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Abstract

Motivated by the slow diffusion of generic drugs and the increase in prices of brand-name
drugs after generic entry, I incorporate consumer learning and consumer heterogeneity into an
empirical dynamic oligopoly model. In the model, firms choose prices to maximize their expected
total discounted profits. Moreover, generic firms make their entry decisions before patent expiration.
The entry time of generics depends on the FDA random approval process. I apply this model to the
market of clonidine. The demand side parameters are estimated in a previous paper (Ching[16]).
The supply side parameters are estimated and calibrated here. The model replicates the stylized
facts fairly well. I confirm that consumer heterogeneity in price sensitivity plays an important
role in explaining the brand-name pricing pattern. I also apply the model to examine the impact
of a policy experiment, which shortens the expected approval time for generics. Although this
experiment brings generics to the market sooner, it also reduces the number of generic entrants as
the likelihood of entering a crowded market in the early periods increases. Given the change in
magnitude of the policy parameter, the experiment improves the rate of learning, and lowers the

equilibrium generic prices throughout the period. However, it hardly raises the overall welfare.



1 Introduction

In 1984, Congress passed legislation (the Hatch-Waxman Act) to eliminate the clinical trial study
requirements for approving generic drugs. Prior to 1984 there were few generic entrants. By making
generic entry easier, this policy change has made low cost generics much more accessible to the
public. However, many patients, physicians and pharmacists are reluctant to prescribe or use gener-
ics as they are uncertain about the generic quality. This type of concern was particularly serious
during the 80s when generics were relatively new (Strutton et al.[48], Carroll and Wolfgang[12], and
Mason and Bearden[39]). The prevalence of generic entry in the post-84 period therefore creates
an ideal situation for studying firm’s entry and pricing behavior, and market evolution when there
are uncertainty about the product quality.

Past research have documented two stylized facts that characterize the market evolution
of this industry (e.g., Caves et al.[13], Grabowski and Vernon[31][32], Suh et al.[49], Frank and
Salkever[27], Griliches and Cockburn[33], Cook[18], and Ching[15]): (i) many brand-name origina-
tors increase their prices after generic entry!; (ii) there has been a slow diffusion of generic drugs
into the market even after controlling for price differences between brand-names and generics. A
few studies (e.g., Grabowski and Vernon[31] and Frank and Salkever[26][27]) have conjectured that
consumer heterogeneity in price-sensitivity is needed to capture the pricing pattern?; in Ching[16],
I have argued that consumer learning is needed to explain the slow diffusion of generics. However,
none of the existing empirical oligopoly models have these two features. In this paper I incorporate
consumer learning and consumer heterogeneity into a stochastic dynamic oligopoly model. The first
goal of this research is to use this model to study the strategic interaction between brand-name
originators and their generic counterparts. In particular, I use the model to empirically examine to
what extent consumer heterogeneity can explain the brand-name pricing pattern.

Since the demand side of my model is obtained by aggregating individual consumer choices,
which based on utility maximization; and the supply side behavior is generated by profit maxi-

mization, the model provides a coherent framework for evaluating the welfare impacts of public

! Anti-infective drugs is an exception. Wiggins and Maness[51] show that generic entry has been effective in
reducing the brand-name price in this class of drugs.
2Their intuition is that when generics become available, price-sensitive patients switch to generics. This makes

the demand faced by the brand-name firm becomes more inelastic, and consequently, they are able to raise prices.



policies in this industry. Due to the increase in prescription drug expenditures, the post-patent
prescription drug market has been the focus of public policy debates. Despite the greatly simplified
approval procedures for generics after the passage of 1984 Hatch-Waxman Act, the FDA approval
process still serves as a hurdle that delays generic entry. In fact, less than half of the drugs whose
patent expired between 1984 and 1987 have generics available immediately after patent expiration
(Office of Technology Assessment[50]). This has led several interest groups to advocate various
policy proposals to speed up the generic approval time (e.g., Middleton[41]). Another goal of this
research is to use this model to evaluate the welfare consequence of a hypothetical policy, in which
the government shortens the expected approval time for generics. This could be achieved by giving
more resources to the FDA.

The spirit of this research is similar to the work by Grabowski and Vernon[30], who developed
a computer simulation model to study the effect of extending the patent life on R&D incentive in
the pharmaceutical industry. However, due to the constraint of computational power in the 80s,
they made many simplifying assumptions in their model. In particular, they assumed that firms
made their decisions according to rules, instead of profit maximizing problem. Moreover, they
chose their parameter values quite arbitrarily. This research is also related to an empirical work by
Scott Morton[46], which summarizes the factors that influence the entry decision of generic firms.
However, Scott Morton[46] uses a reduced form approach to model profit functions, and therefore
cannot evaluate new policies that change the post-patent environment, such as shortening the
expected approval time.

To address the shortcoming of the previous researches, I model the postpatent competition
using a Markov-perfect Nash equilibrium, where firms choose price to maximize their expected
discounted profits. As I will explain in the next section, the time it takes the FDA to approve
generic drugs is quite random. To study the effect of the expected approval time, I model the FDA
random approval process, and the entry decision of generic firms. The parameter values of the
model are estimated and calibrated from the real world data. As a result, the model can predict
how the equilibrium number of generic entrants changes with policy parameters, which may affect
the expected return from entering the market.

There is another independent work-in-progress by Reiffen and Ward [44], which also model

the random approval process explicitly. However, unlike the model developed here, they do not



incorporate consumer learning in the post-patent environment. Therefore, their model does not
account for the effect of shortening approval time on the rate of learning, which in turn affects the
expected return of submitting a generic drug application to the FDA. Two other notable researches
that are related to generic drug industry are Scott Morton[47], and Ellison and Ellison[21], which
study the strategic entry deterrence behavior of brand-name incumbents. Although this paper does
not focus on these issues, the model developed here can be extended to study them as well.

The theoretical literature on strategic learning and experimentation is also closely related to
the model analyzed here. Rothschild [45], McLennan [40] and Aghion, Bolton, Harris and Jullien
[3] consider a monopolist facing a fixed demand curve with unknown parameters. Aghion, Espinosa
and Jullien [4], Harrington [34] and Keller and Rady [36] analyze a duopoly market where firms are
uncertain about the substitutability between their products. The models considered in Bergemann
and Valimaki[7] [8] are most similar to the one developed here. In our models, both consumers and
firms are uncertain about the quality of the products. They update their prior beliefs using past
consumption experiences. Therefore, unlike other models, current demand depends on past sales.

The theoretical literature has provided many insights about firm’s optimal strategies and
potential market evolution outcomes. However, these models are stylized and hence cannot be
estimated on real world data without significant modifications. The empirical model developed in
this paper is tailored for the prescription drug market. Although the model does not have a closed
form solution, I will provide an algorithm to solve it computationally.

Despite the recent advances in the structural empirical literature of learning (e.g., Erdem
and Keane[23], Ackerberg[l], and Crawford and Shum[19]), all the existing works have exclusively
focused on modeling the individual consumer behavior. In terms of methodological contribution,
this is the first empirical paper that explicitly models oligopoly behavior when there are uncertainty
about product quality. My model also belongs to the class of dynamic oligopoly models introduced
by Ericson and Pakes[24], and Pakes and McGuire[42][43]. Due to the computational burden of
solving this class of models, it is difficult to implement them on real world industries. This paper
is one of a few empirical applications of fully dynamic oligopoly models (e.g., Gowrisankaran and
Town[29], and Benkard[6]). Other works on dynamic oligopoly models, which do not directly apply
to real world data, include Fershtman and Pakes[25], Gowrisankaran[28], and Cheong and Judd[14].

It should be emphasized that most of the previous papers model dynamics through investment,



and assume firms only make static price or quantity decision. As an exception, Benkard[6] models
dynamic quantity decisions by introducing learning-by-doing on the supply side. In this paper I
model dynamic pricing decisions by introducing consumer learning on the demand side. In addition,
I explicitly model consumers as Bayesian learners, as in Erdem and Keane[23].

In the model, all generic firms make their entry decisions in the period right before patent
expiration. If a generic firm decides to enter, it pays the sunk cost of preparing an application for
marketing the drug. However, it cannot enter until the FDA approves its application. The entry
time is random from the firm’s point of view due to the idiosyncratic nature of the technology
adoption process and the FDA approval process. Firms choose price to maximize the expected
discounted net future profits. Firms and physicians/patients are uncertain about the quality of
generics. In each period, some patients reveal their experiences to the public, which will be used to
update their prior in a Bayesian manner. Firms choose price to maximize the expected discounted
net future profits. The equilibrium concept used here is Markov-perfect Nash Equilibrium.

