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Abstract

A Vector Autoregressive model (VAR) with normally distributed innovations is a Curved

Exponential Model (CEM). Cointegration imposes further curvature on the model and this means

that in addition to the important reasons for conditioning in non-stationary time series as given

by Johansen (1995, EJ), there are further reasons due to the curvature of the model. This paper

investigates the e¤ects of conditioning on the likelihood ratio test statistic for the cointegrating

rank, which in this case is a natural approximate ancillary statistic. We investigate the e¤ect of

conditioning on this test statistic for inference on the long-run (beta) and also on the speed-of-

adjustment (alpha) coe¢ cients. We show that this conditioning gives virtually the same estimates

of the estimator variance as using the observed information instead of the expected information.

We examine the possibility of achieving asymptotic re�nements for inference on alpha using a

conditioning parametric bootstrap procedure.

Keywords: Conditional inference, cointegration, VAR, curved exponential models.

JEL classi�cation: C10 C32

1 Introduction

This paper considers conditional inference in a cointegration setting and the focus is on inference on

the adjustment coe¢ cients, usually denoted �: The motivation for conditioning here is the fact that
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models for cointegration are curved in a statistical sense as de�ned by Efron (1975). The curvature of

the model induces regions in the sample space where the inference is more di¢ cult, see van Garderen

(1995) and below and this provides a very direct argument for conditioning. There are various other

reasons for conditioning and some have been taken up already in the cointegration literature, most

prominently by Johansen in a number of articles.

Johansen (1995b) provides a very clear discussion of the role of conditioning on ancillary statistics

with non-stationary data. He shows that likelihood based asymptotic inference can be conducted

the same way for ergodic as for non-ergodic processes by conditioning, subject to strong exogeneity

conditions. He also shows that in a number of important cases the conditional distribution is far

simpler than the unconditional (marginal) distribution. Finally, he shows that the inverse of the

observed information provides a better, and more relevant measure for the uncertainty of the estimator

of the long run parameter than the inverse of the expected Fisher information and that the inverse of

the observed information is an appropriate measure of the variance, not of the marginal distribution

but of the conditional distribution of the estimator given the available information in the sample.

Sweeting (1992) actually shows conditional asymptotic normality of the Maximum Likelihood

Estimator (MLE) in a general setting when it is scaled by the random norm. There are some conditions,

but these explicity allow for non-ergodic processes.

One important reason for the acceptance of conditioning in the cointegration literature is that the

information matrix in the non-ergodic case is itself a random variable; the observed information scaled

by T�2 does not go to a �xed limit but converges toa random variable. Depending on the realised

sample-path there will either be very little information in the data, or a large amount of information.

Inference procedures should take this into account.

This is probably one of the reasons that Johansen (1995a) focusses on the long run parameter. The

adjustment coe¢ cients � converge at the usual rate and the information matrix block corresponding

to � is Op(T ) and approprately scaled does converge to its asymptotic expectation.

Conditioning is also used in a number of articles on small sample corrections for tests in the

cointegrating space. Johansen (2002b) considers Bartlett corrections for likelihood ration tests on the

cointegrating rank and Johansen (2002a) considers Bartlett corrections for likelihood ratio tests on
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the cointegrating vector. Conditioning on the common trends is actually used as a technical device

to derive the correction factors.

Hansen and Rahbek (2002) in the related context of testing for unit roots, consider conditioning

essentially to get rid of nuisance parameters. They use a Cox and Reid (1987) type adjustment of the

likelihood ratio test based on orthogonalizing the parameters.

There are a number of similarities between the Cointegrating Vector Autoregressive (CVAR) model

and the Single Structural Equation Model (SSEM). The way in which the MLE is calculated involves

solving an eigenvalue problem in both cases. Moreover, cointegration in the VAR plays a similar

role to overidenti�cation in the SSEM, since both are rank restrictions on the coe¢ cient matrices.

Another feature they share is that the number of parameters is less than the number of su¢ cient

statistics implying that they are both curved exponential models(see Hosoya, Tsukuda, and Terui 1989

and van Garderen 1997). This implies that in both models maximum likelihood estimation involves

a dimensional reduction of a statistic which contains all the sample information to the parameter

estimate which therefore can no longer contain all the information. This information can be recovered,

in certain circumstances by conditioning on an appropriate ancillary statistic, if one exists. This idea

was studied in the context of the SSEM by Hosoya, Tsukuda, and Terui (1989). They found that

the distribution of the Limited Information Maximum Likelihood (LIML) estimator depends on the

smallest characteristic root associated with LIML estimation. In the paper we investigate the e¤ect

of conditioning on the analogous statistic in the CVAR model, namely, the likelihood ratio test for

cointegration, also known as the trace test. We actually �nd a much stronger e¤ect of conditioning in

the CVAR than those found for the SSEM.

One di¤erence, however, is that when the single equation is exactly identi�ed, the model is a full

exponential model, whereas the VAR without rank restrictions is still a curved exponential model.

2 The Model

Consider a simple �rst order bivariate vector autoregressive (VAR) model in error correction form
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�Yt = �Yt�1 + "t; t = 1; : : : ; T (1)

where "t are zero mean independently normally distributed disturbances with contemporaneous co-

variance matrix 
. For simplicity we will assume that 
 is known throughout and can therefore be

set equal to the identity. The process is stable when the eigenvalues of the 2� 2 matrix (I2 +�) are

inside the unit circle. If exactly one of the eigenvalues is unity, the matrix � is of reduced rank and the

model becomes a cointegrated VAR (CVAR). Because the rank of � equals 1, we can write � = ��0

where � and � are 2-dimensional vectors. The vector � is known as the cointegrating vector with the

property that �0Yt is a stable process which de�nes an equilibrium relationship between the variables

in Yt. The adjustment vector � describes the reaction of the system to last period�s disequilibrium

�0Yt�1. The equilibrium space is a one dimensional space orthogonal to � called the attractor set

which is spanned by �?:

It is clear that any muliple of � would de�ne the same equilibrium since the orthogonal space

would be unchanged, and the only e¤ect is that the corresponding � is reduced by the same factor,

thereby leaving � unchanged. It is clear that � and � are not identi�ed and � cannot simply be

interpreted as the speed of adjustment. We can think of � and � in terms of their angles ' and �;

relative to horizontal axis, for instance, and their length. Their angles are unique (modulo �) but

their lengths are not. It is only the product of their length which is uniquely de�ned and coincides

with the non-zero singular value of �.

