX
t=1

ln[f (yt| yt−1, θ)]. (7)

In addition to parameter estimation, the recursions of the filter also allow the

expected value of the state variable, conditional on the parameters θ and all

information up to and including T , to be constructed. Note that the conditional

distribution of xt conditional on yT and θ is constructed as

f (xt| yT , θ) = f (xt| yt, θ)
Z ∞

−∞
f (xt+1| yT , θ) q(xt+1 |xt, θ)

f (xt+1 |yt, θ) dxt+1, (8)

with expected value

E [xt| yT , θ] =
Z ∞

−∞
xt · f (xt| yT , θ) dxt. (9)

From the perspective of parameter estimation it is clear that the intractable

high-dimensional integral in equation (2) has been replaced with the relatively
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straightforward summation in equation (7), the problem now becomes that of

providing a numerical technique to evaluate the integrals in the prediction and

update equations, (4) and (5) respectively. Kitagawa (1987) suggested that the

probability distributions in the relevant integrals be approximated by linear

splines. This requires the specification of the number of linear segments in

the spline, the location of the spline knots and consequently the value of the

functions (heights of the densities, f (xt |yt−1, θ) and f (xt| yt, θ)) at the knots1.
Based on this linear approximation, the trapezoidal rule is then used to compute

the required integrals.

In their comment on Kitagawa’s original paper, Martin and Raferty (1987)

point out that computing complexity is likely to be a deterrent for all but

simple problems. Indeed, they argued that the computational burden of the

proposed numerical integration procedure was so great that it was unlikely to

be of practical use and suggested that the provision of accurate computationally

attractive alternatives was an important area for future research. The next

section is devoted to the description of such an approximation which delivers

significant computational gain without any deterioration in numerical accuracy.

3 The Discrete Nonlinear Filter

At the heart of the nonlinear filtering problem is the approximation of the rele-

vant probabilities in expression (3) and their numerical integration. A practical

complication with the implementation of this approach, therefore, stems from

that fact its efficacy relies on two quite different procedures (approximation of

the probability density and numerical integration), both of which suffer from

error. Clearly a compromise must be struck between the control of error due to

the numerical integration and error arising in the construction of estimates of

probability density. In the approach suggested by Kitagawa (1987) the linear

spline approximation to the density functions requires a cumbersome numerical

1Kitagawa (1987) proposed a very simple scheme for knot placement with knots equally
spaced over the finite interval taken to be the domain of the state variable. Watanabe (1999)
following the suggestion of Tanizaki (1993) uses a more elaborate algorithm for knot placement
where the knots are placed in regions where the state variable is most likely to occur.
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integration procedure. By contrast, the central contribution of this paper is to

suggest an approximation to these distributions based on discretising the state

space of the latent variable, x, and computing the probability of observing x

within a set of discrete intervals in a manner similar to a histogram. The major

advantage of this approximation is that the integration problem is now reduced

to the simple sum of the product of probabilities. Thus the DNF requires far

fewer computations per integration than previous approaches thereby dramati-

cally reducing computational time and the associated scope for numerical error.

The details of the DNF are now outlined.

Consider N adjacent intervals in x space bounded by w1 . . . wN+1 and cen-

tered on the points z1...zN where

zi =
wi +wi+1

2
. (10)

In general terms, the probability of observing x within the interval centered on

zi, i.e. x ∈ (wi, wi+1] is given by

p(x ∈ (wi, wi+1]) =

Z wi+1

wi
f (x) dx ≈ p(zi) (11)

where f (x) is the probability distribution of the of the unobserved state variable

x.

Based on this discretisation the first task is to generate the approximations

to the conditional distributions in (3).

