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Abstract

Here we present a general framework for a GARCH (1,1) type of process with innovations

with a probability law of the mean- variance mixing type, therefore we call the process in

question the mean variance mixing GARCH (1,1) or MVM GARCH (1,1). One implication is a

GARCH model with skewed innovations and constant mean dynamics. This is achieved without

using a location parameter to compensate for time dependence that affects the mean dynamics.

From a probabilistic viewpoint the idea is straightforward. We just construct our stochastic

process from the desired behavior of the cumulants. Further we provide explicit expressions

for the unconditional second to fourth cumulants for the process in question. In the paper

we present a specification of the MVM-GARCH process where the mixing variable is of the

inverse Gaussian type. On the basis on this assumption we can formulate a maximum likelihood

based approach for estimating the process closely related to the approach used to estimate an

ordinary GARCH (1,1). Under the distributional assumption that the mixing random process

is an inverse Gaussian i.i.d process the MVM-GARCH process is then estimated on log return

data from the Standard and Poor 500 index. An analysis for the conditional skewness and

kurtosis implied by the process is also presented in the paper.
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1 Introduction

The introduction of the Autoregressive Conditional Heteroscedastic (ARCH) process by

Engle (1982) was among a lot of other things a new very powerful tool in the modeling of

financial data in general and stock returns in particular His suggested process was different

in relation to earlier conventional time series models in that it instead of the assumption of

constant variances allowed the conditional variances to change through time as functions of

past errors. The ARCH process can be written as a product of two entities
√

htεt, where ht

is the variance function i.e. it specifies the dependence structure of the variance. εt is an i.i.d

sequence of standard normal random variables. However in general the work of improving

the univariate ARCH models to be more coherent with financial data has taken two main

directions.

1. The first approach in trying to improve the ARCH model starts out in an alternative

specification of the variance function ht. One celebrated improvement was introduced

in Bollerslev (1986) where the Generalized Autoregressive Conditional Heteroscedastic

(GARCH) process was presented. Further we have the Integrated GARCH (IGARCH)

Engle and Bollerslev (1986) and the exponential GARCH (EGARCH ) Nelson (1991)

where the focus is on the respecification on variance equation. Other examples are

the suggestions to introduce different kinds of asymmetry in the variance equation see

Glosten, Jaganathan, and Runkle (1993) and Zakoian (1994). Another important

extension of the ARCH model is the ARCH in mean model (ARCH-M) model

introduced in Engle, Lilien, and Robins (1987) which extends the ARCH model to

allow the conditional variance to affect the mean.

2. The second approach has taken the direction of finding a more realistic assumption

regarding the εt i.i.d sequence. Examples on this research direction is Bollerslev (1987)

where the εt are assumed to follow a student t i.i.d sequence. Other examples are

when εt follows a symmetric normal inverse Gaussian i.i.d sequence first mentioned

in Barndorff-Nielsen (1997) and explicitly formulated in Andersson (2001) and Jensen

and Lunde (2001). In Jensen and Lunde (2001) the issue of skewed innovations with

GARCH type errors is investigated. In the context of the EGARCH see Nelson (1991),

the generalized error distribution (GED) was introduced as an assumption for the εt

sequence.
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In this paper we have chosen to elaborate with the distributional assumptions regarding the

ARCH process. The main reason for doing this are the difficulties of obtaining a process

which exhibits conditional skewness by just dealing with the variance equation. These

difficulties occur since the ARCH process from the beginning was defined to be a symmetrical

process and the variance equation defined as a scaling of a symmetrical distribution and

therefore it only affects even moments.

A relevant question to ask yourself in context of above discussion: Do returns on financial

assets really exhibit conditional skewness? The question is worthwhile asking since skewness

in the stochastic process for returns have many implications; asset returns Harvey and

Siddique (2000a), portfolio construction Kraus and Litzberger (1976) and of course risk

management, this since skewness affects the tail mass. Further there is some literature

that suggests that skewness helps to explain the market risk premium, Harvey and Siddique

(2000b). The answer on this question will probably depend on the type of asset that you are

investigating for the moment. However there are some empirical investigations that suggests

that some types of financial returns are skewed at least unconditionally see for instance Peiró

(1999), Badrinith and Chatterjee (1988) and Simkowitz and Beedles (1980).

This paper presents a stochastic process with innovations related to a GARCH(1,1) process

where the conditional probability measure exhibits skewness and excess kurtosis. Some of

the more interesting earlier attempts to present such a process is:

1. Hansen (1994) suggested the Autoregressive Conditional Density (ACD) estimator.

Here both the variance and skewness are indexed by time. As a starting point a skewed

version of the student t probability law with separate time dependence structure for

the conditional skewness is used.

2. Harvey and Siddique (1999) presented a model which they claimed to be an alternative

parametrization of the Hansen model. The time-varying skewness is obtained by

solving a non-linear equations system linking the first and third conditional moments.

3. Lee and Tse (1991) suggested an approach based on an approximative probability

measure using a Gram Charlier series see Charlier (1905) of order 4. This scaled

with a GARCH type variance equation. This results in a process with time-varying

skewness.
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The first two papers have the common feature of stating a skewness parameter as a function

of the conditioning information set. One problem becomes to choose which function that

captures the time dependence in the third moment best. This is not always an easy

task. In the third paper the conditional variance determines the conditional skewness but

the probability measure used is only an approximation. Therefore it will not be a valid

probability measure. That is for certain combinations of skewness and excess kurtosis the

approximation will not always be a valid probability measure or run into problems with

multi modality. This is a result of the characteristics of Gram Charlier expansions, see for

instance Draper and Tierny (1972).

