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Abstract

An indirect estimator is proposed for two long memory volatility models; the fractionally integrated
generalised autoregressive conditional heteroskedasticity (FIGARCH) model and the long memory
stochastic volatility (LMSV) model. The small sample properties of the indirect estimator are
compared to the small sample properties of conventional maximum likelihood estimators. It is
found that the indirect estimator has the potential to perform favourably with respect to maximum
likelihood for higher order parameterised FIGARCH and LMSV models.
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1 Introduction

Recent empirical research examining the time dependent conditional variances of financial variables

has found that long memory is a relevant factor to be taken into consideration; see for example, Ding,

Granger and Engle (1993), Ding and Granger (1996), Bollerslev and Mikkelsen (1996), and also Engle

and Bollerslev (1986) for the original contribution on infinitely long memory conditional variances.

This evidence of long range behaviour has lead to the development of integrated models for conditional

variance. Under the restrictive integer framework, a stationary volatility process for a financial asset

(where the level of integration is d = 0) exhibits exponential decay in response to an exogenous shock,

while a nonstationary volatility process (where d = 1) displays no tendency to revert to its unconditional

volatility, or variance, after an exogenous shock and actually retains some permanent component. In a

manner similar to that for the conditional mean, it has been found that this d = 0, 1 dichotomy imposes

too heavy a restriction on the allowable behaviour of the conditional second moment of a time series.

Rather than restricting attention to integer levels of integration, it seems sensible to allow a compromise

between the stationary models of conditional variance and nonstationary or integrated models. For the

conditional mean, this has lead to the development and popularisation of the autoregressive fractionally

integrated moving average (ARFIMA) model due to Granger and Joyeux (1980) and Hosking (1981);

see also Baille (1996) for a survey of developments in ARFIMA modelling.

A natural framework on which to build a fractional model for the conditional variance is the autore-

gressive conditional heteroskedasticity (ARCH) model due to Engle (1982) or the generalised ARCH

(GARCH) model due to Bollerslev (1986). Both models have received extensive application in mod-

elling the time varying properties of the conditional variance of financial time series; see Bollerslev,

Chou and Kroner (1992) or Bollerslev, Engle and Nelson (1994) for a review of ARCH models. Baille,

Bollerslev and Mikkelsen (1996) propose the fractionally integrated GARCH (FIGARCH) model and

a time domain maximum likelihood (TDML) estimator for the parameters in this model. Alterna-

tively, the stochastic volatility (SV) class of models, see Taylor (1994) for a survey, can be utilised as

a framework on which to build a fractional model. Harvey (1993) was the first to consider this by

specifying a fractional noise process to drive the long memory component of the SV model. Breidt,

Crato and deLima (1998) propose the long memory stochastic volatility (LMSV) model and a frequency

domain based maximum likelihood (FDML) estimator for the parameters in this model. Unfortunately,

the maximum likelihood estimators for the FIGARCH and LMSV models have potential problems in

their application. The TDML estimator for the FIGARCH model has truncation and starting value

problems, while the FDML estimator for the LMSV model can be prone to sizeable finite sample bias

problems. This paper overcomes these estimation problems by proposing an indirect estimator for the

two models based on the Gorieroux, Monfort and Renault (1993) version of the indirect estimator. The
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indirect estimator has already received application to fractional models for the conditional mean of a

process; see Martin and Wilkins (1999) for details.

The outline of the paper is as follows. Section 2 briefly reviews models for conditional variance. Section

3 develops an indirect estimation procedure for FIGARCH and LMSV models by discussing alternative

auxiliary models that may be implemented, computationally efficient simulation procedures and an

estimation algorithm for empirical application. Section 4 reports the results of a set of simulation

experiments to compare the small sample properties of the maximum likelihood and indirect estimators.

Section 5 concludes.

2 Models for Conditional Variance

Consider some time series Rt with conditional mean equation

Rt = f(xt) + σtεt (1)

where, in very general terms, f(xt) denotes some functional form of the explanatory variables xt, σt is

the time varying conditional standard deviation (variance) and εt is iid(0, 1). Assuming the specification

f(xt) = µt where µt is the conditional mean of Rt, then (1) can be expressed as the (conditional) mean

corrected series

rt = Rt − µt = σtεt (2)

where the time series rt is now a white noise (WN) process.

2.1 Autoregressive Conditional Heteroskedasticity

The process rt exhibits ARCH(q) effects if σt can be written

σ2
t = ω + α(L)r2

t (3)

where ω is a positive constant and α(L) =
∑q

i=1 αiL
i is a lag operator polynomial in L with all αi non-

negative to ensure σ2
t is positive for all possible realisations of rt. When the appropriate specification

for (3) includes lagged σ2
t , the model becomes the generalised ARCH(p, q), or GARCH(p, q) model due

to Bollerslev (1986)

σ2
t = ω + α(L)r2

t + β(L)σ2
t (4)

where β(L) =
∑p

i=1 βiL
i is a lag operator polynomial in L with, once again, all βi non-negative to

ensure σ2
t is always positive. Bollerslev (1986) shows that (4) can be rearranged to give

[1− α(L)− β(L)] r2
t = ω + [1− β(L)] vt (5)

3



where vt = r2
t −σ2

t is a random shock, or error component in conditional variance and (5) is interpreted

as being an ARMA(q∗, p) model for r2
t where q∗ = max{p, q}.