Transitional density

The transitional density of x may be discretised into a set of transitional prob-

abilities. Given that the state space is defined over N adjacent intervals of

width δ, it is possible to compute an N ×N transitional probability matrix, bq.
The elements of this matrix, bq i,j ∀i, j = 1, ..., N, represent the probability of x

migrating from the interval centred on zj to the interval centred on zi defined

by bq i,j = p(x ∈ (wi, wi+1] |x ∈ (w j , w j+1], θ) ≈ δ q
¡
zi| zj , θ¢ . (12)
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Conditional likelihood

Similarly, the likelihood of observing yt conditional on xt being in each discrete

interval may be defined as the T ×N likelihood matrix containing elements, brit
∀i = 1, ..., N, defined by

brit = r(yt |x ∈ (wi, wi+1], θ) ≈ r
¡
yt| zi, θ

¢
. (13)

Clearly the approximation of these conditional distributions will depend on

the exact nature of the discretisation. In this regard there are two separate

questions that need to addressed, namely, whether the intervals (wi, wi+1] are

equal for all i, and whether these intervals are fixed for each time step or allowed

to be time-varying. With respect to the first issue, by concentrating the intervals

in the vicinity of the mode of the distribution of x, greater resolution is gained

in the area of greatest probability at the expense of accuracy in the tail. In the

case of fixed- or time-varying intervals the central issue is one of the stationarity

of the latent variable. In any instance where the latent variable is nonstationary,

the use of time varying intervals is necessary. It may be noted, however, that

use of fixed intervals allows even greater reduction in computational cost as the

two matrices bq i,j and brit may be pre-computed and held fixed for any given set
of parameters. Ultimately the question of interval definition is one which must

be settled empirically. A small Monte Carlo exercise is presented in Section 5

which explores these questions in more detail.

Before stating the recursions required to implement the DNF, it is conve-

nient to simplify the notation for the one-step-ahead prediction of the distrib-

ution of x, represented in terms of the probability of observing x ∈ (wi, wi+1]

at time t, as follows

pt(x ∈ (wi, wi+1] |yt−1, θ) = pit|t−1.

Note that to be initialised the DNF requires an estimate of pi1|0. These initial

probabilities are obtained by discretising the unconditional distribution of the

state variable so that

pi1|0 =
Z wj+1

wi
f (x | θ) dx.
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for all intervals.

Similarly, the updated probability of observing x ∈ (wi, wi+1] at time t, may

be written as

pt(x ∈ (wi, wi+1] |yt, θ) = pit|t

The prediction and update steps of the DNF are now very simply given by

pit|t−1 =
NX
j=1

bq i,j · pjt−1|t−1, (14)

and

pit|t =
brit · pit|t−1PN
i=1 brit · pit|t−1 (15)

respectively. The denominator of equation (15) is the likelihood of observing yt,

integrated across possible states of x and is used to evaluate the log-likelihood

is in equation 7. Initial estimates are that the computation time required for an

evaluation of the likelihood using this method is, on average, five times faster

than that of Kitigawa (1987).

Following from equations (8) and (9), a method for extracting estimates of

the expected value of the state variable based on the DNF numerical scheme

is also proposed. Given estimated values for the elements of θ, the smoothed

distribution of x, the probability of observing x ∈ (w j , w j+1] at time t, condi-

tional on information up to and including time T , pt(x ∈ (w j , w j+1] | yT , θ) is
determined by

pt(x ∈ (wi, wi+1] | yT , θ) = (16)

pit|t ·
NX
j=1

pjt|t+1 · bq i,j
pt+1(x ∈ (w j , w j+1] | yT , θ) .

Based on the estimate of the pdf of the state variable, the expected value of xt

is obtained from

E [xt| yT , θ] =
NX
i=1

zi · pt(x ∈ (wi, wi+1] | yT , θ). (17)
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4 Stochastic Volatility

The operation of the DNF is now illustrated with reference to the stochastic

volatility (SV) model. Let returns (the observed variable) {yt}Tt=1 be generated
by,

yt = σt ut ut ∼ N (0, 1) (18)

where σt is the time t conditional standard deviation of yt. SV models treat σt

as an unobserved (latent) stochastic variable, whose dynamics need to specified.

The simplest model for σt is the AR(1) process,

ln (σ2t ) = α+ β ln (σ2t−1) + wt wt ∼ N(0, σ2w) (19)

where the errors ut and wt are assumed to be independent2.

Numerous approaches have been devised for estimating the parameters of

the SV model (see Ghysels et al. (1996) and Shephard (1996) for surveys).