This paper is organized as follows. Section 2 contains a motivation for why the conditional

skewness could be sufficiently modeled by a GARCH variance function. This section is

finalized in a conjecture that states how the time dependence for moments higher than

two should be specified. Section 3 presents the general process and the conditional

and unconditional moments of the suggested process. Section 4 contains the MV M

GARCH(1, 1) process under inverse Gaussian distributional assumptions. In connection

with this we present an approach for achieving maximum likelihood estimates of the process.

We also estimate the process suggested and interpret the results in the context of conditional

skewness and excess kurtosis. Section 5 consists of a description of two possible extensions

from the general framework presented in this paper. The paper is ended with some concluding

remarks in section 6.

2 Motivation

In this section we focus on the behavior of the time dependence for powers of stock returns

data. The main purpose of this examination is to motivate that it is enough to model the

time dependence for the second moment in order to model the time dependence for higher

moments. In other words this means that there is no need to specify a particular function of

the conditional information set to model the conditional skewness, the same function that

models the time dependence in conditional variance can be used for the time dependence in

conditional skewness.

The data used is daily log returns on the Standard and Poor 500 index obtained from the

Ecowin v.3.1 database. The range for the data is 1 JAN 1997 to 1 JAN 2000. For descriptive

statistics concerning this data see table 5. In order to continue the investigation we make
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following two definitions.

Definition 2.1 The returns are given by rt = ln(St)− ln(St−1) where St the index value at

time point t. Further ra
t denotes the a:th power of the return series. For example r2

t is the

squared return series.

Definition 2.2 (GARCH(1, 1) process) A GARCH (1, 1) process is defined by:

Yt = m + σtZt

where L (Zt) = N (0, 1) Zt is a i.i.d sequence of random variables. σ2
t = α0 +α1Y

2
t−1 +α2σ

2
t−1

where α0, α1 and α2 ∈ R+ and m ∈ R

For further insight in this process see Bollerslev (1986) The scheme for this investigation can

be divided into four parts which can be viewed below.

1. We calculate a correlogram for ra
t when a = {1, 2, 3, 4} .

2. We estimate a GARCH (1,1) model on the data and obtain the GARCH(1, 1) variance

series, denoted as σ̂2
t .

3. Construct the standardized series r̃t = rt/
√

σ̂2
t .

4. Calculate correlogram for r̃a
t when a = {1, 2, 3, 4} .

The results from this investigation can be viewed on the forthcoming pages, where table 1 and

2 contains correlogram output data for ra
t and r̃a

t . Estimation results for the GARCH(1, 1)

process are presented in table 3.
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Table 1: Correlogram non-standardized returns
r̃t r̃t

2 r̃t
3 r̃t

4

Lags AC Prob AC Prob AC Prob AC Prob

1 -0.07 0.08 0.21 0.21 -0.20 0.00 0.15 0.00

2 0.02 0.19 0.12 0.08 0.07 0.00 0.04 0.00

3 -0.07 0.07 0.05 0.01 -0.03 0.00 0.01 0.00

4 -0.04 0.09 0.04 0.02 0.01 0.00 0.00 0.00

5 -0.05 0.08 0.14 0.14 -0.14 0.00 0.10 0.00

6 0.04 0.09 0.01 -0.05 0.00 0.00 -0.01 0.00

7 -0.06 0.07 0.10 0.09 -0.01 0.00 0.01 0.00

8 0.05 0.06 0.07 0.03 -0.01 0.00 0.01 0.00

9 0.01 0.10 0.03 0.00 -0.01 0.00 0.00 0.00

10 0.06 0.07 0.02 -0.02 -0.01 0.00 0.00 0.01

Prob denotes the p-value for the null hypothesis of zero autocorrelation.

Table 2: Correlogram standardized returns
r̃t r̃t

2 r̃t
3 r̃t

4

Lags AC Prob AC Prob AC Prob AC Prob

1 -0.01 0.75 -0.02 0.58 -0.02 0.52 0.00 0.99

2 0.03 0.69 0.08 0.12 0.08 0.09 0.04 0.64

3 -0.06 0.41 -0.04 0.14 -0.01 0.18 -0.01 0.82

4 -0.06 0.24 -0.02 0.22 -0.02 0.26 0.00 0.92

5 -0.03 0.28 0.01 0.34 -0.03 0.33 0.00 0.97

6 0.04 0.27 -0.03 0.39 0.00 0.46 -0.01 0.99

7 -0.07 0.15 0.04 0.41 -0.02 0.54 0.00 1.00

8 0.05 0.14 0.01 0.50 0.00 0.64 -0.01 1.00

9 0.02 0.18 0.00 0.60 0.00 0.74 -0.01 1.00

10 0.07 0.10 -0.02 0.66 0.00 0.81 -0.01 1.00

Prob denotes the p-value for the null hypothesis of zero autocorrelation.

Table 3: GARCH estimates
Estimate Standard error

m̂ 1.11 · 10−3 4.52 · 10−4

α̂0 1.52 · 10−5 4.66 · 10−6

α̂1 0.111 0.020

α̂2 0.786 0.047

Under the assumption that the calculated correlograms can be viewed as estimators of

correlation structures it seems obvious that by modeling the second moment we model the

correlation structure in higher powers in the data. That suggests that the dependence in

higher moments is sufficiently modeled by a time dependent scaling i.e. a GARCH(1, 1).
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Conjecture 2.1 (Regarding stock returns data) A time dependent scaling of a

Gaussian random variable, i.e. a GARCH, is sufficient to model the time dependence in

moments equal and higher than two. This is valid at least on the lower frequencies such as

daily.

