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Abstract

In this paper, we examine whether industry-level forecasts of CPI and PPI in°ation can

be improved using the \exchange rate pass-through" e®ect, that is, when one accounts for the

variability of the exchange rate and import prices. An exchange rate depreciation leading to

a higher level of pass-through to import prices implies greater expenditure switching, which

should be manifested, possibly with a lag, in both producer and consumer prices. We build

a forecasting model based on a two or three equation system involving CPI and PPI in°ation

where the e®ects of the exchange rate and import prices are taken into account. This setup also

incorporates their dynamics, lagged correlations and appropriate restrictions suggested by the

theory. We compare the performance of this model with a variety of unrestricted univariate and

multivariate time series models, as well as with a model that, in addition, includes standard

control variables for in°ation, like interest rates and unemployment. Our results indicate that

improvements on the forecast accuracy can be e®ected when one takes into account the possible

pass-through e®ects of exchange rates and import prices on CPI and PPI in°ation.

¤An earlier version of this paper was presented at the 23rd International Symposium on Forecasting in Merida,

Mexico, 2003. We would like to thank the Symposium participants as well as Prasad Bidarkota, Jonathan Hill, Luis

Bernal, and Mehmet A. Ulubasoglu for comments on earlier drafts. All remaining errors are our responsibility.
yCorresponding author, e-mail: prasad.bhattacharya@¯u.edu. All authors are with the Department of Economics
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1 Introduction

Improving out-of-sample (real world) forecasts for domestic in°ation is a topic of continuing in-

terest and research. Fildes and Stekler (2002) survey historical accuracy of US and UK in°ation

forecasts coming from both macro-econometric as well as time series models and identify system-

atic errors as one of the qualitative failures to achieve accurate prediction. Zarnowitz and Braun

(1992) provide evidence of systematic errors in US in°ation forecasts and Mills and Pepper (1999)

discuss about errors in case of UK in°ation forecasts. Suggestions for improving forecast accuracy

involve greater use of economic indicators, which are incorporated in earlier studies. For example,

Stock and Watson (1999) model US in°ation using an indicator based on 168 disaggregate activity

indicators and achieve reasonable forecast improvements. Combining both aggregate and disag-

gregate indicators through Bayesian shrinkage procedures, Zellner and Chen (2001) also report

higher forecast accuracy in predicting US real GDP growth. Past studies in the literature also use

commodity prices as an economic indicator to achieve forecast improvements, though the results

are mixed. For instance, Pecchenino (1992) discusses the conditions under which commodity prices

are useful information variables for monetary policy and provides empirical results to suggest that

commodity prices may not be very useful for forecasting. Moosa (1998), using consumer prices and

four commodity price indices for OECD countries concludes that commodity prices can be used as

a leading indicator of in°ation although all the characteristics of an \optimal" leading indicator are

not veri¯ed. Franses and Ooms (1997) consider an extension of the fractionally integrated ARIMA

(0,d,0) model for quarterly UK in°ation and allow the fraction integration parameter (d) to vary

with the season `s' to get a long-memory model for UK in°ation. However, out-of-sample forecasting

from this model do not fare better as compared to other autoregressive, periodic autoregressive as

well as ARFIMA alternatives. These systematic errors and mixed evidences on in°ation forecasts

based on economic indicators are therefore not enough to explain the variability of in°ation in the

industrial countries. As a result, monetary policy makers try to look for some other adjustments

in domestic in°ation coming from \special factors" like import prices and exchange rates. The
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new open economy macroeconomics literature (Lane (2001) provides an excellent survey on this

topic) re-addresses the exchange rate °uctuation and the corresponding price changes issue using

intertemporal approaches to open-economy dynamics, the e®ects of market structure on interna-

tional trade and Keynesian nominal rigidities. Domestic in°ation can be in°uenced by the extent

of exchange rate pass-through e®ect towards domestic prices. The textbook de¯nition of exchange

rate pass-through is the percent change in local currency import prices resulting from a one percent

change in the exchange rate between the exporting and importing country. As argued in the local

currency pricing (LCP, see Devereux (1997)) or pricing to market (PTM see, Krugman (1987))

mechanisms, maintaining pricing in terms of buyers' or consumers' or importers' currency, the ex-

change rate pass-through e®ect to domestic prices of imported goods will be almost nil or zero.

On the other hand, pricing assumption in terms of sellers' or exporters' or producers' currency, as

conjectured by the producer currency pricing (PCP) models, will lead to a proportionate change

in the domestic prices of imported goods after a change in the nominal exchange rate. Obstfeld

(2002) and Engel (2002) are two important references that discuss the debate about exchange rate

regime choice based on these two contradicting pricing assumption. According to the ¯rst view,

domestic in°ation will be una®ected by the changes in the exchange rate and the related pass-

through e®ect, whereas, the second argument will call for suitable policy adjustment, as exchange

rate pass-through will signi¯cantly a®ect the domestic prices. Some studies in the past explore the

e®ect of exchange rate pass-through in predicting in°ation. For example, Ball (1999) incorporate

the degree of pass-through in the monetary policy rule to control in°ation. Kim (1998) employs

an vector error correction model to show that exchange rate appreciation has the predictable neg-

ative long-run e®ect on the US PPI. McCarthy (2000) uses a VAR model and impulse responses

based on that to examine the impact of exchange rates and import prices on the domestic PPI and

CPI for seven industrial countries, which includes Japan, USA and UK. His ¯ndings suggest that

import prices have much stronger e®ect than exchange rates in explaining domestic price in°ation.

This supports other studies like Boldin (1998) and Koenig (1998), which also achieve forecasting

improvements after including import prices in a CPI in°ation forecasting model. Taylor (2000),
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however, argues that the low level of in°ation in the nineties in the US can be one potential expla-

nation of lower pass-through e®ect or lower pricing power of the ¯rms, thus making exchange rate

pass-through endogenous in determining the optimal price level.

In this paper, we take the exchange rate pass-through e®ect (as an exogenous variable, unlike

Taylor (2000)) for predicting the behavior of future domestic prices. Based on the ideas of Obstfeld

(2001, 2002), we follow the framework of Bhattacharya et al. (2003), using monthly industry-level

price data for USA, UK and Japan that takes not only the pass-through e®ect to di®erent prices, but

also shows that there may be a potential di®erence in the pass-through e®ects towards import prices

and domestic prices of the imported goods. Obstfeld (2001) builds a theoretical model along this

line and Obstfeld (2002) provides empirical evidence for Keynesian-type sticky-price arrangement

in terms of sellers' or producers' currencies from US-Canada SITC level data. Bhattacharya et al.

(2003) ¯nd evidence of PCP to import prices at the point of entry and LCP to domestic prices of

imported goods. With the evidence of low pass-through e®ect towards domestic prices, the domestic

in°ation will not be much even if there is higher level of pass-through to import prices. Using this

structural concept, we do three months ahead out-of-sample in°ation forecasting for the industry-

level producer prices (PPI) and consumer prices (CPI). Thereafter, we compare our forecast results

from this structural model with forecasts from three di®erent alternative models chosen either

based on the data (univariate ARIMA model) or on the simple Philips curve concept (i.e., using

unemployment rate and interest rate, the models used are VARs). We also employ some non-linear

models based on the property of the price series and forecast future prices from these non-linear

alternatives. Our overall results support the structural model incorporating pass-through e®ect,

as it provides the smallest forecast variance as compared to other linear and non-linear models.

Therefore, our study points out that we can achieve better in°ation forecasts at a very disaggregated

price level for consumer prices and producer prices. This has signi¯cant policy implication in terms

of targeting in°ation from the Central Bank's policy perspective. Also, the study provides a pointer

for looking at the industry-level future price prediction that can be of help for the sectoral in°ation

analysis.
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The rest of the paper is organized in the following way. The next section contains two parts.

The ¯rst part provides a brief description of the simple model of Bhattacharya et al. (2003) that

shows the pass-through separation towards import and domestic prices. Thereafter, we brie°y

discuss the non-linear models used in this study. Section 3 provides the data description used in

the analysis. In section 4, we discuss the empirical methodology and a number of in-sample results,

including linearity tests. Section 5 presents estimated linear models and their relative forecasting

performance. Section 6 contains discussion regarding non-linearity across some price series. The

last section concludes with possible extensions to the current work. All tables are given in the ¯rst

appendix. Model testing results are reported in the second appendix. A third appendix contains

details of industry-level import data.

2 Linear and Non-linear Models

2.1 A Simple Linear Model

To put forward the exchange rate pass-through separation (as proposed by Obstfeld (2001, 2002))

from a simple framework, we distinguish between the following four prices: (1) Import prices of

foreign goods at the point of entry (denoted by imp) (2) Domestic prices of imported goods (denoted

by dig) (3) Domestic prices of import-competing goods (denoted by ddg) (4) Domestic prices, as

measured by the CPI (the ¯nal price consumers' pay at the point of sale). The dig and ddg are the

constituent parts of CPI. To investigate changes in CPI, we look for changes in either ddg or dig

or in both.

Under the LCP mechanism, neither the dig nor the CPI may change after exchange rate changes.