The model is applied to the market for clonidine, which is an anti-hypertension drug. The
demand side parameters are estimated in another paper (Ching[16]), the supply side parameters
are estimated and calibrated here. T find that the model explains the pricing pattern and the slow
diffusion fairly well. In particular, I confirm that consumer heterogeneity plays a crucial role in
generating the brand-name pricing pattern. In conducting the policy experiment that shortens the
expected approval time, I find that generic drugs become available in the market sooner. However,
surprisingly, the total number of generic firms deciding to enter drops. Notice that for any given
number of firms that decide to enter, the likelihood for each of them to enter a market crowded
with competitors in the early periods increases as the expected approval time reduces. Given the
change in magnitude of the policy parameter, the “crowding” effect outweighs the “early-entry”
effect. Consequently, the number of generic firms that are willing to pay the sunk cost of entry
drops. I also find that the experiment improves the rate of learning and lower the equilibrium
generic prices. However, it hardly raises the overall welfare.

The rest of the paper is organized as follows. Section 2 provides an overview of the generic
approval process and the market characteristics for clonidine. Section 3 presents the dynamic

oligopoly model and the computational method I use to solve for a markov-perfect nash equilib-



rium. Section 4 describes the data set and explains how to estimate and calibrate the supply side

parameters. Section 5 presents the results. The last section is the conclusion.

2 Background

2.1 Generic Drug Approval Process

To enter a market, a generic firm needs to submit an application for marketing the drug to the FDA.
This application is called the Abbreviated New Drug Applications (ANDA). In order to obtain ap-
proval, a generic firm needs to prove that its product contains the same active ingredients, strength,
dosage form, route and is bioequivalent.? The time it takes to adopt the manufacturing technology
and obtain approval from the FDA is quite uncertain. Depending on the formulation of the drug,
the resource constraint and the experience of the firm, and the availability of raw materials, it could
take several months to a few years for a generic firm to adopt the technology for manufacturing
the drug. The approval process includes bioequivalence review, chemistry/microbiology/labeling
review, plant inspection, and independent laboratory tests of preliminary batches of the product.
It is not uncommon that the FDA needs an ANDA applicant to revise its application by clarifying
their documents, repeating some tests and submitting additional data. The factory could also fail
in an inspection. All these factors contribute to the uncertainty about the entry timing for generic
firms. The model will build in this feature as it plays an important role in the entry decision for
generic firms.

There are no formal estimates of the costs of preparing an ANDA, but informal discussion
with industry people suggests that it is typically several million dollars. It is common to see
markets experience excess generic entry ex-post. Some generic firms that receive FDA approval
late make negative net profits (Scott Morton[46]). This is consistent with the hypothesis that firms
are forward-looking and they make their entry decisions based on discounted expected profits. Since
the entry time is random from the firm’s point of view, some generic firms may make negative net
profits ex-post if they receive the FDA approval late, even though the expected net profits from

submitting an application to the FDA is positive.

8Before 1984, generic firms also needed to repeat costly clinical and animal testing on active ingredients.



In addition, if generic firms are forward-looking, they will have an incentive to reduce their
prices in order to attract patients to try their products, and hence reduce the uncertainty associated
with generic drugs. At the same time, the brand-name firm may react by lowering its prices to keep

patients from switching. The model developed here will capture this type of strategic behavior.

2.2 Clonidine

The dynamic oligopoly structural model is applied to the market for clonidine. Clonidine, an
anti-hypertension drug, can also be used to treat migraine headaches. Its patent expired in July,
1986. The revenue for the quarter right before patent expiration is 25 million dollars. After patent
expiration, the clonidine market behaved according to the stylized facts described above. Its market
potential has attracted 12 generic firms to enter. Largely due to the random approval process, the
entry time distribution is fairly spread out. As shown in Figure 1, the first generic enters in the
quarter immediately after the patent expires, while the last one enters nine quarters later. In the
18 quarters after patent expiration, the brand-name price goes up from 59 to 87 cents per patient
day, the generic price goes down from 23 to 8 cents per patient day, and the brand-generic sales
ratio decreases from 5.1 to 0.3. Moreover, the number of generic entrants becomes stable at 12
from the 10th to 18th quarter, but the generic prices keep decreasing from 12 cents to 8 cents. The
minimum and maximum quarterly total sales (including both the brand-name and generics) are

43.3 and 51.6 million patient days, respectively. Now I turn to discuss the model in detail.

3 The Model

In this section, I present a dynamic oligopoly structural model. The model is specifically designed
to study the competition between a brand-name firm and generic firms after patent expiration. It
describes a finite-horizon discrete-time industry starting from the period right before the patent
expires. Firms choose price to maximize the expected discounted value of their net future profits
given their information set. The industry structures are represented by states that summarize
all currently available information relevant to current and future payoffs. There are four types of

agents: patients, physicians, a brand-name firm and generic firms. There are two types of products:



a brand-name drug which is produced by the brand-name firm and has patent protection, and
generic drugs which are produced by the generic firms.

Product characteristics can be distinguished as p;, A;, and {;, where p; is the price of
product j, A; is the mean attribute level of product j, and &; represents some unobserved product
characteristics (e.g., promotion effort). All agents in the model are perfectly informed about p; and
&j, but they may be imperfectly informed about each product’s mean attribute level, A;.

At the beginning of each period, patients and firms make their purchase and pricing decisions,
respectively, based on their perceptions of each product’s quality. After taking the drugs, some
patients reveal their experience signals to the public when revisiting their physicians. Physicians,
who act as an information aggregator,* update the public information on each product in a Bayesian
fashion.

The equilibrium used here is Markov-Perfect Nash Equilibrium (MPNE), as defined by Maskin
and Tirole[38]. The strategy space includes entry and pricing decisions. MPNE restricts the
subgame perfect equilibria to those where actions depend only on payoff relevant state variables.
This eliminates a large subset of subgame perfect equilibria that would normally exist in this
type of model. Firms maximize their expected discounted profits conditional on their expectations
about the evolution of the number of generic entrants, the perceived mean attribute levels and
the perceived variances. Equilibrium occurs when all firms’ expectations are consistent with the
process generated by the optimal policies of their rivals.

The model can be broken down into three components: (1) learning about product attributes,
(2) demand, and (3) supply. I now describe these in turn. Since (1) and (2) are mainly drawn from

Ching[16], I only discuss them briefly here.

3.1 Learning about Product Attributes

Prior to 1984, generics were relatively uncommon due to the high entry costs. As a result, the
public felt unsure about the generic qualities when there were suddenly many generic alternatives

available right after 1984. Although the FDA claims that their standard for approving generic

“This is motivated by the aspect of learning from others in the prescription drug market.



drugs is the same as for brand-name drugs, many physicians and pharmacists did not entirely trust
the FDA in the 80s (Strutton et al.[48], Carroll and Wolfgang[11], Mason and Bearden[39]).?

I therefore assume the public is uncertain about the mean attribute of generic drugs (4;).
A drug is an experience good. Consumption of a drug provides patients with information. But
each patient 7’s experience of the attribute of product j at time ¢ (flijt) may differ from its mean
attribute level A;, where j = b denotes the brand-name drug, and j = 1,---,n, denote generic

drugs. The experience variability may be expressed as:

Aije = Aj + diji, (1)

where ¢ indexes time (¢ = 1,---,T); and ¢ indexes the patients (i = 1,---,M). The error term
associated with experience variability (d;;;) is treated as an 4.i.d. random variable, with zero mean
and a variance that is constant over time. Since I only observe total generic sales and average

generic prices, I assume all generic drugs share the same mean product attribute level. Hence,

Aj = Ay =: Ay, V35, k =1,---,ng, and the experience variability for generic drugs can be rewritten
as:

Ajje = Ag + 64, (2)
for j =1,---,ng. This feature implies that there is a free-rider’s problem in learning among firms.

When a generic firm lowers its price to attract more patients to try its product, it reduces the
uncertainty about generics as a whole. However, each individual generic firm does not take this
positive externality into account. As a result, generic prices may be set higher than the socially
optimal level.

The initial period of the model (¢ = 0) is the period before the patent expires. I assume that
the public has learned the true Ay by the time a patent expires. Therefore, there is only uncertainty
about A,.

The noise term 0;;¢, and the initial priors on A, are assumed to be normally distributed.

Letting t = 0 be the initial period of the model, I have that

sijt ~ N(0,03), (3)

5Tt should be noted that there was a generic scandal in the late 80s. A few generic firms bribed the FDA officials
to approve their applications quicker. During the investigation, the FDA found that some generic drugs produced by

these firms were actually below the standard.