This conjecture is the basis for the formulation of the mean variance mixing GARCH(1, 1)

process.

3 The mean variance mixing GARCH(1, 1) process.

Here we present the mean variance mixing GARCH process. For the sake of probabilistic

stringency when dealing with stochastic processes we need to make some definitions

concerning the filtered probability space on which our stochastic process evolves.

Definition 3.1 (General probability space) State a general probability space (Ω,F ,P) .

Where Ω is the set of all possible outcomes, F is the sigma field associated with the probability

space containing all sets for which we want to make a statement on. P is the probability

measure that generates the probability that such a set in F will occur.

A sigma field can be defined as a family of subsets of Ω closed under any countable collection

of set operations. For a more detailed discussion about the construction of sigma fields see

Billingsley (1995) p. 30-32.

Definition 3.2 (Filtration) Define a general filtration F = (Ft)t∈T , associated with the

above probability space, where T = {0, 1, 2, ..., T} Where Ft is characterized by being an

increasing sequence of sigma fields.

For a more in depth analysis of sigma filtration and the construction of stochastic processes

we refer to chapter one in Karatzas and Shreve (1991).

Definition 3.3 (Stochastic process) Consider a stochastic process Y = (Yt) defined

on the stochastic basis (or filtered probability space),denoted with the following pentet

(Ω,F ,P,F,T) . Recall that each Yt is Ft−1 measurable for each t ∈ T.
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On the above filtered probability space we will construct our stochastic process. Let us

now be a little more specific in how to define our stochastic process. Consider the following

construction for a MVM GARCH (1,1) process.

Definition 3.4 (The MV M GARCH(1, 1) process) The MVM GARCH (1,1) stochastic

process is defined by:

Yt = µ + λVt + σt

√
VtZt

where L (Vt) is a probability measure with the domain on R+ with finite moments L (Zt) =

N(0, 1) λ, µ ∈ R. Both Vt and Zt are i.i.d sequences of random variables.

The GARCH equation is given by:

σ2
t = α0 + α1Y

2
t−1 + α2σ

2
t−1

where α0, α1 and α2 ∈ R+

The above defined process will in the case of a λ parameter different from zero exhibit

skewness which comes clear when looking at the conditional cumulants presented below.

Further we know that

L (
Yt|σ2

t , Vt

)
= N(µ + λVt, σ

2
t Vt)

One drawback with the suggested process is that standardization of data becomes unfeasible

under the parametrization suggested here. This is so since we have conditional mean of the

process that contains a stochastic variable.

Below we state the conditional cumulants for the MV M GARCH(1, 1) process. The main

reason to include these is to characterize the conditional behavior of the process. From the

below proposition we can see that the conditional first moment of the process is remaining

constant. However the higher order conditional cumulants are functions of the GARCH

equation. So conditionally the time-dependence is just a function of the scaling of the

second moment of the symmetrical part of the MV M GARCH(1, 1) process.
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Proposition 3.1 (Conditional cumulants)

κYt
1 |Ft−1 = µ + λκVt

1 (3.1)

κYt
2 |Ft−1 = E

[
σ2

t |Ft−1

]
κVt

1 + λ2κVt
2 (3.2)

κYt
3 |Ft−1 = 3λκVt

2 E
[
σ2

t |Ft−1

]
+ λ3κVt

3 (3.3)

κYt
4 |Ft−1 = λ4κVt

4 + 6λ2κVt
3 E

[
σ2

t |Ft−1

]
+ 3E

[
σ4

t |Ft−1

] (
κVt

2 +
(
κVt

1

)2
)

(3.4)

where the κYt
i denotes the i:te cumulant of the process Yt conditional on the filtration Ft−1.

Further is E [σ2
t |Ft−1] = σ2

t and E [σ4
t |Ft−1] = σ4

t which not should be mixed up with the

unconditional expectation denoted as E(σ2
t ) and E(σ4

t ).

Proof see Appendix A

One implication from the conditional cumulants is that the conditional skewness not can

change sign. It will, which will be shown below when we derive the unconditional cumulants,

always have the same sign as the unconditional skewness.

3.1 Unconditional Cumulants for the MV M GARCH(1, 1)

stochastic process

One important step in order to characterize the MV M GARCH(1, 1) stochastic process is

to calculate the unconditional cumulants of the process. Below we present the second, third

and fourth cumulant. From these expression we can derive conditions on the parameters

for the existence of the first four cumulants in the unconditional distribution for the MV M

GARCH process.

Theorem 3.1 (unconditional second cumulant) The unconditional second cumulant of

the MV M GARCH(1, 1) process is

κYt
2 =

(
α0E (Vt) + (1− α2) E (µ + λVt)

2

1− α1E (Vt)− α2

− E (µ + λVt)
2

)
+ λ2var(Vt) (3.5)

Proof: see Appendix B
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Remark 3.1 (existence criteria second cumulant) From theorem 3.1 we can conclude

that the second cumulant for the MVM GRACH (1,1 ) process exits if

α1E (Vt) + α2 > 1

Corollary 3.1 (unconditional third cumulant) The unconditional third cumulant of

the MV M GARCH(1, 1) process is

κYt
3 = 3λ

(
α0E (Vt) + (1− α2) E (µ + λVt)

2

1− α1E (Vt)− α2

− E (µ + λVt)
2

)
var(Vt)

E (Vt)
+ λ3κVt

3

Proof of unconditional third cumulant. The proof follows directly from proposition 3.1

together with theorem 3.1.

