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1 Introduction

One of the key ideas in the literature on sunspot equilibrium or extrinsic uncertainty

is the “Philadelphia Pholk Theorem,” [15] which says that if there is any distortion

in the economy which renders equilibrium outcomes inefficient, then it is very likely

that sunspots will have non-trivial effects. This has been confirmed in a wide variety

of environments including restricted participation economies, the double infinity of

overlapping generations economies, incomplete markets, externalities, public goods,

rationing, bounded rationality, etc. A counterpart to the PPT is the sunspot ineffec-

tivity result first due to David Cass and Karl Shell [6] and clarified in [12] (see also

[2]) which says that in finite dimensional competitive economies, if consumers are risk

averse, the set of feasible allocations convex, and markets complete, then sunspots

will not matter. Thus, in finite economies the effect of sunspots hinges on these three

conditions being satisfied. The first two conditions are given by the primitives of the

model. The third is to an extent endogenous. If markets are incomplete, then a nat-

ural question is why do they remain so if introducing new securities can neutralize

the sunspots so that the non-sunspot contingent Walrasian allocations are the only

possible outcomes?

While the literature on financial innovations (which focusses primarily on the situation

with intrinsic uncertainty) sheds some light on this issue (see [1] and [9] for surveys),

in the sunspots literature a compelling viewpoint is that as soon as markets are com-

plete, consumers can always introduce new sunspot variables to coordinate on and

hence, the markets become incomplete once again ([4]). This however does not answer

when will new securities be introduced. This paper also addresses the issue of market

incompleteness. We take the viewpoint that if markets are incomplete, and financial

innovation is to take place, we should ask whether the securities will in fact be traded

in the market. We show there may be no incentives for the consumers to trade the new

securities and hence, the economy will continue to be susceptible to sunspots in the

face of financial innovations. This result is stark in that one consumer will prefer any
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sunspot allocation to the Walrasian allocation and thus, have no incentive to trade

the completing securities.

The environment we consider has only extrinsic uncertainty. We show in a one-good

economy with only extrinsic uncertainty ([6]) and two consumers, the utility of one

consumer is maximized while that of the other is minimized at the Walrasian allo-

cation. This result is global under some preferences structures, and is local under

general preferences (if some restrictions are satisfied). Thus, if the status quo has

market incompletenss, any financial innovation that will complete the markets is un-

likely to take place. We first give a parametric example and then generalize the result

to an open class of preferences (consumers must have a sufficiently high precautionary

savings motive ([14])) and general endowments. As we look at the case of one good in

each state, effects relating to changes in relative prices within each state are not the

key to the welfare effects (for multiple goods models see [13], [8], [5], and [10]).

We take the viewpoint that the consumers will only trade if the new allocation lies in

the upper contour set of their status quo outcomes, i.e., trade is individually rational.

This requires consumers to compare allocations across different security structures. As

we are looking at rational expectations equilibria, it is already assumed that consumers

understand the equilibrium map. We are, thus, requiring the consumers to use this

information. To firmly ground this on strategic foundations, in the spirit of Cournot-

Walras models of financial innovation (see for example [1]), we could model a two stage

trading game where in the first stage consumers decide which securities to trade taking

into account that they will act competitively given the set of securities. Alternatively,

one could also think of the problem as one where a planner has to choose whether

to introduce new securities, and the innovation takes place only if it makes no one

worse off. Another interpretation would be that there is a two stage procedure where

the consumers first vote whether to introduce a security, and then given the outcome,

trade competitively. We are open about the interpretations and thus consider only

the outcome of the second stage.
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The result on the welfare properties of the equilibrium outcomes is consistent with

what is commonly known about one-good incomplete market economies: the equilib-

rium outcomes are constrained Pareto efficient ([7], and [11]). However, as mentioned

above we have a stronger statement on the Walrasian allocation vis-a-vis other equi-

librium allocations that may emerge.

The plan of the paper is as follows. First we define the economy and then present a

parametric example where the entire equilibrium set is characterised and the welfare

effects identified. This is extended first to general preferences, and then to include

non-corner endowments as well.