Ay ~ N(4,07%,(0), (4)

where 0'1249 (0) is the initial prior variance (at ¢t = 0) of A,.

Let A; be the set of experience signals that are revealed to physicians at time ¢. Since not
every patient revisits his/her physician, the cardinality of A; (card(A;)) is generally smaller than
the quantity of generics consumed at time ¢ (gq), which is the total number of experience signals
revealed to patients. Let x be the fraction of experience signals revealed to physicians in each
period. Then card(A;) = kqg.b

Physicians as a whole act like an information aggregator for the public. They use information
revealed to them over time (i.e., A;) to update their prior expectation of A,. According to the

Bayesian rule (DeGroot[20]),
B[AgI(t+1)] = E[AG|I(t)] + By(t) (Agr — E[Ag|T(1)]), (5)

where flgt is the sample mean of all the experience signals for generic drugs that are realized
in period t.” S3,(t) is a Kalman gain coefficient, which is a function of experience variability (02),
perceived variance (01249 (1)), total quantity of generic drugs consumed at time ¢ (gy;) and the fraction

of experience signals revealed to the public (k). It can be expressed as:

By(t) = ——F——. 6
4 (%) g?qg (t) + —é—nf,r]gt (6)

The perception variance at the beginning of time ¢ + 1 is given by (DeGroot[20]):

1
2 _
P4 D) = 7)
(rQAg(O) Ug

where Qg (= Sy qgr) is the cumulative consumption of generics, or,

1

2 —
UAg(t+1)— 1 _i_&gt

(rQAg () o

(8)

Equations (7) and (8) suggest that the perceived variance associated with A, (and consequently

the perceived variance of A;;) will be lower, ceteris paribus: (a) the more precise the information

6One can interpret & as the probability that a patient revisits a phsyician and discusses his/her experiences with
generics. Since gg; is typically very large (in the order of several hundred thousands), I assume sampling errors can

be ignored and hence card(A:) = Kqqt.

2

"Let Ay be the true mean attribute level of generic drugs. Then, Ag¢|(kgye, I(t)) ~ N(Ag, —2-).

9 Kdgt



gained via consumption experience (i.e., the lower the experience variability of the product); (b)

the more experiences the public has about generic drugs.®

3.2 Demand

Since the focus here is to develop a tractable industry equilibrium model and T only have product
level data, I abstract away from the principal-agent relationship among patients, pharmacists,
physicians and hospitals when modeling demand. In the model each patient i® decides among .J
possible alternatives in each of T" discrete periods of time, where T is finite. Alternatives are defined
to be mutually exclusive, so that if d;;(¢) = 1 indicates that alternative j is chosen by patient i
at time ¢ and d;;(t) = 0 indicates otherwise, then )~ ;d;;(t) = 1. The choice set J includes the
brand-name drug (b), the generic drugs (1,...,n4), and an “outside” alternative (0). The outside
alternative includes receiving no treatment and other non-bioequivalence drugs, which could treat
the same disease.

Let I(t) denote the public information set at the beginning of time ¢. I assume that the utility
of consuming a drug can be approximated by an additive compensatory multi-attribute utility model
(Lancaster[37]). As in Erdem and Keane[23], I assume further that consumers are risk averse with
regard to perceived variability in product attributes. The expected utility of purchasing a generic

drug j is given by the following expression:

E[UlI(t)] = —aipje+ wB[AgI(1)] — wrB[AGI(t)]* — wr (o} + 04, () + &g

+Cigt + €ijts (9)

where E[U;;|1(t)] is the expected utility for patient ¢ conditional on choice of product j at time ¢;
pjt is the price for product j at time #; w is the utility weight on the perceived attribute; r is the risk
coefficient; o; is the utility weight that patient ¢ attaches to price; £, represents the mean valuation
of generic unobserved product characteristic at time ¢; ({jg¢ + €ij;) represents the distribution of

consumer preferences about this mean. o;, £4, (igr and e;j; are unobserved to the econometrician

¥Note that x and ¢ cannot be separately identified. In Ching[16], T estimate o by fixing » at some value.
%Alternatively, one can interpret a decision-making unit as a patient-pharmacist pair, who jointly decide which

alternative to choose.
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but observed by the patients in the model when they make purchase decisions. Each patient’s
objective is to maximize current period expected utility.'°

The actual price paid by patients may vary because of variation in health insurance coverage.
Since I do not have the distribution of actual prices paid by the patients, I allow «; to be hetero-
geneous in order to capture this institutional feature. Moreover, the heterogeneity of «; could be
crucial in explaining why brand-name prices increase in response to generic entry.!!

For each patient 7, (4 is common to all generic drugs. This introduces group correlation
of utility levels. In the nested logit framework, e;;; is distributed Extreme Value with variance
(mp2)?/3, and ((ige+e4jt) is distributed Extreme Value with variance (mp1)?/3.12 One interpretation
is that conditioning on choosing generics, e;;; is an Extreme Value error term associated with generic
drug j.

The expected utility of choosing the brand-name drug is similar to (9). However, since I
assume that the patients have already learned perfectly about Ay, we have that o4,(t) = 0 and
E[Ap|L(t)] = Ap,Vt=0,---,T.

The expected utility associated with the outside alternative depends on an intercept, a time

trend and a stochastic error component,
ElUios|I(t)] = ¢oi + dotit + €iot, (10)

where €0 = ot + €;0:. My data set does not have information on differences in the value of the
outside alternative. Thus, to account for the possibility that there is more unobserved variation
in the valuation of the outside alternative, I allow the outside good coefficients (¢o;, dor;) to be
heterogeneous.

As in Heckman and Singer[35], I specify the heterogeneity of the price response coefficient
(cr;) and the coefficients for the outside alternative (¢o;, pori) as discrete multinomial. Accordingly,

we distinguish between two different “types” of individuals, where each type k is characterized by a

0 Allowing patients to maximize their lifetime expected utility will dramatically complicate the state space.
Ching[16] provides several justifications for modeling patients to be myopic.

171t should be noted that w and r are assumed to be homogeneous. I make this assumption because it is very
difficult, if not impossible, to identify the parameters of the model if I allow all three coefficients, («,w,r), to be
heterogeneous given the market level data I have.

2The exposition of the nested logit model framework follows from Cardell[10].
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different triple (o, ¢k, ¢F,). The population proportions of each type are given by 7. The demand
for each product is obtained by aggregating individual patient choices.

As pointed out in Berry and Pakes[9] and Ackerberg and Rysman|[2], the i.i.d. extreme value
error terms (e;j;’s) represent unobserved product differentiation that is symmetric across products.'?
This unobserved product differentiation could be due to differences in promotion efforts, sales
networks across geographic regions, or incomplete information about product characteristics. This
feature of the model causes the price-cost margin to be strictly bounded away from zero even when
the number of generics increases to infinity. The reason for this result is that each generic entering
the market adds one more dimension to the symmetric unobserved product differentiation (SUPD)
space. Moreover, the higher the variance of e;;; the larger the bound, as it increases the monopoly
power of each firm. Intuitively, the variance of e;;;, which is measured by po, represents the degree
of SUPD for generics. In the data, the price of generics consistently decreases over time even when
the number of generic entrants becomes fixed (Ching[15]). This suggests that the degree of SUPD

decreases over time. To capture this, I model us as a function of time since the first generic entry

(te),
pa(te) = fizep(—ite), (11)

where [io is a constant. In this parameterization, I allow the possibility that ue may decrease over
time.'* This could happen, for example, if pharmacists, who initially have heterogeneous prior
belief about individual generic qualities, learn that they are actually very similar over time.

This feature has significantly improved the flexibility of the supply side model in generating
the pricing patterns that are observed in the data. Alternatively, one could explicitly model the
reason behind the decline of generic prices. However, the computational burden of the model
developed here has already reached the limit given the current speed of computer. Moreover, the
focus of this paper is to understand the brand-name pricing pattern, and to investigate the role of
random approval time in generic entry decisions. I therefore decide to adopt the simpler approach

to generate the decline of generic prices over time.

13Note that E[A4|I(t)] is also an unobserved product characteristic but it enters the model in a structural way.
“This approach is similar to Ackerberg and Rysman[2] Note also that Elrod and Keane[22] called terms like e;;;
“unique” factors and terms like Ay the loadings on a “common factor”, and showed how the relative importance of

each other could be identified from switching patterns in individual level panel data.
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3.3 Supply

The supply side of the model can be usefully divided into two parts: (1) the initial entry decision
before patent expiration, and (2) dynamic competition after patent expiration. I now detail them

in reverse order.