Engle and Bollerslev (1986) extend (5) by allowing 1− α(L)− β(L) to contain a unit root, giving the

integrated GARCH(q∗, p), IGARCH(q∗, p) model

Π(L)(1− L)ε2
t = ω + [1− β(L)] vt (6)

where Π(L) = (1 − L)−1 [1− α(L)− β(L)] = (1 − L)−1 [1− Φ(L)] is of order q∗ − 1; see also Nelson

(1990). In practical application, d = 1 has been found to be a suitable parameterisation for this class

of model. The two GARCH extremes represented in (4) and (6) might be considered too rigid to

approximate the sensitive dynamics in the data generating process (DGP) of a financial time series

accurately. This suggests the relevance of more general, fractionally integrated, versions of these models.

This is advantageous because incorporating fractional integration into the conditional second moment

of a time series allows the conditional variance function to display persistent but still mean reverting

behaviour. This appears to be more consistent with actual financial returns data than that behaviour

captured in the d = 0 or d = 1 models.

The fractionally integrated GARCH, or FIGARCH model due to Baille, Bollerslev and Mikkelsen (1996)

overcomes the restrictions of these models. The FIGARCH model is obtained by using the fractional

differencing operator in (6) rather than the integer differencing operator. The model now becomes

Π(L)(1− L)dr2
t = ω + [1− β(L)] vt (7)

which is in its ARMA(q∗, p) representation for r2
t and the fractional differencing filter is as convention-

ally defined

(1− L)d =
(j − d− 1)!
j!(−d− 1)!

Lj (8)

for j = 1, 2, . . . ,∞. Rearranging (7) results in an alternative expression for the FIGARCH(p, d, q∗)

model

σ2
t = ω + β(L)σ2

t +
[
1− β(L)−Π(L)(1− L)d

]
r2
t (9)

which shows how σ2
t evolves over time. In an analogous fashion to the exponential GARCH model of Nel-

son (1991), Bollerslev and Mikkelsen (1996) extend (7) to the fractionally integrated EGARCH(p, d, q∗),

or FIEGARCH(p, d, q∗) model. The FIGARCH model has been applied to stock market returns data

by Bollerslev and Mikkelsen (1996) and Psaradakis and Sola (1995)

As an illustration, the specific formulation for the FIGARCH(1, d, 1) model is

σ2
t = ω + β1σ

2
t−1 +

[
1− β1L− (1− π1L)(1− L)d

]
r2
t (10)
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where π1 = α1 + β1 is as defined in reference to (6). Equation (10) can be expressed as the observa-

tionally equivalent infinite order ARCH representation

σ2
t =

ω

1− β1
+

[
1− (1− π1L)(1− L)d

(1− β1L)

]
r2
t =

ω

1− β1
+ λ1(L)r2

t (11)

where λ1(L) =
∑∞

i=1 λ1,iL
i. Similarly, the FIGARCH(1, d, 0) model is obtained by setting π1 = 0 in

(10)

σ2
t = ω + β1σ

2
t−1 +

[
1− β1L− (1− L)d

]
r2
t (12)

and this has the observationally equivalent infinite order ARCH representation

σ2
t =

ω

1− β1
+

[
1− (1− L)d

(1− β1L)

]
r2
t =

ω

1− β1
+ λ2(L)r2

t (13)

where λ2(L) =
∑∞

i=1 λ2,iL
i. Following Bollerslev and Mikkelsen (1996), the ARCH coefficients in the

lag operator polynomial λ1(L) have the recursive form

λ1,i = π1 − β1 + d (14)

for i = 1 and

λ1,i = β1λ1,i−1 +
[
(i− 1− d)

i
− π1

]
δi−1 (15)

for i = 2, 3, . . . and where δi = δi−1 (i− 1− d) /i is a recursive function for the coefficients in the

expression for (1 − L)d in (8). The coefficients in the lag operator polynomial λ2(L) are found by

setting π1 = 0 in (14) and (15). The two FIGARCH models in (10) and (12) are used as alternative

DGPs for the Monte Carlo experiments in Section 4.

Estimation of the conventional GARCH model is nontrivial, although straightforward, because of the

restrictions on the model coefficients to ensure conditional variance is always positive. In the case

of the FIGARCH model, this complexity is increased because negative coefficients in the differencing

filter in (8) cannot be avoided. This implies the simplest class of model for long memory conditional

variances, the FIGARCH(0, d, 0) model is not defined because the resulting negative coefficients in

(9) cannot be avoided. For the more general FIGARCH(p, d, q∗) model, a general expression for the

required parameter restrictions is not yet available, but, as Bollerslev and Mikkelsen (1996) note, the

restrictions necessary for specific FIGARCH(p, d, q∗) models can be obtained on a case by case basis.