Perhaps the most popular method is to express equations (18) and (19) in a

linear state-space form by using an appropriate transformation and then apply

standard Kalman filtering methods (Harvey et al., 1994, Ruiz, 1994). This

is a quasi-maximum likelihood (QML) approach because, in the simple imple-

mentation of this approach, the transformation of equation (18) results in a

non-normal error term and thus a violation of the strict conditions required

for Kalman filter to yield maximum likelihood estimates. This shortcoming is

easily addressed in the current context by recognising that the nonlinear filter

as proposed by Kitigawa (1987) may be used to provide maximum likelihood

estimates without the need for any prior transformation of the model.

To apply the filtering approach outlined in Section 3 to the estimation of SV

parameters, the relevant probability densities, q (.|xt−1) and r (.|xt) must first
be defined. Given the observed returns series {yt}Tt=1 and defining xt = ln(σ2t ),
q (.|xt−1) and r (.|xt) given by

q(xt |xt−1, yt−1, θ) = 1p
2πσ2w

exp

∙
−(xt − α− β xt−1)2

2σ2w

¸
, (20)

2As the focus of this paper is the performance of the proposed filter only this uncorrelated
case will be examined. Correlation between these two error terms can also be dealt with quite
easily.
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r(yt |xt, yt−1, θ) = 1p
2π exp(xt)

exp

∙
− y2t
2 exp(xt)

¸
. (21)

respectively.

To implement the algorithm, the set of intervals bounded by w1 . . . wN+1

must be chosen. For SV estimation purposes, points distributed uniformly in

x (log σ2) space with range given by

α

(1− β)
± 6 σwq

(1− β2)
, (22)

from which N discrete intervals centred on z1...zN are defined. Given a value

for θ, the transition probabilities between each interval, bq i,j , and conditional
likelihoods, brit, may be pre-computed using equations 12 and 13 respectively.
To initialise the filter, the initial profile of the state variable must be defined

and discretised to obtain the prediction of the state variable at t = 1, ie, pi1.

The initial profile of the state variable (assuming normality) is taken to be its

unconditional distribution, which for equation 19 leads to

f (x| θ) ∼ N

µ
α

(1− β)
,

σ2w
(1− β2)

¶
(23)

from which the initialisation of pi1 follows equation 11. Based on bq i,j , brit, and
pi1, an estimate of θ, bθML is obtained by maximising the log-likelihood from

equation 7, an approximation to the log of equation 2, which is a by-product

of recursing between equations 14 and 15.

Based on bθML, the expected value of unobserved volatility may be extracted

from the smoothed distribution, pt(x ∈ (wi, wi+1] | yT ,bθML) constructed using

equation 16,

E(σ2t | yT ) =
NX
i=1

exp(zi) pt(x ∈ (wi, wi+1] | yT ,bθML). (24)

The performance of the DNF model as applied to the stochastic volatility

problem will be now be examined in both theoretical and applied settings.
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5 Simulation Experiments

The purpose of this section is to replicate the Monte Carlo study undertaken

by Jacquier, Polson and Rossi (1994) to evaluate the performance of parameter

estimation methods in the context of SV models. There are three aspects of

the performance of the DNF which require thorough investigation.

1. The accuracy with which the DNF integration scheme evaluates the like-

lihood function given by equation (2).

2. The overall performance of the DNF in terms of parameter estimation.

3. The accuracy with which the latent variable (volatility) is extracted.

In performing the experiments the three parameter combinations used by

Jacquier et al. (1994), namely,

(α, β, σw) = (−0.736, 0.90, 0.363)
(α, β, σw) = (−0.368, 0.95, 0.260)
(α, β, σw) = (−0.147, 0.98, 0.166)

are used.

5.1 Accuracy of likelihood evaluation

This section considers the relative numerical accuracy of the integration scheme

employed by the DNF, within the context of the SV model. Consider equations

(18) and (19) applied to a situation where there is only one time step, namely,

time t−1 to time t. In this instance, the t− fold integration problem encountered
in the construction of the likelihood function, equation (2), is now reduced to

the more manageable double integral

f (yt| yt−1, θ) =

Z ∞

−∞
r(yt|xt, θ) f (xt| yt−1, θ) dxt

=

Z ∞

−∞

Z ∞

−∞
r(yt|xt, θ) q(xt |xt−1, θ) f (xt−1 |yt−1, θ) dxt dxt−1

for given parameters θ and where f (xt−1 |yt−1, θ) and yt are specified. This

reduction in the dimension of the integral required to compute the likelihood

is important as it allows a full double quadrature numerical routine to be uti-

lized as a benchmark with which to compare the approximations suggested by
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Kitigawa (1987), Watanabe (1999) and the discrete binning method suggested

in this paper.