Let � be the eigenvalue of (I2 +�) that is inside the unit circle. Then � = 1 + �0� and describes

the memory of the disequilibrium, since

�0Yt = ��0Yt�1 + �
0"t (2)

Another key quantity is �1 which relates one-to-one to the maximal canonical correlation between

�Yt and �0Yt�1 as follows

�1 =
�2c

1� �2c

and to the largest singular value �1 of � and � as:

�1 =
�21

1� �2 :
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This �1 is the probability limit of the largest solution to an eigenvalue problem in the estimation

procedure, see Equation (18) below. N.b. the second eigenvalue in this problem has probability limit

equal to zero.

The ex-ante properties of the process are conveniently described in terms of the angle  = �� '

between � and � and the quantities � and �1:

Suppose the process in period t� 1 is in disequilibrium, i.e. �0Yt�1 6= 0: Conditional on this value

�0Yt�1 the process is expected to move by ��0Yt�1 along �; call this �Y etjt�1 = E [�YtjYt�1]. The �1

is the expected squared distance that the process covers towards equilibrium E

��
�Y etjt�1

�0
�Y etjt�1

�
;

where the expectation is over Yt�1.

From Equation (2) it is obvious that when � = 0 the disequilibrium in the next period, �0Yt,

is expected to be 0. This implies that within one period the process returns to equilibrium. More

generally, let Y �t denote the projection of Yt�1 onto the equilibrium set along � (see Figure 1), thus

Y �t = �?(�
0
?�?)

�1�0?Yt�1;

and let �Y �tjt�1 = Y �t � Yt�1 which is the total distance the process would need to cover along � in

order to get back to equilibrium. Then,

1� � =




�Y etjt�1





�Y �tjt�1



which is the proportion of the necessary total adjustment �Y �tjt�1 that is expected to take place. So,

for 0 < � < 1, the adjustment to equilibrium is partial, and for �1 < � < 0 the process overcorrects in

response to the disequilibrium. In the limiting case of � = 1, there is no adjustment to any equilibrium,

which can arise either due to the absence of cointegration (when � = 0), or because the process is

integrated of order 2 (� 6= 0).

The angle  determines the e¢ ciency of the expected return to equilibrium, in the following sense.

When  is equal to 180� the total distance to equilibrium, �Y �tjt�1, is the smallest possible because

the adjustment path is orthogonal to the equilibrium space, see Figure 1.

The Engle and Granger (1987) representation for Yt is

Yt = �? (�
0
?�?)

�1
tX
i=1

�0?"i + � (�
0�)

�1
t�1X
i=0

�i�0"t�i (3)
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Figure 1: The dynamics of the bivariate CVAR.

where �? and �? are orthogonal to � and � respectively, and where we have set the initial value

Y0 to 0. This representation is particularly useful in our present discussion, because it highlights

the distinction between the evolution of Yt along the equilibrium space determined by the common

stochastic trend
tX
i=1

�0?"i; (4)

and the evolution around the equilibrium space, as measured by the disequilibria

�0Yt =
t�1X
i=0

�i�0"t�i: (5)

By the Granger representation theorem it follows that Y �t = �? (�
0
?�?)

�1Pt�1
i=1 �

0
?"i. Moreover it

also follows that every shock "t can be decomposed into a permantent shock �0?"t and a transitory

shock �0"t.

2.1 Post Sample Inference

We now turn to the problem making inference on the parameters on the basis of a sample fYtgTt=1.

The theoretical properties of the system, as discussed in the previous section, determine the type of

sample paths that are likely to be observed. Ex-ante, i.e. before any given sample path is observed,
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the accuracy of any estimator is determined by averaging over all possible paths. Ex-post, however,

after the sample has been realized, it may turn out that the observed sample path is more or less

informative on the parameters than expected ex-ante, for the given parameter values and sample size.

In this section we give some heuristic discussion of post sample inference and in the next section we

take a more analytical approach based on the likelihood function.

First, consider estimation of �: There are two aspects of the data that govern the accuracy with

which � can be estimated: the dispersion along the equilibrium set and the dispersion around it. The

�rst one increases and the second reduces the accuracy.

If the observations are widely dispersed along the equilibrium set, as measured by cumulated

variation of the common trends (4), then we can very accurately determine the equilibrium relationship

de�ned by � (slope of the attractor set in Figure 1). If there is very little common trend variation,

for instance because the obervations are evenly spread around one particular equilibrium point, then

it is very di¢ cult to determine �.

The other case where we can estimate � accurately is when the dispersion around the equilibrium

set is small. In contrast, if the actual disequilibria are large, then � is less accurately estimated. This,

however, is a second order e¤ect relative to the dispersion along the equilibrium set, which relates to

the superconsistency of the MLE for �. Johansen (1995b, Section 6) provides a clear discussion of

these points.

Two contrasting cases are shown in Figure 2, which plots Y1 against Y2 for two realizations of the

process with identical parameter values and sample size (T = 50). One sample is very informative

about the equilibirum relationship and the other very uninformative.

Similarly, there are also two aspects of the sample that determine the accuracy with which � is

estimated: the dispersion around the equilibrium set and the accuracy of the estimator for �.

In the extreme hypothetical situation when we only observe the economy in equilibrium i.e.