For the FIGARCH(1, d, 1) model, these are

β1 − d ≤ π1 ≤ (2− d)
3

(16)

and

d

[
π1 − (1− d)

2

]
≤ β1(π1 − β1 + d) (17)

which simplify to

0 < β1 < d < 1 (18)

for the FIGARCH(1, d, 0) model.
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2.1.1 Time Domain Maximum Likelihood Estimation

By assuming conditional normality, it is possible to estimate (9) by maximising the natural logarithm

of the conventional ARCH likelihood function

ln L{Θ1; r2
t } = −1

2
ln(2π)− 1

2

T∑

t=1

[
ln σ2

t +
r2
t

σ2
t

]
(19)

where Θ1 = {d, ω, β1, β2, . . . , βp, π1, π2, . . . , πq∗} is the FIGARCH parameter vector, r2
t is obtained

using the conditional mean equation and σ2
t is obtained approximately according to (9) by using the

fractional differencing filter truncated at some point beyond which the contribution of extra terms

in the summation is negligible. Estimation of the FIGARCH model using (19) is referred to as time

domain maximum likelihood (TDML) estimation.

Three points should be noted about this TDML estimator. First, the truncation of the differencing

filter means that maximum likelihood estimation is approximate only, although the extent of the

approximation can be reduced by increasing the truncation point. This procedure is therefore not an

exact estimator like the TDML estimator for the parameters of the ARFIMA(p, d, q) model for the

conditional mean; see Sowell (1992a). Second, because of the truncation, estimation using (19) can be

expensive in small samples. Although this might not be too much of a concern when using financial data

sets, it still involves the loss of sample data and therefore sample information. Third, the truncation

means the actual series being used is not the true fractionally differenced series and therefore there is

a bias being introduced into the estimation procedure. This can be justified using an argument similar

to that in Sowell (1992b) when discussing the estimation of the parameters in the conditional mean

equation with an approximate TDML estimator.

Estimation using (19) is often referred to as quasi maximum likelihood (QML) estimation because

the assumption of a normally distributed error process does not always hold in financial data sets.

Using a robustified estimator of the covariance matrix of the parameter estimates is asymptotically

valid however, see Weiss (1986) and Bollerslev and Wooldridge (1992). A heteroskedasticity consistent

covariance matrix can be obtained using

H(Θ̂1)−1G(Θ̂1)H(Θ̂1)−1 (20)

where G(Θ̂1) is the outer product of the gradients and H(Θ̂1) is the hessian, both of which are evaluated

at Θ̂1.
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2.1.2 Frequency Domain Maximum Likelihood Estimation

The ARMA representation of the FIGARCH model in (7) allows the model to be estimated using a

frequency domain based likelihood function. The interpretation of (7) as an ARFIMA(q∗, d, p) model

for the squared errors allows standard time series results to be used to obtain the spectrum for r2
t . In

its most general form, the spectrum is

Ir2(λ) =
σ2

ν

2π

|Π(e−iλ)|2
|β(e−iλ)|2

∣∣∣1− e−iλ
∣∣∣
−2d

(21)

where |Π(e−iλ)| and |β(e−iλ)| are the spectral generating functions corresponding to the lag operator

polynomials Π(L) and β(L), and λ is angular frequency.

Equation (21) now allows specification of the spectral likelihood function, see Fox and Taqqu (1986),

ln L{Θ1; p(λj)} = − 1
2π

T/2∑

j=1

p(λj)
Ir2(λj)

(22)

where Θ1 is the parameter vector defined in reference to (19), λj = 2πj/T for j = 1, 2, . . . , T/2 is the

jth Fourier frequency and p(λj) is the estimated periodogram for the squared data. Once estimates

for the parameters in the lag operator polynomials in the ARFIMA representation in (7) have been

obtained, they can be used to generate an estimate of the constant ω, and all parameters can then be

substituted into (9) to obtain the more familiar ARCH specification of the model. Estimation using

(22) is advantageous because it avoids the restrictions inherent in the TDML procedure.

2.2 Stochastic Volatility

The ARCH class of models explain the conditional variance as a function of (squared) past errors, thus

imposing dependence between rt and σ2
t . An alternative to this is the SV model, which specifies a

DGP for σ2
t that is independent of rt. The SV model can be written

σ2
t = σ2 exp(

νt

2
)2 (23)

where νt is some process that imposes the heteroskedasticity in σ2
t and that is also independent of rt.

Most simply, νt can be taken to be an AR(1) process, νt = φ1νt−1 + ηt, with the normal requirement

that |φ1| < 1 for stationarity to hold. An alternative fractionally integrated DGP for the conditional

variance is considered by Harvey (1993) and extended by Breidt, Crato and de Lima (1998). The

equation explaining the evolution of the conditional variance is given the specification

σt = σ exp(
νt

2
) (24)
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where now νt follows the ARFIMA(p, d, q) process

Φ(L)(1− L)dνt = δ + Θ(L)ςt (25)

where Φ(L) =
∑p

i=0 φiL
i, Θ(L) =

∑q
i=0 θiL

i and ςt is WN(0, σ2
ς ). The long memory stochastic volatility,

or LMSV(p, d, q) model is defined by the specification of the ARFIMA model in (25).

