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ABSTRACT

The structure of many models in economics depends on majorization properties of convolutions of distributions.

In this paper, we analyze robustness of these properties and the models based on them to heavy-tailedness as-

sumptions. We show, in particular, that majorization properties of linear combinations of log-concavely distributed

signals are reversed for very long-tailed distributions. As applications of the results, we study robustness of mono-

tone consistency of the sample mean, value at risk analysis and the model of demand-driven innovation and spatial

competition as well as that of optimal bundling strategies for a multiproduct monopolist in the case of an arbitrary

degree of complementarity or substitutability among the goods. The implications of the models remain valid for not

too heavy-tailed distributions. However, their main properties are reversed in the very thick-tailed setting.
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0. INTRODUCTION AND DISCUSSION OF THE RESULTS

0.1. Robustness of models and tail probabilities of linear combinations. In recent years, many papers

in economics and finance have focused on the analysis of the so-called ”thick-tailed” paradigm. It was documented

in numerous studies that the time series encountered in many fields in economics and finance appear to have heavy-

tailed distributions for which the variance and higher moments fail to exist (see Axtell (2001), the discussions in

Loretan and Phillips (1994), Duffie and Pan (1997) and Gabaix, Gopikrishnan, Plerou and Stanley (2003) and

references therein). Motivated by these empirical findings, a number of studies in financial economics have focused

on portfolio and value-at-risk modelling with heavy-tailed returns (see, e.g., the reviews in Duffie and Pan (1997),

Uchaikin and Zolotarev (1999, Ch. 17) and Glasserman, Heidelberger and Shahabuddin (2002)). Several authors

considered problems of statistical inference for data from thick-tailed populations (see Loretan and Phillips (1994),

the papers in Adler, Feldman and Taqqu (1998) and references therein).

The results of many models in economics, finance, risk management and operations research, as well the analysis of

their robustness to distributional assumptions, depend on majorization and dominance properties of tail probabilities

and expectations of functions of random variables (r.v.’s) and their linear combinations. The concepts of stochastic

dominance are of central importance in the portfolio choice problems and the analysis of risk measures (see Levy

(1992) and Ruszczyński and Vanderbei (2003)). Furthermore, the study of robustness of option pricing formulae to

assumptions on the distributions of the underlying assets’ prices can be reduced to the analysis of extremal properties

of linear functionals of probability measures with fixed moments and problems of deriving sharp semiparametric

bounds on expectations of functions of random variables with prescribed distributional characteristics, such as

moments or probability density norms (see the discussion in de la Peña, Ibragimov and Jordan (2003) and references

therein). Moreover, the problems concerning the properties of cdf’s, moments and tail probabilities of r.v.’s and

their linear combinations also naturally appear in various microeconomic models. In monopoly theory, for instance,

the tail probability of a sum of functions of consumers’ valuations represents the probability that a monopolist will

choose to produce and sell the good (see, e.g., Cornelli (1996)). The analysis of optimal bundling strategies for

a multiproduct monopolist depends on stochastic comparisons between consumers’ reservation prices (valuations)

for goods provided by the seller and their bundles (see, among others, Adams and Yellen (1976), Palfrey (1983),

McAfee, McMillan and Whinston (1989), Bakos and Brynjolfsson (1999), Fang and Norman (2003) and Venkatesh

and Kamakura (2003)). According to Heckman and Honoré (1990), the majorization properties of (conditional)

moments and tail probabilities of r.v.’s are central to the analysis of robustness of the Roy model of self-selection

and earnings inequality to departures from the conditions of log-normality of skills. Similarly, a number of problems

in theories of firm growth involve the analysis of stochastic comparisons for r.v.’s and their sums as well as the study

of sharp bounds on their functionals (see Jovanovic and Rob (1987), Jovanovic and MacDonald (1994) and Sutton

(1997, Section IV)).