2 Economy with Financial Assets

Consider a pure-exchange economy with 2 periods. In period one there is one state

s = 0, and S < ∞ states in the second period, s = 1, . . . , S. These are indexed

by the superscript s. In each state there is a single consumption good. There are 2

consumers indexed by the subscript h = 1, 2. The consumption plan for consumer h

is xh = (x0
h, x

1
h, x

2
h, . . . , x

s
h, . . . , x

S
h). The consumption set for the consumers,Xh, is the

S + 1 dimensional positive orthant. Both the consumers have identical preferences

represented by the utility function:

uh(xh) = v(x0
h) +

1

S

S∑

s=1

v(xs
h). (1)

The sub-utility functions vh(·) are strictly increasing, strictly concave, and thrice-

continuously differentiable. The endowments of the two consumers are ω1 = (α, 1 −
α, . . . , 1− α) and ω2 = (1− α, α, . . . , α) respectively, with α ∈ (0, 1]. The consumers

can transfer wealth across the states using a nominal bond. The return matrix of the

nominal bond is R = (−1, 1, . . . , 1)T . The purchase of the nominal bond for consumer

h is denoted as θh, and the excess demand for commodities by zh. The prices of the

consumption goods are normalized so that p = (1, p1, . . . , ps, . . . , pS).
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The budget constraints are given by:

z0
h + θh = 0 (2)

pszs
h = θh, s = 1, . . . , S (3)

Definition 1: An GEI equilibrium in the economy is a vector (p, θ1, θ2) such that

(i) θh maximizes utility (1) for the consumers subject to the budget constraints (2-3).

(ii) The bond market clears, i.e., θ1 + θ2 = 0.

Definition 2: Sunspots do not matter if the allocations are independent of the states

in period 2, i.e., if:

x1
h = x2

h = · · · = xS
h , h = 1, 2.

3 The Leading Example

In this example, S = 2, α = 1, and the preferences of the two consumers are restricted

to be log-linear, i.e.,

uh(xh) = logx0
h +

1

2

(
logx1

h + logx2
h

)
. (4)

To solve for the equilibria first solve for the demand of the two consumers.

For consumer 1, substitute the budget equations into the maximand to get

Max log(1− θ1) +
1

2
log

θ1

p1
+

1

2
log

θ1

p2

⇔ Max log(1− θ1) + log θ1 (5)

Thus, θ∗1 =
1

2
, which is independent of p1, p2.
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For consumer 2, the maximization problem is:

Max log (−θ2) +
1

2
log

(
1 +

θ2

p1

)
+

1

2
log

(
1 +

θ2

p2

)

The first order condition for consumer 2 is:

− 1

θ2

=
1

2p1

1(
1 +

θ2

p1

) +
1

2p2

1(
1 +

θ2

p2

)

or 4p1p2

(
1 +

θ2

p1

) (
1 +

θ2

p2

)
= −θ2

(
2p1

(
1 +

θ2

p1

)
+ 2p2

(
1 +

θ2

p2

))
(6)

Market clearing in the bond market implies θ1 = −θ2, thus θ∗1 =
1

2
implies that in

equilibrium it must be the case that θ∗2 = −1

2
.

Substitute this into the first order condition above to derive the equilibrium equation:

(
2p1 − 1

) (
2p2 − 2

)
− 1

2

(
2p1 − 1

)
− 1

2

(
2p2 − 1

)
= 0

or
(
2p1 − 1− 1

2

) (
2p2 − 1− 1

2

)
=

1

4

⇒
(
p1 − 3

4

) (
p2 − 3

4

)
=

1

16
. (7)

There are, however, two solutions to the equilibrium conditions. The branch through

(
1

2
,
1

2
) is not a solution as non-negativity conditions (for consumer 2) are violated. The

only solution is the branch through (1, 1). Thus, there is a unique (state) symmetric

equilibrium which corresponds to the Walrasian equilibrium. In this economy, the

symmetric equilibrium prices are p1 = p2 = 1.

Thus, the incompleteness of the markets is giving rise to the well known indeterminacy

of equilibria ([4]). While the indeterminacy shown is price indeterminacy, there will

be real indeterminacy as well.

From [3] it is known that the equilibrium allocations lie on the intersection of the

offer curves of the consumers. The supporting prices (p and p′ for the two consumers
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respectively) however, in general need not be the same. If they are, then the economy

is at a Walrasian equilibrium.