Following Breidt, Crato and de Lima (1998), the natural logarithm of the square of (2) with (24)

substituted in can be rearranged to give

ln(rt)2 = E[ln ε2
t ] + νt + εt (26)

where εt = ln r2
t − E[ln r2

t ] is an iid(0, σ2
ε ) error process. Using (26), the persistence in conditional

variance nature of the series can now be examined using conventional ARFIMA methods. As a direct

extension of (21), the spectrum of (26) is

Ir2(λ) =
σ2

ς

2π

|Θ(e−iλ)|2
|Φ(e−iλ)|2

∣∣∣1− e−iλ
∣∣∣
−2d

+
σ2

ε

2π
(27)

which can be found directly by invoking the linearity property of the spectrum. As an example, the

simplest model that can be considered is the LMSV(0, d, 0) model

rt = σ exp

{
(1− L)−dςt

2

}
εt (28)

while a more general specification is the LMSV(1, d, 1) model

rt = σ exp

{
(1− φL)−1(1− L)−d(1 + θL)ςt

2

}
εt (29)

Both of these models are used in Section 4 as alternative DGPs for the Monte Carlo experiments. An

advantage of the LMSV model is that the restrictions on the parameters in the FIGARCH model are

not present, see (16) to (18), and the simplest fractional model for conditional variances with p, q = 0

but d 6= 0 can now be considered.

2.2.1 Frequency Domain Maximum Likelihood Estimation

Estimation of the SV model using TDML procedures requires numerical integration at each observa-

tion; see for example Gourieroux, Monfort and Renault (1993). A frequency domain based likelihood

function specified using (27) avoids this problem. From Breidt, Crato and de Lima (1998), the spectral

representation of the likelihood function for the transformation of the LMSV model in (26) is

ln L{Θ2; p(λj)} = −2π

T

T/2∑

j=1

[
ln Ir2(λj) +

p(λj)
Ir2(λj)

]
(30)
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where Θ2 = {d, φ1, φ2, . . . , φp, θ1, θ2, . . . , θq, σ
2
ς , σ

2
ε } is the LMSV parameter vector and p(λj) is now the

estimated periodogram for the natural logarithm of the squared mean corrected data. Estimation of the

LMSV model using (30) is referred to as frequency domain maximum likelihood (FDML) estimation.

Breidt, Crato and de Lima (1998) show the strong consistency of the estimates obtained using (30). The

convenient spectral representation of fractional processes and the truncation involved in maximising

(19), implies that maximisation of (30) has the potential to be computationally easier and more accurate

than (19).

3 Indirect Estimation

3.1 The Indirect Estimator

At its most elementary level, the indirect estimator obtains parameter estimates for one model by

estimating the parameters of another model. The estimation procedure has two basic requirements.

The first is that the direct model of interest, that is the model the empirical researcher wishes to

estimate, must be easy and computationally efficient to simulate. This model of interest is never actually

“directly” estimated, only simulated. The second requirement is that there exists some indirect, or

auxiliary model that is straightforward to estimate and that can be considered to be representative

of the direct model of interest. The parameter estimates for this auxiliary model are of no interest

in their own right. Indirect estimation yields consistent parameter estimates for the direct model by

comparing the estimates of the auxiliary model obtained using the actual data to those obtained using

artificial data simulated from the direct model. The direct model is then repeatedly simulated within

an iterative routine until the parameter estimates for the auxiliary model obtained using the actual

data and the simulated data are equal, or sufficiently close. The set of parameters for the direct model

used to generate the last simulated series of numbers are the indirect parameter estimates for the direct

model.

Martin and Wilkins (1999) consider estimating the parameters in the general ARFIMA(p, d, q) model

using simple AR(p) processes as auxiliary models. As a specific example, denote the autoregressive

parameter vector in an AR auxiliary model as ρ, and the estimate of ρ obtained using the actual data

as ρ(a). Now denote the parameter vector for the direct model in (25) as Ψ = {d, δ,Φ(1), Θ(1), σ2}.
Indirect estimation involves simulating (25), for a particular set of parameter values, say Ψ1, and then

estimating the AR auxiliary model with this simulated series. Denote the estimate of the auxiliary

model parameter using this simulated series as ρ1(s). Then, intuitively, the indirect estimator of Ψ is

that Ψi corresponding to the ith simulated series where

ρi(s) → ρ(a) (31)
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with a satisfactory tolerance level prespecified. When the dimension of the parameter vectors Ψ and

ρ are the same, the criterion simplifies to ρi(s) = ρ(a). This will be the case, for example, when

estimating a zero mean ARFIMA(0, d, 0) model with εt ∼ (0, 1) using an AR(1) process as an auxiliary

model.