Remark 3.2 From theorem 3.1 and corollary 3.1 we can see that if the unconditional second

cumulant exists the unconditional third cumulant also exists. There are not added any

existence conditions when moving from the second to the third cumulant.

Theorem 3.2 (unconditional fourth cumulant) The unconditional fourth cumulant of

the MV M GARCH(1, 1) process is

κYt
4 = λ4κVt

4 + 6λ2κVt
3 E

(
σ2

t

)
+ 3

(
κVt

2 +
(
κVt

1

)2
)

E(σ4
t )

where the expectations are given by:

E (σ2
t ) =

(
α0E(Vt)+(1−α2)E(µ+λVt)

2

1−α1E(Vt)−α2
− E (µ + λVt)

2
)

1
E(Vt)

E (σ4
t ) =

α2
0+2α0α1

α0E(Vt)+(1−α2)E(µ+λVt)
2

(1−α1E(Vt)−α2)
+2(α0α2+α1α2E(µ+λVt)2)E(σ2

t )+α2
1κ

1−(2α1α2E(Vt)+α2
2)−3α2

1E(V 2
t )

κ = E (µ + λVt)
4 + 6(µ2E(V 2

t ) + 2µλE(V 3
t ) + λ2E(V 4

t ))E (σ2
t )

Proof: see Appendix C

Remark 3.3 (existence criteria fourth cumulant) From theorem 3.2 we can conclude

that the fourth cumulant for the MVM GRACH (1,1 ) process exits if

(
2α1α2E (Vt) + α2

2

)
+ 3α2

1E
(
V 2

t

)
> 1
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4 An application with Vt assumed to follow an inverse

Gaussian probability measure.

In this section we present a formulation of the MV M GARCH(1, 1) process under

distributional assumptions that imply closed form expression of the conditional density

functions. This opens the path for formulating a maximum likelihood scheme as the one

presented in Bollerslev (1986), of course we are being addressed to use some kind of numerical

procedure in order to achieve maximum likelihood estimates. Here we assume that the Vt is

an i.i.d sequence of inverse Gaussian (IG) random variables. This makes it possible to define

the mean variance mixing inverse Gaussian GARCH or MVM IG(δ, γ) GARCH(1,1). There

are two main reasons for choosing the inverse Gaussian probability measure. First it is the

fact that the resulting real valued probability law results in a closed form conditional density

function. The second reason is that for this probability measure (real valued) all moments

exits in contrast to for instance the student t probability measure. This together with

the fact that earlier work suggests the inverse Gaussian as an appropriate mixing probability

measure for financial modeling. See for instance Jensen and Lunde (2001), Andersson (2001)

and Forsberg and Bollerslev (2002).

Definition 4.1 (The MVM IG GARCH (1,1) process) The MVM IG(δ, γ)

GARCH(1,1) stochastic process is defined by:

Yt = µ + λVt + σt

√
VtZt (4.6)

where L (Vt) = IG(γ, δ) and L (Zt) = N(0, 1) µ, λ ∈ R Vt and Zt are sequences of i.i.d

random variables.

The GARCH equation is given by:

σ2
t = α0 + α1Y

2
t−1 + α2σ

2
t−1 (4.7)

where α0, α1 and α2 ∈ R+

In order to fully characterize the stochastic process we need some knowledge of the inverse

Gaussian probability law. The density and the Laplace transform of this law an be found

below.
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Definition 4.2 (Inverse Gaussian probability law) A stochastic variable is said to be

distributed as a inverse Gaussian stochastic variable if its probability measure can written

as:

f (v; δ, γ) = δeδγ√
2π

v−
3
2 exp

(−1
2
(δ2v−1 + γ2v)

)

where v, δ, γ ∈ R+

The Laplace transform of the above density function:

ϕ (s; δ, γ) = exp(δ
(
γ −

√
(γ2 − 2s)

)
)

For more details concerning this probability law see Sheshardi (1993)

Below a simulation of an MV M IG process can be found. The skewness of the process is

easily seen since the downwards spikes have larger magnitude than the upwards spikes just

as stock return data sometimes behaves.

[Insert figure 1 somewhere here]

4.1 Formulation of a likelihood for the MV M IG(δ, γ) GARCH(1, 1)

process

In this section we intend to sketch a scheme to estimate the MV M IG(δ, γ) GARCH(1, 1)

process. The main objective when it comes to formulate a likelihood estimation is to derive

the unconditional (w.r.t to the mixing variable here IG(δ, γ)) probability law. This is feasible

when the mixing variable is an inverse Gaussian variable. This is of course not true in general

since it implies restrictions on the density function of the mixing variable. It is for instance

not possible to achieve this kind of closed form expression when the mixing variable is a

log-normal random variable.
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Proposition 4.1 (log likelihood of T observations)

L(λ, σ2
t , δ, γ, µ; yt) = T{ln (δ) + δγ}+

1

2

T∑
t=1

{ln[(γ2 +
λ2

σ2
t

)/(δ2 +
(xt − µ)2

σ2
t

)]− ln σ2
t }

+
T∑

t=1

{ln K1

(√
(γ2 +

λ2

σ2
t

)(δ2 +
(xt − µ)2

σ2
t

)

)
+

λ(xt − µ)

σ2
t

}

where x, µ, λ ∈ R and , δ, γ ∈ R+ σ2
t = α0 + α1y

2
t−1 + α2σ

2
t−1 where α0, α1 and α2 ∈ R+

K1(.) denotes the modified Bessel function of third order and index one

Proof of log likelihood. A proof of the unconditional density expression can be found

in Eriksson and Forsberg (2004). This in combination with standard operations with the

natural logarithm gives the proof of the log likelihood.