Our simple model of pass-through separation is based on markup adjustments by domestic im-

porters and foreign exporters. With di®erences in markup adjustments, there may be a di®erence

in pass-through transmission to di®erent prices in the short-run. With PTM, there is proportion-

ate and opposite adjustments in the markups after exchange rate changes resulting in zero or low

pass-through. However, with PCP both prices respond proportionately to changes in the exchange
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rate. Di®erent channels of exchange rate pass-through (denoted by (1) and (2), representing two

di®erent possibilities) can now be delineated in the following way.

(1) With an unexpected change in the exchange rate (say, due to unanticipated monetary shock),

there is pass-through to imp. There may be a potential markup adjustment by foreign exporters at

this point (in accordance with the PTM argument proposed by Krugman (1987)). The end result

will be either higher or lower pass-through to imp. This is the ¯rst and direct pass-through channel.

If the pass-through to imp is fast and of greater magnitude as compared to pass-through to

dig and CPI, then there would be changes in relative prices. This is important, for there to be

expenditure-switching there has to be a higher level of pass-through to imp but a low pass-through

to dig and CPI.

With transaction cost of the imported good added to the domestic price of the imported good,

there may be a price di®erence between imp and dig . In addition, domestic importers may charge

markup on the imported good (price of which is denoted by dig). With di®erent domestic markup

adjustment in dig vis-a-vis markup adjustment in imp (as described in (1) above), there may be

a relative price di®erence between dig and imp. Whether CPI changes or not depends on the

domestic markup adjustment re°ected in dig .

If there is domestic wage rigidity (or price rigidity, as proposed in a number of models, see the

related discussion in Bergin (2003) and the references within)1, ddg will not change very fast in

response to a domestic monetary shock that a®ects the exchange rate. The exchange rate change

will only a®ect the imp.2

(2) If there is no markup adjustment by foreign exporters at the entry point, the imp will change

proportionately with changes in the exchange rate. Since the ddg responds sluggishly, there is a

relative price di®erence between imp and ddg . To maintain the domestic sale of imported goods,

domestic importers may adjust the domestic markup in proportion to the imp hike. This will be

1Domestic wage rigidity leads to domestic price sluggishness as there may be a wage contract signed before the

unexpected monetary shock.
2This can happen if invoicing contract is signed a period ahead.
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re°ected in the dig . This is the mechanism emphasized by LCP or PTM. Thus the ddg and dig

remain at the level before the unanticipated shock. As a result, CPI will not change. This is the

second and indirect channel of exchange rate pass-through to dig and CPI.

After all the adjustments taking place as above, there still remains a relative price di®erence

between imp and dig as well as CPI. This may trigger expenditure-switching as is proposed and

shown in Obstfeld (2001, 2002) and Obstfeld and Rogo® (2000).

As this discussion suggests, the speed and extent of markup adjustment drives all the results

of high and low pass-through to imp and dig as well as CPI.

The second and indirect channel of pass-through to CPI, as described earlier, calls for looking

at the extent of domestic markup adjustments. Since we do not have data for the domestic cost of

production at the industry-level at monthly frequency therefore, we devise an indirect way to look

at this e®ect. Changes in CPI above re°ect changes in either ddg or dig or both. The dig attributes

adjustment at the second stage when the imported good enters the domestic distribution chain. So

the exchange rate change at the ¯rst stage of entry (re°ected in imp) can indirectly capture the

change in dig because the second stage adjustment happens if there is there a markup change at

the ¯rst stage due to changes in the exchange rate. Therefore, we take the exchange rate coe±cient

as a proxy to the adjustment in dig based on markups. In addition, if there is any change of PPI

or CPI due to a change in the dig (assuming that there is tradable component in production), it is

possible to separate out that e®ect. We denote this potential e®ect as the \carry-over e®ect". For

some industries, the data allows us to look for this e®ect.

The above discussion calls for data at a very detailed level. Unfortunately, it is di±cult to get the

industry-level domestic prices of the imported goods. Therefore, we have to make suitable changes

in the interpretation. The data we have include (1) consumer prices (CPI)(which re°ect prices of

¯nal products or ¯nal consumer goods), (2) import prices (IMP) for ¯nal goods, intermediate goods

as well as crude materials and (3) prices for domestic producers (PPI), which can be categorized in

terms of ¯nal goods, intermediate goods and crude materials. The ability to distinguish in terms

7



of end uses provides a better understanding of price movements.

Our setup is such that the exchange rate is exogenously determined and the model focuses on

the e®ect of unexpected changes in the exchange rate. Therefore, we deviate from the traditional

exchange rate pass-through estimation literature which typically includes other \control" variables,

like a measure of exporters' cost or cost from tari® barriers in the destination country as pointed out

in Goldberg and Knetter (1997), which provides a general review of pass-through studies. Import

prices for the analysis are exogenously given and these may re°ect monopolistically competitive

conditions in the exporting country as well as world trade costs. Within this framework, we build

three di®erent reduced-form systems to capture the e®ect of changes in the exchange rate on import

prices, producer prices as well as consumer prices.

System I : This setup analyzes various channels which transmit a change in the exchange

rate to the ¯nal goods prices measured by CPI. The CPI re°ects tradable (denoted by dig) and

non-tradable goods (denoted by ddg) prices. With a higher proportion of tradables, any change

in the exchange rate that a®ects their prices would lead to a signi¯cant change in CPI. Assuming

PCP, the e®ect will be full. On the other hand, under LCP-PTM mechanism, the extent of the

CPI change will be closer to zero.

In this scenario, home retailers import ¯nal goods (or tradables) from foreign countries. At the

point of entry, retailers pay the price, Pri for foreign exports, which possibly includes a markup

m¤
i ¸ 0 charged by the exporters. So retailers pay the import price, Pri such that:

Pri = (1 +m
¤
i )EP

¤
i (1)

where E denotes the exchange rate and P ¤i is the foreign currency price of the i-th good imported

in the home country. Depending on whether m¤i changes or not, a change in the exchange rate may

or may not be re°ected in Pri. As pointed out earlier, this is the ¯rst channel of short-run exchange

rate pass-through. Here foreign exporters can price discriminate between destination markets of

tradables.

In the home market, the retailers have to bear the transport and distribution costs of ¯nal goods
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before selling those to the consumers. Denoting this transaction cost for the i-th good as −ri, the

total marginal cost that the retailers face is:

MCri = Pri(1 + −ri) (2)

Letting the domestic markup charged by the retailer to be °i, we have the ¯nal price of the i-th

good as:

Pci = (1 + °i)MCri (3)

Given (2) and (1), the ¯nal price of the i-th good is:

Pci = (1 + °i)(1 + −ri)(1 +m
¤
i )EP

¤
i (4)

where, Pci denotes the ¯nal price of the i-th good. Equation (4) shows the link between E, import

prices and Pci as mediated by the various markups clearly. An import price increase driven by

an exchange rate depreciation (assuming no change in foreign mark-up) may or may not lead to a

proportional increase in consumer prices. This is the second channel of pass-through. The muted

or high response of domestic prices as a result of this import price hike can explained by changes

in the existing domestic markup, °i in the way we have described before.

The foreign and domestic markup adjustments can transmit the changes in exchange rate to

import prices and domestic prices. These adjustments can be a re°ection of sluggish nominal wage

adjustments in the foreign country as well as in the home country.

System II : Here, we concentrate on the case where ¯nal goods are produced domestically

with the help of tradable and non-tradable intermediate inputs. We allow for the possibility that

these intermediate inputs themselves have some imported components. Therefore, any change in

producer prices of ¯nal goods can be explained indirectly by changes in the exchange rate through

responsive changes in domestically produced intermediate inputs' prices as well as changes in the

prices of imported intermediate inputs.

To capture the underlying structure of System II in terms of the price adjustments, we look at

the following expression. In the case where domestic producers use imported intermediate goods,
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the price (Pni) they pay at the point of entry once the markup m
¤
ni ¸ 0 charged by the exporters'

is taken into account, will be given by:

Pni = (1 +m
¤
ni)EP

¤
i (5)

In addition to the transaction cost, −ni, associated with these imported inputs, the producer also

has to pay the wage wi per unit of output being produced domestically. Letting wi be the wage

rate and let li denote the unit labor requirement in the production of i-th good. The marginal cost

is:

MCni = Pni(1 +−ni) + wili (6)

Taking the domestic markup charged by the producer as ¹i, we have the producer price of the i-th

good as:

Ppi = (1 + ¹i)MCni (7)

Using (6), we get the producer price of the i-th good as:

Ppi = (1 + ¹i)[wili + (1 + −ni)(1 +m
¤
ni)EP

¤
i ] (8)

We have a similar interpretation in terms of markup adjustments and producer prices change

as before. The expenditure-switching is due to the relative price di®erence between the imported

inputs' prices and producer prices as a result of markup adjustments.