�0Yt�1 = 0 for all t; then it is impossible to determine the disequilibrium adjustment coe¢ cient

�. Conversely, when the realized disequilibria are large, � can be estimated accurately. To demon-

strate this idea consider the case where � is known and � contains the slopes of the regression of �Yt
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Figure 2: Scatter plot of Y2t on Y1t for two di¤erent samples of size T = 50, drawn from the same

CVAR model with parameters � = (�:26; :16)0 and � = (1; 1)0 (thus, � = 0:9 and �1 = 1).

on �0Yt�1: Figure 3 plots the change in the �rst element of �Yt against the disequilibrium �0Yt�1 and

shows one sample that is very informative on the adjustment coe¢ cient �1 and the other not being

very informative.

More generally, � is unknown, and we can think of estimating � by �rst estimating �; which can

be done superconsistently, and then regressing �Yt on the generated regressor �̂0Yt�1: When �̂ is the

MLE, the OLS estimator of � in the regression just described, is also the MLE. Replacing �0Yt�1 with

�̂0Yt�1 induces a measurement error in the regression determining � and this error causes additional

variation in the distribution of �̂:

So for � we see two e¤ects of the variation in the disequilibrium terms: a direct e¤ect which is

positive and an indirect negative e¤ect caused by the less accurate estimation of �:

It is also interesting to note the asymmetry in the estimation of � and �: It is impossible to estimate

� accurately without an accurate estimate of �: It is perfectly possible, however, to estimate � very

accurately without an accurate estimate of �: In fact, the most accurate estimate of � is obtained

when there is no disequilibrium in the system and � cannot be estimated at all.
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Figure 3: Scatter plot of �Y1t on �0Yt�1, for two di¤erent samples of size T = 50; drawn from the

same CVAR model with parameters � = (�:26; :16)0 and � = (1; 1)0 (thus, � = 0:9 and �1 = 1).

3 Curved Models

The CVAR is embedded in a more general VAR model. The rank restrictions imposed on the �

matrix are non-linear and the CVAR is therefore a nonlinear subset of the embedding VAR. VARs

are generally thought of as being linear because the conditonal mean of the process depends linearly

on past values. In terms of their deeper mathematical structure VAR models are not linear because

they are not linear exponential models. As was shown in van Garderen (1997) a VAR is a Curved

Exponential Model (CEM) and is itself embedded in a larger linear- or Full Exponential Model (FEM).

The log-likelihood function of an FEM admits the following canonical representation:

l(�) = � � s� � (�) ; (6)

where � 2 H �Rk is the canonical parameter, s 2 S �Rk is the minimal su¢ cient statistic and �

denotes an inner product. If � is genuinely k dimensional, then the model is an FEM. If � lies on a

smooth manifold of lower dimension than d, the model is a CEM-(k; d). It will then be possible, at

least locally, to write � as a di¤erentiable function of a new parameter, � say. In that case we have

� = �(�), but there is no dimensional reduction in the minimal su¢ cient statistic s, as long as � (�)

is nonlinear. This is what characterizes CEMs, namely that the dimension of the minimal su¢ cient
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statistic is larger than the number of parameters, as shown in van Garderen (1997) for dependent and

non-identically distributed observations.

Turning to the VAR model (1), its likelihood is given by

l(�) = �T
2
ln j
j � T

2
tr
�
S00


�1 � 2S01�0
�1 + S11�0
�1�
�
; (7)

where S00 = T�1
PT

t=1�Yt�Y
0
t , S01 = T�1

PT
t=1�YtY

0
t�1 and S11 = T�1

PT
t=1 Yt�1Y

0
t�1. It is clear

from (7) that the model is a CEM, with � =
�

�1;�0
�1;�0
�1�

�
, s = (S00; S01; S11) and inner

product de�ned by the trace. It is clear that because of the symmetries involved, there are a number

of redundant elements in � and s. The dimension k is 10 in the bivariate VAR (n2 + n (n+ 1) when

Yt is n-dimensional), while the number of free parameters is 7 (n2 + n (n+ 1) =2). The di¤erence in

dimension is 3 (n (n+ 1) =2 in general). If 
 is known, as we are assuming throughout, the dimensions

reduce to 7 and 4 for s and � respectively.

Next, consider the CVAR, which imposes the restriction that the rank of � is equal to 1, so that

� = ��0. The log-likelihood (with 
 known and normalized to the identity) can be written as

l (�; �) = �T
2
tr (�2S01��0 + S11��0��0) : (8)

The dimension of the su¢ cient statistic remains the same, while the number of parameters is reduced

to 3, and hence the bivariate CVAR is a CEM-(7,3).

It is worth mentioning at this stage that if impose the additional restriction that � is known, the

model becomes a CEM-(3,2) and we can represent it graphically in full. In that case, the minimal

su¢ cient statistic becomes (S0� ; S��) ; where S0� = S01� and S�� = �0S11�. In contrast, when � is

assumed to be known, the model becomes CEM-(5,2).

Consequences of k�d > 0 The di¤erence in dimension between the minimal su¢ cient statistic

and the number of parameters has two immediate consequences. Any estimator of the parameters is

of lower dimension than that of any su¢ cient statistic s and cannot contain all the information. The

mapping s 7! �̂ is non-invertible but we could augment �̂ with an auxilliary statistic a say, such that

s 7!
�
�̂; a
�
is invertible. This statistic a could be used to recover information lost by the estimator

through conditioning on a. This is one of the important classical arguments for conditioning.
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Second, it is also clear that, because of the dimensional reduction in s 7! �̂; there will be di¤erent

values of s that give rise to the same value of �̂: In principal we can invert the estimator and �nd the

all the points in the sample space that result in the same value of the estimator �̂: For the MLE we

can easily characterize this inverted MLE by looking at the likelihood and its derivatives.