3.3.1 Dynamic Competition After Patent Expiration

In this section I discuss how firms compete after patent expiration. I make several simplifying
assumptions: (1) firms do not have an option of exiting the market, (2) generic firms cannot submit
applications to the FDA after patent expiration, and (3) it is always profitable for a generic firm
to enter the market when its application is approved. Certainly, firm’s behavior may violate these
assumptions. However, such violations are fairly rare (see Scott Morton[47], Scott Morton[46]),
and to include them would drastically complicate the model.

The model can be thought of as containing two stages every period, with entry and price-
setting in that order. In the first stage, each potential generic entrant receives a notice from the
FDA regarding the status of its application. In the second stage, having observed the FDA’s
decision, firms (including the ones which have just entered the market) choose their strategies to
maximize the expected discounted value of their net future profits. I assume that the brand-name
firm acts as a leader and set its price first. Then, taking the brand-name price as given, generic
firms simultaneously set their prices. This leader-follower setup seems reasonable given that the
brand-name firm is significantly larger than generic firms. Moreover, the leader-follower model is
also easier to solve computationally compared with a model that assumes all firms choose their
prices simultaneously.

A generic firm that has already entered the market is referred to a generic entrant. A generic
firm that is still waiting for the FDA to approve its application is referred to a potential generic en-
trant. Let ng be the number of generic entrants (after the disclosure of the FDA approval decision)
in period ¢, and n,; be the number of potential generic entrants in period ¢ (after the disclosure
of the FDA’s decision). I denote Sy = {E[A,|I(t)],04,(t), ngt, npt, &}, where § = (&pt, Egt), as the
set of state variables that are relevant to the decisions of firms. Let P.(k;np—1,t) be the proba-

bility that k& potential generic entrants are allowed to enter the market in period ¢, conditional on
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npi—1."5 Let py be the brand-name price, pgr = (pit, - - , Pngt) be a vector of generic prices, ne be
the number of potential generic entrants that receive approval to enter in period ¢, and 8 be the
discount factor. To ease the computational burden of solving the dynamic optimization problem,
I assume the uncertainty about the generic attribute is completely resolved in the terminal period
T (ie., 04,(T) =0, E[AJ|(T)] = A,).*°

Recall that gg is the total demand for generics. Let p,_j; denote a vector of generic prices
for all generic entrants but firm j. Then for ¢ < T and for j = 1,---,n4, the generic entrant’s

value function is:

Vy(Sy) = sup [7(St, pot, Dg—jts Pjt)
pjt>0
Npt
+B{D> Pe(k;npts t + 1) E[Vy(Sp41)|St, Gt (pots Bg—ijts Pjt) s nets1 = K]},
k=0
(12)
Vy(St) = sup [n(ST,psr,Dg—jT, PiT)]-
p;T>0

It should be noted that each generic firm j explicitly takes into account the effect of its pricing
decision (p;¢) on the next period expected mean attribute (E[A4|I(¢ 4+ 1)]) and perceived variance
(04, (t+1)) through the total demand for generics (gg:).

Let py(por) = (P (poe), -+ ,p;;gt(pbt)) be the vector of optimal prices for generic entrants
conditional on py;. Since all generic entrants are identical with respect to (E[Ay|I(t)],04,(t),&gt),
I will only consider equilibria which are symmetric across generics, that is, pj,(pe) = i, (pst), V3, k =
Lo ng.

Now I consider the brand-name firm’s problem. The difference between the brand-name firm’s
problem and the generic firm’s problem is that the brand-name firm recognizes how the generic

prices will react to its pricing decision. The brand-name firm’s bellman equation is similar to the

5Notice that P.(k;npi—1,t) does not depend on (E[A4|I(t)],&:). Hence, endogenous entry does not create a
selection bias problem in this model.

5 Having a terminal period allows one to solve the dynamic programming problem by using backward induction.
Otherwise, one needs to solve for a fixed point solution, which would be more computationally burdensome. As long
as T is chosen to be large enough, the finite horizon dynamic programming problem described in this section would

be close to the infinite horizon dynamic programming problem.
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generic firm’s except that the py is replaced with p7,(ppt)-

%(St) = sup [’/T(Stapbtaﬁ:;t(pbt))
Pt 20
Npt
+B{D Pe(kinpe, t + 1) E[Vy(St41)[St, dgt (poes Byt (Pot)) s et 1 = K},
k=0
(13)
Vo(St) = sup [7(ST,pvr, Dgr(Pv1))]-
o7 >0

Similarly, the brand-name firm explicitly takes into account the dynamic effect of its current pricing
decision on future demand.

The expectations in (12) and (13) are taken over the distribution of the random components
of Si41 conditional on (S, qge, Nerv1) (i.e., E[Ag|I(t + 1)] and &41). The number of entrants,
the number of potential generic entrants, and the perception variance evolve stochastically in a
Markovian manner. I have the law of motion ng;11 = ng;+mneiq for the number of generic entrants,

Npt+1 = Npt — Net+1 for the number of potential generic entrants, and (71249 (t+1) = ﬁ for

2 2
o'Ag (t) o3

the perception variance (Equation (8)). Recall that the expected mean level of the generic attribute

evolves stochastically according to Equation (5):
B[AgI(t +1)] = E[Ag|I(t)] + B,(t) (Agr — E[Ag[1(2)]).

This equation gives the distribution of the expected mean generic attribute, conditioning on the
true mean attribute, A,. Denoting this conditional distribution as ¢(E[A4|I(t + 1)]|I(t), Ag), the

generic firms’ expectation of the value function conditional on A, can be written as,
E[Vy(St+1)[5t: gty net+1 = ki Ag] =
[ VaStsa1St agts A dd(BLA (¢ + DIT(), Ag)}efe(€r:0) (1)

where f¢ is the distribution for &.
Since generic firms do not know the true Ay, they have to integrate it out to form the

expectation of the value function. Let f{* be the prior distribution of A, at time ¢. Then

B[V (St4+1)[St: qgt, Net+1 = k] = /E[Vg(St+1)|St,qgt,net+1 = k; Agldfi (Ay). (15)

The expectation of the value function for the brand-name firm is similar. It should be highlighted

that the computational burden of solving this model is mainly due to the integrations in (14) and
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(15). Since there is no closed form expression for E[V;(Si+1)|St, qgt, ner+1 = k], numerical methods

will be used. I discuss the computational issue in section 3.4.

3.3.2 Initial Entry Decision Before Patent Expiration

Now I discuss the initial period of the model (i.e. the period before patent expiration). The initial
period can be divided into two stages. In the first stage, nature draws a true mean attribute level
for generic drugs (Ay) from N(A, U2Ag (0)), which is the public initial prior for A,. In the second
stage, a large number of generic firms decide sequentially whether to enter, where the order is
chosen randomly. I assume generic firms are identical ex-ante and they face the same sunk cost of
entry (c.).!” After paying this sunk entry cost, a generic firm obtains a lottery which determines
when it can start selling its products.

Denote the state vector excluding the number of potential generic entrants by S’t = Si\npt.
If there are m generic firms which pay the sunk entry cost in the initial period, then the value of
being a potential generic entrant is:

Voe(So,npo =m) = B> Pr(k,m,t =1)E[V,(S51)|S0, q90 = 0, ne1 = K]}, (16)
k=0

where P (k, m,t) is the probability that the FDA approves k potential entrants in period ¢ including
the one in question. Then the equilibrium number of generic firms that decide to enter in the initial
period (ny) is:

”;0(§0) =

{ 0 if Vpe(So,n% = 1) < ce, else

2 ~ 17
min{m € ;4 : ¢, < V})e(S’g,n;O =m), V})e(So,n;;O =m-+1) <ce} (17)

Note that each firm’s decision is deterministic, and n;‘,o(gg) is the cutoff such that V), falls below

ce when nyo > n;‘,O(S’O).

3.4 Model Parameterization and Computation Issues

In this section, I discuss the numerical methods that I used to solve the equilibrium model. Readers

who are not interested in the details may skip to the next section.

"¢, includes the cost of adopting the manufacturing technology and preparing an application for marketing the

drug. Although firms may actually face asymmetric costs of entry as their prior manufacturing experiences may vary,

allowing asymmetric entrants is beyond the scope of this research.

16



One way to solve this type of dynamic multi-agent model is to discretize the state variables
(e.g., Benkard[6]). To illustrate the parameterization of a stochastic discrete version of this model,

suppose that I discretize E[A4|I(¢)] and U%g (t) into n, and n, points, respectively.