0.2. Majorization properties of log-concavely distributed r.v.’s. Powerful tools for analyzing the ordering

and extremal properties of expected values of functions of linear combinations of r.v.’s are given by majorization

theory. A vector a ∈ Rn is said to be majorized by a vector b ∈ Rn, written a ≺ b, if
∑k

i=1 a[i] ≤
∑k

i=1 b[i],

k = 1, ..., n− 1, and
∑n

i=1 a[i] =
∑n

i=1 b[i], where a[1] ≥ . . . ≥ a[n] and b[1] ≥ . . . ≥ b[n] denote components of a and b

in decreasing order. The relation a ≺ b implies that the components of the vector a are more diverse than those of
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b (see Marshall and Olkin (1979)). In this context, it is easy to see that the following relations hold:

(1/(n + 1), ..., 1/(n + 1), 1/(n + 1)) ≺ (1/n, ..., 1/n, 0), n ≥ 1.(0.1)

A function φ : A → R defined on A ⊆ Rn is called Schur-convex (resp., Schur-concave) on A if (a ≺ b) =⇒
(φ(a) ≤ φ(b)) (resp. (a ≺ b) =⇒ (φ(a) ≥ φ(b)) for all a, b ∈ A. If, in addition, φ(a) < φ(b) (resp., φ(a) > φ(b))

whenever a ≺ b and a is not a permutation of b, then φ is said to be strictly Schur-convex (resp., strictly Schur-

concave) on A.

A r.v. X with density f : R → R and the convex distribution support Ω = {x ∈ R : f(x) > 0} is said to be

log-concavely distributed if for all x1, x2 ∈ Ω and any λ ∈ [0, 1], f(λx1 + (1 − λ)x2) ≥ (f(x1))λ(f(x2))1−λ (see An

(1998)).

Following Birnbaum (1948), we say that a r.v. X is more peaked about µ ∈ R than is Y if P (|X − µ| > x) ≤
P (|Y − µ| > x) for all x ≥ 0. If the latter inequality is strict whenever the two probabilities are not both zero, the

r.v. X is said to be strictly more peaked about µ than is Y. In case µ = 0, X is simply said to be (strictly) more

peaked than Y. Roughly speaking, a r.v. X is more peaked about µ ∈ R than is Y, if the distribution of X is more

concentrated about µ than is that of Y.

Throughout the paper, R+ stands for R+ = [0,∞). Proschan (1965) obtains the following well-known result

concerning majorization and peakedness properties linear combinations of log-concavely distributed r.v.’s:

Proposition 0.1 (Proschan (1965)). If X1, ..., Xn are i.i.d. symmetric log-concavely distributed r.v.’s, then the

function ψ(a, x) = P
( ∑n

i=1 aiXi > x
)

is strictly Schur-convex in a = (a1, ..., an) ∈ Rn
+ for x > 0 and is strictly

Schur-concave in a = (a1, ..., an) ∈ Rn
+ for x < 0.

Clearly, from Proposition 0.1 it follows that
∑n

i=1 aiXi is strictly more peaked than
∑n

i=1 biXi if a ≺ b and a is

not a permutation of b.

Proschan (1965) notes that Proposition 0.1 also holds for (two-fold) convolutions of log-concave distributions with

symmetric Cauchy distributions and shows that comparisons implied by the proposition are reversed for n = 2k,

vectors a = (1/n, 1/n, ..., 1/n) ∈ Rn with identical components and certain transforms of symmetric Cauchy r.v.’s.