The offer curves of the two consumers in this economy are:

Ω1 =

{(
1

2
,

p0

4p1
,

p0

4p2

)
: p0, p1, p2 > 0

}
(8)

Ω2 =

{(
p1′ + p2′

2p0′ ,
1

4
+

p2′

4p1′ ,
1

4
+

p1′

4p2′

)
: p0′, p1′, p2′ > 0

}
. (9)

Normalize p0 = p0′ = 1. From the market clearing we know that x0
2 =

1

2
or from offer

curve of consumer 2, p1′ + p2′ = 1. Substituting this into the offer curve of consumer

2, we have :

Ω′
2 =

{(
1

2
,
1

4
+

1− p1′

4p1′ ,
1

4
+

p1′

4(1− p1′)

)
: p0′, p1′, p2′ > 0

}
. (10)

As we have taken the intersection of the two offer curves into account (the offer curve

of consumer 1 being a plane at the x0
1 coordinate of

1

2
), all the information of the

equilibrium is contained in this equation.

Define the parameter λ =
1− p1′

p1′ , with λ ∈ (−1,∞) (for p1′ > 0). The offer curve is

now given by:

Ω′′
2 =

{(
1

2
,
1

4
+

λ

4
,
1

4
+

1

4λ

)
: λ ∈ (−1,∞)

}
. (11)

From this we derive the equation for x1
2, x

2
2 by setting the second coordinate of the

above equal to x1
2 and the third coordinate equal to x2

2 and eliminating λ to obtain:

(
x1

2 −
1

4

) (
x2

2 −
1

4

)
=

1

16
. (12)
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Thus, there are two solutions. The branch through (
1

2
,
1

2
) satisfies the equilibrium

conditions. Thus, there is a 1-dimensional real indeterminacy as well.

To see examine the welfare effects, one can work with either equation (7) or equa-

tion (12). Working with the latter, it is easy to see that the Walrasian equilibrium

minimizes x1
2x

2
2 subject to the equilibrium restriction

(
x1

2 −
1

4

) (
x2

2 −
1

4

)
=

1

16
, and

x1
2, x

2
2 >

1

4
.

Alternatively, for consumer 1, the indirect utility function

w1(p
1, p2) = log

(
1

2

)
+

1

2
log

(
1

2p1

)
+

1

2
log

(
1

2p2

)

can be reduced to ζ1(w1(p
1, p2)) = −p1p2, where ζ1 is a strictly increasing function.

The indirect utility of consumer 1 is maximized at the Walrasian prices on the equi-

librium set. This can be seen, as p1 = p2 solves :

Min p1p2

s.t.
(
p1 − 3

4

) (
p2 − 3

4

)
=

1

16

p1, p2 >
3

4
.

For consumer 2, the indirect utility function, up to a strictly increasing transformation

is:

w2(p
1, p2) =

(
1− 1

2p1

) (
1− 1

2p2

)
.

Using the equilibrium relation between the prices and eliminating p2, this can be

reduced to:

m2(p
1) =

1

4

(2p1 − 1)2

p1(3p1 − 2)
.

This function is minimized at the Walrasian prices. To see this compute

m′
2(p

1) =
(2p1 − 1)(2p1 − 2)

4(p1(3p1 − 2))2
.
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This function is decreasing in the interval (
3

4
, 1) and increasing in (1,∞), with a critical

point at 1. In fact, m2(1) =
1

4
, and lim

p1→ 3
4

m2(p
1) = lim

p1→∞
m2(p

1) =
1

3
.

The limiting allocations can also be computed:

x1 =
(

1

2
, 0,

2

3

)
or

(
1

2
,
2

3
, 0

)

x2 =
(

1

2
, 1,

1

3

)
or

(
1

2
,
1

3
, 1

)
.

Remarks:

1. The result on the maximum and minimum of utility at the Walrasian equilibrium

is global for this economy.

2. Note that the equilibria will be constrained Pareto optimal as this is a 1-good

economy.

3. The results of [11] for the one good economy do not apply as there: H ≥
Max{2, J + 1} and S ≥ H + (J + 1), where S is the number of states in the

second period, J number of assets initially, and H number of consumers. In this

economy S = 2, H = 2, J = 1.

4. The results of [10] and [5] do not apply. These results are for multiple good

economies, and in [10] the restriction is : S ≥ H(J + 2) + H(J + 1)(J + 2)/2,

while in [5] it is: S − J ≥ 2H − 1.

5. This example can be generalized. This is the content of the next two proposi-

tions.
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4 Proposition 1

In this economy, for an open class of preferences the utility of consumer 2 is minimized

(locally) at the Walrasian equilibrium. A sufficient condition is that consumer 2 has

a sufficiently positive “precautionary savings motive”:

v′′2
4

+
v′′′

8
> 0.

In other words, the Index of Absolute Prudence ([14], p.

61) should be strictly greater than two:

−v′′′

v′′
> 2.