4.2 The Data

The data used in the maximum likelihood estimation is log return data from the Standard

and Poor 500 index. The data is from two periods in time. The first data set is from the

period 1 JAN 1987 to the 1 JAN 1990 and the second data set is from 1 JAN 1997 to 1

JAN 2000 obtained from the ECOWIN data base. Descriptive statistics for these two time

series can be viewed below. The 87 to 90 data set includes the infamous crash observation

of 19th of October. Observe that we have no illusion to be able to model this kind extreme

observation. However, it is interesting to see how the process behaves in such an extreme

situation.

Table 4:
JAN 87- JAN 90

Mean 0.000
Median 0.000
Maximum 0.0910
Minimum -0.229
Standard deviation 0.0149
Skewness -5.402
Excess kurtosis 83.037
Kolmogorov-Smirnov 0.481
Probability 0.000
Observations 714

Table 5:
JAN 97- JAN 00

Mean 0.000
Median 0.000
Maximum 0.0499
Minimum -0.0711
Standard deviation 0.0120
Skewness -0.552
Excess kurtosis 3.997
Kolmogorov-Smirnov 0.482
Probability 0.000
Observations 708
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4.3 Estimation

The process that we choose to estimate is the MV M IG(δ, 1) GARCH(1,1) process. The

covariance matrix for the estimated parameters is obtained using that T−1(
∑T

t=1
∂Lt

∂θ
∂Lt

∂θ́
)−1 is

a consistent estimate of the asymptotic covariance matrix. This is done using the analytical

gradient. Further details regarding the estimation procedure can be found in appendix

D. The results of the estimation can be examined in the tables below. It is important

to notice that this empirical investigation serves as an example of how the process may

behave estimated on stock returns. A more extensive investigation focused on the empirical

implications is to be regarded as further work.

Table 6: ML Estimates
JAN 87- JAN 90

Parameter Estimate Standard error

α̂0 6.89 · 10−6 7.99 · 10−3

α̂1 0.0715 9.98 · 10−7

α̂2 0.898 1.48 · 10−4

λ̂ −0.00165 1.99 · 10−4

δ̂ 0.738 9.03 · 10−5

µ̂ 0.00191 1.04 · 10−4

−L −3098.42

Table 7: ML Estimates
JAN 97- JAN 00

Parameter Estimate Standard error

α̂0 1.32 · 10−5 4.90 · 10−4

α̂1 0.0911 9.77 · 10−8

α̂2 0.875 7.88 · 10−6

λ̂ −0.00238 1.28 · 10−5

δ̂ 0.788 2.98 · 10−6

µ̂ 0.00217 7.81 · 10−6

−L −2967.61

In order to comment the estimation results in the context of skewness and excess we state

a lemma describing the coefficient of conditional skewness denoted as S(Yt|Ft−1) and ditto

for excess kurtosis, K(Yt|Ft−1) .

Lemma 4.1 (conditional skewness and excess kurtosis) The coefficient of

conditional skewness for the for the MV M IG(δ, 1)GARCH(1, 1) process is given by the

following expression:

S(Yt|Ft−1) = (φ1 + φ2σ
2
t )/(SE(Yt|Ft−1))

3

where φ1 = λ3δ and φ2 = 3λδ

The corresponding expression for excess kurtosis is given by:

K(Yt|Ft−1) = ($1 + $2σ
2
t + $3σ

4
t )/(V AR(Yt|Ft−1))

2
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where $1 = 15λ4δ, $2 = 18λ2δ and $3 = 3δ(1 + δ)

Proof of conditional skewness and excess kurtosis. The proof follows directly from

proposition 3.1 together with the Laplace transform in definition 4.2 and the definition of

the coefficient of skewness and kurtosis see page 85 in Kendall and Stuart (1952).

From the above lemma we can conclude that the conditional skewness is a linear function

of the σ2
t parameter in the MV M IG(δ, 1) GARCH(1, 1) process, standardized with the

cube of the conditional standard error. Further we see that the conditional excess kurtosis

is a quadratic function in the σ2
t parameter, this time standardized with the square of the

variance. A table with the calculated parameters and the corresponding standard error for

the conditional skewness and kurtosis is presented below The estimates and standard error

for the conditional moment parameters are obtained using Taylor expansion, see for instance

page 353 ff in Cramér (1945)

Table 8: Conditional moment parameters

JAN 87- JAN 90

Parameter Estimate Standard error

φ̂1 −3.32 · 10−9∗ 1.20 · 10−9

φ̂2 −3.67 · 10−3∗ 4.41 · 10−4

$̂1 8.23 · 10−11∗ 3.97 · 10−11

$̂2 3.62 · 10−5 8.86 · 10−4

$̂3 3.85∗ 6.71 · 10−4

Table 9: Conditional moment parameters

JAN 97- JAN 00

Parameter Estimate Standard error

φ̂1 −1.07 · 10−8∗ 4.55 · 10−9

φ̂2 −5.63 · 10−3∗ 8.02 · 10−4

$̂1 3.81 · 10−10 2.17 · 10−10

$̂2 8.05 · 10−5 8.88 · 10−4

$̂3 4.23∗ 6.13 · 10−4

* Denotes results significant different from zero on the five percent level, obtained using asymptotic standard
errors

The results for the conditional kurtosis imply that only the square of the GARCH variance

equation helps to explain the time dependence. That only the σ4
t parameter is significant

should not be a total surprise since σ4
t contains the same information as σ2

t . Although there is

nothing in general that speaks against a specification were the conditional kurtosis can have

a terms linear in σ2
t . Further are both the intercept parameter and the parameter in front

of the GARCH variance equation contributing to the conditional skewness. The intercept

could indicate that there is some kind of default conditional skewness. The practical impact

of the default conditional skewness. depends on the magnitude of σ2
t . If σ2

t is sufficiently big

the φ1 parameter can for practical purposes be neglected. That is to say that the default

skewness plays its biggest role in periods of low volatility.