The experiment proceeds as follows:

1. Values for the elements of the parameter vector θ = (α, β, σw) are set.

2. The density function f (xt−1 |yt−1, θ) set equal to the starting distribution
given by equation (23).

3. A value of yt is randomly drawn and the likelihood evaluated at this point

using four methods

(a) A full numerical double quadrature method as implemented by MAT-

LAB.

(b) The trapezoidal implementation suggested by Kitagawa (1987) using

evenly spaced nodes (NFML(E)).

(c) The trapezoidal implementation used by Watanabe (1999) in which

the nodes are normally distributed around the expected value of the

state variable (NFML).

(d) The method central to the DNF where the state-space is discretised

into 50 bins of equal width set up as specified in expression (22).

4. The process is repeated 2000 times for the purpose of computing average

errors.

Table 1 reports the root mean square errors obtained by comparing the values

for the likelihood obtained in each of methods (b)-(d) above relative to the full

double quadrature in (a).

The results of this simple Monte-Carlo experiment yield two important con-

clusions. First, a comparison of the NFML(E) and NFML methods suggests

that trapezoidal integration based on evenly-spaced nodes is more accurate. It

appears that the benefit of concentrating nodes in the vicinity of the expected

value of x (and thereby obtaining greater resolution of the distribution of x in

this region), is dominated by the cost in terms of lack of accuracy in the tails of
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Table 1:

RMSE for likelihood evaluation relative to double quadrature

Parameters RMSEs

DNF NFML(E) NFML

(α, β, σw)
(−0.736, 0.90, 0.363) 0.0032 0.0003 0.3754

(α, β, σw)
(−0.368, 0.95, 0.260) 0.0037 0.0037 0.4082

(α, β, σw)
(−0.147, 0.98, 0.166) 0.0041 0.0028 0.4294

the distribution. Second, relative to trapezoidal-based integration, employing

the discrete binning approach upon which the DNF is based exhibits compara-

ble levels of accuracy achieved at significantly less computational expense.

5.2 Parameter Estimates

For each parameter set 1000 series of length T = 2000 are simulated from

equations (18) and (19). For each simulated series the parameter vector is

estimated using the DNF. Furthermore, for each simulated series, smoothed

estimates of daily volatility are generated from equation 24.Table 2 shows the

mean and root mean squared error (RMSE) for both the DNF and NFML

methods as applied to the parameter estimation problem.

Examining the results of the DNF with 25 intervals and the NFML with 25

nodes, it is seen that the DNF has lower RMSE in all cases and lower bias in

all but two cases (α = −0.147, β = 0.98). In addition to this, the DNF with 25
intervals outperforms (both bias and RMSE) the NFML with 50 nodes in the

first two parameter sets. Examining the results of the DNF method using 50

intervals reveals that the it outperforms the NFML with both 25 and 50 nodes

for all parameter sets.
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Method
(α, β, σw)

(−0.736, 0.90, 0.363)
(α, β, σw)

(−0.368, 0.95, 0.260)
(α, β, σw)

(−0.147, 0.98, 0.166)
NFML

N = 25
−0.812
(0.199)

0.890
(0.027)

0.406
(0.068)

−0.426
(0.124)

0.942
(0.017)

0.294
(0.052)

−0.194
(0.083)

0.974
(0.011)

0.197
(0.043)

N = 50
−0.776
(0.168)

0.895
(0.023)

0.368
(0.041)

−0.406
(0.106)

0.945
(0.014)

0.264
(0.032)

−0.178
(0.067)

0.976
(0.009)

0.169
(0.024)

DNF

N = 25
−0.765
(0.163)

0.896
(0.022)

0.365
(0.040)

−0.397
(0.098)

0.946
(0.013)

0.264
(0.030)

−0.201
(0.068)

0.973
(0.009)

0.189
(0.030)

N = 50
−0.765
(0.159)

0.896
(0.021)

0.364
(0.041)

−0.395
(0.100)

0.946
(0.013)

0.263
(0.031)

−0.169
(0.058)

0.977
(0.008)

0.169
(0.022)

Table 2: Mean and RMSE for NFML and DNF methods.