Proof:

Other than not imposing log-linearity on preferences, the structure of the economy is

the same as in Example 1. As in equilibrium it must be the case that θ1 = −θ2, set

θ1 = θ = −θ2. After substitution of the budget constraints into the utility function of

consumer 2 we have:

u2(θ, p
1, p2) = v(θ) +

1

2
v(1− θ

p1
) +

1

2
v(1− θ

p2
).

∇u2(θ, p
1, p2) =




v′(θ)− 1

2p1
v′(1− θ

p1
)− 1

2p2
v′(1− θ

p2
)

θ

2(p1)2
v′(1− θ

p1
)

θ

2(p2)2
v′(1− θ

p2
)




(13)
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D2u2 =




v′′ +
1

2(p1)2
v′′ +

1

2(p2)2
v′′

1

2(p1)2
v′ − θ

2(p1)3
v′′

1

2(p2)2
v′ − θ

2(p2)3
v′′

1

2(p1)2
v′ − θ

2(p1)3
v′′ − θ

(p1)3
v′ +

θ2

2(p1)4
v′′ 0

1

2(p2)2
v′ − θ

2(p2)3
v′′ 0 − θ

(p2)3
v′ +

θ2

2(p2)4
v′′




(14)

The equilibrium set consists of the 2 first order conditions (after substituting the

market clearing conditions).

E =





φ1(θ, p) = 0 = −v′(1− θ) +
1

2p1
v′(

θ

p1
) +

1

2p2
v′(

θ

p2
)

φ2(θ, p) = 0 = −v′(θ) +
1

2p1
v′(1− θ

p1
) +

1

2p2
v′(1− θ

p2
)

(15)

Now y = (θ, p2) = ψ(p1), locally.

Thus, φ(p1, ψ(p1)) = 0 ⇔ ∂φ

∂p1
+

∂φ

∂y
ψ′(p1) = 0 on E. In addition,

∂φ

∂p1
=





− 1

2(p1)2
v′(

θ

p1
)− θ

2(p1)3
v′′(

θ

p1
)

− 1

2(p1)2
v′(1− θ

p1
) +

θ

2(p1)3
v′′(1− θ

p1
)

(16)

∂φ

∂y
=




v′′(1− θ) +
1

2(p1)2
v′′(

θ

p1
) +

1

2(p2)2
v′′(

θ

p2
) − 1

2(p2)2
v′(

θ

p2
)− θ

2(p2)3
v′(

θ

p2
)

−v′′(θ)− 1

2(p1)2
v′′(1− θ

p1
)− 1

2(p2)2
v′′(1− θ

p2
) − 1

2(p2)2
v′(1− θ

p2
) +

θ

2(p2)3
v′(1− θ

p2
)




(17)

At the Walrasian equilibrium p1 = p2, and θ =
1

2
. Substituting into the above and

using the expression for ψ′, we have:
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ψ′ = −




2v′′ −1

2
v′ − 1

4
v′′

−2v′′ −1

2
v′ +

1

4
v′′




−1 


−1

2
v′ − 1

4
v′′

−1

2
v′ +

1

4
v′′




ψ′ = − 1

−2v′v′′



−1

2
v′ +

1

4
v′′

1

2
v′ +

1

4
v′′

2v′′ 2v′′







−1

2
v′ − 1

4
v′′

−1

2
v′ +

1

4
v′′




ψ′ =

(
0
−1

)

The indirect utility of consumer 2 can be written as:

G(p1) = w2(p
1, ψ(p1)) (18)

(19)

G′(p1) =
∂w2

∂p1
+

∂w2

∂y
ψ′(p1) (20)

G′′(p1) =
∂2w2

∂(p1)2
+ 2

∂2w2

∂p1∂y
ψ′(p1) + ψ′(p1)t ∂

2w2

∂y2
ψ′(p1) +

∂w2

∂y
ψ′′(p1). (21)

Now, evaluate these expressions.

G′(p1) =
1

4
v′ + [0

1

4
v′]

[
0
−1

]
= 0.

On the equilibrium set E :

∂φ

∂p1
+

∂φ

∂y
ψ′(p1) = 0.