@l

@�0
= [s� �(�)]0

1�k

@�

@�0
k�d

(9)

J� = �
@2l

@� @�0
= I� �

dX
i=1

[si � �i(�)]
@2�i
@� @�0

(10)

where � = @�=@�0 is the expected value of s in the full embedding model and � (�) is the value

evaluated at � for the CEM. I� = �@�0

@�
@2�

@� @�0
@�
@�0 denotes the expected information w.r.t. � and J is

the observed information.

The MLE is found by setting the score (9) equal to zero. From this it is immediate that for �xed

�̂, and therefore �(�̂) and @�(�̂)=@�0 also �xed, all points s in the sample space such that s � �(�̂) is

orthogonal to @�(�̂)=@�0 satisfy the �rst order conditions. This characterizes the inverted MLE.

From the second derivative we see that the quantity s � �(�̂) determines (linearly) the di¤erence

between the observed and expected information. The expected information is always positive de�nite

as long as the parameters are identi�ed, but the observed information can be made singular by moving

s along the inverted MLE. When the observed information, and hence the Hessian, is singular, the

likelihood function is �at and has no unique maximum. The set of points in the sample space for

which this happens is called the critical set. In a neighbourhood of this critical set the MLE will be

more sensitive to small changes in s than for s close to its expected value �(�). We refer to regions

close to the critical set as the sensitive regions.

Note that J� = I� for all s; if and only if the model is full. The existence of a non-empty critical

set and the sensitive region is a direct consequence of the curvature of the model.

Proper inference procedures should take account of the fact that certain samples may fall in a

region where the MLE is more sensitive. This is a direct argument for conditioning on statistics which

indicate proximity of the observed sample to the critical set. The objective of this paper is to identify

statistics that can be used for this purpose.
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3.1 Inference on � when � known

To illustrate these ideas in the cointegration setting, consider the simplest possible framework where

� is assumed known. As we have already shown, this is a CEM-(3,2) with canonical parameter

� = (�1; �2; (�
2
1+�

2
2)=2)

0 and corresponding canonical statistic s =
�
S00� ; S��

�0
, and we can illustrate

the ideas above graphically. The expectation of s is (see Appendix):

�(�) = E

0BB@ S0�

S��

1CCA =
�0�

��
1� �2

�
�
�
1� �2T

�
=T
�

(1� �2)2

0BB@ �

1

1CCA (11)

where � = 1 + �0�: The MLE equals

b� (�) = S0�S
�1
�� : (12)

The observed information equals

J� = T S�� I2 (13)

which is singular when S�� is zero (the probability on this event is zero, but S�� close to 0 are possible).

This only happens when �0Yt�1 = 0 for all t; and hence S0� = 0: The critical set is therefore the origin

in the 3-dimensional sample space of the su¢ cient statistics. The interpretation of this event is of

course that there are no deviations from equilibrium at all.

The expected information, using the expectation of S�� is

I� = T

��
1� �2

�
�
�
1� �2T

�
=T
�

(1� �2)2
�0� I2 (14)

The di¤erence between the observation s and its expected value given the estimated parameter

value equals

s� �
�
�̂
�
=

0BB@ S0�

S��

1CCA� �0�
��
1� �̂2

�
�
�
1� �̂2T

�
=T
�

(1� �̂2)2

0BB@ �̂

1

1CCA = d �

0BB@ �̂

1

1CCA (15)

where the last equality follows from the fact that s � �
�
�̂
�
must be proportional to the orthogonal

complement of @�(�̂)=@�0; since by the �rst order conditions of the MLE
�
s� �

�
�̂
��0

@�(�̂)=@�0 = 0;

@�

@�0
3�2

=

0BBBBBB@
1 0

0 1

��1 ��2

1CCCCCCA ; with orthogonal complement
�
@�

@�0

�?
/

0BBBBBB@
�1

�2

1

1CCCCCCA
12



For a �xed �̂; this characterizes all the s that give the same value for the MLE.

From (15) it is straightforward to see that the proportionality factor d = S����0�=
�
1� �̂2

�
: The

total distance from �
�
�̂
�
to the critical set, (0; 0; 0)0, for that particular �̂ is �0�=

�
1� �̂2

�
and the

observation is therefore a proportion

rd =

�
1� �̂2

�2
(1� �̂2)� (1� �̂2T ) =T

S��
�0�

(16)

of this total distance away from the critical set. The sensitive region is when rd is close to zero and

the di¤erence between S�� and its expectation is negative.

The statistic rd can also be interpreted as measuring the ex-post variability of the disequilibrium

S��=�
0� relative to what would be expected ex-ante for the estimated value of �; which equals��

1� �̂2
�
�
�
1� �̂2T

�
=T
�
=(1� �̂2)2: Thus when the variability in the sample is higher than expected,

there is more information on � and � is more accurately estimated.

Figure 4 plots the ratio of the conditional over the unconditional variance of �1 and shows that

rd has a profound e¤ect on the accuracy of the MLE for �1:

The �gure shows a number of interesting facts. The �rst thing to notice is that the variance of �̂

depends heavily on rd: For small rd, the variance can three times larger than for large rd and more

than 30% larger than the unconditional variance. This means that if one is always reporting the

marginal variance

Next, we turn to hypothesis testing on the coe¢ cients �. We consider a point null hypothesis

H0 : � = �0 against a two-sided alternative H1 : � 6= �0. This has the convenient property that there

are no nuisance parameters under the null (when � and 
 are known, of course), so an exact test can

be constructed by Monte Carlo simulation. We compare two alternative tests of this hypothesis: (i) a

Wald test based on the expected information (14), denoted Wexp (�0;�) ; and (ii) a Wald test based

on the observed information (13), denoted Wobs (�0;�) : These are derived in the appendix, where we

also show that Wobs (�0;�) is equal to the Likelihood ratio test in this case. It is also shown in the

appendix that Wobs (�0;�) is invariant w.r.t. changes the parameter �1, it only varies with �.