System III : This is similar to System I described earlier, with the di®erence that the ¯nal

goods prices are simply replaced by producer prices. In this case, instead of ¯nished retail goods

for consumption, we have ¯nished goods for production. As before, denoting the transaction cost

for the i-th good by −pi, foreign markup by m
¤
pi and the domestic markup charged by the producer

by ºi, the producer price of the i-th good will be:

Ppi = (1 + ºi)(1 + −pi)(1 +m
¤
pi)EP

¤
i (9)
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The channels through which change in exchange rate is passed through in this system is anal-

ogous to the ones described above. What di®erentiates the three systems is that the pass-through

is towards consumer prices in system I and towards producer prices in systems II and III.

2.2 Non-linear Models: An Appraisal

Our analysis so far rests on the linearity of price series assumption. However, this may not be nec-

essarily true. As a result, the forecast performance may change from a presumed linear parametric

model, whereas the underlying price dynamics may be non-linear. There is a growing literature con-

centrating on the forecast performance of various linear and non-linear models. Past studies apply a

variety of non-linear models like Threshold Autoregressive models ((TAR), see Tong (1990) in par-

ticular), Self-Exciting Threshold Autoregressive models ((SETAR), see Franses and van Dijk (2000)

for a comprehensive reference), Smooth Transition Autoregressive models ((STAR), see Terasvirta

(1994), Granger and Terasvirta (1993) for some useful discussion) and Markov switching models

(see, in particular, Hamilton (1989)) for a number of di®erent economic series and compare the

forecasts generated from these with simple linear alternative models. For example, Franses and

van Dijk (2001) look at 17 OECD countries' quarterly industrial production performance employ-

ing a host of seasonal and non-linear models. They ¯nd that in general, linear models with fairly

simple descriptions of seasonality outperform non-linear models at short forecast horizons, whereas

non-linear models with more elaborate seasonal components dominate at longer horizons. This is

a fairly established result in forecasting literature, which points the superiority of linear models

over non-linear alternatives when we compare point forecasts, with exactly opposite e®ect when we

compare interval and density forecasts. In a recent paper, Siliverstors and van Dijk (2003) reiterate

the above fact for G7 countries' monthly industrial production between 1960 and 2000. Medeiros

et al. (2001) use Smooth Transitions and Neural Networks to test for and model nonlinearities in

several monthly exchange rates time series and compare forecasting performance from these mod-

els with linear autoregressive and random walk models to conclude that non-linear models perform

better than the linear ones. This follows a growing literature of modeling non-linearities in real
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exchange rate adjustment as either TAR or STAR processes, as described in Coakley and Fuertes

(2001) and references within. Another macro variable, unemployment rate is also subjected to a lot

of non-linear modeling investigation. For example, Montgomery et al. (1998) and Hansen (1997)

¯tted a threshold model to the US unemployment rate, Rothman (1998) and Parker and Rothman

(1998) compare the performance of di®erent non-linear models in forecasting the US unemployment

rate. The mixed results either in support of linear or non-linear models point out some general

facts regarding choice of inappropriate measures of forecast performance (see, Clements and Smith

(1999)) and spurious non-linearity established by neglected heteroskedsticity, structural breaks or

outliers. Employing Tsay's (1986) F -test to examine for non-linearity, we use two parametric non-

linear models as well as STAR and TAR to see if we can achieve forecast improvements vis-a-vis

non-linear naive alternatives. These naive non-linear models are generated after either incorpo-

rating higher order polynomial terms of the lagged dependent variables or using the multiples of

di®erent dependent variables in the linear models as well as systems. Our analysis also points out

that non-linear models are not necessarily better in terms of achieving better forecasts. In fact,

it is the structural systems approach that is giving us the smaller prediction, thus supporting the

underlying triangularity of this methodology as described earlier.

3 Data and Descriptive Statistics

There are three countries, Japan, USA, and UK in our study. For Japan, we have monthly data

for import prices (IMP), producer prices (PPI), wholesale prices (WPI), trade-weighted exchange

rates and short term interest rates from Bank of Japan's web site. There are seven industries in our

analysis and the sample range is from 01/1971 to 12/2002 for a total of n = 384 observations. The

trade-weighted exchange rate is de¯ned as the Japanese Yen vis-a-vis a weighted index of major

trading countries' currencies. The civilian unemployment rate starts from 01/1976 and ends at

12/2002 thus providing n = 324 observations and we have collected this data from International

Labor Organization's (ILO) web site.
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The dataset for USA consists of monthly observations for the SITC level import prices (IMP),

producer prices (PPI), corresponding consumer price indices (CPI) and the trade-weighted ex-

change rate, de¯ned as U.S. dollar/weighted average of 27 countries' currencies, as well as monthly

observations for the overall civilian unemployment rate, federal funds rate and three-months Trea-

sury bill rate. The sample range for data varies across industries. For example, the sample for

monthly data for IMP runs from 01/1993 to 12/2002 for a total of n = 120 observations for ten out

of fourteen industries in our sample. For Mineral fuel and lubricants industries, we have n = 168

observations, for the period from 01/1989 to 12/2002. And for the rest of the industries, we have

n = 108 observations obtained from 01/1994 to 12/2002. The data series were obtained from the

Bureau of Labor Statistics's web site and from the Federal Reserve Bank of St. Louis's web site.

Note that, the time interval choice is guided by monthly data availability of the import prices, as

we use this in the analysis to look for the exchange rate pass-through e®ect.

For UK, the monthly data on import prices (IMP), producer prices (PPI) and civilian unem-

ployment rate are collected from National Statistics Online. Monthly trade-weighted exchange rate

and average discount rates for Treasury bills are downloaded from Bank of England's web site. In

all of the data series, the sample time interval is from 01/1991 to 12/2002 for a total of n = 144

observations. The data series and programs used for our analysis are available upon request.

All data series are transformed into a logarithmic scale and then di®erenced at lag one. There-

after, all these series are taken as deviations from their sample means. For forecast evaluation, we

set the validation sample of length n1 = 48 for thirty-one industries across all the countries. The

validation sample is of length n1 = 44 for four industries in USA. However, the training sample,

n0, varies across countries as well as across industries, in case of USA. For example, the training

sample is n0 = 336 in Japan but n0 = 96 in case of UK. Our choice of training and validation

samples is such that, for the monthly data, we exclude `outliers' from the validation samples; these

observations are taken care by appropriate dummy variables during the training sample estimation.

Tables 1 to 4 (see Appendix 1) show descriptive statistics for all data series (logged, di®erenced
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and demeaned) in our sample, separated by respective countries. The tables report sample standard

deviation, range, median, skewness and kurtosis and the normality test based on them. The ¯rst

panel in each table depicts the statistics based on the entire sample while the second panel reports

the statistics based on the validation sample only. In Japan (see Table 1), for full sample, the

normality assumption is rejected for every industry, however, for the validation sample, this is

accepted everywhere except for the chemical's industry (chemi). For USA (see Tables 2 and 3),

three industrial PPIs for full sample and eight for the validation sample out of twelve di®erent

industries support normality. Regarding CPI, validation sample results show normality in every

sampled cases, with only mineral fuel and lubricant's (m°) industry reporting non-normality for full

sample analysis. Three industries in the full sample and seven industries in the validation sample

support the normality assumption for UK industrial PPIs (see Table 4 for reference). Thus, in all

the countries, we get considerable evidence of normality in the validation sample.

4 Methodology

4.1 Linear Model Estimation

For a generic time series gt, we use B
j to denote the backshift operator Bjgt

def
= gt¡j , rgt to denote

the ¯rst di®erence operator rgt def= gt¡gt¡1. This will therefore denote growth rate. The univariate
ARIMA models take the form:

Á(B)yt = d
>
t ¯ + ¾»t (10)

where yt isr log gt, and dt is a (k£1) vector of dummy variables and a constant term with associated
coe±cient vector ¯. The autoregressive polynomial Á(B) is de¯ned as Á(B)

def
= 1 ¡

mX
i=1

ÁiB
i and

is usually restricted, with some of the Ái's being set to zero. It is also assumed that all the roots

of Á(B) = 0 are outside the unit circle. The error series »t was white noise with unit variance

for some of our models, »t
def
= ²t. Occasionally, however, it takes the form of a restricted moving

average »t
def
= µ(B)²t = ²t +

nX
j=1

µj²t¡j , with some of the µj's set to zero. The orders (m;n) of the
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ARIMA models were chosen using standard techniques, that is the correlogram, over¯tting tests

and diagnostic tests on the estimated residuals. Conditional least squares were used for estimation,

with backcasting employed only when the roots of the moving average polynomial µ(B) = 0 were

outside the unit circle.