14



With the estimation results from table 6 and 7 we can compute the unconditional cumulants

implied by the estimated parameters. This is done using the Laplace transform in definition

4.2 together with theorem 3.1, 3.2 and corollary 3.1, We obtain a table for the unconditional

cumulants implied by the estimation results. This table is presented below.

Table 10: Unconditional moments

JAN 87- JAN 90 JAN 97- JAN 00

κYt
2 1.042 · 10−3 2.58 · 10−4

S(Yt) -0.154 −0.498

K(Yt) 8.520 11.262

S(Yt) and K(Yt) denotes the coefficient of skewness and excess kurtosis. The unconditional

moments imply that the estimated process has finite moments, at least up to the fourth.

We can see that for the 97-00 period, the obtained unconditional skewness coincide with the

empirical skewness . This result tells us that the conditional skewness is implied by a process

which have fairly the same and skewness as the empirical ditto.

5 Possible extensions

In this section we present some interesting possible extensions of the MVM GARCH (1,1)

process.

1. The first extensions is to develop methods to deal with the issue of temporal aggregation

along the same lines as with a symmetrical GARCH (1,1) process (see Drost and Nijman

(1993) and Drost and Werker (1996)). This could have implications in risk management

issues such as value at risk and expected shortfall.

2. The other extension is to address the risk premium issue in the same manner as Engle,

Lilien, and Robins (1987). That is specifying a more flexible version of the ARCH-M

process. In a more formal way:

Definition 5.1 (The MVM GARCH (1,1) in mean process) The MVM

GARCH (1,1) in mean stochastic process is defined by:

Yt = µ + λ1Vt + λ2f(σ2
t )︸ ︷︷ ︸

Riskpremium

+σt

√
VtZt

15



where L (Vt) is a probability measure with the domain on R+ with finite moments

L (Zt) = N(0, 1) λ1, λ2, µ ∈ R Both Vt and Zt are i.i.d sequences of random variables.

f(.) is arbitrary function. The GARCH equation is given by:

σ2
t = α0 + α1Y

2
t−1 + α2σ

2
t−1

where α0, α1 and α2 ∈ R+

One thing that this process implies is the possibility to test the impact to the mean

of the GARCH variance equation versus the stochastic mean dynamics. However this

process requires further work since we meet new problems of both mathematical and

statistical nature as well from the perspective of finance theory.

Both of the above possible extensions is to be regarded as work in progress.

6 Some concluding remarks

Here we have presented a new discrete time stochastic process which exhibits skewness and

models the time dependence in the variance (and higher moments) according to a GARCH

(1,1) scheme. We motivated this specification by doing an empirical investigation of powers

of return data. The conjecture is that time dependence in higher moments can be modeled as

a function of the time dependence in the variance. Further we derive some theoretical results

concerning the suggested process, we derived the unconditional moments of the process. We

also presented a specification of the process with the possibility to use maximum likelihood

estimations methods. This method is then used in order to estimate the process on stock

return data. The results is analyzed in the context of conditional skewness and kurtosis. We

also present some of the possible extensions from the suggested process.
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Appendix

A Proof of proposition 3.1

Proof. i) κYt
1 |Ft−1

κYt
1 |Ft−1 = E [Yt] |Ft−1

= µ + E (λVt|Ft−1) + E
[
σt

√
VtZt

]
|Ft−1

= µ + E [λVt] |Ft−1

= µ + λE (Vt) (i..i.d assumption Vt)

= µ + λκVt
1

ii) κYt
2 |Ft−1

κYt
2 |Ft−1 = E

[
Yt − κYt

1

]2 |Ft−1

= E
[(

λVt − λκVt
1

)2
+ 2

(
λVt − λκVt

1

)
σt

√
VtZt + σ2

t VtZ
2
t

]
|Ft−1

= E
[
λ2

(
Vt − κVt

1

)2
+ σ2

t VtZ
2
t

]
|Ft−1 (i.i.d assumption Zt and Vt)

= E
[
σ2

t |Ft−1

]
κVt

1 + λ2κVt
2 (i.i.d assumption Zt and Vt)

iii) κYt
3 |Ft−1

κYt
3 |Ft−1 = E

([
Yt − κYt

1

]3 |Ft−1

)

= E

[(
λVt − λκVt

1

)3
+ 3

(
λVt − λκVt

1

)2
σt

√
VtZt + 3

(
λVt − λκVt

1

)
σ2

t VtZ
2
t +

(
σt

√
VtZt

)3
]
|Ft−1

= E
[(

λVt − λκVt
1

)3
+ 3

(
λVt − λκVt

1

)
σ2

t VtZ
2
t

]
|Ft−1 (i.i.d assumption Zt and Vt)

= E
[
λ3 (Vt − E (Vt))

3 + 3λσ2
t

(
V 2

t − VtE (Vt)
)] |Ft−1

= 3λκVt
2 E

[
σ2

t |Ft−1

]
+ λ3κVt

3
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iv) κYt
4 |Ft−1

κYt
4 |Ft−1 = E

([(
Yt − κYt

1

)4 − 3
(
κYt

2

)2
]
|Ft−1

)

= E
[(

λVt − λκVt
1

)4
+ 6

(
λVt − λκVt

1

)2
σ2

t VtZ
2
t + σ4

t V
2
t Z4

t − 3
(
κYt

2

)2
]
|Ft−1 (i.i.d assumption)

= λ4κVt
4 + 6λ2κVt

3 E
[
σ2

t |Ft−1

]
+ 3

(
κVt

2 +
(
κVt

1

)2
)

E
[
σ4

t |Ft−1

]

B Proof of theorem 3.1

Proof. Assume the following stochastic process is stationary.