BlA|I(t)] = {A1, Az, An, } (18)
0'1249(75) = {017027"'70no}7 (19)
where
A1<A2<"'<Ana, (20)
O=01 <0< < 0p,. (21)

Recall that 01249 (t) evolves according to Equation (8). This equation describes a continuous
process. For the purpose of the discrete version of the model, I need to transform it into a stochastic
discrete process, which I denote by 74 (¢).1¥ To accomplish this, I define 6%9(0) = 0’?49(0), then
calculate 01249 (t+1) from &1249 () and g4 using (8). Now I compare 01249 (t+1) to the set of discretized
values {o1,09,--,0,,} and find the closest two points to (71249 (t+1). Let 02 and o2 be the two
closest discretized points such that o2 < 0'1249 (t+1) < 02. Then the distribution of 6319 (t+1) given

61249 (t) and g4 is defined as follows:

o2 (t+1)—0c2
-9 0'5 with prob %,
04, (t+1) = o (t+1)-03
g 2 . A (+ ) d
o4 with prob 1 - 4 ——.

d 0L —0;

(22)

Now let’s consider how to obtain the expected value function, E[V;(St11)|St, agt(pot, Dyt (Pot)),
Net+1 = k; Ay, 7 € {b,g} as shown in Equation (14). Conditional on E[A,|I(t)] and Ay, E[Ag|I(t+

1)] is normally distributed according to (5). Its mean and variance are given by:

E{E[AG|I(t +D)]|Ag} = (1= By(t)) E[Ag|I()] + B(t) Ay, (23)

By (1?25 (24)

Var{E[Ag|I(t +1)]|Ag} e

Next, I need to transform the normally distributed E[A4|I(t 4+ 1)] into a discrete random variable,

E[Ag|1(t+1)], with support {A;, Ag,---, Ay, }. Ifirst define a set of points {41 2, A23, -, Ap, —1n.}

'8 The process needs to be stochastic to ensure the value function is continuous in gg¢ (or pgt)-
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such that A4; ;11 = %. Then I assign the probability to each discretized point, A, As,---, Ay, ,

as follows:

P’r’Ob(Ai) = (P(AZ',Z'+1) - @(Ai,l,i),for 1 75 1 or Ng, (25)
P'f‘Ob(Al) = q)(ALQ), (26)
Prob(A,,) = 1—®(An,—1n,)s (27)

where @(.) is the cdf of E[A4|I(t + 1)] conditional on E[A4|I(t)] and A,. For simplicity, let’s
assume that there is no demand shock (;) for the moment. Then, given the discrete distribution

of E[Ay|I(t + 1)], the expected value function is simply,

E[V;(St+1)|St, gts Met 15 Ag] =

> Prob(E[Ag|I(t + 1)] = A)Vi(E[Ag|I(t + 1)][St, qgi, et 15 Ag), (28)
=1
where
Vi(E[AGI(t + 1)]|Ss, qges ety 15 Ag] =
Z Prob(Ga,(t + 1) = 01)Vj(St+1|St, agt, Merv15 Ag), (29)
le{u,d}
for j € {b,¢g}.

The numerical integration method described in (25) - (27) is similar to the classical quadrature
methods (e.g., extended midpoint rule). Notice that as the mean of the distribution moves toward
the end points (i.e., (41, Ay, )), the approximation given by this method will deteriorate. But as
long as I locate the true A, far from the end points,'® the probability that the model will reach the
end points will be small. Hence, I do not expect this will significantly affect the results. Similarly,
I integrate the demand shocks by transforming them into discrete random variables.

Finally, I use Gauss-Hermite quadrature to integrate E[V;(Si11)|St, qgt, Net+1 = k; Ag] over

A, to obtain E[V;(Si41)|St, qgt, net+1 = k] (Equation (15)).

9This can be done once we obtain estimates of A,’s.
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4 Data, Estimation and Calibration

4.1 Data

The data for this study include: quarterly observations on revenue and quantity sold from Inter-
continental Marketing Services (IMS),20 patent expiration dates from the pharmaceutical Manufac-
turers Association (PMA), ANDA approval dates from the Food and Drug Administration (FDA),
daily defined doses from Medi-Span, and the number of potential patients from the National Am-
bulatory Medical Care Survey and the National Hospital Discharge Survey. The units for quantity
are transformed into number of patient days using daily defined dose. I divide revenue by quantity
sold to obtain price.

To estimate the entry probabilities for generics, I use entry data on 25 drugs.?2! The sample
selection criterion are explained in Ching[16]. This sample covers five therapeutic classes: heart
disease drug, depressant, anti-depressant, anti-psychotic drug, and antibiotic.

In Ching[16], I estimate the demand model by therapeutic class. Clonidine belongs to the
class of heart disease drugs, which consists of seven drugs in the sample. Treating product/quarter

as one observation, the number of observations are 300 for this class.

4.2 Estimation and Calibration
4.2.1 Demand Parameters

There is an endogeneity problem that arises when estimating the demand model: E[A4|I(t)] and &,
are unobserved to the econometrician but potentially observed to the consumers and firms. These
unobserved characteristics will in general be correlated with price, making price endogenous. To
handle this problem, I have developed an estimation technique that involves approximating the
pricing policy function. Ching[16] explains the method and applies it to estimate the demand
model. The estimated demand parameters for clonidine (or more generally for heart disease drugs)

from Ching[16] are reproduced in the first two columns of Table 1. It is found that patients are

20IMS is a company that specializes in collecting sales data for the pharmaceutical industry. IMS data represent
combined sales from drugstores and hospitals.
21Since most generic firms enter the market immediately after they receive approval from the FDA, I use ANDA

approval date as a proxy for generic entry date.
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heterogeneous in terms of price-sensitivity. They are also risk-averse, uncertain about the generic
quality and have pessimistic initial priors (i.e., the initial prior mean attribute (A) is lower than
the true mean attribute (Ay)).

It should be noted that the parameters that determine the variance of the extreme value
error terms (i.e., u1, fi2, ) are calibrated. I have tried to estimate them along with other demand
parameters but find that they are not well-identified. I first normalize y; = 1.0. Then I calibrate the
initial guess of all the demand parameters by informally matching predicted equilibrium market
shares and pricing patterns with the observed ones. In particular, s is chosen such that the
equilibrium predicted initial generic price matches with the actual initial generic price. ¢ is chosen
such that the equilibrium generic price declines at the same rate as I observe in the data. Then I
fix p1, o and ¢ at the calibrated values when estimating other parameters.

Other than the demand parameters, I also need to obtain the parameters that determine the
entry probabilities, the sunk cost of entry, the marginal costs of production and the discount factor.

In the following subsections, I discuss how to estimate and calibrate them.

4.2.2 Entry Probabilities

I model entry probabilities as a binomial distribution. Let A(#) be the probability that a potential
generic entrant receives an approval from the FDA in period . Then the probability that there
are k potential generic entrants which are allowed to enter the market in period ¢, conditional on

Npt—1, is:

Po(kynp—1 =m,t) = ( 7: ) A@BE(L = A(@))™*. (30)

I use equation (30) as the likelihood function for estimation. A(t) is determined by a logit model
with an intercept, therapeutic class dummies, time since the patent expired and its square, as
regressors. The results are reported in Table 2. T also use this equation to set up the value function
for the generic entrants and the brand-name firm (see Equation (12) and (13)).

The probability that the FDA approves k potential entrants in period ¢ including the one in

question is then,

P (kynpp—1 = m,t) = At) ( 7,7:__11 > A1 = A@)) D (k=1
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m—1 e
= ( b1 )A(t)k(l—/\(t)) k. (31)

I use this equation to calculate a generic firm’s expected return from submitting an application to

the FDA (see Equation (16)).

4.2.3 Sunk Cost of Entry, Marginal Cost of Production and Discount Factor

The sunk cost of entry, c., is difficult to obtain directly from industry data. Annual reports from
companies do not break down R&D costs by product. Therefore I use the model’s prediction to
calibrate this parameter. I choose ¢, such that the predicted number of generic firms that decide
to submit an application equal to 12, which is the observed number in the data. The calibrated
value is 1.2 million (1990) dollars for clonidine. From my informal conversations with people in the
industry, this number is quite reasonable.

The marginal cost of production for drugs is assumed to be fixed over time. It is believed
that the marginal cost of production is typically very low for drugs. In fact, the average generic
price for clonidine converges to almost zero. The lowest observed generic price is about 8 cents per
patient day (the highest observed generic price is 23 cents). Hence, in the simulation exercise, I set
the marginal cost (mc) to be zero. In section 5.4, I study the robustness of the results by examining
two alternatives: mc = 4 and 8 cents.

It is well-known that the discount factor, 3, is difficult to estimate in applied dynamic pro-
gramming research. I therefore set § = 0.9, which is in line with most of the existing applied works.

Again, T will study the robustness of the results by resolving the model with § = 0 in section 5.4.