Rather than simulating the model only once for every Ψi, increased precision for the estimator may

be obtained by simulating h = 1, 2, . . . ,H series or paths, where each path consists of an independent

drawing of random numbers with which the direct model is simulated. For H such paths, ρi(s) is

replaced by an average of the parameter estimates from all H paths, 1/H
∑H

h=1 ρi,h(s), and the criterion

in (31) becomes
1
H

H∑

h=1

ρi,h(s) → ρ(a) (32)

This general principle, of course, carries over to fractionally integrated models for the conditional

variance. Now denote the parameter vector of interest as Θ which represents the full set of parameters

for the FIGARCH model (that is, Θ1) or the LMSV model (that is, Θ2). The GMR indirect estimator

is formally given by

Θ̂ =
Argmin

Θ

(
Π(a)− 1

H

H∑

h=1

Πh(s)

)′
Ω

(
Π(a)− 1

H

H∑

h=1

Πh(s)

)
(33)

where Π(a) and Πh(s) are vectors containing the parameter estimates for the auxiliary model using

the actual and simulated data sets respectively, Ω is a weighting matrix defined in Gourieroux, Monfort

and Renault (1993) and the subscript i denoting simulated series has been dropped. The weighting

matrix Ω is of importance when the dimension of Π is greater than the dimension of Θ, otherwise the

criterion in (33) simplifies to
1
H

H∑

h=1

Πh(s) = Π(a) (34)

when the dimension of the direct and auxiliary models are the same.

3.2 Auxiliary Models and Simulation Procedures

3.2.1 FIGARCH Auxiliary Models

With respect to choosing an auxiliary model and in reference to the special cases in (11) and (13), note

that the general FIGARCH(p, d, q) model can be expressed as the infinite order ARCH model

σ2
t =

ω

1− β(1)
+ λ(L)r2

t (35)
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where λ(L) = 1− [1− β(L)]−1Π(L)(1−L)d. This suggests that a natural choice of auxiliary model for

the FIGARCH model is given by an ARCH(k)

σ2
t = λ0 +

k∑

j=1

λjr
2
t−j (36)

where k is chosen to be greater than or equal to the parameter dimension of the FIGARCH model. In

practice, (36) is equivalent to a simple AR(k) for the squared errors

r2
t = λ0 +

k∑

j=1

λjr
2
t−j + ζt (37)

where ζt is WN, since, by definition, r2
t = Et−1(r2

t )+ζt, Et−1(r2
t ) = σ2

t and Et−1(ζt) = E(ζt) = 0, where

Et−1 denotes the expectation conditional on the information set up to time t − 1. This implies that

σ2
t = r2

t − ζt, thus allowing (37) to be used. Using (37) negates the need to use maximum likelihood

estimation for the auxiliary model, thus reducing the computational burden of the indirect procedure.

Another auxiliary model contender, that possibly has a stronger theoretical justification than (37), is

the ARMA(q∗, p) model for r2
t that is obtained from (5)

r2
t = π0 +

q∗∑

j=1

πir
2
t−i + νt +

p∑

j=1

βiνt−i (38)

where πi = αi + βi. However, this latter auxiliary model is not considered because of the increased

computational burden it contains in estimating the moving average parameters when using the GMR

(1993) indirect estimator. The Gallant and Tauchen (GT) (1996) indirect estimator can avoid this

problem.

3.2.2 LMSV Auxiliary Models

The infinite order ARCH representation of the EGARCH(p, q) model due to Nelson (1991) suggests

one possible auxiliary model that can be considered for the LMSV model is

lnσ2
t = ω +

k∑

j=1

ϕj ln σ2
t−j + zt (39)

From this, an appropriate choice of auxiliary model might simply be an AR(k) for the natural logarithm

of the squared errors

ln r2
t = ω +

k∑

j=1

ϕj ln r2
t−j + ζt (40)

where ζt is once again a WN error process. The EGARCH model can be viewed as a discrete time

version of the SV model and so would appear to be an appropriate choice as an auxiliary model.
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3.2.3 Simulation Procedures

The simulation model can be written σt = f(rt) for the FIGARCH model and σt = f(νt) for the LMSV

model. For the FIGARCH model, σt can be simulated by expanding the lag operator polynomial for

r2
t in (9) to obtain the moving average error process

r̃2
t =


1− (β1L + . . . + βpL

p)− (π1L + . . . + πq∗L
q∗)

n∑

j=1

(j − d− 1)!
j!(−d− 1)!

Lj


 r2

t (41)

which will be of order s = max{p, n + q∗} and where (8) has been truncated at n. This particular

truncation should not cause concern because n is not dependent on the size of the sample, and so can

be made arbitrarily large. The error process r̃2
t can then be used to generate an AR(p) process for

σ2
t using β(1) as the autoregressive weights. The LMSV model is more straightforward to simulate as

already established random number simulators can be used to generate the ARFIMA DGP, see Martin

and Wilkins (1999) for a discussion of alternative procedures that may be implemented. Once the νt

have been obtained they can be substituted into (2) using (24).