Yt = (µ + λVt) + σt

√
VtZt (B.8)

µ, λ ∈ R , σt ∈ R+, L (Vt) = D+ L (Zt) = N(0, 1) both Vt and Zt are assumed to be i.i.d.

Further D+ denotes a probability measure defined on R+ with finite moments.

The GARCH equation is given by:

σ2
t = α0 + α1Y

2
t−1 + α2σ

2
t−1

The second conditional cumulant is denoted as:

κYt
2 |Ft−1 = E

(
σ2

t |Ft−1

)
κVt

1 + λ2κVt
2 (B.9)

and its unconditional counterpart is denoted as:

κYt
2 = E

(
σ2

t

)
κVt

1 + λ2κVt
2 (B.10)

i) Determine the relation between E (Y 2
t ) and E (σ2

t ).
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E
(
Y 2

t

)
= E (µ + λVt)

2 + E
(
σ2

t

)
E (Vt)

⇔
E (Y 2

t )− E (µ + λVt)
2

E (Vt)
= E

(
σ2

t

)
(B.11)

ii) Determine the expression for E (σ2
t ).

E
(
Y 2

t

)− E (µ + λVt)
2 = α0E (Vt) + α1E (Vt) E

(
Y 2

t−1

)
+ α2

(
E

(
Y 2

t−1

)− E (µ + λVt)
2)

E
(
Y 2

t

)
=

α0E (Vt) + (1− α2) E (µ + λVt)
2

(1− α1E (Vt)− α2)
(B.12)

Which implies the following expression for E (σ2
t )

E
(
σ2

t

)
=

α0E(Vt)+(1−α2)E(µ+λVt)
2

(1−α1E(Vt)−α2)
− E (µ + λVt)

2

E (Vt)
(B.13)

iii) Use equation B.10 together with B.13 this yields:

κYt
2 = E

(
σ2

t

)
κVt

1 + λ2κVt
2

=

(
α0E (Vt) + (1− α2) E (µ + λVt)

2

1− α1E (Vt)− α2

− E (µ + λVt)
2

)
+ λ2var(Vt)

C Proof of theorem 3.2

Proof. Just like in the proof of the unconditional second cumulant we have stationary

process:
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Yt = (µ + λVt) + σt

√
VtZt (C.14)

µ, λ ∈ R , σt ∈ R+, L (Vt) = D L (Zt) = N(0, 1) both i.i.d Vt and Zt.

where D denotes probability measure defined on R+ with finite moments.

The GARCH equation is given by:

σ2
t = α0 + α1Y

2
t−1 + α2σ

2
t−1 (C.15)

The fourth cumulant is denoted as:

κYt
4 |Ft−1 = λ4κVt

4 + 6λ2κVt
3 E

[
σ2

t

]
+ 3E

[
σ4

t |Ft−1

]
κVt

2 (C.16)

and its unconditional counterpart is denoted as

κYt
4 = λ4κVt

4 + 6λ2κVt
3 E

(
σ2

t

)
+ 3

(
κVt

2 +
(
κVt

1

)2
)

E
[
σ4

t

]
(C.17)

i) determine the relation between E (Y 4
t ) and E (σ4

t ).

E
(
Y 4

t

)
= E(Z4

t )E
(
V 2

t

)
E

(
σ4

t

)
+ E (µ + λVt)

4 + 6E (Vt (µ + λVt))
2 E

(
σ2

t

)

= 3E
(
V 2

t

)
E

(
σ4

t

)
+ E (µ + λVt)

4 + 6E (Vt (µ + λVt))
2 E

(
σ2

t

)

E
(
σ4

t

)
=

E (Y 4
t )− E (µ + λVt)

4 − 6E (Vt (µ + λVt))
2 E (σ2

t )

3E (V 2
t )

=
E (Y 4

t )− κ
3E (V 2

t )
(C.18)

ii) Take the square of the GARCH equation (σ2
t )

2
and determine a expression for E (σ4

t )

σ4
t = α2

0 + 2α0α1Y
2
t−1 + 2α0α2σ

2
t−1 + α2

1Y
4
t−1 + 2α1α2

(
σ2

t−1Y
2
t−1

)
+ α2

2σ
4
t−1
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note that the following is true:

σ2
t−1Y

2
t−1 = σ2

t−1

(
(µ + λVt−1) + σt−1

√
Vt−1Zt−1

)2

= (µ + λVt−1)
2σ2

t−1 + σ4
t−1Vt−1Z

2
t−1 + σ2

t−1 (µ + λVt−1) σt−1

√
Vt−1Zt−1

This yields that E (σ4
t ) can be written:

E
(
σ4

t

)
= α2

0 + 2α0α1E
(
Y 2

t−1

)
+ α2

1E
(
Y 4

t−1

)
+ 2

(
α0α2 + α1α2(µ + λVt)

2
)
E

(
σ2

t−1

)

+ E
(
σ4

t−1

) (
2α1α2E (Vt) + α2

2

)

Substitute E (σ4
t ) and E

(
σ4

t−1

)
with the expression in C.18 using the stationarity assumption

concerning the process Yt and solve for E (Y 4
t ). This procedure gives:

E
(
Y 4

t

)
=

3E (V 2
t )

(
α2

0 + 2α0α1E
(
Y 2

t−1

)
+ 2 (α0α2 + α1α2E(µ + λVt)

2) E
(
σ2

t−1

))

(1− (2α1α2E (Vt) + α2
2 + 3E (V 2

t ) α2
1))

(C.19)

+ κ
(1− (2α1α2E (Vt) + α2

2))

(1− (2α1α2E (Vt) + α2
2 + 3E (V 2

t ) α2
1))

Now use C.19 in C.18 to determine E (σ4
t ) .