5 Results

In this section, I discuss the goodness-of-fit, the role of consumer heterogeneity, and a policy
experiment, which studies the effect of shortening the expected approval time for generic drugs.
5.1 Goodness of Fit and Demand Patterns by Consumer Type

I set the terminal period, T', to be 30 when solving the model. The length of a period is a quarter.
When computing the solution of the model, E[A,|I(t)], 04,(t) and {j; are all discretized into three
values. E[Ay|I(t)] takes the values {-18, -12, -6}, 04, (t) takes {0, 16, 33}, and {j; takes {-1, 0, 1}.
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Setting the number of generic firms that decide to submit an application to be 12, which is the
observed number in the data, I use the estimated random entry process to simulate 100 sequences for
the number of generic entrants.?? For each sequence, I simulate 100 sequences of price and quantity
pairs for both the brand-name drug and the generic drugs, using the dynamic oligopoly model based
on the estimated and calibrated parameter values. Using these 100X100=10,000 simulated market
histories, I then compute the average predicted number of generic entrants, prices and quantities
for each period.

Figure 2 plots the average predicted prices and sales, along with the observed prices and
sales, up to the 18th quarter after the patent expired, which is the period covered by the data.
The average predicted prices and quantities demanded match reasonably well with the data. In
particular, the model is able to accurately fit the pricing and demand pattern for the brand-name
drug. However, it slightly overpredicts the generic prices (by less than 10 cents) for the first few
quarters, and it underpredicts the demand for generics by about 20-30%. It should be emphasized
that the estimation procedure for the demand parameters (detailed in Ching[16]) does not make use
of the dynamic oligopolistic supply side. Hence, these parameters were not chosen to fit the firm’s
price and quantity decisions. Also, when calibrating the supply side model, T do not require the
model to match the observed prices and quantities. Hence, I find that the overall goodness-of-fit
results are reasonably satisfactory.

One important feature of the model is that there is consumer heterogeneity in price sensitivity.
Interestingly, the equilibrium model is able to predict how demand patterns vary across consumer
type, though I only observe aggregate demand behavior. Figures 3 and 4 show the predicted

0 is much larger than o' (see Table 1), I refer to type

quantity demanded by consumer type. Since «
0 consumers as price-sensitive consumers, and type 1 consumers as price-insensitive consumers. The
model predicts that both the price-sensitive consumer demand and the price-insensitive consumer
demand for generics increase over time initially. This is mainly due to the decrease in the perceived
variance for generics and generic prices. Both factors raise the utility of choosing generic drugs.
Note that the estimates of the demand model imply that price-sensitive consumer demand for

generics decreases after it reaches a peak in the 10th quarter. The reason for this is twofold: first,

the price-sensitive consumers’ valuation of the outside good increases over time, as captured by the

*2Fach sequence consists of {ngs, np: } i1, where ngg + npe = 12.
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positive sign of the time coefficient associated with it (see ¢Y in Table 1); second, the variance of
the idiosyncratic taste associated with the generic nest (i.e., pa(te)) is decreasing over time (see
Equation (11) and Table 1), which tends to drive down the utility of choosing the generic nest. The
decline in price-sensitive consumer demand for generics has lead to the aggregate generic demand to
drop after the 11th quarter, as shown in Figure 2. Notice that I calibrate the parameters for ps(t.)
to only match the decline in generic prices. Conceivably, one can calibrate or estimate ji5 and ¢ to
match both the demand and pricing patterns, using maximum likelihood or GMM. Unfortunately,
due to the complexity of the dynamic oligopoly model, these estimation procedures, which involve
using the supply side explicitly, are computationally too burdensome to implement at this point.

Figure 3 shows that the evolution of the predicted brand-name demand patterns are very
different across consumer type. For price-sensitive consumers, the demand drops very quickly by
more than 90% from the first quarter to the 18th quarter. For price-insensitive consumers, it remains
fairly stable over time — overall it declines by only about 20% throughout the period. When the
patent has just expired, about 50% of the brand-name drugs consumers are the price-insensitive
type. In the 18th quarter, about 94% of the brand-name drug consumers are price-insensitive.
This suggests that the demand faced by the brand-name firm becomes more inelastic over time. As
argued in Grabowski and Vernon[31], Frank and Salkever[27] and Ching[16], this may be the main
explanation for why the brand-name firm raises its prices over time after patent expiration.

I should note that the price-insensitive consumer demand for generic drugs keeps increasing
over time (see Figure 4). Since the price-insensitive consumer demand for the brand-name drug
remains fairly stable over time, this implies that generic firms attract price-insensitive consumers

mainly at the expense of the outside good.

5.2 The Roles of Price-sensitive and Price-insensitive Consumers

To illustrate the roles of consumer heterogeneity in the model further, I compare results of the
original model with two separate models, where I allow only price-sensitive patients and price-
insensitive patients respectively. As argued in Ching[16], one factor contributing to consumer
heterogeneity is that insurance plans for prescription drugs are very diverse. One can think of
the model with only price-insensitive patients as approximating an economy that has universal

insurance coverage for prescription drugs, where the degree of price-sensitivity corresponds to the
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coinsurance rate of the plan. Table 3 shows the summary statistics for the three models, which are
based on the simulation results for the first 18 quarters since the patent expired. Compared with the
original model, the brand-name firm charges higher prices and receives larger surplus when there
are only price-insensitive patients, and it sets lower prices and receives smaller surplus when there
are only price-sensitive patients. The intuition behind the results is standard: price-insensitive
patients prefer the brand-name drug to generics, if everything else the same. Therefore, if there
are only price-insensitive patients in the market, the brand-name firm is in a position to raise its
profits by charging higher prices. The results for generic firms are similar in terms of their pricing
decisions. Compared with the original model, they receive similar surplus when there are only
price-insensitive patients, but slightly higher surplus when there are only price-sensitive patients.

In terms of consumer surplus, patients are better off if they are all price-insensitive, and
worse off if they are all price-sensitive. Even though both brand-name prices and generic prices are
higher when all patients are price-insensitive, the impact of prices on the utility of choosing either
the brand-name drug or generic drugs is very insignificant. Consequently, the consumer welfare is
improved if all patients are price-insensitive (or they have more generous insurance coverage for
prescription drugs) holding everything else the same. However, it should be noted that the model
has not specified how a more generous insurance plan would be financed. In general, patients will
need to pay higher insurance premiums or higher tax rates. Hence it is not clear if patients would
necessarily be better off if a more generous universal insurance coverage were implemented.

Now I turn to discuss how the brand-name pricing pattern varies across models with only
one type of consumers. When there are only price-sensitive patients, the brand-name firm behaves
according to standard oligopoly models — it reduces prices over time when facing more generic
competition. But when there are only price-insensitive patients, the brand-name firm keeps its
prices high and stable over time. Note that the increase in generic sales does not reduce the brand-
name sales in the model with only price-insensitive patients. Generic firms gain the market share
mainly at the expense of the outside good. Even though the generic price drops over time, patients
are not willing to substitute generics for the brand-name drug due to their low price-sensitivity.
Consequently, the brand-name firm can keep its prices unchanged. It should be emphasized that

neither of these two extreme cases can generate increasing brand-name prices over time. The
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message from these results is quite clear: without consumer heterogeneity in price-sensitivity, it is
difficult for an economic model to explain why the brand-name price rises after patent expiration.

In the original model with two types of consumers, the proportion of price-insensitive con-
sumers who choose the brand-name drug increases over time as increasing number of price-sensitive
consumers switch away from the brand-name drug. Roughly speaking, the brand-name firm raises
its prices as the average price-sensitivity of the consumers who continue to purchase the brand-name
drug decreases over time. Figure 5 and 6 illustrate this relationship by plotting the brand-name
prices of these three models and the composition of the consumer types, respectively. It can be seen
that the brand-name prices in the original model are approximately equal to the weighted average
of the brand-name prices in the two models with homogeneous patients. I should note that the
predicted brand-name firm pricing behavior is not due to price discrimination. Although the model
here has consumer heterogeneity, I assume firms can only choose one price for all patients. The
brand-name firm’s pricing behavior in the model is mainly driven by the composition of consumers

buying the brand-name drug in equilibrium.