Starting from Wexp, Figure 5 plots the 10% critical value of the test statistic conditional on rd;

and compares this with the exact marginal (unconditional) critical value and the associated critical
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Figure 4: Variance of the MLE of �1 in a bivariate CVARmodel with known �, conditional on the value

of the rd statistic, relative to its unconditional variance. The true parameters are � = (�0:26; 0:16)0

and � = (1; 1)0. Variances computed using a nonparametric Nadaraya-Watson estimator based on 105

Monte Carlo replications.
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Figure 5: Three di¤erent sets of critical values for the Wexp test of the hypothesis H0 : � = �0 when

� is known are plotted against the rd statistic. The parameters are �0 = (�:19;�:11)0, � = (1; 1)0 ;

hence � = 0:7. The sample size is T = 20: The dashed line is the asymptotic critical value �the 90%

quantile of the �2 (2) distribution. The dotted line gives the (simulated) exact 90% quantile of the

Wexp statistic under the null. The continuous line gives the estimated conditional 90% quantile of the

Wexp statistic given the rd statistic. This is estimated by simulation using 400000 replications split

over a set of 30 non-overlapping equally spaced grids.

value based on the �2 (2) asymptotic approximation. [ADD COMMENTS]. Figure plots the condi-

tional rejection frequency under the null hyphothesis (NRF) of the Wexp statistic when using the the

asymptotic critical value.

Next, we turn to Wobs and plot its critical values and null rejection frequencies in Figures 7 and

8 respectively. Adjusting for scale, we see a completely di¤erent picture than for Wexp; namely, the

e¤ect of conditioning is almost negligible. In other words, using the observed, as opposed to the

expected information results in much more reliable inference.

The above analysis relied on the assumption that � is known. This was mainly motivated by

the need to simplify the exposition of the key ideas, but it admits two more justi�cations. One
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Figure 6: This graph plots the rejection frequency of theWexp test of the hypothesisH0 : � = �0 (when

� is known) under the null conditional on the rd statistic. The parameters are �0 = (�:19;�:11)0,

� = (1; 1)
0
; hence � = 0:7. The sample size is T = 20: The conditional rejection frequency is estimated

by means of a non-parametric Gaussian kernel estimator based on 400000 replications of data from

the CVAR model under the null.
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Figure 7: Three di¤erent sets of critical values for the Wobs test of the hypothesis H0 : � = �0 when

� is known are plotted against the rd statistic. The parameters are �0 = (�:19;�:11)0, � = (1; 1)0 ;

hence � = 0:7. The sample size is T = 20: The dashed line is the asymptotic critical value �the 90%

quantile of the �2 (2) distribution. The dotted line gives the (simulated) exact 90% quantile of the

Wobs statistic under the null. The continuous line gives the estimated conditional 90% quantile of the

Wobs statistic given the rd statistic. This is estimated by simulation using 400000 replications split

over a set of 30 non-overlapping equally spaced grids.
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Figure 8: This graph plots the rejection frequency of theWobs test of the hypothesisH0 : � = �0 (when

� is known) under the null conditional on the rd statistic. The parameters are �0 = (�:19;�:11)0,

� = (1; 1)
0
; hence � = 0:7. The sample size is T = 20: The conditional rejection frequency is estimated

by means of a non-parametric Gaussian kernel estimator based on 400000 replications of data from

the CVAR model under the null.
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comes from economic theory, i.e. in situations when certain economic relationships imply known

cointegrating vectors. Prominent examples are the uncovered interest parity or the purchasing power

parity in international economics, see [...], the stationarity of real interest rates, see ...

Another justi�cation comes from the superconsistency property in the estimation of �; which

guarantees that the MLE b� converges faster to its true value than b�. We can argue that the rd
statistic can be approximated by an estimate brd, upon substitution of b� for � in (16). The error in
that approximation can be shown to be of order T�1: However, it remains to be seen whether this

property is useful in �nite samples.

3.2 Inference when � unknown

When the cointegrating vector � is unknown, the CVAR is a CEM-(7,3). The di¤erence in di-

mensions of the su¢ cient statistic and the parameters is four, implying that the inverted MLE is

four-dimensional.

As mentioned, � and � are not identi�ed and we need to impose a normalization. We consider a

generic normalization by the known vector c1 such that c01� = 1, and without loss of generality we

may take c01c1 = 1 and let c2 be the orthogonormal complement of c1 such that c
0
1c2 = 0 and c

0
2c2 = 1:

We further let � denote the identi�ed parameters in the model.

The observed information matrix is derived in the Appendix and used here to characterize the

critical set. The critical set is de�ned as the subset of all observations in the sample space for which

the observed information matrix is singular, or equivalently its determinant is zero. In the Appendix

we show that

��Jb��� = (v02S11c2)2 �b�1 � b�2� (17)

see Equation (27), where b�1 > b�2 > 0; and v1 and v2 solve
�b�iS11 � S10S01� vi = 0; i = 1; 2: (18)

The b�i are the eigenvalues from the standard maximum likelihood procedure where the only di¤erence
is that here 
 is known and S00 does not appear in the determinantal equation. Note that because of
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this, the b�i are no longer the squared sample canonical correlations between �Yt and Yt�1, as in the
standard case, and they can be larger than 1.

It is evident from (17) that the observed information is singular in two di¤erent cases: when

b�1 = b�2; or when v02S11c2 = 0 which occurs when v1 is proportional to c2: The probability that either
one of these single events occurs is zero, but there are cases where the observed information is close

to being singular. In these sensitive regions we would expect inference to be fragile.