E
(
σ4

t

)
=

α2
0 + 2α0α1E

(
Y 2

t−1

)
+ 2 (α0α2 + α1α2E(µ + λVt)

2) E
(
σ2

t−1

)
+ α2

1κ
(1− (2α1α2E (Vt) + α2

2 + 3E (V 2
t ) α2

1))

Using expression C.17 together with the above expression and expression B.13 the

unconditional fourth cumulant for the process can be written as:

κYt
4 = λ4κVt

4 + 6λ2κVt
3 E

(
σ2

t

)
+ 3

(
κVt

2 +
(
κVt

1

)2
)

E(σ4
t )

where

E (σ2
t ) =

(
α0E(Vt)+(1−α2)E(µ+λVt)

2

1−α1E(Vt)−α2
− E (µ + λVt)

2
)

1
E(Vt)

E (σ4
t ) =

α2
0+2α0α1

α0E(Vt)+(1−α2)E(µ+λVt)
2

(1−α1E(Vt)−α2)
+2(α0α2+α1α2E(µ+λVt)2)E(σ2

t )+α2
1κ

1−(2α1α2E(Vt)+α2
2)−3α2

1E(V 2
t )

κ = E (µ + λVt)
4 + 6(µ2E(V 2

t ) + 2µλE(V 3
t ) + λ2E(V 4

t ))E (σ2
t )
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D Estimation procedure

The MVM IG(δ,1) GARCH (1,1) process is estimated by solving a minimization problem

with non-linear constraints, i.e that is minimizing minus the log likelihood. The non-linear

constraints main purpose is to make sure that the optimization routine not diverge away

into unrealistic estimations of the conditional mean and conditional variance.It also makes

the possible parameter space significantly smaller. The optimization was obtained using

Gauss- Newton line search methods in fmincon routine in the Matlab program package with

analytical gradient and non linear constraints.

Definition D.1 (Outline of estimation procedure) The estimation problem can be

defined as follows:

min{−L(θ; yt, T )} under the constraint that





−0.1 ≤ µ + δλ ≤ 0.1

0 ≤ δ(α0 + λ2) ≤ 0.01

0 ≤ δα1 ≤ 2

0 ≤ δα2 ≤ 2

where θ = (α0, α1, α2, λ, δ, µ) and L(θ; yt, T ) is defined in proposition 4.1

Lemma D.1 (Analytical gradient) The analytical gradient was obtained using the

formulas for differentiation for the log of modified Bessel functions which can be found in

Barndorff-Nielsen and Blaesild (1981). In the expressions for the analytical gradient the

modified Bessel function of third order and index one and zero is denoted as K1(.) and

K0(.).

∂L
∂α0

=

∑T
t=1{1

2




(
λ2δ2+(xt−µ)2γ2

σ4
t

+
2(xt−µ)2λ2

σ6
t

)

(
δ2+

(xt−µ)2

σ2
t

)(
γ2+ λ2

σ2
t

) +

(
λ2δ2+(xt−µ)2γ2

σ4
t

+
2(xt−µ)2λ2

σ6
t

)

√(
δ2+

(xt−µ)2

σ2
t

)(
γ2+ λ2

σ2
t

)
K0

(√(
δ2+

(xt−µ)2

σ2
t

)(
γ2+ λ2

σ2
t

))

K1

(√(
δ2+

(xt−µ)2

σ2
t

)(
γ2+ λ2

σ2
t

))




+ 1
σ4

t

(xt−µ)2γ2−λ2δ2(
γ2+ λ2

σ2
t

)(
δ2+

(xt−µ)2

σ2
t

) + λ(µ−xt)

σ4
t

− 1
σ2

t
}
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∂L
∂α1

=

∑T
t=1{

x2
t−1

2




(
λ2δ2+(xt−µ)2γ2

σ4
t

+
2(xt−µ)2λ2

σ6
t

)

(
δ2+

(xt−µ)2

σ2
t

)(
γ2+ λ2

σ2
t

) +

(
λ2δ2+(xt−µ)2γ2

σ4
t

+
2(xt−µ)2λ2

σ6
t

)

√(
δ2+

(xt−µ)2

σ2
t

)(
γ2+ λ2

σ2
t

)
K0

(√(
δ2+

(xt−µ)2

σ2
t

)(
γ2+ λ2

σ2
t

))

K1

(√(
δ2+

(xt−µ)2

σ2
t

)(
γ2+ λ2

σ2
t

))




+
x2

t−1

σ4
t

(xt−µ)2γ2−λ2δ2(
γ2+ λ2

σ2
t

)(
δ2+

(xt−µ)2

σ2
t

) + x2
t−1

λ(µ−xt)

σ4
t

− x2
t−1

σ2
t
}

∂L
∂α2

=

∑T
t=1{

σ2
t−1

2




(
λ2δ2+(xt−µ)2γ2

σ4
t

+
2(xt−µ)2λ2

σ6
t

)

(
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E Figures

Figure 1: Simulation of an MVM IG process
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