5.3 Volatility Estimates

To evaluate the ability of the DNF and NFML methods to extract estimates of

latent volatility the grand RMSE proposed by Jacquier et al (1994) is employed.

For each simulated series, the volatility at each time step is estimated using

parameter estimates from section 5.2, with the grand RMSE is given by

RMSEG =

vuut 1

1000(T − 199)
1000X
i=1

T−100X
t=100

³
σ2i,t − bσ2i,t´. (25)

Where, T = 2000, σ2i,t is the volatility simulated at period t on the i
th simulation

of equations 18 and 19, and bσ2i,t is the estimate of the volatility.
Table 3 contains the RMSEG for the NFML method with 25 and 50 nodes

as well as the RMSE for the DNF with 25 and 50 intervals. Results in Table 3

shows that the performance of the DNF method is comparable to the NFML.

The DNF method seems to generate marginally more accurate estimates of

volatility irrespective of the number of intervals used. This result is consistent

with the Monte-Carlo results reported in Section 5.2 in that reducing the num-

ber of intervals used in the filtering procedure from 50 to 25 has little impact

on the DNF performance.
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(α, β, σw)
(−0.736, 0.90, 0.363)

(α, β, σw)
(−0.368, 0.95, 0.260)

(α, β, σw)
(−0.147, 0.98, 0.166)

NFML
N = 25 6.08 5.24 4.45
N = 50 6.03 5.20 4.39
DNF
N = 25 5.98 5.22 4.33
N = 50 5.98 5.22 4.33

Table 3: Volatility RMSE for NFML and DNF methods.

6 Empirical Application

This section considers an empirical application of the DNF method, whereby

the performance of the DNF method will be compared with standard QML

and realised volatility (RV) estimates. Relative performance will be assessed in

terms of in sample volatility estimation and out of sample volatility forecasting.

The dataset upon which this comparison is based, consists of intra-day data

on Japanese yen (JPY) and US dollar (USD) futures obtained from Tick Data

Inc (www.tickdata.com). The dataset covers the time period of 2 January 1990

to 31 March 2000, a total of 2586 trading days. Data is recorded tick by tick

giving a total of 3,494,384 observations. To overcome issues relating to market

microstructure bias, the tick data was collated into 40 minute intervals3, or 10

intra-day trading periods. From these intra-day trading periods, a dataset of

2586 daily returns and RV estimates are calculated.

Estimates of daily RV may be constructed from the cumulation of the cross-

products of intra-day returns. Thus an ex-post estimate of one day volatility is

given by the sum of the squares of intra day returns sampled at an appropriate

frequency,

RVt =

1/∆X
j=1

r2t−1+j∆ (26)

where RVt is daily volatility at time t, ∆ = 1/n where n is the number of

intra-day periods, and rt−1+j∆ is the return realised during each of the n pe-

riods within the trading day. Andersen, Bollerslev, Diebold and Labys (2003)

3The intra-day interval of 40 minutes was chosen using the volatility signature plot method
of Anderson, Bollerslev, Diebold, and Labys (1999).
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show that RV, in an ex-post sense precisely captures the evolution of daily FX

volatility in that daily spot FX returns standardised by RV are approximately

Gaussian. Standardising returns by volatility estimates generated by compet-

ing approaches such as GARCH models invariably lead to distributions that

are leptokurtotic, albeit to a lesser degree than the raw data. Andersen et.

al. (2003) suggest that the superior performance of RV is due to its ability

to generate volatility estimates that quickly adapt to changes in the prevailing

level of volatility. This section will reveal that SV models based on the DNF

method (in comparison to QML) also have the capability to adapt to abrupt

changes in the level of volatility. Given daily data, the DNF approach can gen-

erate volatility estimates and predictions comparable to RV based on intra-day

returns.

To construct the daily intra-day volatility the intra-day data requires desea-

sonalising. This deseasonalising takes the form put forward in Andersen et. al.