0.3. Implications for monotone consistency of the sample mean and portfolio value at risk. Propo-

sition 0.1 and its extensions have been applied to the analysis of a number of problems in economics, statistics and

other fields. For instance, Eaton (1988) used generalizations of the results to obtain concentration inequalities for

Gauss-Markov estimators. Several authors (see, e.g., Proschan (1965), Tong (1994) and Jensen (1997)) discussed

implications of Proposition 0.1 and its extensions in the study of monotone consistency of estimators in econometrics

and statistics . A weakly consistent estimator θ̂n of a population parameter θ is said to exhibit monotone consistency

for θ if θ̂n becomes successively more peaked about θ as n increases, that is, if P (|θ̂n+1 − θ| > x) ≤ P (|θ̂n − θ| > x)

for all x ≥ 0. By majorization comparisons (0.1), from Proposition 0.1 it follows that samples X1, ..., Xn, n ≥ 1,

from a log-concavely distributed population symmetric about µ ∈ R, have the monotone peakedness of the sample

mean (MPSM) property, that is, the sample mean Xn = (1/n)
∑n

i=1 Xi becomes increasingly more peaked about
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µ as n gets larger. Thus, Xn exhibits monotone consistency for µ. This implies that an increase in the sample size

always improves performance of the sample mean.

Proposition 0.1 also has the following important interpretation in the framework of value-at-risk (VaR) analysis

and portfolio choice theory. In what follows, given a loss probability α ∈ (0, 1/2) and a r.v. (risk) Z, we denote by

V aRα(Z) the value at risk (VaR) of Z at level α, that is, its (1−α)−quantile3. Let Zw =
∑n

i=1 wiXi be the return on

a portfolio of risks X1, ..., Xn with weights w = (w1, ..., wn) ∈ Rn
+,

∑n
i=1 wi = 1. Further, let w = (1/n, 1/n, ..., 1/n)

and w = (1, 0, ..., 0). The expressions V aRα(Zw) and V aRα(Zw) are, thus, the values at risk of the portfolio with

equal weights and of the portfolio consisting of only one return (risk). According to Proposition 0.1, ”diversification”

of a portfolio of i.i.d. symmetric log-concave risks X1, ..., Xn (formalized by majorization properties of the vector

of portfolio weights w) decreases riskiness of its return Zw in the sense of (first-order) stochastic dominance. This

implies that, for all α ∈ (0, 1/2), V aRα(Zv) ≤ V aRα(Zw) if v ≺ w. Furthermore, by relations (0.1), the value at

risk is minimal for the portfolio weights w and is maximal for the weights w :

V aRα(Zw) ≤ V aRα(Zw) ≤ V aRα(Zw).(0.2)

The latter comparisons imply, in turn, that, in the case of i.i.d. log-concavely distributed risks X1 and X2, the VaR

has the following subadditivity property:

V aRα(X1 + X2) ≤ V aRα(X1) + V aRα(X2)(0.3)

for all α ∈ (0, 1/2). Thus, the value at risk is a coherent risk measure in the sense of Artzner, Delbaen, Eber and

Heath (1999) in the world of log-concave distributions (see also Embrechts, McNeil and Straumann (1999) and

Section 3 in the present paper).

0.4. Implications for firm growth and Gibrat’s law. A voluminous empirical literature on firm growth

has focused on testing the validity of Gibrat’s law according to which firm growth rates are independent of their

sizes and are non-autocorrelated over time. Many papers in the field have observed deviations from Gibrat’s law in

data, including the patterns of positive or negative dependence between firm growth and size and autocorrelation

in firm growth rates (see, e.g., the reviews in McCloughan (1995) and Sutton (1997)). Motivated, in part, by these

empirical findings, several studies have proposed models that could account for such phenomena. E.g., Jovanovic

(1982) developed a Bayesian learning model of firm growth in which firms uncover their relative efficiency with time.