When the true �1 is small, the ex-ante probability of observing a small b�1 is larger. A small sample
size also increases the ex-ante probability of observing a small b�1 and a larger b�2. When T increases
b�1 will quickly converge to its limit and also the probability of observing a b�2 much larger than zero
is very small. So it is in small samples with �1 small that we will most often �nd realizations of

the process that lead to fragile inference. Ex-post we can simply calculate b�1 and b�2 and it becomes
irrelevant what the ex-ante probabilities are, but it helps to understand that conditioning is more

important in small samples than in large samples.

The analysis of the previous section can be repeated here using an approximate measure of the rd

statistic, namely rdapp, upon substitution of b� for � in (16). The variance of the MLE b�1 conditional
on rdapp is given in Figure 3.2 below. This �gure looks very similar to Figure 4 above, showing that

the e¤ect of using rdapp instead of rd is small.

The statistic Tb�2 is the likelihood ratio (trace) test for testing the cointegrating rank. So one could
interpret the use of b�2 as having �rst tested and concluded that the process has one cointegrating
vector and one common trend. Under the assumption that the cointegrating rank is one, the statistic

b�2 is approximately ancillary (this follows from the asymptotic distribution under the null, which does
not depend on parameters), and conditioning on b�2 is supported by the usual asymptotic arguments
for conditional inference.

Another reasoning is that having calculated and used the statistic b�2 in a statistical procedure,
subsequent inference should take this into account. One should expect inference to be di¤erent for

cases where there is support for a second cointegrating vector (Tb�2 large, but smaller than the critical
value) and cases where there is clearly no evidence of a second cointegrating vector (Tb�2 close to 0):
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4 Conclusion

In this paper we have investigated the e¤ects of conditioning for inference on the adjustment coe¢ cients

� in a simple cointegrating VAR. We have shown that the curvature of the model induces sensitive

regions in the sample space where the accuracy of the estimators is much lower than expected ex ante.

We have constructed a measure of proximity of the observed sample to this sensitive region, called the

relative distance statistic, and show that the accuracy of the estimator is heavily dependent on it. We

also show that testing hypotheses is adversely a¤ected by proximity to the sensitive region. Standard

tests that do not take account of this aspect of the data can be seriously oversized when the sample

is close to the sensitive region. This is true for the Wald test based on the expected information.

Proper inference procedures should take into account how close an observation is to the critical

set where inference breaks down. The obvious way to do this is to derive the conditional distribution

of the test statistics and estimators, given the value of the relative distance statistic. An alternative

approach, that we have actually pursued, is to use the observed information instead of the expected

information in inference procedures. Our results show that in doing so, one is implicitly conditioning

on the relative distance measure, and inference is much more reliable.
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A Appendix

A.1 Standardized data in the bivariate CVAR(1)

Consider the pair of r.v.s Xt = (X1t; X2t), and the bivariate CVAR(1) model:

�Xt = �xXt�1 + �t, t = 1; : : : ; T ; �t � NID(0;
): (19)


 is positive de�nite, and therefore, it is orthogonally diagonalizable 
 = UDU 0, where U is the

orthogonal matrix consisting of the eigenvectors of 
, and D is a diagonal matrix, with the eigenvalues

of 
 along its diagonal. Hence, where 
1=2 = UD1=2U 0, and 
�1=2 = UD�1=2U 0. Since 
 is known,

we can standardize the model (19) w.r.t. it. Consider

Yt = 

�1=2Xt; "t = 


�1=2�t; and � = 
�1=2�x

1=2: (20)

A.2 Case of � known

The log-likelihood function is

l (�) = T�0S0� �
T

2
�0�S�� :

The �rst and second order conditions are

@l

@�
= TS0� � T�S��

@2l

@�@�0
= �T I2S�� :

Setting the �rst to zero yields the MLE, see Equation (12), while the observed information is given

by J� = �@2l (�) =@�@�0; see Equation (13).

To derive the expected information, Equation (14), it su¢ ces to determine ES�� : Observe that

�0Yt�1 follows an AR(1) with zero mean, zero starting value Y0 = 0; autoregressive coe¢ cient � =
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�0�+ 1, and error variance �0�: So ES�� is given by

ES�� = E
1

T

TX
t=1

�0Yt�1Y
0
t�1� =

=
�0�

T

T�1X
t=1

t�1X
i=0

�2i =
�0�

T

T�1X
t=1

1� �2t
1� �2

=
�0�

T (1� �2)

 
T � 1�

T�1X
t=1

�2t

!

=
�0�

T (1� �2)

 
T �

T�1X
t=0

�2t

!
=
�0�

��
1� �2

�
�
�
1� �2T

�
=T
�

(1� �2)2
: (21)

Let Wobs (�0;�) and Wexp (�0;�) denote the Wald test for a point null H0 : � = �0 when � is

known, using the observed and expected information, respectively. Then

Wobs (�0;�) = (b�� �0)0 J� (b�� �0) = T (b�� �0)0 (b�� �0)S��
Wexp (�0;�) = (b�� �0)0 I� (b�� �0)

= T (b�� �0)0 (b�� �0) �0� ��1� b�2�� �1� b�2T � =T �
(1� b�2)2

where b� = 1 + �0b�:
Next, we derive the likelihood ratio test of the above null hypothesis. The maximized value of the

likelihood is:

lmax (b�) = T

2

S00�S0�

S��
:

Hence, the likelihood ratio test is

LR (�0;�) = T

�
S00�S0�

S��
� 2�00S0� + �00�0S��

�
= T (b�0b�� 2�00b�+ �00�0)S��
= T (b�� �0)0 (b�� �0)S�� :

Invariance to changes in �1 De�ne the statistic

S"� =
1

T

TX
t=1

"tY
0
t�1�

and observe that S0� = �S�� +S"� : Also, since �0Yt�1 = ��0Yt�2+�
0"t�1; S�� and S"� are invariant

to changes in the parameters that leave � and � unchanged. But

b�� �0 = S"�S
�1
��
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so Wobs and hence LR are invariant to changes in �1 that leave � and � constant.