The model of equation (1) is appropriate for a linear time series. Therefore, we tested for

linearity using the autoregressive part of the model and the omnibus F -type test of Tsay (1986), see

also Fuller (1995) and Tsay (2001). Let Á
def
= (Á1; : : : ; Ám)

> be the (m£ 1) vector of autoregressive
coe±cients, yt¡1

def
= (yt¡1; : : : ; yt¡m)> be the (m£ 1) vector of lagged values and de¯ne the m(m+

1)=2 £ 1 vector ht that consists of all the squares and cross-products of the elements in yt¡1. For
example, if m = 2 then ht = (y

2
t¡1; y

2
t¡2; yt¡1yt¡2)

>. The test for linearity is the usual F -test for

the null hypothesis H0 : ± = 0 in the augmented model:

yt = d
>
t ¯ + y

>
t¡1Á+ h

>
t ± + ¾»t (11)

where ± is the associated coe±cient vector. The results from this test, performed over the entire

sample, are given in tables 5, 6 and 7 in the ¯rst appendix. The null hypothesis of linearity is

rejected for six out of total thirty-¯ve industrial price series in the sample. In case of USA, for

mineral fuel and lubricants (m°) industry, we get non-linearity and for UK, medicinal product

(medi) series denotes absence of linearity. For Japan, four out of seven industrial WPIs show

considerable non-linearity. The absence of normality and linearity from all of these series call for

particular consideration in the modeling part and we comment on these issues in the following

sections.

The simple system concept we have mentioned in the introduction part can be converted into an

econometric framework, which can be used both for testing the implied triangularity of the three-

equation system we propose and for estimating short and long-run e®ects on prices. As mentioned

earlier, all our analysis is conducted in growth rates. Standard unit root and cointegration tests

were performed for the levels, but we found no strong evidence of cointegration for almost all our

systems. These tests are not presented here but are available on request. In what follows we
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describe the empirical implementation of a three equation system.

Consider a (3 £ 1) vector with CPI in°ation, PPI in°ation and growth rate of import prices,
say zt

def
= (yt; xt1; xt2)

0, and rede¯ne the growth rate of the exchange rate as xt3 ´ wt. All variables
are taken as deviations from their respective sample means. We assume that zt can be adequately

modeled by a vector autoregression with an exogenous input variable (VARX) as:

zt
def
=

pX
i=1

¦izt¡i +
qX
j=1

¯jwt¡j + ut (12)

where f¦igpi=1 are (3 £ 3) parameter matrices and f¯gqj=1 are (3 £ 1) parameter vectors. The
error vector ut is assumed to be multivariate white noise with variance-covariance matrix §. The

model in the above equation will be our broadest, unrestricted model (U-model). The U-model was

estimated using conditional least squares with the orders chosen by the Schwarz (BIC) criterion.

The implied triangularity of the conceptual model is now testable using this model. Consider the

restrictions implied by the following null hypothesis and corresponding to our ¯rst restricted model

(R1-model):

H0 :
©
¼iab = 0 j for a > b and a; b = 1; 2; 3ª 8i (13)

where ¼iab is the (a; b) coe±cient of ¦i. These restrictions imply absence of feedback from CPI

in°ation to PPI in°ation and from CPI and PPI in°ation to growth of import prices; they are

immediately testable using a Wald-type test applied to the U-model.

If the above null hypothesis is rejected we proceed by eliminating the insigni¯cant coe±cients

from the U-model and re-estimate the remaining parameters by seemingly unrelated regression

(SUR). This is our second restricted model (R2-model), which we then compare to the U-model

using a likelihood ratio (LR) test. If the R2-model is rejected in favor of the U-model we use the

estimates from the U-model to compute the long-run e®ects; if the R2-model is not rejected we use

its estimates to compute the long-run e®ects. Similarly, if the null hypothesis of triangularity is not

rejected, we proceed by eliminating the insigni¯cant coe±cients from the R1-model and re-estimate

the remaining parameters using SUR. This is our third restricted model (R3-model), which we now
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compare to the R1-model using a LR test. Depending on whether the R3-model is rejected or not

we use the estimates from either the R1-model or the R3-model to calculate the long-run e®ects.

We are reporting the model choice results in the second appendix. Forecasts coming from these

reduced models are denoted by SYS in the ¯rst appendix.

To illustrate the computation of the long-run e®ects, consider the U-model and re-write it using

lag operator notation as:

¦(L)zt = ¯(L)wt + ut (14)

where ¦(L)
def
= I3¡

pX
i=1

¦iL
i and ¯(L)

def
=

qX
j=1

¯jL
j . When the system is in long-run equilibrium we

expect that the variables do not deviate substantially from some ¯xed values, say their respective

means z¤ def
= E [zt], w

¤ def
= E [wt] and u

¤ def
= E [ut] = 0. Therefore, we have the representation:

¦(1)z¤ = ¯(1)w¤ (15)

from which all long-run e®ects can be easily computed by summing the estimates of the¦i's and the

¯i's. For example, the long-run e®ects of the exchange rate growth on CPI in°ation, PPI in°ation

and growth of import prices are given by the estimate of the vector @z¤=@w¤ def
= [¦(1)]¡1 ¯(1).

Letting ot
def
= (yt; xt1; xt2; xt3; rt; unt)

> be a (6£ 1) vector, we can write the unrestricted VAR1
model as:

©(B)ot = Cdt + S²t (16)

where the matrix autoregressive polynomial©(B) is de¯ned as©(B)
def
= I¡

pX
i=1

©iB
i and we assume

that obeys the stability condition det f©(1)g 6= 0. rt and unt denote changes in interest rate and
unemployment rate, respectively. As before, dt is a vector of dummy variables and constant term

with associated coe±cient matrix C, while ²t is bivariate white noise with identity covariance

matrix and S is the lower triangular decomposition for the covariance matrix §
def
= SS>. SUR

method of estimation is used in estimating the model's parameters with the autoregressive order set

as like the VARX model. After this initial estimation, we drop all the import prices and exchange
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rate variables from the above model and get VAR2, which represents that ot is a (4£1) vector now.
We again estimate this VAR2 using SUR. The results from SUR estimation are those reported in

the ¯rst appendix.

4.2 Non-linear Model Estimation

Out of thirty-¯ve price series in the analysis, we found non-linearity for six di®erent price series

across three countries. We ¯t four di®erent models to explain non-linearity and try to see if the

forecast performance improves once we employ these non-linear models.

The ¯rst model we consider is nothing but the model shown in equation 11. After rejecting the

null of linearity, we estimate this model with non-linear terms, identi¯ed by vector ht that consists

of all the squares and cross-products of the elements in yt¡1. We use conditional least squares to

estimate this model and then we perform three step ahead out-of-sample forecasts. RMSEs coming

from these are reported in the tables as N1, called so as we term this model as the ¯rst naive

non-linear model.

The second naive non-linear model (RMSEs denoted by N2 in the tables) is built from the

systems, when we incorporate these non-linear terms from equation 11 into the systems given by

equations 12 and 13. We use SUR to estimate these non-linear systems and then generated out-of-

sample forecasts. This is again a naive approach as we are not estimating a multivariate non-linear

system in full.

The third model we estimate is a pure non-linear parametric model, as described in Terasvirta

(1994). We take a Logistic Smooth Transition Autoregressive (LSTAR) model of order p as:

yt = ¼10 + ¼
>
1 wt + (¼20 + ¼

>
2 wt)(1 + exp[¡°(yt¡d ¡ c)])¡1 + ut (17)

where

ut » nid(0; ¾u2);¼j = (¼j1; ¼j2; :::; ¼jp)>forj = 1; 2; ° > 0andwt = (yt¡1; yt¡2; :::; yt¡p)> (18)

° in the above equation denotes smoothness parameter or transition rate, c is the threshold value

18



which represents the change from one regime to another, and d is the number of lags of transition

variable. We use AIC criterion to select a proper subset of lags accompanied by portmanteau tests

for residual autocorrelation. In most of the cases, we ended up using the same lags as in the linear

ARIMA model described earlier. To select the delay parameter, we deviate from the usual method

of employing linearity test vis-a-vis the non-linear alternative. Terasvirta (1998), Perez-Rodriguez

(2000), among others provide detailed references on this method. Instead, we estimate the model

with a number of di®erent delay values and then select the one that gives us the best prediction.

Conditional least square estimation is used to estimate the parameters of the model, and then we

have done three step ahead out-of-sample forecasts from this model. Results of the RMSE values

from the model is tabulated as STAR in the appendix.

Our last non-linear model is an one-regime Threshold Autoregression Model (TAR), as proposed

by Tong (1990) and Tong and Lim (1980). In this paper, we follow the Band-TAR speci¯cation

adopted by Coakley and Fuertes (2001):

yt = A(t)
LIt(zt¡d < ¡µ) +B(t)It(¡µ · zt¡d · µ) +A(t)UIt(zt¡d > µ) + et (19)

where

A(t)L = ®1(zt¡1 + µ) + ::::+ ®p(zt¡p + µ) (20)

A(t)U = ®1(zt¡1 ¡ µ) + ::::+ ®p(zt¡p ¡ µ) (21)

B(t) = ¯0 + ¯1zt¡1 + ::::+ ¯qzt¡q (22)

where the superscripts U and L refer to the upper and lower bands, respectively. It represents a

Heaviside indicator function, which equals 1 when the relevant condition is ful¯lled and 0 otherwise,

µ is the threshold value, d is the delay parameter, and et is an i.i.d N(0; ¾
2) noise term. The process

yt is guided by an inner (¯j) or outer (®i) autoregression on the basis of it's own lagged value, yt¡d,

which acts as the threshold or switching variable. If the roots of the outer band characteristic
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equation lie inside the unit circle then, for jyt¡dj > µ, the process reverts toward the band [-µ,µ]

and is stationary overall. Conditional least square estimation method is used to get the parameter

values with the best-¯t model is selected by BIC criterion. After estimation, we look for one-step

ahead forecasting from this model, RMSEs of those are reported as TARs in the appendix tables.