5.3 Reducing the expected approval time

In this subsection, I conduct a policy experiment that increases the likelihood of approving generic
drugs for entry into the market. The FDA inspection of generic drug quality is necessary to
ensure safety for the general public. However, it is also widely believed that consumer welfare
could be improved if the FDA reduced the approval time while keeping the standard of quality
control unchanged. Giving more resources to the FDA, allowing them to hire more inspectors, or
computerizing their procedures could accomplish this goal. In order to investigate the effect of this
policy, I increase the intercept term (7p) in the logit model from -2.63 to -1.0. This increases the
probability of entry for each generic at all periods after patent expiration. In particular, it raises
the probability of entry in the period immediately after the patent expires from 0.07 to 0.27.
Figure 7 plots the average predicted price and demand under the experiment vs. the original
calibrated model. The average predicted demand for the brand-name drug in the experiment is
very similar to that in the original model. The average predicted demand for generic drugs in

the experiment is found to be higher than that in the original model by about 30% for the first
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six quarters. The gap then diminishes after the 6th quarter. After the 11th quarter, the average
predicted demand for generics in the experiment becomes lower compared with the original model.

The predicted generic demand pattern seems puzzling. The initial increase in generic demand
seems to be too small. Given the magnitude of the increase in the entry probability, one might
think that generics should become available much sooner, and hence expect a much larger initial
increase in generic demand, and the difference should be sustained. Moreover, why does the average
predicted demand in this experiment becomes lower in the later periods? Notice that the entry
decision of generic firms is endogeneous, and shortening the expected approval time has some subtle
impacts on the expected return of submitting an application to the FDA in the first place. Other
than allowing each generic firm to enter earlier, it also increases the likelihood that a generic firm
enters a crowded market in the early periods as every applicant have better chances to enter early
now. In other words, although generic firms on average start earning profits sooner, the profits
that they receive in the early periods are likely to be significantly lower compared with the original
model. The overall effect on the expected return of submitting an application, conditioning on
the number of applicants, is therefore ambiguous. Consequently, the implication on the number of
generic firms decided to submit an application is also ambiguous if the FDA shortens the expected
approval time.

Nevertheless, one would expect the “crowding” effect should dominate when the number
of applicant is large. This is illustrated in Figure 8, which plots the generic expected return
from submitting an application. Compared with the original model, the expected return in the
experiment is lower when there are more than two applicants; but higher otherwise. In Ching and
Tan[17], we study the theoretical implications of this random entry feature in detail.

Assuming the sunk cost of entry remains at 1.2 million dollars, which is the calibrated value,
the equilibrium number of generic firms that decide to enter declines from 12 to 6 in the experiment.
Although the number of firms that decide to enter drops, the improved chances for each generic
to receive an approval increases the average number of generic firms for the first six quarters, as
shown in Figure 9. This explains why in the early periods, the predicted generic demands from the
experiment are higher than those from the original model, and the predicted generic prices are lower,
as shown in Figure 7. As displayed in Figure 10, the initial increase in the generic demand also

allows the market to learn the generic quality quicker. The average perceived variance for generics
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is reduced by nearly 10% throughout the 18 quarters after patent expiration. Consequently, even
though the average number of generic entrants in the original model is higher after the 7th quarter,
its predicted generic demand does not surpass those predicted by the experiment immediately.

It is worth pointing out that the generic prices in the original model remain higher than
those in the experiment throughout the period (Figure 7). This may seem puzzling as the mean
number of generic firms and the level of uncertainty are both higher in the original model from the
8th quarter on. The reason for this result is that generic entry usually occurs later in the original
calibrated model, due to the smaller probability of approval. This implies that the time since the
first generic entry (t) is on average shorter for the original model. Since the unobserved product
differentiation among generics decreases as t, increases (Equation (11)), this leads to higher average
generic prices for the original model in the long run as well.

Another interesting result is that generic prices for the experiment and the original calibrated
model become very close after the 10th quarter. It appears that equilibrium generic prices are not
too sensitive to the number of generic firms as time passes by. This is mainly because the degree
of the product differentiation among generics, as measured by us, declines over time. When the
number of generic firms is large, the equilibrium generic price becomes mainly determined by uo
(Anderson et al.[5]). It turns out that given the parameter values, six generic entrants is already
large enough for us to dictate the equilibrium generic prices.

As shown in Table 4, the overall welfare implications from the experiment (the second column)
are very similar to those from the original model (the first column). In particular, the consumer
welfare has only improved by about 0.7% in the experiment, which seems to be much smaller than
what the supporters of this policy expects. It appears that a narrower choice of generic products

has counteracted most of the benefits of having generics available sooner.

5.4 Robustness

In this subsection, I check the robustness of the results. Forward-looking behavior clearly plays an
important role in generic firm’s entry decisions as demonstrated in the policy experiment. But it
is not clear how important this feature is in determining firm’s pricing decisions. I investigate this
issue by solving the model with 8 = 0, and keeping the number of generic firms decided to apply for

ANDA unchanged (i.e., remains at 12). The results are summarized in the last column of Table 4.
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Compared with the original model, the model with myopic firms predicts that the average generic
price is about 17 percent higher in the first quarter, and that the average generic sales are about 10
percent lower. The generic price gap and sales gap between these two models diminish over time
and they converge to almost the same values from the 10th quarter on. This shows that if generic
firms are forward-looking, they have an incentive to lower their prices in order to attract more
consumers to try their products. Such an incentive is particularly strong at the beginning as the
public has a very diffuse prior about the quality of generics. As the public gains more information
about generics over time, the return of having more patients experiment with generics declines.
Therefore, the decision rule of myopic generic firms becomes very close to that of forward-looking
firms after several quarters.

In terms of other dimensions, the predictions from the model of myopic firms are very similar
to those from the original model. Although generic firms sell more by charging lower prices in
the original model, the increase in generic sales is quite insignificant and mainly obtained from
the outside good. The brand-name pricing decisions and demand are almost the same in the two
models. This suggests that the discount factor is not very important in the brand-name pricing
decisions, given the parameter values of the model. Instead, the consumer heterogeneity plays the
key role in determining brand-name prices.

As discussed before, the predicted generic demand does not fit the actual demand well because
the price-sensitive patients’ utility of choosing the outside option increases over time, and the
variance of the idiosyncratic taste associated with the generic nest decreases over time. Recall that
these parameters are fixed at the initial calibrated values during the estimation. If these parameters
are allowed to change during the estimation, the goodness-of-fit of the model could potentially be
improved. Based on the discrepancies between the simulated data and the actual data, I slightly
modify the parameter of the outside good time trend associated with the price-sensitive patients,
and the parameters that determine the variance of the idiosyncratic taste for generics in order to
see if that improves the goodness-of-fit. The modified parameters are shown in the third column
of Table 1. Essentially, I lower the values of the time trend for the outside good and that for
the variance of the logit errors. I also lower the value of ji5. The goodness-of-fit results from
the modified parameters are shown in Figure 11 and the second column of Table 5. Overall, the

model with modified parameters performs better than the original model in fitting the generic
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price and the generic demand. The overprediction of generic price disappears. In addition, it only
underpredicts the demand for generics by about 10-20% (instead of 20-30% in the original model).
In terms of other dimensions, the predictions from the model with modified parameters performs
very similar to the original model. The message from this exercise is that the model is able to
explain the data quite well. Moreover, the welfare implications from the original model is robust
with respect to the minor modifications of these three parameters.

I also check the robustness of the results by varying the marginal costs. In particular, I
consider two additional cases: mc = 4 and 8 cents. (Recall that the lowest observed generic price is
8 cents.) The results are reported in the third and the fourth column in Table 5. It appears that the
average predicted brand-name and generic prices increase roughly by the amount of the marginal
costs. The average predicted brand-name and generic sales decrease accordingly. In particular, the
goodness-of-fit for generic prices and generic demand worsens in these two cases. It appears that

the original model, where mc = 0, explains the data better than these two alternative cases.

6 Conclusion

This research is the first step toward structural modeling of a dynamic equilibrium in the prescrip-
tion drug market. I have shown that the model is able to mimic the stylized facts regarding the
evolution of market shares, as well as pricing and entry behavior. I have also demonstrated that
neither a model with only price-sensitive patients, nor one with only price-insensitive patients can
cause the brand-name firm to raise its prices after generic entry. I have shown that brand-name price
is essentially a function of the proportion of brand-name sales accounted for by price-insensitive
patients.

In this paper I have explicitly solved the dynamic equilibrium and obtain the decision rules of
agents. This approach allows me to quantify the effect of altering specific policy parameters. I have
investigated the impact of a public policy, which reduces the expected approval time for generic
drugs. The interest groups who propose this policy expects that the policy could significantly
improve the consumer welfare by bringing generics to the market sooner. However, this research
shows that when firms are forward-looking, shortening the expected approval time could lower

generic firms’ expected return from entering the market. This could significantly reduce the number
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of generic firms who decide to enter, counteracting the intended effect of the policy. Given the
change in magnitude of the policy parameter in this paper, I find that the number of generic firms
decided to enter reduces by a half, though on average generic drugs become available sooner. The
early entry of generics has lead the public to learn the generic attribute quicker. In addition, the
degree of the product differentiation among generics, which determines the stiffness of the price
competition, on average drops at a faster rate. As a result, the generic prices become lower in the
experiment. It turns out that this policy experiment hardly improves the consumer welfare.