3.3 Estimation Algorithm

Consider the AR(k) for the squared errors in (37) as an auxiliary model for the FIGARCH model and

the AR(k) for the natural logarithm of the squared errors in (40) as an auxiliary model for the LMSV

model, then the estimation algorithm follows that in Martin and Wilkins (1999) and can be expressed

as follows:

1. Estimate the auxiliary models (37) and (40) for a given lag length k = k∗, using the actual data,

rt(a), and compute Π(a).

2. Choose an initial set of parameter estimates for the FIGARCH(p, d, q) model

Θ(0)
1 = {d(0), ω(0), β

(0)
i , i = 1, 2, . . . , p, π

(0)
i , i = 1, 2, . . . , q∗, σ2(0)

ε } (42)

or for the LMSV(p, d, q) model

Θ(0)
2 = {d(0), φ

(0)
i , i = 1, 2, . . . , p, θ

(0)
i , i = 1, 2, . . . , q, σ2(0)

ς , σ2(0)
ε } (43)

3. Draw a set of random numbers wt, from a N(0, 1) distribution. For the LMSV model, this set of

random numbers must be partitioned such that wt = {w1,t, w2,t} in order to obtain the two sets

of independently distributed processes, εt and ςt.
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4. Using (2), simulate the FIGARCH model

rt(s) =





ω(0)

1− β
(0)
1 − . . .− β

(0)
p

+


1− (π(0)

1 L + . . . + π
(0)
q∗ Lq∗)(1− L)d(0)

(β(0)
1 L + . . . + β

(0)
p Lp)


 ε2

t





1/2

εt (44)

where εt = σ
(0)
ε wt, or the LMSV model

rt(s) = σ(0)
ε exp





(1− L)−d(0)
(
1 + θ

(0)
1 L + · · ·+ θ

(0)
q Lq

)
ςt

2
(
1− φ

(0)
1 L− · · · − φ

(0)
p Lp

)


 εt (45)

where εt = σ
(0)
ε w1,t and ςt = σ

(0)
ς w2,t.

5. Estimate the auxiliary models (37) and (40) for the lag length k∗ using the simulated data rt(s),

and calculate Π(s).

6. Repeat steps 4 and 5, h = 1, 2, . . . , H times.

7. Calibrate the parameter vector Θ(0)
1 for the FIGARCH model or Θ(0)

2 for the LMSV model to

satisfy the GMR indirect estimation criterion in (33).

4 Monte Carlo Experiments

The asymptotic properties of consistency and normality of the indirect estimator follow directly from

the results in Gourieroux, Monfort and Renault (1993). The performance of the indirect estimator for

the long memory volatility models in finite samples is however unknown.

4.1 Simulation Design

The sample size for the Monte Carlo experiments is set at T = 1000 observations, a sample size not

uncommon in applied financial economics and R = 1000 replications are performed. In simulating each

series, T + l = 6000 observations are generated and the first l = 5000 observations are then truncated

to ensure that there are no starting value dependencies in the simulated series. The indirect estimator

utilises H = 2 and H = 10 simulation paths. In all cases, the dimension of the parameter vector for

the auxiliary model is the same as the dimension of the parameter vector for the direct model, allowing

Ω = I to be used in (33).

Two first order FIGARCH models are considered. The DGP for the FIGARCH(1, d, 1) model is (10)

and the DGP for the FIGARCH(1, d, 0) model is (12). The indirect results for the FIGARCH(1, d, 0)

model are based on an AR(2) auxiliary model for the squared errors according to that in (37) while

13



the indirect results for the FIGARCH(1, d, 1) model are based on an AR(3) auxiliary model for the

squared errors. Both auxiliary models contain a constant term. The maximum likelihood procedure

uses a truncation parameter of T/5 = 200 observations; the sensitivity of the TDML estimator on this

truncation parameter is examined later. The restrictions in (16) to (18) are imposed in the estimation

routines for both the TDML and indirect estimators. The DGP parameter values for each FIGARCH

model are reported in Tables 1 and 2. For each DGP, six parameter sets are investigated.

Two first order LMSV models are considered. The DGP for the LMSV(0, d, 0) model is (28) and the

DGP for the LMSV(1, d, 1) model is (29). The indirect results for the LMSV(0, d, 0) model are based

on an AR(1) auxiliary model for the natural logarithm of the squared errors according to that in (40)

while the indirect results for the LMSV(1, d, 1) model are based on an AR(3) auxiliary model. The

FDML estimator uses the likelihood function in (30) specified using (27). The DGP parameter values

for each LMSV model are reported in Tables 4 and 5.

4.2 Comparison of Alternative Estimators: The FIGARCH Model

The bias and root mean square error (RMSE) of the TDML and indirect estimators for the FIGARCH

DGP are reported in Tables 1 and 2. Across the two tables and the 12 DGP specifications, the bias

levels for the estimators are mostly comparable; the TDML estimator is consistently the more efficient

however. Despite this, the TDML estimator does struggle a few times, for example the bias levels for

the d = 0.9, ω = 0.4, β1 = 0.3, π1 = 0.2 specification are high, but the indirect estimator appears to

struggle more. The general performance of the indirect estimator seems to improve as H increases

from 2 to 10. However, for the indirect estimator the results in these tables are not strong. The TDML

estimator dominates in terms of bias and RMSE for nearly every specification. Further investigation

into auxiliary models and simulation paths is necessary to establish the indirect estimator’s optimal

properties.