Thus, there are two equations (on E for h = 1, 2.):

∂2φh

∂(p1)2
+ 2

∂2φh

∂p1∂y
ψ′(p1) + ψ′(p1)t ∂

2φh

∂y2
ψ′(p1) +

∂φh

∂y
ψ′′(p1) = 0.
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∂2φ

∂(p1)2
=




1

(p1)3
v′(

θ

p1
) +

θ

2(p1)4
v′′(

θ

p1
) +

3θ

2(p1)4
v′′(

θ

p1
) +

θ2

2(p1)5
v′′′(

θ

p1
)

1

(p1)3
v′(1− θ

p1
)− θ

2(p1)4
v′′(1− θ

p1
)− 3θ

2(p1)4
v′′(1− θ

p1
) +

θ2

2(p1)5
v′′′(1− θ

p1
)




∂2φ

∂p1∂p2
=

(
0
0

)
.

Hence,

∂2φ

∂p1∂y
ψ′ =

(
0
0

)
.

By symmetry,

∂2φ

∂(p2)2
=




1

(p2)3
v′(

θ

p2
) +

θ

2(p2)4
v′′(

θ

p2
) +

3θ

2(p2)4
v′′(

θ

p2
) +

θ2

2(p2)5
v′′′(

θ

p2
)

1

(p2)3
v′(1− θ

p2
)− θ

2(p2)4
v′′(1− θ

p2
)− 3θ

2(p2)4
v′′(1− θ

p2
) +

θ2

2(p2)5
v′′′(1− θ

p2
)




Thus, the equation for E becomes:




v′ + v′′ +
1

8
v′′′

v′ − v′′ +
1

8
v′′′




+




v′ + v′′ +
1

8
v′′′

v′ − v′′ +
1

8
v′′′




+
∂φ

∂y
ψ′′ = 0. (22)

ψ′′ =
1

2v′v′′



−1

2
v′′ +

1

4
v′′

1

2
v′′ +

1

4
v′′

2v′′ 2v′′


 · 2




v′ + v′′ +
v′′′

8

v′ − v′′ +
v′′′

8




. (23)

Thus, solving:

ψ′′ =




α

4 +
v′′′

2v′


 .
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This can be substituted into the expression for G′′ to obtain:

G′′ =
v′′

4
+

v′′′

8
.

If this is positive, then the utility of consumer 2 is minimized at the Walrasian allo-

cation. Q.E.D.

Remarks:

1. G′′ > 0 for the following utility functions

(a) The log-linear utility function: logx.

(b) The utility function:
x1−ε

1− ε
, ε < 1.

2. The intuition for the result is the following: Due to the precautionary motive,

consumer 2 wants to consume less in period 1 as prices vary due to extrinsic

uncertainty. Consumer 1 has fixed demand in period 1. Thus, consumer 1’s

endowment is ‘relatively less valuable’ and consumer 2’s endowment is ‘more

valuable.’ If the increase in value of endowment is large enough, then this will

outweigh the loss in utility due to greater uncertainty. 1

5 Proposition 2

This result extends to the case of S < ∞ states, and general endowment structures:

ω1 = (α, 1 − α, . . . , 1 − α) and ω2 = (1 − α, α, . . . , α) with α ∈ (0, 1]. A sufficient

condition for the utility of consumer 2 to be minimized at the Walrasian allocation is:

(
v′′ +

(
α− 1

2

)
v′′′

)
> 0 (24)

Proof:

The structure of the economy is similar to that in the previous proposition. There

1We thank Todd Keister for suggesting this interpretation.
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are, however, now S states in period 2. Thus, s = 0, 1, . . . , S. The endowments of the

two consumers are as given above. The preferences are given by:

uh(xh) = v(x0
h) +

1

S

S∑

s=1

v(xs
h).

In the Walrasian equilibrium of the economy, we have:

xh(0) = x0
h = . . . = xs

h = . . . = xS
h = xh =

1

2
.

The budget constraints are:

x0
h + θh = ω0

h (25)

psxs
h = psωs

h + θh, 1 ≤ s ≤ S. (26)

Substituting the budget equations into the utility functions and imposing the market

clearing equation θ1 = −θ2 = θ, we get the following maximization problems for the

two consumers.

Consumer 1: Max v(α− θ) +
1

S

S∑

s=1

v(1− α +
θ

ps
) (27)

Consumer 2: Max v(1− α + θ) +
1

S

S∑

s=1

v(α− θ

ps
) (28)

The set of first order equations define the equilibrium set, E.

φ1(θ, p) = −v′(α− θ) +
1

S

∑ 1

ps
v′(1− α +

θ

ps
) (29)

φ2(θ, p) = −v′(1− α + θ) +
1

S

∑ 1

ps
v′(α− θ

ps
) (30)

Let (1− α) = β. Then, the gradients of these two equations can be written.