The key message of this policy experiment is that even if the government spend a large
amount of resources to improve the efficiency of the FDA in approving generic drugs, it does not
necessarily achieve the goal of enhancing welfare. The main obstacle of predicting the outcome of
this policy is that it alters generic’s expected return of entering a market. In order to quantify the
welfare consequence of policies that have such implications, it is important to build and estimate
an equilibrium model that incorporates the FDA random approval process, generic entry decisions,
firms’ pricing decisions, and consumer learning behavior. The model developed here has incor-
porated all these features. In principle, one could use this model to calibrate a socially optimal
expected approval time, which would help the government to direct its resources more efficiently.

It is implicitly assumed that the policy experiment is imposed on one market only. If such a
policy were imposed on all markets simultaneously, the coefficients that determines the value of the
outside good, which captures the value of other close substitutes, could change. In order to predict
how the coefficient for the outside good changes when imposing a new policy on all prescription

drug markets, one has to model intermolecular competition. I leave this for future research.
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Table 1: Estimated Preference parameters for clonidine

Estimate Standard Error Modified
value
ESTIMATED PARAMETERS
Learning parameters:
risk coefficient (r) 0.731%* 0.036
utility weight for attribute (w) 0.014* 0.001
experience variability (o) 0.18* 0.02
initial prior variance (O’%g (0)) 33.31* 0.88
initial prior mean (A) -17.77% - 0.05
True mean attributes (A4,) -5.77* 0.10
Fraction of experience signals revealed (k) 7.le-11*  7.7e-13
Consumer heterogeneity parameters:
type 0 price coefficient (o) 0.029* 3.0e-4
type 1 price coefficient (') 0.010* 1.0e-4
proportion of type 0 () 0.367* 0.005
standard deviation of unobserved
product characteristic (o¢) 0.237* 0.008
Time trend for the outside good:
type 0 (¢?) 0.146* 0.001 0.12
type 1 (¢}) -0.008 0.016
CALIBRATED PARAMETERS**
Parameters for the variance of logit errors:
first stage: (1) 1.0
second stage:
constant term (fi2) 0.7 0.5
coefficient for time trend (1) 0.1 0.07
Other supply side parameters:
Sunk cost of entry (million, 1990 dollar) 1.2
Marginal cost of production (mc) 0.0
Discount factor (/) 0.9
Standard errors are reported in parenthesis
Notes:

* t-statistic > 1.96
** Standard errors for calibrated parameters are not reported.
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Table 2: Estimated parameters for Entry Probability

estimate standard error

intercept (7o) -2.636%  0.201
time since patent expired (y;)  0.051 0.049
time since patent expired? (y2) 0.006* 0.003

Probability that a potential generic entrant receives approval,

) = _eap(X7)
1+exp(X7) "
Notes:

* significant at 5% level
** significant at 10% level
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Table 3: Welfare and Market Characteristics: Original Model, Model with Only Price-sensitive

Patients, and Model with Only Price-insensitive Patients

Only Only
Data* Original Model Price-sensitive Price-insensitive

Patients Patients
Welfare Statistics:
Average quarterly producer surplus (M**$):
Brand-name n.a. 13.9 12.7 17.4
Generic n.a. 0.46 0.52 0.46
Combined n.a. 14.36 13.22 17.86
Average quarterly consumer surplus (M$):
Price-sensitive patient n.a. 5.7 24.6 n.a.
Price-insensitive patient n.a. 109.4 n.a. 160.7
Combined n.a. 115.1 24.6 160.7
Average total quarterly surplus (M$): n.a. 129.5 37.8 160.7
Market Characteristics:
Average brand-name prices
($ per patient day):
1st quarter 0.59 0.57 0.47 0.95
9th quarter 0.72 0.64 0.35 0.94
18th quarter 0.87 0.84 0.31 0.94
Average generic price
($ per patient day):
1st quarter 0.23 0.30 0.24 0.71
9th quarter 0.12 0.15 0.10 0.28
18th quarter 0.08 0.08 0.04 0.12
Average quarterly brand-name sales
(M no. of patient days):
1st quarter 40.6 35.8 64.7 18.5
9th quarter 15.7 19.7 28.8 18.3
18th quarter 9.8 13.3 12.5 18.3
Average quarterly generic sales
(M no. of patient days):
1st quarter 7.9 2.0 4.0 0.7
9th quarter 28.8 25.7 44.0 12.0
18th quarter 35.2 23.7 21.0 22.0

*Prices and sales in the “Data” column are the actual observed ones for clonidine.
**M stands for million.
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Table 4: Welfare and Market Characteristics: Experiment with Reducing the Expected Approval
Time and Myopic Firms

Original Model Reducing Myopic
(8=0.9) Approval Time (8 =0)
Welfare Statistics:
Average quarterly producer surplus (M*$):
Brand-name 13.9 13.8 14.0
Generic 0.46 0.49 0.46
Combined 14.36 14.29 14.46
Average quarterly consumer surplus (M$):
Price-sensitive patient 5.7 6.0 5.6
Price-insensitive patient 109.4 109.9 109.3
Combined 115.1 115.9 114.9
Average total quarterly surplus (M$): 129.5 130.2 129.3
Market Characteristics:
Average brand-name prices
($ per patient day):
1st quarter 0.57 0.57 0.57
9th quarter 0.64 0.65 0.65
18th quarter 0.84 0.84 0.84
Average generic price
($ per patient day):
1st quarter 0.30 0.28 0.35
9th quarter 0.15 0.14 0.15
18th quarter 0.08 0.07 0.08
Average quarterly brand-name sales
(M no. of patient days):
1st quarter 35.8 35.6 35.8
9th quarter 19.7 19.5 19.7
18th quarter 13.3 13.4 13.3
Average quarterly generic sales
(M no. of patient days):
1st quarter 2.0 2.7 1.8
9th quarter 25.7 27.3 25.5
18th quarter 23.7 22.7 23.6

*M stands for million.
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Table 5: Welfare and Market Characteristics: Sensitivity Analysis

Original Model Modified mc=4 mc=8

(mc=0) Parameters
Welfare Statistics:
Average quarterly producer surplus (M*$):
Brand-name 13.9 14.3 14.1 14.1
Generic 0.5 04 0.5 0.6
Combined 14.4 14.7 14.6 14.7
Average quarterly consumer surplus (M$):
Price-sensitive patient 5.7 3.1 5.1 4.5
Price-insensitive patient 109.4 109.9 108.2  106.9
Combined 115.1 113.0 113.3 1114
Average total quarterly surplus (M$): 129.5 127.7 127.9  126.1
Market Characteristics:
Average brand-name prices
($ per patient day):
1st quarter 0.57 0.57 0.60 0.63
9th quarter 0.64 0.62 0.68 0.73
18th quarter 0.84 0.79 0.88 0.92
Average generic price
($ per patient day):
1st quarter 0.30 0.28 0.33 0.37
9th quarter 0.15 0.12 0.18 0.22
18th quarter 0.08 0.08 0.11 0.15
Average quarterly brand-name sales
(M no. of patient days):
1st quarter 35.8 35.8 34.2 32.6
9th quarter 19.7 21.2 18.8 17.9
18th quarter 13.3 14.4 12.8 12.4
Average quarterly generic sales
(M no. of patient days):
1st quarter 2.0 2.1 1.9 1.8
9th quarter 25.7 27.2 23.5 21.3
18th quarter 23.7 28.0 22.0 20.4
Sunk costs of entry (M$): 1.2 1.04 1.14 1.09

*M stands for million.
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Time since patent expired (quarter)

Figure 1: Market characteristics for clonidine
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Figure 2: Original calibrated model: price and quantity demanded
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Figure 4: Generic demand by consumer type
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Figure 5: Brand-name prices from the original model, and models with only one patient type
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Figure 6: Proportion of brand-name sales accounted for by price-insensitive patients

39



Price per patient day (1990 dollars)

Number of Patient Days (million)

0 Original Model
+ Experiment: increase entry probability

Brand-name price

40

30 1

20 1

10 1

Brand-name demand

+o
+o
+o

+o

10

15

20

Generic price

31 o

2 f L

'17 ' S S e 0

07\ T T T T
0 5 10 15 20
Generic demand

30 1

i) ¢ 9 F

20 - o

10 .,

07\ I T T T
0 5 10 15 20

Time since patent expired (quarter)
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