We evaluated the forecasting performance of all the above models (except TAR model) using

one, two, and three-steps ahead, rolling origin forecasts. In this case, the sample is training sample

is a moving window of ¯xed width n0, and the coe±cients are updated as the window `rolls' over

all the observations in the validation sample. We expect that in this way we will obtain a more

accurate treatment of the forecasting performance of di®erent models. Letting byt+h denote the h-
step ahead forecast made at forecast origin t we compare models based on their root mean-squared

error (RMSE):

RMSE =
"

1

n¡ n0
nX

t=n0+1

(yt ¡ byt+h)2
#1=2

(23)

which is equal to the forecast error standard deviation over the validation sample. A lower RMSE
indicates better model performance.

5 Linear Models and Forecasting Performance

The out-of-sample forecast performances from four di®erent models are presented in the ¯rst ap-

pendix. Here, columns of the tables report RMSEs from the univariate ARIMA model (ARMA),

system (SYS), VAR1 model (VAR1) and VAR2 model (VAR2) respectively. For all industries

across all countries, short-run forecasts (denoted by one month ahead forecasts) show that the SYS

outperforms other models as well as ARMA models in ¯fty-¯ve percent cases. Similarly, for the

long-run forecasts (i.e., for two and three months ahead predictions), SYS is the best predictor in

¯fty-eight percent of the sampled cases. Overall, for all the horizons, the proposed pass-through

e®ect improves the forecast prediction in forty-three percent of sampled industries prices. Look-

ing at the industry-level prices for all three countries, SYS for chemical industry in all countries
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short-run forecasts come out as the superior predictor. However, ARMA for metal industry in the

short-run is the e±cient predictor, thus showing no as such short-run pass-through e®ect. SYS for

textiles and wood in Japan and UK in the long-run show the least RMSEs, and, therefore, termed

as the best forecast model as compared to the other alternatives. Also petrol and fuel industry

SYS results point that in the long-run, the forecasts coming out from this model incorporating

pass-through is the e±cient one as it outperforms all the other models with the least RMSE. These

results support one of the general observations that because of its importance in every country's

imported goods bundle, price for petrol and fuel are more susceptible to changes in the exchange

rate and so the changes in pass-through e®ect follows. In the following subsections, we discuss

industry-level forecast performance for the three countries in the sample.

5.1 Evidence from industry-level WPIs in Japan

Table 8 reports the rolling forecast performance of wholesale prices across all the seven industries in

Japan. WPI forecasts coming from the system after incorporating the exchange rate pass-through

e®ects provide the best evidence of accuracy for two-months ahead horizon, as the results show

the lowest RMSEs for almost eighty-six percent of the sampled industries. Within these industries,

chemical (chemi) provides the highest improvement and petrol and fuel (petrol) reports the lowest

improvement from system forecasts. The predictions signify that exchange rate pass-through e®ect

can be one potential source to achieve better forecasts in future. However, for the other two

months ahead predictions, the system produces better forecasts for three out of seven industries

in the sample, showing that pass-through e®ects may not have enough explanatory power for

the remaining four industries' out-of-sample price predictions. Metal (metal) and petrol industry

prices show the highest extent of forecast accuracy increase for one-month and two-months ahead

prediction horizons respectively. Two-month and three-month ahead forecasts for metal depict

superiority of the univariate model in the longer horizon but for petrol and fuel, the systems

forecasts fare better. The traditional forecasting model (i.e., VAR2), based on interest rate and

unemployment rate, always outperforms the system over all horizons for food industry (food)
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prices. VAR2 also performs better than the system in two other instances, for one-month ahead

petrol and wood industry (wood) forecasts. The results show that in short run, there may not

be satisfactory pass-through of exchange rates that can explain the variability in these industries'

domestic prices. Rather, domestic factors have more explanatory powers at least for these industries

in the short run. For textiles (textiles), wood and petrol industries', consistent forecast accuracy is

reported from the system for more than one month ahead forecast horizons, pointing out the fact

that exchange rate pass-through e®ect has signi¯cant long run impact for these three industries.

Evidence from chemical industry also shows the relevance of pass-through e®ect in one-month and

two-months ahead forecasts. As a result, the conjecture of achieving forecast accuracy remain valid

in almost ¯fty-eight percent of the reported cases. Two representative manufacturing industries in

our sample, machinery and equipment (mach) and metal, however, contradict this view, as we get

the performance from univariate ARMA models are better for two out of three forecast horizons. A

quick look at the linearity tests table (see Table 4 for reference) shows non-linear price movements

for the machinery and equipment industry, and therefore, the forecasting performance based on

a linear system may not be adequate to capture this fact. This argument, on the other hand, is

void in cases of petrol, textiles and wood industries', as there is signi¯cant forecast error reduction

with lowest RMSEs from systems in the longer forecasting horizons, albeit non-linearity in these

industries data series. The later evidence supports the modeling technique involving pass-through,

as it provides superior forecasts.

5.2 Evidence from Industry-Level PPIs and CPIs in USA

Monthly rolling predictions for PPIs in USA (see Table 9) support the contention of achieving better

forecasts, as more than ¯fty-percent of the systems results provide lower RMSEs compared to other

models for all three forecast horizons. The sectoral evidences point out the signi¯cance of exchange

rate pass-through e®ects for predicting domestic producer prices in future. Chemical's (chemi) and

inorganic chemical's (inor-che) industries provide mixed support for forecast improvement from the

systems, as for three-months horizons predictions, VAR2 model performs better than the system,
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though the system predicts more accurate prices in shorter horizons. As a result, at least sixty-two

percent of the industries provide evidence of pass-through at various forecast horizons. Eight out

of total twelve industries show that there is forecast improvement from the system considering the

one-month ahead rolling forecasts with organic chemical's (org-che) industry showing the highest

and furniture's (furni) industry showing the least improvements over all the models. These two

industries remain the highest and lowest improvement generator for two-months ahead forecasts

also with the system forecasts for seven industries now outperforming all the other model forecasts.

The chemical industry drops out from the category of least one-month ahead systems forecasts

now. Three-months ahead forecasts show the same result as the two-months ahead case, with

¯fty-percent of the industries now supporting the system. Organic chemical's, again, provides the

highest forecast di®erence in comparison with all other industries with furniture, beverages (beve)

and rubber (rubber) now showing only marginal improvement. Therefore, for all the horizons,

organic chemical industry achieves the best forecast improvement and furniture the least forecast

improvement, thus pointing out that the extent of pass-through e®ect is much larger in the former

and comparatively lower in the later industry. Metalliferous ores ((metal), which is part of broad

SITC category, Crude materials except fuel) and fruit ((fruit), which is a sub category of SITC

Food and Live animals' industry) industrial prices, however, show that there is no as such pass-

through e®ect in these sectoral producer prices and rely on the univariate model to produce forecast

improvement. We have two sub categories, rubber and non-metallic minerals manufactures (nm-

min) of the broad Manufactured goods industry, and forecasting results from these can also be

termed as mixed in terms of achieving system forecast accuracy. For example, evidence from rubber

prices show the lowest RMSEs in two-months and three-months forecasts from the system, but in

comparison with the other industry, there is no evidence of forecast accuracy in terms of the systems.

We mention this result in particular, as Engel (1999) also points that there is not much evidence

of exchange rate pass-through towards the US Manufacturing industry in the short run, and our

forecast results partially con¯rm that. For all industries in USA, after incorporating standard

control variables for in°ation, interest rates and unemployment rates, the forecast performances
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are better than the VAR1 model, which takes of all potential pass-through e®ects as well as these

controls.

For CPI forecasting (see Table 10), mixed results are obtained from the system. For mineral

fuel industry (m°), the system performs best over all forecast horizons. Food and beverages (food.)

industry and apparels (appa.) industries, on the other hand, support univariate ARIMA model and

VAR2 model respectively. Therefore, exchange rate pass-through is not uniform across sectors and

for some cases, it is true that domestic unemployment rate and interest rate dynamics can predict

the consumer prices much accurately. Apparels industry case can be termed as a support towards

earlier ¯nding by Tootell (1998), which suggests that domestic variables are su±cient to explain

past US in°ation.