Table 3 reports the impact of the truncation parameter on the TDML estimator for the T = 1000

sample. Four truncation parameters are examined, ranging from m =
√

T ≈ 32 to m = T/4 ≈ 250,

and three DGPs are utilized from Table 1. The results suggest the different truncation parameters used

in the TDML estimator do not uniformly affect the finite sample properties of the estimator. It might

be expected that as m increases bias may fall and RMSE rise, since the smaller estimation sample will

reduce efficiency but avoid any starting value problems biasing the estimates. Table 3 suggests, at least

for the sample size being considered, that the TDML estimator is reasonably robust to the values of

m chosen.
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4.3 Comparison of Alternative Estimators: The LMSV Model

The small sample properties of the FDML and indirect estimators for the LMSV model are reported

in Tables 4 and 5. Five values of d are considered for the LMSV(0, d, 0) DGP in Table 4. The FDML

estimator has superior finite sample properties; with RMSEs that are particularly low relative to the

indirect estimator. The performance of the indirect estimator does appear to improve as H goes from

2 to 10. Table 5 suggests the performance of the indirect estimator improves relative to the FDML

estimator for the slightly more complicated LMSV(1, d, 1) DGP. Several of the RMSEs for the two

estimators are reasonably close and the indirect estimator has a better bias estimate for a couple of

the specifications; although this would not appear to be a strong result. Again, the performance of the

indirect estimator improves as H goes from 2 to 10. Overall, it would appear the indirect estimator

performs relatively better for the LMSV DGP than for the FIGARCH DGP.

5 Conclusion

The development, estimation and testing for long memory volatility models is a rapidly growing research

area for econometricians and applied financial economists. Fractionally integrated models of conditional

variance are important because of their empirical relevance and the flexibility they offer over the

relatively rigid nature of integer restricted GARCH, IGARCH and SV models. Baille (1996) remarks

that comparison of FIGARCH and LMSV models is a promising area for future research. However, as

with fractionally integrated models for the conditional mean, the difficulties associated with estimation

threaten to inhibit their widespread application. This paper has addressed this issue by extending

the indirect estimator for ARFIMA models in Martin and Wilkins (1999) to fractionally integrated

GARCH and fractionally integrated SV models. Simulation results comparing maximum likelihood and

indirect estimators suggests there is scope for further investigation into alternative indirect estimator

specifications.
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Table 1: Small Sample Properties of the FIGARCH(1, d, 0) Estimators

TDML Indirect: H = 2 Indirect: H = 10
DGP Bias RMSE Bias RMSE Bias RMSE

d = 0.5 0.063 0.177 0.118 0.250 -0.045 0.152
ω = 0.4 -0.119 0.160 -0.052 0.289 0.145 0.292
β = 0.3 0.051 0.178 0.153 0.273 -0.005 0.161

d = 0.7 0.050 0.128 -0.017 0.231 -0.051 0.209
ω = 0.4 -0.051 0.118 0.028 0.278 0.080 0.266
β = 0.3 0.043 0.150 0.119 0.262 0.009 0.279

d = 0.7 0.065 0.180 0.010 0.167 -0.099 0.187
ω = 0.4 -0.086 0.157 0.037 0.254 0.151 0.251
β = 0.5 0.057 0.165 0.052 0.141 -0.070 0.192

d = 0.9 0.000 0.067 -0.205 0.305 -0.202 0.298
ω = 0.4 -0.001 0.089 0.146 0.299 0.063 0.258
β = 0.3 -0.004 0.098 -0.045 0.271 -0.007 0.276

d = 0.9 0.003 0.091 -0.195 0.266 -0.201 0.228
ω = 0.4 -0.004 0.116 0.192 0.306 0.034 0.165
β = 0.5 -0.002 0.113 -0.142 0.279 0.005 0.117

d = 0.9 -0.002 0.116 -0.203 0.260 -0.153 0.177
ω = 0.4 -0.007 0.140 0.244 0.277 0.194 0.225
β = 0.7 -0.008 0.110 -0.145 0.219 -0.122 0.150

Details of the DGP are given in Section 4.1.
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Table 2: Small Sample Properties of the FIGARCH(1, d, 1) Estimators

TDML Indirect: H = 2 Indirect: H = 10
DGP Bias RMSE Bias RMSE Bias RMSE

d = 0.5 0.092 0.193 -0.077 0.252 -0.085 0.171
ω = 0.4 -0.081 0.154 0.118 0.270 0.114 0.274