14



∇φ1(θ, p) =




v′′(α− θ) +
1

S

∑ 1

(ps)2
v′′(β +

θ

ps
)

− 1

S(p1)2
v′(β +

θ

p1
)− θ

S(p1)3
v′′(β +

θ

p1
)

. . .

− 1

S(pS)2
v′(β +

θ

pS
)− θ

S(pS)3
v′′(β +

θ

pS
)




(31)

∇φ2(θ, p) =




v′′(β + θ)− 1

S

∑ 1

(ps)2
v′′(β − θ

ps
)

− 1

S(p1)2
v′(α− θ

p1
) +

θ

S(p1)3
v′′(α− θ

p1
)

. . .

− 1

S(pS)2
v′(α− θ

pS
) +

θ

S(pS)3
v′′(α− θ

pS
)




(32)

At the Walrasian point, we have

∇φ1(θ, p) =




2v′′

− 1

S
(v′ + (α− 1

2
)v′′)

. . .

− 1

S
(v′ + (α− 1

2
)v′′)




(33)

∇φ2(θ, p) =




−2v′′

− 1

S
(v′ − (α− 1

2
)v′′)

. . .

− 1

S
(v′ − (α− 1

2
)v′′)




(34)

Thus, ∇φ1 is not collinear to ∇φ2, and E is locally a (S − 1) manifold.

The issue is now to see that the utility of consumer 2 is minimized at the Walrasian
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equilibrium.

Min u2(θ, p) = v(β + θ) +
1

S

S∑

s=1

v(α− θ

ps
)

s.t. φ1(θ, p) = 0

φ1(θ, p) = 0.

The tangent space at the Walrasian point, w∗, is:

(θ̃, p̃) · ∇φ1(w
∗) = 0 (θ̃, p̃) · (∇φ1(w

∗) +∇φ2(w
∗)) = 0

⇔

(θ̃, p̃) · ∇φ2(w
∗) = 0 (θ̃, p̃) · (∇φ1(w

∗)−∇φ2(w
∗)) = 0

This implies:

∑
p̃s = 0

θ̃ = 0.

The Lagrangian is:

L(θ, p, λ1, λ2) = u2(θ, p) + λ1φ1(θ, p) + λ2φ2(θ, p).

The first order conditions are:

∂L

∂θ
(u∗, λ1, λ2) = 0 ⇔ 0 + λ12v

′′ + λ2(−2v′′) = 0 (35)

⇔ λ1 = λ2 = λ∗ (36)

∂L

∂ps
(u∗, λ1, λ2) = 0 ⇔ θ∗

S
v′ + λ∗(− 1

S
2v′) = 0 (37)

⇔ λ∗ =
θ∗

2
. (38)
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Now,

∇u2(θ, p) =





v′(β + θ)− 1

S

∑ 1

ps
v′(α− θ

ps
)

θ

S(ps)2
v′(α− θ

ps
), s ≥ 1

(39)

∂2u2

∂(ps)2
(u∗) = −2θ∗

S
v′ +

θ∗2

S
v′′ (40)

∂2φ1

∂(ps)2
(W ∗) =

2

S
v′ +

θ

S
v′′ +

3θ

S
v′′ +

θ2

S
v′′′ (41)

∂2φ2

∂(ps)2
(u∗) =

2

S
v′ − θ

S
v′′ − 3θ

S
v′′ +

θ2

S
v′′′. (42)

This implies:

∂2L

∂(ps)2
(u∗, λ∗) = −2θ

S
v′ +

θ2

S
v′′ + θ(

2

S
v′ +

θ2

S
v′′′)

=
θ2

S
(v′′ + θv′′′)

=
θ2

S
(v′′ + (α− 1

2
)v′′′). (43)

For a minimum we want this to be positive, which gives the desired result as
θ2

S
> 0.

Q.E.D.

Remarks :

1. If v(x) =
x1−ε

1− ε
, ε > 0, we have v′(x) = x−ε, v′′x = −εx−1−ε, v′′′(x) = ε(ε +

1)x−ε−2. Then,
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v′′(
1

2
) + (α− 1

2
)v′′′(

1

2
) = −ε2ε+1 + (α− 1

2
)(2ε(ε + 1)2ε+1)

= ε2ε+1(−1 + (2α− 1)(ε + 1))

> 0 iff α >
1

2
+

1

2(ε + 1)
.

(a) If ε = 2, for u2 to be minimized at the Walrasian point, we need α >
2

3
.

(b) If ε = 1, then we need, α >
3

4
.
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