5.3 Evidence from Industry-Level PPIs in UK

Comparison from one-month ahead forecasts (see Table 11) for UK industrial prices show that for

seven out of total thirteen categories in our sample, there is signi¯cant improvement from the system

predictions as compared to other models. Wood industry (wood), which is a part of Crude materials

category under SITC depicts the least and pulp (pulp), also belonging to the same broad SITC

classi¯cation reports the highest improvement in out-of-sample forecasts, pointing out the fact that

there is considerable heterogeneity even within the same broad industrial structure. As a result, we

have to be careful in predicting real world prices of UK Crudes, as the pass-through e®ects generate

considerable forecast variation across the sub categories of this industry. From the two-months

and three-months ahead predictions, there is overwhelming support for the system forecasting

accuracy with seventy-seven percent of the sampled industries reporting the least RMSEs from

the systems as compared to other models in the analysis. As before, pulp and wood remain the

best and least prediction enhancement categories respectively, with textile fabrics (tex-fabs), non-

ferrous metals (nonfme) and electrical machinery (el-mach) industries joining the least forecast

error prediction category from the systems with higher forecast horizons. Metal ores (metal) and

medicinal products (medi) prices for all forecast horizons report lowest RMSEs from the univariate
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models thus depicting no possible improvements from exchange rate pass-through e®ects. Another

reason for this may be linearity assumption in the models, whereas the data series is not linear,

as is evident for the medicinal products industry (see Table 6 for reference). The VAR2 model,

with interest rates and unemployment rates as standard control variables for in°ation prediction

outperforms the system prediction only for the plastics industry (plastics), showing ine®ectiveness

of the possible exchange rate pass-through e®ects to predict PPI. Overall, ¯fty-four percent of

the forecast results for UK point out some kind of exchange rate pass-through e®ects to producer

prices that leads to forecast accuracy over all forecast horizons, after incorporating this e®ect in

the system.

5.4 Evidence from Industry-speci¯c prices across countries

Our system concept and forecast performance improvement is supported by cross-country evidences

also. For chemical's, the system results outperform all other models over all forecast horizons in

UK, for one-month and two-months ahead forecasts in Japan and for one-month ahead predictions

in USA. So, in the short-term forecasts, there is signi¯cant exchange rate pass-through e®ects

that explain lower in°ation in chemical's production prices in these countries. Results for longer

horizon, however, show that domestic factors provide better explanation for future forecasts in

USA and past values of this industry's prices predict future prices more accurately in Japan.

Organic chemical, a sub category of Chemical's industry also support forecast accuracy from the

systems in USA and UK. Results from Machinery, too, point out that there is signi¯cant forecast

improvement relying on the systems approach. Two-months ahead price predictions in Japan, all

horizon forecasts from UK and results from electrical machinery, which is a part of broad Machinery

category in USA provide ample support for exchange rate pass-through. Long term forecasts of

petrol in Japan and USA serve another pointer for the role played by pass-through e®ect in future

gasoline price determination. All forecast horizon results in Japan and one-month and three-

months ahead forecast error reduction in UK for textile's industry also provide substantial evidence

towards the systems concept proposed to achieve better forecasts. In case of USA, however, VAR2
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model outperforms all other models in textile industry price prediction, pointing that, standard

control variables may have better explanatory power. For wood industry, Japan's all future horizon

forecasts and UK's one-month and three-month ahead results prove the supremacy of the systems

concept to achieve better predictions. Only in metal and food industries, forecasts from systems

are not the best as these do not provide the least prediction errors. All evidences therefore point

out that for future price prediction in a number of important industries across these advanced

countries, exchange rate pass-through e®ect can be judged as an important determinant of long

term e®ects and we can have forecast accuracy if we take into account this e®ect.

6 Forecasting Performance from Non-linear Prices across Coun-

tries

Tables 12 and 13 in the ¯rst appendix show the results from four alternative non-linear models

analyzed here after ¯nding non-linearity in the corresponding prices across countries. Table 12

denotes RMSEs for Japanese WPIs and Table 13 has the result for UK. First two columns for

each-month ahead forecasts in the tables report RMSEs from the naive nonlinear models. STAR

denotes RMSEs generated from out-of-sample forecasting after using Logistic Smooth Transition

Autoregressive (STAR) models for the corresponding non-linear price series. The last column

depicts RMSEs from out-of-sample forecasting generated after employing one-regime Threshold

Autoregressive (TAR) models for these non-linear price series. As a result, last two columns depict

actual non-linear model forecasts vis-a-vis \naive" forecasts from simple alternative non-linear

models.

If the price series follow considerable non-linear dynamics, then forecasting performance from

actual non-linear models will show considerable improvement over naive non-linear or linear models.

However, for Japan, Petrol, Textiles and Wood WPIs show that naive non-linear forecasts from the

systems performs the best, both in the short-run and long-run ahead cases. For Mach WPI, in the

long-run, the naive non-linear ARMA performs the best, with the short-run result again supporting
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the systems approach. As a result, we can say that these price series data generating process is not

guided by any parametric non-linear procedure. It's rather guided by some structural adjustments

in the economy, which is being explained by the exchange rate pass-through e®ect, as described in

the systems approach.

Results from Medi. PPI for UK, on the other hand, support considerable non-linearity as the

RMSEs from the parametric LSTAR model report the lowest RMSEs. This disproves the claim that

exchange rate pass-through e®ect may have some explanatory power for future price movements.

This is also supported from table 11, as the univariate ARMA models depict the lowest RMSEs.

A quick look at table 13 shows marginal improvements in terms of short-run and long-run e®ects,

but nevertheless, it drives the point that there is considerable non-linearity in Medi. pricing which

may be totally disconnected with the exchange rate °uctuations. This may support the point

that there is some amount of local currency pricing or pricing to market going on for future price

determination in this industry.

7 Concluding remarks

We evaluate the forecasting performance of a number of models for domestic in°ation for three

developed countries, Japan, USA and UK. Our results are part of a project dealing with the con-

struction and evaluation of forecasting models that can be of practical use in real-time forecasting.

Our analysis, based on linear models as well as non-linear models, suggests that models based on

exchange rate pass-through e®ects improve upon the forecasts of three other linear models in a

majority of cases. This, therefore, support the contention that, \special factors", i.e., import prices

and exchange rate can provide signi¯cant policy guidance for domestic monetary authorities. With

the advanced countries in our analysis supporting °exible exchange rate regime with higher level of

capital mobility, targeting and achieving better in°ation forecasts provide an important guidance to

other countries domestic monetary policy choice. Among the data used in the paper, six industrial

price series failed to pass the linearity test and we also explored the potential advantages of nonlin-
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ear models in forecasting future prices. Considering non-linearity, the results are mixed, as naive

non-linear models perform better than the parametric and non-parametric non-linear alternatives

in half of the cases. For future analysis, we are exploring multivariate non-linear models to capture

the true non-structural data generating process of these price series vis-a-vis structural models.
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Appendix 1: Tables

Table 1. Descriptive Statistics for WPIs in Japan

Industry s R m S K N
Full Sample

Chemi 0.011 0.163 -0.001 5.743 60.971 55591.070

Food 0.006 0.0053 -0.001 2.000 10.690 1195.864

Mach 0.006 0.069 0.001 2.312 18.901 4364.384

Metal 0.008 0.136 -0.002 7.706 91.737 129112.300

Petrol 0.025 0.286 -0.003 1.747 14.835 2423.691

Textiles 0.011 0.141 -0.001 3.418 30.628 12893.400

Wood 0.024 0.344 -0.003 4.794 47.554 33059.400

Validation Sample

Chemi 0.005 0.028 -0.001 0.636 4.242 6.193

Food 0.003 0.013 -0.002 0.015 2.821 0.064

Mach 0.005 0.019 -0.001 0.051 2.324 0.913

Metal 0.002 0.009 -0.002 -0.479 3.610 2.533

Petrol 0.018 0.085 0.003 -0.057 2.817 0.091

Textiles 0.006 0.024 -0.001 0.402 2.327 2.155

Wood 0.006 0.029 -0.003 -0.096 2.774 0.174
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Table 2. Descriptive Statistics for PPIs in USA

Industry s R m S K N
Full Sample

Meat 0.014 0.072 -0.001 0.049 2.549 1.054

Fruit 0.002 0.012 -0.001 0.583 3.260 7.083

Beve 0.003 0.024 -0.001 0.964 5.210 42.679

Metal 0.005 0.033 -0.001 0.077 4.875 26.366

Chemi 0.005 0.029 -0.001 0.406 3.366 3.938

Org-che 0.015 0.101 -0.001 0.769 5.950 49.367

Inor-che 0.010 0.070 -0.001 2.216 11.840 484.961

Rubber 0.003 0.017 -0.001 0.950 4.530 29.538

Nm-min 0.002 0.012 -0.001 0.555 3.735 8.794

Me-mach 0.004 0.033 -0.001 0.744 5.030 31.440

El-mach 0.001 0.011 0.001 -0.371 3.647 4.801

Furni 0.001 0.156 -0.001 -0.449 4.733 26.552

Validation Sample

Meat 0.014 0.072 -0.001 0.058 2.950 0.032

Fruit 0.001 0.001 -0.001 0.751 3.612 5.265

Beve 0.004 0.017 -0.001 1.419 5.214 25.936

Metal 0.004 0.016 -0.001 -0.154 2.475 0.740

Chemi 0.006 0.027 -0.001 -0.281 2.759 0.750

Org-che 0.016 0.060 0.004 -0.614 2.576 3.096

Inor-che 0.011 0.070 -0.001 2.992 17.158 472.597

Rubber 0.003 0.017 0.001 0.668 4.431 7.674

Nm-min 0.002 0.010 -0.001 0.111 2.708 0.270

Me-mach 0.001 0.011 -0.001 -1.107 8.903 72.875

El-mach 0.002 0.011 -0.001 -0.611 2.660 3.217

Furni 0.001 0.001 -0.001 -0.517 4.083 4.117
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Table 3. Descriptive Statistics for CPIs in USA