β1 = 0.3 0.128 0.228 0.077 0.246 0.143 0.280
π1 = 0.2 -0.076 0.159 0.158 0.314 0.072 0.199

d = 0.7 0.041 0.123 -0.184 0.391 -0.197 0.289
ω = 0.4 0.007 0.139 0.162 0.189 0.055 0.276

β1 = 0.3 -0.062 0.208 0.196 0.351 0.177 0.299
π1 = 0.2 -0.102 0.154 0.238 0.382 0.092 0.270

d = 0.7 0.097 0.170 -0.122 0.250 -0.205 0.229
ω = 0.4 -0.057 0.170 0.178 0.269 0.222 0.255

β1 = 0.5 0.040 0.195 -0.066 0.223 -0.021 0.165
π1 = 0.2 -0.055 0.125 0.142 0.309 0.271 0.352

d = 0.9 -0.009 0.079 -0.316 0.367 -0.394 0.420
ω = 0.4 0.056 0.119 0.033 0.275 0.023 0.220

β1 = 0.3 -0.115 0.189 -0.053 0.278 0.027 0.263
π1 = 0.2 -0.114 0.155 0.294 0.368 0.272 0.334

d = 0.9 0.002 0.091 -0.196 0.307 -0.232 0.261
ω = 0.4 0.017 0.139 0.176 0.267 -0.041 0.141

β1 = 0.5 -0.042 0.169 -0.087 0.281 -0.107 0.263
π1 = 0.2 -0.060 0.121 0.134 0.286 0.352 0.430

d = 0.9 0.014 0.113 -0.171 0.238 -0.224 0.268
ω = 0.4 -0.003 0.153 0.190 0.298 0.256 0.313

β1 = 0.7 -0.010 0.127 -0.058 0.187 -0.057 0.193
π1 = 0.2 -0.029 0.088 0.043 0.187 0.253 0.379

Details of the DGP are given in Section 4.1.
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Table 3: Impact of Truncation on the TDML Estimator for the FIGARCH(1, d, 0) DGP with T = 1000
Observations

m =
√

T ≈ 32 m = T/10 = 100 m = T/5 = 200 m = T/4 = 250
DGP Bias RMSE Bias RMSE Bias RMSE Bias RMSE

d = 0.5 -0.009 0.115 0.042 0.144 0.063 0.177 0.058 0.182
ω = 0.4 0.109 0.202 -0.056 0.138 -0.119 0.160 -0.132 0.170
β = 0.3 -0.005 0.121 0.038 0.145 0.051 0.178 0.050 0.186

d = 0.7 -0.011 0.129 0.044 0.150 0.065 0.180 0.089 0.173
ω = 0.4 0.085 0.203 -0.036 0.156 -0.086 0.157 -0.112 0.170
β = 0.5 -0.010 0.133 0.033 0.150 0.057 0.165 0.079 0.167

d = 0.9 -0.027 0.115 -0.013 0.115 -0.002 0.116 -0.001 0.118
ω = 0.4 0.057 0.194 0.019 0.155 -0.007 0.140 -0.013 0.151
β = 0.7 -0.022 0.107 -0.017 0.107 -0.008 0.110 -0.008 0.118

Details of the DGP are given in Section 4.1.
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Table 4: Small Sample Properties of the LMSV(0, d, 0) Estimators

FDML Indirect: H = 2 Indirect: H = 10
DGP Bias RMSE Bias RMSE Bias RMSE

d = 0.1 0.031 0.077 0.074 0.148 0.061 0.133
d = 0.3 -0.002 0.063 -0.007 0.139 -0.020 0.138
d = 0.5 0.009 0.047 -0.037 0.147 -0.047 0.148
d = 0.7 0.010 0.042 -0.015 0.085 -0.014 0.072
d = 0.9 0.017 0.036 -0.012 0.058 -0.007 0.046

Details of the DGP are given in Section 4.1.
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Table 5: Small Sample Properties of the LMSV(1, d, 1) Estimators

FDML Indirect: H = 2 Indirect: H = 10
DGP Bias RMSE Bias RMSE Bias RMSE

d = 0.2 -0.028 0.090 -0.029 0.123 -0.031 0.103
φ1 = 0.4 0.050 0.119 0.048 0.132 0.047 0.121
θ1 = 0.8 -0.042 0.133 -0.070 0.202 -0.065 0.164

d = 0.2 -0.020 0.095 0.050 0.121 0.003 0.106
φ1 = 0.6 0.017 0.094 -0.012 0.135 -0.008 0.121
θ1 = 0.8 -0.007 0.118 -0.033 0.163 -0.031 0.136

d = 0.4 -0.021 0.092 -0.067 0.155 -0.059 0.144
φ1 = 0.4 0.046 0.129 0.095 0.199 0.090 0.183
θ1 = 0.8 -0.054 0.149 -0.084 0.201 -0.093 0.181

d = 0.4 -0.019 0.109 -0.023 0.108 -0.024 0.115
φ1 = 0.6 0.016 0.106 0.036 0.140 0.035 0.139
θ1 = 0.8 -0.008 0.116 -0.054 0.170 -0.058 0.163

Details of the DGP are given in Section 4.1.
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