(2003) whereby seasonal factors are estimated by averaging individual squared

returns in the 10 intra-day intervals such that:

s2i =
1

T

TX
t=1

r2i,t i = 1, ..., 10

where r2i,t is the return in the i
th period of day t. Based on these seasonal

factors, each intra-day return can be deseasonalised as:

eri,t = ri,t
si

s i = 1, ..., 10; t = 1, ..., T

Where s is the sample standard deviation of the entire set of intra-day

returns. From these deseasonalised intra-day returns the daily realised volatility

is calculated using equation 26.

Since realised volatility is an ex-post estimate of the volatility that prevailed

on a particular day, a time series model is fitted to the series of daily realised

volatility. This serves to denoise the realised volatility series such that inference

may be made about the overall level of volatility. Furthermore, fitting a model

to realised volatility allows for the prediction of volatility in subsequent peri-

ods. Andersen et. al. (2003) suggest fitting a fractionally integrated ARMA
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Figure 1: Plot of daily RV and AR(5) smoothed RV.

(ARIMA(p,d,q)) to the logarithm of daily RV. For this comparative exercise,

this paper follows Andersen, Bollerslev and Meddahi (2002) and estimates an

AR(5) directly from the RV series.

Given the entire dataset, Figures 1, 2 and 3 plot in-sample daily RV along

with smoothed estimates of daily volatility obtained from an AR(5) fit directly

to daily RV, and smoothed estimates from the QML and New Filter (both

utilising daily returns). Figures 2 and 3 reveal that in comparison to standard

QML estimates, volatility estimates based on the proposed filtering method are

quickly adapting to abrupt changes in the level of volatility. This pattern of

changing volatility is similar to that observed in Figure 1 when an AR(5) process

is directly fitted to the RV series. The ability of the proposed filter to quickly

incorporate changes in the level of volatility is important as it circumvents the

need to incorporate intra-day returns in the volatility calculation.

To asses the forecasting performance of each model the sample is split into

an estimation period of the initial 1586 trading days along with a sample for

forecast evaluation consisting of the final 1000 trading days. Parameter es-
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Figure 2: Plot of daily RV and smoothed daily voltility estimates based on
QML.
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Figure 3: Plot of daily RV and smoothed estimates of volatility based on the
proposed filter.
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Figure 4: Kernel density estimates of daily returns from the forecast period
standardised by one day ahead volatility forecasts (solid lines). N(0, 1) refer-
ence is also shown (dotted lines).

timation is carried out within the estimation period, and given these parame-

ters, one-day ahead forecasts are generated from the forecast evaluation sample.

Volatility predictions from the proposed filter are taken to be the expected value

of volatility from a one-step ahead prediction of the distribution of the state

variable,

E(σ2t | yt−1) =
NX
i=1

exp(zi) pt(x ∈ (wi, wi+1] | yt−1, θ). (27)

While there is no single accepted method to evaluate volatility forecasts,

Figure 4 reports the density of daily returns standardised by the appropriate

one-day ahead volatility forecast. The forecasting performance of each model is

given by its ability to generate standardised returns that are N(0, 1). Figure 4

reveals that the DNF produces volatility forecasts that are superior to those of

the QML method. Mean squared error (MSE) estimates obtained from compar-

ing the standardised return distributions of the DNF and QML to the N(0, 1)

distribution are 2.22× 10−4 and 1.4× 10−3 respectively. Volatility predictions
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based on the DNF method also outperform those given the direct AR(5) fit to

RV which lead to a MSE of 2.94× 10−4.
Results from this section reveal that the proposed filter has the ability to

quickly adapt to changes in the level of the state variable. This is a feature that

distinguishes non-linear filtering methods from standard Kalman Filter based

methods. Within the context of SV models, applying the proposed filtering

method to daily returns captures characteristics that are otherwise only revealed

when intra-day returns are considered.

7 Conclusion

Estimation of latent variable models is often problematic, while simple ap-

proaches are available, the conditions under these are applicable are restrictive.

Even though methods for estimating these models avoid these problems have

been proposed, they are often complex and computationally burdensome to im-

plement. The central contribution of this paper is that it suggests an alternative

non-linear filtering (DNF) method, one that avoids the computational burden

of competing approaches. While being simpler to implement, it still retains the

accuracy of more complex methods.