Industry s R m S K N
Full Sample

M° 0.038 0.262 -0.005 0.410 5.936 31.232

Food. 0.003 0.026 -0.001 1.875 13.510 5.660

Appa. 0.020 0.075 -0.001 0.027 1.855 5.854

Validation Sample

M° 0.054 0.262 -0.001 0.053 3.497 0.435

Food. 0.001 0.009 -0.001 0.772 3.503 1.843

Appa. 0.023 0.075 -0.006 0.214 1.660 3.622
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Table 4. Descriptive Statistics for PPIs in UK

Industry s R m S K N
Full Sample

Toba 0.019 0.160 -0.005 2.176 12.152 611.889

Pulp 0.040 0.309 -0.001 -1.286 8.589 225.594

Wood 0.010 0.063 -0.002 0.780 4.995 38.240

Metal 0.024 0.128 0.001 0.269 3.124 1.818

Chemi 0.004 0.030 -0.001 0.529 5.712 50.526

Org-che 0.015 0.110 -0.001 0.541 6.034 61.835

Medi 0.017 0.222 -0.001 3.528 40.436 8646.957

Plastics 0.024 0.155 -0.001 0.179 4.494 14.079

Tex-fabs 0.002 0.022 -0.001 0.981 9.442 270.190

Iron 0.016 0.098 -0.001 0.346 3.563 4.756

Nonfme 0.027 0.142 -0.001 -0.101 2.771 0.557

Mach 0.002 0.012 -0.001 1.251 4.713 54.798

El-mach 0.003 0.039 -0.001 3.623 29.068 4362.043

Validation Sample

Toba 0.013 0.055 -0.005 1.816 5.352 37.475

Pulp 0.032 0.154 0.003 -0.544 3.267 2.510

Wood 0.008 0.059 -0.001 1.222 10.495 124.289

Metal 0.018 0.082 0.001 -0.503 3.010 2.019

Chemi 0.002 0.015 0.001 0.476 3.840 3.220

Org-che 0.014 0.077 -0.002 0.466 4.737 7.773

Medi 0.013 0.095 -0.001 -4.094 24.843 1088.363

Plastics 0.021 0.078 -0.001 0.382 2.101 2.784

Tex-fabs 0.002 0.012 -0.001 -1.073 4.759 15.402

Iron 0.013 0.071 -0.001 -0.021 3.757 1.151

Nonfme 0.026 0.136 0.002 0.029 3.526 0.561

Mach 0.002 0.010 -0.001 1.177 6.593 36.914

El-mach 0.002 0.011 -0.001 0.036 3.357 0.267
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Note: the descriptive statistics for the above tables are, in column order: sample std. deviation, range,

median, sample skewness, sample kurtosis and normality test.

Table 5. Linearity Tests: For Industry-level WPIs in Japan

Industry WPI Chemi Food Mach Metal Petrol Textiles Wood

F-test 1.027 1.782 11.642 1.637 5.091 6.006 6.532

p-value 0.381 0.150 0.000 0.136 0.025 0.015 0.000

Table 6. Linearity Tests: For Industry-level PPIs and CPIs in USA

Industry PPI Meat Fruit Beve Metal Chemi Org-che

F-test 0.369 1.758 0.168 0.334 0.093 0.074

p-value 0.775 0.144 0.683 0.917 0.760 0.785

Industry PPI Inor-che Rubber Nm-min Me-mach El-mach Furni

F-test 0.594 1.171 0.502 0.680 0.647 0.665

p-value 0.554 0.325 0.480 0.412 0.692 0.618

Industry CPI M° Food. Appa.

F-test 3.801 1.267 1.118

p-value 0.013 0.272 0.359

Table 7. Linearity Tests: For Industry-level PPIs in UK

Industry PPI Toba Pulp Wood Metal Chemi Org-che Medi.

F-test 1.170 0.526 0.235 1.412 1.057 0.862 3.245

p-value 0.327 0.665 0.872 0.242 0.306 0.463 0.025

Industry PPI Plastics Tex-fabs Iron Nonfme Mach El-mach

F-test 0.715 0.286 0.698 0.102 0.046 0.036

p-value 0.544 0.835 0.555 0.959 0.829 0.848
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Table 8. Forecasting Performance for WPIs in Japan

Industry Monthly Rolling Forecasts

ARMA SYS VAR1 VAR2 ARMA SYS VAR1 VAR2 ARMA SYS VAR1 VAR2

One-month ahead Two-months ahead Three-months ahead

Chemi 5.58 5.56 6.65 5.84 5.45 5.01 7.52 5.68 5.08 5.14 7.35 5.46

Food 3.11 3.21 3.41 3.02 3.14 3.07 3.73 3.06 3.14 3.08 3.73 3.04

Mach 5.23 5.57 5.81 5.80 5.47 5.18 5.72 5.59 5.13 5.21 5.85 5.18

Metal 2.19 2.07 3.01 2.47 1.90 2.01 3.49 2.19 1.93 1.98 3.71 2.28

Petrol 18.32 19.61 20.18 19.39 19.74 19.62 22.72 21.02 19.95 19.15 24.66 21.37

Textiles 7.16 6.67 8.94 7.79 6.92 6.63 8.12 7.37 6.56 6.52 8.23 6.76

Wood 5.55 6.15 8.01 6.01 6.73 6.39 10.67 7.23 6.98 6.41 10.89 7.52

Table 9. Forecasting Performance for PPIs in USA

Industry Monthly Rolling Forecasts

ARMA SYS VAR1 VAR2 ARMA SYS VAR1 VAR2 ARMA SYS VAR1 VAR2

One-month ahead Two-months ahead Three-months ahead

Meat 14.96 14.54 27.87 22.54 14.85 14.55 26.18 21.14 14.86 14.54 29.95 22.70

Fruit 1.78 1.98 3.31 2.62 1.82 1.90 3.25 2.55 1.85 2.00 2.95 2.48

Beve 3.86 3.84 6.85 5.42 3.86 3.83 6.31 5.21 3.89 3.88 6.51 4.97

Metal 3.39 3.54 10.92 5.49 3.57 3.71 14.95 5.85 3.76 3.88 20.37 6.53

Chemi 5.92 5.81 7.88 5.99 6.23 5.97 8.63 5.94 6.38 6.12 8.19 5.96

Org-che 17.05 16.14 24.18 16.67 17.59 15.72 26.32 17.65 17.61 15.97 23.86 18.23

Inor-che 11.64 11.55 15.03 11.71 11.71 11.18 14.10 11.78 11.25 11.20 13.24 10.89

Rubber 3.30 3.23 5.38 4.26 3.32 3.25 5.34 4.10 3.15 3.14 5.15 3.84

Nm-min 2.26 2.30 5.11 3.14 2.26 2.32 4.48 3.14 2.26 2.28 4.50 2.94

Me-mach 1.73 1.96 4.28 2.47 1.74 1.88 4.70 2.28 1.74 1.90 3.11 2.11

El-mach 1.53 1.47 2.67 2.12 1.60 1.48 2.37 2.04 1.58 1.50 2.45 2.02

Furni 1.32 1.31 3.30 1.93 1.33 1.32 2.62 1.66 1.29 1.28 2.84 1.75
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Table 10. Forecasting Performance for CPIs in USA

Industry Monthly Rolling Forecasts

ARMA SYS VAR1 VAR2 ARMA SYS VAR1 VAR2 ARMA SYS VAR1 VAR2

One-month ahead Two-months ahead Three-months ahead

M° 61.67 58.41 69.52 74.35 56.81 56.14 83.72 78.43 56.45 56.01 93.17 81.93

Food. 1.81 1.92 7.74 3.29 1.84 2.06 6.38 3.25 1.86 2.09 4.67 3.15

Appa. 22.49 15.04 16.77 11.62 21.97 14.94 15.76 10.87 22.57 22.27 15.78 10.93

Table 11. Forecasting Performance for PPIs in UK

Industry Monthly Rolling Forecasts

ARMA SYS VAR1 VAR2 ARMA SYS VAR1 VAR2 ARMA SYS VAR1 VAR2

One-month ahead Two-months ahead Three-months ahead

Toba 13.66 13.56 22.19 18.66 13.62 13.59 21.75 18.14 13.67 13.61 19.74 18.01

Pulp 29.96 28.56 34.84 30.09 31.39 29.61 35.33 30.55 35.06 32.45 35.06 32.74

Wood 8.36 8.34 9.27 8.96 7.99 7.96 9.48 9.12 8.04 7.97 8.98 8.64

Metal 18.02 18.07 20.37 19.63 18.05 18.32 19.06 18.88 17.97 18.37 18.48 18.26

Chemi 2.87 2.79 4.16 3.58 3.01 2.84 3.87 2.94 3.09 2.89 3.89 3.20

Org-che 14.24 13.60 14.86 14.72 14.79 13.82 15.21 14.09 14.88 13.93 15.83 14.66

Medi. 13.43 14.43 17.87 16.48 13.33 14.48 18.31 15.23 13.33 14.51 17.46 15.10

Plastics 19.88 20.04 20.02 17.15 22.00 21.91 22.38 18.26 21.53 21.43 23.93 19.65

Tex-fabs 2.24 2.31 2.90 2.68 2.23 2.18 2.78 2.55 2.30 2.18 2.81 2.60

Iron 13.47 13.00 14.61 14.09 14.27 13.78 16.39 15.08 14.30 13.83 16.42 15.47

Nonfme 25.78 25.94 29.95 26.57 25.40 24.99 29.25 26.96 25.53 24.88 28.20 26.37

Mach 1.82 1.67 2.51 2.12 1.82 1.67 2.53 2.12 1.81 1.67 2.38 1.99

El-mach 2.50 2.55 3.79 3.27 2.49 2.39 3.86 3.19 2.49 2.41 3.81 2.96
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Table 12. Forecasting Performance for Non-linear WPIs in Japan