Derivation of RD statistic when � is known The su¢ cient statistic is s =
�
S00� ; S��

�0
and its expectation is � =

�
ES00� ; ES��

�
: But note that ES0� = �ES�� + ES"� = �ES�� ; since

ES"� = 0. Substituting the above for � = (�0; 1)ES�� in equation (11); the result follows.

A.2.1 Score, Hessian and the MLE

Consider the log-likelihood of the CVAR model given in Equation (8):

l (�; �) = T�0S01� �
T

2
�0��0S11�

The �rst order conditions are

@l

@�
= TS01� � T� (�0S11�)

@l

@�
= T�0S01 � T�0��0S11 = T�0 (S01 � ��0S11)

Solving the FOC for � and � yields the equations

� (�) = S01� (�
0S11�)

�1
;

� (�) = S�111 S10� (�
0�)

�1

So, the concentrated log-likelihoods either in terms of � or �, are

lc (�) =
T

2
�0S10S01� (�

0S11�)
�1 (22)

lc (�) =
T

2
�0S01S

�1
11 S10� (�

0�)
�1
: (23)

Since � or � are not identi�ed without normalization, the MLE is not uniquely de�ned by the

above, but the maximum of the likelihood is.

Consider the two eigenvalue problems associated with the respective concentrated likelihood func-

tions,

j�S11 � S10S01j = 0���I2 � S01S�111 S10�� = 0:
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where jAj denotes the determinant of A: Denote the eigenvalues b�1 > b�2 > 0 and let v1; v2 be the

unique vectors that satisfy
�b�iS11 � S001S01� vi = 0, and v0iS11vj = 1 if i = j and 0 otherwise. Further,

let u1; u2 denote the eigenvectors of the second problem, i.e.,
�b�iI2 � S01S�111 S10�ui = 0 and u0iuj = 1

if i = j and 0 otherwise.

The maximum of the likelihood function of the CVAR model is:

max lCV AR =
T

2
b�1; (24)

(see e.g. Johansen (1995a, Lemma A.8)). The maximum of the unrestricted VAR likelihood (7) is

max lV AR =
T

2

�b�1 + b�2� ; (25)

Thus the standard likelihood ratio, trace test statistic for cointegration is Tb�2 (see Johansen �89).
Note that the MLE for � (when normalized) is proportional to v1.

The second order conditions are

@2l

@�@�0
= �T I2 (�

0S11�)

@2l

@�@�0
= TS01 � 2T��0S11 = T (S01 � 2��0S11)

@2l

@�@�0
= �T�0�S11:

Hence, the Hessian matrix is

H� = �T

0BB@ I2 (�
0S11�) 2��0S11 � S01

2S11��
0 � S001 �0�S11

1CCA :

The expected value of the Hessian is useful in deriving the expected information. Let �ij = ESij

denote the expected values of the samples second moments, given the initial condition Y0 = 0: We

have dropped the dependence of the �ij on T for simplicity. Letting C = �? (�
0
?�?)

�1
�0?, B =

� (�0�)
�1
�0, the Engle and Granger (1987) representation is

Yt = C
t�1X
i=0

"t�i +B
t�1X
i=0

�i"t�i

so that

var (Yt) = CC 0t+ (CB0 +BC 0)
1� �t
1� � +BB

0 1� �2t
1� �2 :
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Hence,

�11 = ES11 =
1

T

TX
t=1

var (Yt�1)

= CC 0
T � 1
2

+ (CB0 +BC 0)
T� (1� �)�

�
1� �T+1

�
T (1� �)2

+

BB0
T�2

�
1� �2

�
�
�
1� �2T+2

�
T (1� �2)2

:

Also, S01 = ��0S11 + S"1 and ES"1 = 0 imply that �01 = ��0�11; which simpli�es to

�01 = ��0C 0
T� (1� �)�

�
1� �T+1

�
T (1� �)2

+ ��0B0
T�2

�
1� �2

�
�
�
1� �2T+2

�
T (1� �2)2

because �0C = 0 and �0B = �0: The expected Hessian is

EH� = �T

0BB@I2�0�11� ��0�11

�11��
0 �0��11

1CCA (26)

Information for normalized parameters Consider the generic normalization by the (known)

vector c1 such that c01� = 1. Without loss of generality we may take c
0
1c1 = 1 and de�ne the orthogonal

complement c2 s.t. c02c1 = 0: We can decompose � as � = c1 + bc2. Note that c2 = @�=@b and that

the orthogonal complement of � is �? = c2 � bc1.

The Jacobian matrix of the normalizing transformation from (�0; �0)
0 to the identi�ed parameters

� = (�0; b)
0 is

J =
@ (�0; �0)

0

@�0
=

0BB@I2 0

0 c2

1CCA
So, the information w.r.t. the identi�ed parameters is

J� = �J 0
1

T
HJ = T

0BB@ �0S11� I2 2��0S11c2 � S01c2

2c02S11��
0 � c02S10 �0� c02S11c2

1CCA :

The expected information is found using (26)

I� = T

0BB@�0�11� I2 ��0�11c2

c02�11��
0 �0� c02�11c2

1CCA :

The MLE can be written as: b� = v1 (c
0
1v1)

�1 and b� = S01b� �b�0S11b���1 = b�1=21 u1 (c
0
1v1) : The last

expression follows from b�b�0 = b�1=21 u1v
0
1. Also�

S01 � b�b�0S11� c2 = �S01S�111 � b�b�0�S11c2 = b�1=22 u2v
0
2S11c2
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To simplify the derivations, de�ne the quantities w = b�0S11b�, wi = v0iS11c2 and di = b�1=2i wi; for

i = 1; 2:Next, note that the identity I2 = v1v
0
1S11 + v2v

0
2S11 implies c2 = v1w1 + v2w2 and hence

c02S11c2 = w21 + w
2
2:

Thus, J� evaluated at the MLE can be written as

Jb� =
0BB@ I2w d1u1 � d2u2

d1u
0
1 � d2u02 b�1 �w21 + w22� =w

1CCA :

The determinant of the observed information is (using Magnus and Neudecker (1999, p. 12))

��Jb��� = jI2wj ����b�1w21 + w22w
� 1

w
(d1u1 � d2u2)0 (d1u1 � d2u2)

����
= w22

�b�1 � b�2� = (v02S11c2)2 �b�1 � b�2� : (27)

The intermediate calculations in the second subdeterminant are

b�1w21 + w22
w

� 1

w
(d1u1 � d2u2)0 (d1u1 � d2u2) =

1

w

�b�1w21 + b�1w22 � d21 � d22�
=
1

w

�b�1w21 + b�1w22 � b�1w21 � b�2w22� = w22
w

�b�1 � b�2� :
Finally, using the partitioned inverse formula (see Magnus and Neudecker (1999, p.11)), the inverse

of the observed information is

J�1b� =

0BB@
1
w

�
I + (d1u1�d2u2)(d1u1�d2u2)0

w22(b�1�b�2)
�

� d1u1�d2u2
w22(b�1�b�2)

� d1u
0
1�d2u

0
2

w22(b�1�b�2) w1
w22(b�1�b�2)

1CCA

Tests

LR test of point null, given cointegration

LR = 2
�
l
�b��� l (�0)� = T

�b�1 � 2�0S01� + �0��0S11��
= T

�b�0S01b� � 2�0S01� + �0��0S11��
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Test of weak exogeneity This hypothesis corresponds to � = �1c1, so that c02� = 0, where

c2 = (0; 1)
0. To �nd the maximum of the restricted likelihood, substitute in the concentrated likelihood

(23)

l (�1c1) =
T

2
�21c

0
1S01S

�1
11 S10c1

�
�21c

0
1c1
��1

=
T

2
c01S01S

�1
11 S10c1:

Clearly, �1 is not identi�ed without normalization, but the maximized value of the restricted likelihood

is easily found. So, the LR test is

LRwe = T
�b�1 � c01S01S�111 S10c1� :

Test of stationarity This hypothesis corresponds to � = �1c1, so that c02� = 0, where c2 =

(0; 1)
0. The maximum of the concentrated likelihood is given by

lc (�1c1) =
T

2
�21c

0
1S10S01c1

�
�21c

0
1S11c1

��1
=
T

2
c01S10S01c1 (c

0
1S11c1)

�1

which is consistent with the lack of identi�cation of �1, but it is su¢ cient for testing the hypothesis

of interest.

A.3 Monte Carlo experiments

We consider a number of LR test statistics and conduct di¤erent Monte Carlo experiments to in-

vestigate their �nite-sample marginal and conditional distributions, relative to their unconditional

asymptotic distributions.

Let Q;S denote two statistics, and let FQ (q; �; T ) and FQjS (qj s; �; T ) denote the marginal and

conditional �nite-sample distribution functions of Q. When Q is asymptotically pivotal, as it is the

case for the LR statistics we consider, let F asyQ (q) denote its asymptotic distribution (usually �2). An

asymptotic a-level critical value is given by qa such that F
asy
Q (qa) = 1 � a. The exact �nite-sample

a-level critical value will be denoted by qa (�; T ). Clearly, qa = qa (�;1).

The statistic Q is not pivotal if FQ (�; �1; T ) 6= FQ (�; �2; T ) for some �1 6= �2.

We do four sets of experiments.
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I. We compare the �nite sample to the asymptotic distribution. We use three di¤erent

statistics:

1. The Kolmogorov-Smirnof statistic of equality of two distributions. Let F1 and F2 be two cdfs

evaluated at n points x1 : : : xn. The KS is given by

KS = max
x
jF1 (x)� F2 (x)j :

The critical values are 1:36n�1=2 (5%) and 1:63n�1=2 (1%).

2. The di¤erence in the quantiles qa (�; T )� qa.

3. The di¤erence in tail probabilities (dual of the above), namely 1� FQ (qa; �; T )� a. This is the

di¤erence in the null rejection probability (NRP) of the test from its asymptotic level a, i.e.

NRP (�; T ) = 1� FQ (qa; �; T ) :

These statistics can be simulated for di¤erent values of � and T . It must be true that the di¤erences

go to zero as T grows, but it is interesting to see how they vary with �.

II. The conditional distribution of Q given S.

1. Conditional quantile qa (s; �; T ) such that FQjS (qa (s; �; T ) js; �; T ) = a.

2. Conditional p-value of unconditional test pa (s; �; T ) = FQjS (qa (�; T ) js; �; T ).

3. Conditional variance of b�; b� (economic normalization), relative to �unconditional� variance:

simulate the "variance in�ation coe¢ cient�(VIC)

(a) For b�, compute �b� (�; T ) by simulation, report V ICb� = �b� (s; �; T ) =�b� (�; T ).
(b) For b�, standardize �rst, using random asymptotic variance (inverse of observed info): z =

b�=b�b� . Then, report V ICb� = �z (s; �; T ) =�z (�; T ).

Summarize the results by response surfaces.
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III. Bootstraping the conditional LR tests and conditional variances.

1. For point null, there are no nuisance parameters, so it is straightforward. Estimate qa
�b�2; �0; T�

by simulation. Check the size of the bootstrap conditional LR (BCLR) test by MC.

2. For composite nulls, estimate qa
�b�2; b�0; T�, where b�0 is the restricted MLE estimate of �. Check

the size of the BCLR over di¤erent values of the nuisance parameters.

3. Conditional variances: bootstrap the VIC. Do a simulation to check how accurately BVIC

approximates true VIC. (e.g. check MSE).

IV. Power comparisons Focus on the hypotheses Hwe and H� ,
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