In this paper, the performance of the DNF method is analysed, from three

perspectives in the context of SV models, a common latent variable process dealt

with in financial econometrics. The accuracy of the DNF integration scheme

was compared with that of Kitagawa (1987) an exercise that highlighted two

important points. Integration using a discretisation based on equally spaced

points is superior to that using many points placed near the expected value of

the latent variable. In comparison to the integration scheme of Kitagawa (1987)

the DNF method is more computationally efficient. In terms of parameter and

volatility estimation, in relation to the NFML (of Watanabe 1999), the DNF

method proves to be both more accurate, and robust to the number of intervals

chosen.

The DNF method was applied to the estimation of SV models using daily

FX futures data. It was shown that this method outperforms the Kalman-filter
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based QML SV method in terms of its ability to rapidly adjust to changes

in the level of volatility, and thus forecast the distribution of daily returns.

Furthermore, the distributional forecasts obtained from the DNF perform ad-

mirably well when compared to those based on realised volatility (constructed

from intra-day data).

While a univariate application have been considered in this paper, the DNF

method may be extended to higher dimensional problems. Given the computa-

tional efficiencies of the DNF integration scheme, it is more amenable to multi-

variate problems in comparison to the methods suggested by Kitagawa (1987).

Extensions to such problems are certainly an avenue for future research.

References

Andersen, T.G., 1996, “Return volatility and trading volume: an information

flow interpretation of stochastic volatility”, Journal of Finance, 51, 169-204.

Andersen, T.G., and Bollerslev, T., and Diebold, F.X., and Labys, P., 1999,

“(Understanding, optimizing, using and forecasting) realized volatility and

correlation”, Working Paper, University of Pennsylvania.

Andersen, T.G., and Bollerslev, T., and Diebold, F.X., and Labys, P., 2003,

“Modeling and Forecasting realized volatility”, Econometrica, 71, 579-625.

Andersen, T.G., and Bollerslev, T., and Meddahi, N., 2002, “Correcting the

errors: a note on volatility forecast evaluation based on high-fequency data

and realized volatilities”, Working Paper 322, Northwestern.

Clark, P., 1973, “A subordinated stochastic process model with finite variance

for speculative process”, Econometrica, 41, 135-155.

Ghysels, E. and Harvey, A.C. and Renault, E., 1996, “Stochastic volatility”,

in G.S. Maddala and C.R. Rao (eds), Statistical Methods in Finance, North

Holland, Amsterdam.

Harvey, A.C. (1981). The Econometric Analysis of Time Series. Phillip Allan:

Oxford.

21



Harvey, A.C. (1989). Forecasting, Structural Time Series Models and the

Kalman Filter, Cambridge university Press, Cambridge.

Harvey, A.C. and Ruiz, E. and Shephard, N., 1994, “Multivariate stochastic

variance models”, Review of Economic Studies, 61, 247-264.

Jacquier, E. and Polson, G. and Rossi, P.E., 1994, “Bayesian analysis of sto-

chastic volatility models”, Journal of Business and Economic Statistics, 12,

371-389.

Kalman, R.E., “A New Approach to linear filtering and prediction problems”,

Transactions of ASME, Journal of Basic Engineering, 80D, 35-45.

Kitagawa, G., 1987, “Non-gaussian state-space modeling of non-stationary

time series”, Journal of the American Statistical Association, 82, 1032-1062.

Martin, D.R. and Raferty, A.E. (1987). “Robustness,computation and non-

Euclidean models” Journal of the American Statistical Association, 82, 1044-

1050.

Ruiz, E., 1994, “Quasi-maximum likelihood estimation of stochastic volatility

models”, Journal of Econometrics, 63, 289-306.

Shephard, N., 1996, “Statistical aspects of ARCH and stochastic volatility”,

in D. R. Cox, D. V. Hinkley and O. E. Barndorf-Nielsen (eds), Time Series

Models in Econometrics, Finance and Other Fields, Chapman & Hall, London,

1-67.

Tanizaki, H., 1993, “Nonlinear filters: Estimation and applications (Lecture

notes in economics and mathematical systems)”, Springer-Verlag, Berlin.

Tauchen, G. and Pitts, M., 1983, “The price variability-volume relationship

on speculative markets”, Econometrica, 51, 485-505.

Watanabe, T., 1999, “A non-linear filtering approach to stochastic volatility

models with an application to daily stock returns”, Journal of Applied Econo-

metrics, 14, 101-121.

22