Industry Monthly Rolling Forecasts

N1 N2 STAR TAR N1 N2 STAR TAR N1 N2 STAR TAR

One-month ahead Two-months ahead Three-months ahead

Mach 5.68 5.57 5.63 6.44 5.14 5.18 5.17 5.12 5.21 5.19

Petrol 20.21 19.63 21.06 na 20.28 19.61 21.11 19.99 19.15 20.46

Textiles 7.40 6.62 7.30 7.26 6.73 6.58 6.90 6.89 6.53 7.17

Wood 6.53 6.16 6.69 17.69 6.75 6.39 7.17 6.81 6.41 7.11

Table 13. Forecasting Performance for Non-linear PPI in UK

Industry Monthly Rolling Forecasts

N1 N2 STAR TAR N1 N2 STAR TAR N1 N2 STAR TAR

One-month ahead Two-months ahead Three-months ahead

Medi. 20.13 14.24 13.64 17.20 20.02 14.16 13.65 20.07 14.09 13.66

Note: In tables 12 and 13, N1 depicts RMSE values from naive ARMA model, N2 denotes RMSE values

from naive SYSTEMs, STAR denotes RMSEs from non-linear STAR models and TAR denotes RMSEs from

non-linear TAR models.

40



Appendix 2: Model choice results

Table A2.1 Nested Model Testing for System I

Country Industry R1 is correct R2 is correct R3 is correct

Japan Chemi 52.788 93.992 na

p-value 0.002 0.567 na

Japan Food 54.057 129.918 na

p-value 0.002 0.002 na

Japan Mach 46.112 72.193 na

p-value 0.064 0.999 na

Japan Metal 70.017 33.745 na

p-value 0.000 0.999 na

Japan Petrol 55.121 61.439 na

p-value 0.001 0.997 na

Japan Textiles 165.985 115.564 na

p-value 0.000 0.969 na

Japan Wood 63.177 69.462 na

p-value 0.000 0.995 na

USA M° 404.010 89.932 na

p-value 0.000 0.999 na

USA Food. 338.499 6.053 na

p-value 0.000 0.999 na

USA Appa. 67.792 77.684 na

p-value 0.000 0.888 na
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Table A2.2 Nested Model Testing for System II

Country Industry R1 is correct R2 is correct R3 is correct

USA Meat 21.825 na 21.802

p-value 0.351 na 0.995

USA Fruit 13.735 na 41.308

p-value 0.746 na 0.287

USA Beve 12.212 na 23.810

p-value 0.836 na 0.973

USA Metal 14.352 na 26.680

p-value 0.763 na 0.485

USA Chemi 44.851 66.422 na

p-value 0.001 0.059 na

USA Org-che 17.283 na 47.863

p-value 0.635 na 0.214

USA Inor-che 21.748 na 18.696

p-value 0.243 na 0.992

USA Rubber 21.686 na 27.366

p-value 0.357 na 0.949

USA Nm-min 9.220 na 27.155

p-value 0.980 na 0.983

USA Me-mach 7.252 na 68.739

p-value 0.995 na 0.001

USA El-mach 9.271 na 30.111

p-value 0.979 na 0.914

USA Furni 8.299 na 42.688

p-value 0.989 na 0.398
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Table A2.3 Nested Model Testing for System II

Country Industry R1 is correct R2 is correct R3 is correct

UK Toba 51.146 na 50.419

p-value 0.351 na 0.999

UK Pulp 64.107 46.194 na

p-value 0.000 0.464 na

UK Wood 19.018 na 10.727

p-value 0.088 na 0.978

UK Metal ores 24.510 23.351 na

p-value 0.017 0.612 na

UK Chemi 38.741 49.647 na

p-value 0.003 0.258 na

UK Org-che 18.275 na 37.008

p-value 0.107 na 0.012

UK Medi. 18.946 na 19.563

p-value 0.395 na 0.994

UK Plastics 27.529 na 40.591

p-value 0.069 na 0.237

UK Tex-fabs 16.874 na 26.804

p-value 0.531 na 0.838

UK Iron & Steel 24.781 na 39.093

p-value 0.131 na 0.252

UK Nonfme 22.944 20.027 na

p-value 0.028 0.829 na

UK Mach 11.898 na 39.744

p-value 0.852 na 0.194

UK El-mach 32.678 na 45.650

p-value 0.111 na 0.528
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Appendix 3: Industry-level import data description

Japan: Import prices are taken for the following industries

Chemicals (denoted by `Chemi' in the tables)

Foodstu®s and Feedstu® (denoted by `Food' in the tables)

Machinery and Equipment (denoted by `Mach' in the tables)

Metals and Related Products (denoted by `Metal' in the tables)

Petroleum, Coal and Natural Gas (denoted by `Petrol' in the tables)

Textiles (denoted by `Textiles' in the tables)

Wood, Lumber and Related Products (denoted by `Wood' in the tables)

USA: Import prices are taken for the following industries, numbers on left corre-

spond to SITC

01 Meat and meat preparations (denoted by `Meat' in the tables; subcategory of SITC category \Food and

live animals")

05 Vegetables, fruit and nuts, fresh or dried (denoted by `Fruit' in the tables; subcategory of SITC category

\Food and live animals")

11 Beverages (denoted by `Beve' in the tables; subcategory of SITC category \Beverages and Tobacco")

28 Metalliferous ores and metal scrap (denoted by `Metal' in the tables; subcategory of SITC category \Crude

materials, inedible, except fuels")

5 Chemicals and related products, n.e.s (denoted by `Chemi' in the tables)

51 Organic chemicals (denoted by `Org-che' in the tables; subcategory of SITC category \Chemicals and

related products")

52 Inorganic chemicals (denoted by `Inor-che' in the tables; subcategory of SITC category \Chemicals and

related products")

62 Rubber manufactures, n.e.s (denoted by `Rubber' in the tables; subcategory of SITC category \Manufac-

tured goods classi¯ed chie°y by materials")
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66 Non-metallic mineral manufactures (denoted by `Nm-min' in the tables; subcategory of SITC category

\Manufactured goods classi¯ed chie°y by materials")

73 Metalworking machinery (denoted by `Me-mach' in the tables; subcategory of SITC category \Machinery

and Transport Equipment")

77 Electrical machinery and equipment (denoted by `El-mach' in the tables; subcategory of SITC category

\Machinery and Transport Equipment")

82 Furniture and parts thereof (denoted by `Furni' in the tables; subcategory of SITC category \Miscellaneous

manufactured articles")

UK: Import prices are taken for the following industries, numbers on left corre-

spond to SITC

12 Tobacco (denoted by `Toba' in the tables; subcategory of SITC category \Beverages and Tobacco")

25 Pulp and waste paper (denoted by `Pulp' in the tables; subcategory of SITC category \Crude Materials")

24 Wood and cork (denoted by `Wood' in the tables; subcategory of SITC category \Crude Materials")

27 Metal ores (denoted by `Metal ores' in the tables; subcategory of SITC category \Crude Materials")

5 Chemicals (denoted by `Chemi' in the tables)

51 Organic chemicals (denoted by `Org-che' in the tables; subcategory of SITC category \Chemicals")

54 Medicinal products (denoted by `Medi.' in the tables; subcategory of SITC category \Chemicals")

57+58 Plastics (denoted by `Plastics' in the tables; subcategory of SITC category \Chemicals")

65 Textile fabrics (denoted by `Tex-fabs' in the tables; subcategory of SITC category \Manufactures")

67 Iron and Steel (denoted by `Iron' in the tables; subcategory of SITC category \Manufactures")

68 Non-ferrous metals (denoted by `Nonfme' in the tables; subcategory of SITC category \Manufactures")

7 Machinery and Transport Equipment (denoted by `Mach' in the tables)

716+75+76+77 Electrical machinery (denoted by `El-mach' in the tables; subcategory of SITC category

\Machinery and Transport Equipment")
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