The general learning model predicts negative dependence between age and firm growth and suggests, therefore, that

a similar pattern in correlation between the growth rates and firm size holds. Jovanovic and Rob (1987) proposed a

model of demand-driven innovation and spatial competition based on the idea that larger firms get better information

about the design of future products. The model implies departures from Gibrat’s law in heterogenous markets, with

firms’ size being autocorrelated over time. Jovanovic and Rob’ model assumes that each period, the firm observes a

sample S of signals si = θ + εi, i = 1, ..., N, about the next period’s ideal product θ ∈ R, where εi, i = 1, ..., N, are

i.i.d. unimodal shocks with mode 0 and N is a (random) sample size. The firm then chooses a product design θ̂ ∈ R, a

level of output y and an amount of investment in information z ≥ 0, with C(y) and K(z) denoting the corresponding

convex and twice differentiable cost functions. Using Proposition 0.1, Jovanovic and Rob (1987) showed that, in

3That is, in the case of an absolutely continuous risk Z, P (Z > V aRα(Z)) = α.
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the case of symmetric and log-concavely distributed signal shocks ε1, ε2, ..., the model has the following properties:

If the optimal levels (y, z) of the firm’s output and informational gathering effort satisfy the first- and second-order

conditions for a maximum, then

• The probability of rank reversals in adjacent periods (that is, the probability of the smaller of two firms

becoming the larger one next period) is always less than one half;

• This probability diminishes as the current size-difference increases;

• The distribution of future size is stochastically increasing as a function of current size.

0.5. Majorization comparisons and optimal bundling decisions for a multiproduct monopolist. Ap-

plying analytical and numerical techniques to derive stochastic comparisons related to those implied by Proposition

0.1 for prescribed distributions for reservation prices in the case of two products and their packages (such as bivari-

ate uniform or Gaussian distributions), many of studies in the bundling literature emphasized that a monopoly’s

bundling decisions depend on correlations between consumers’ valuations for the products (see Adams and Yellen

(1976), McAfee et. al. (1989), Schmalensee (1984) and Salinger (1995)), the degrees of complementarity and substi-

tutability between the goods (e.g., Lewbel (1985) and Venkatesh and Kamakura (2003)) and the marginal costs for

the products (see, among others, Salinger (1995) and Venkatesh and Kamakura (2003)). Palfrey (1983) obtained

results that give conditions under which consumers prefer (ex ante) a single bundled Vickrey auction to separate

provision of independently priced goods4 under the MPSM property discussed in Subsection 0.3 (see Theorem 8 in

Palfrey (1983)). Palfrey (1983) showed that, in the case of two bidders, the seller maximizes her profit by selling

the goods in a single bundle; the two buyers, however, unanimously prefer separate provision of objects to any other

bundling decision. Palfrey’s (1983) results also imply that, if stand-alone valuations are concentrated on a finite

interval, then consumers never unanimously prefer separate provision of items to a single Vickrey auction, ex ante,

if there are more than two buyers (Theorems 5-7 in Palfrey (1983)). Chakraborty (1999) obtained characterizations

of optimal bundling strategies for a monopolist providing two goods on Vickrey auctions under a regularity condi-

tion on quantiles of reservation prices which is implied, in the case of symmetry, by subadditivity property (0.3).

Bakos and Brynjolfsson (1999) investigated the optimal bundling decisions for a multiproduct monopolist providing

bundles of independently priced goods with zero marginal costs (information goods) for profit-maximizing prices to

consumers with valuations that have the MPSM property5. Among other results, Bakos and Brynjolfsson (1999)

showed that, in the latter setting, if the seller prefers bundling a certain number of goods to selling them separately

and if the optimal price per good for the bundle is less than the mean valuation, then bundling any greater number

of goods will further increase the seller’s profits, compared to the case when the additional goods are sold sepa-

rately. According to the result, if consumers’ valuations have the MPSM property, then a form of superadditivity for

bundling decisions holds: the benefits to the seller grow as the number of goods in the bundle increases6. Recently,
4The goods provided by the monopolist are said to be independently priced if consumers’ valuations for their bundles are additive in

those for the component goods, as opposed to the case of interrelated goods, e.g., substitutes or complements (see Dansby and Conrad
(1984), Lewbel (1985), Venkatesh and Kamakura (2003) and Section 5 in the present paper).

5As discussed above, by Proposition 0.1, this condition is satisfied for log-concavely distributed valuations symmetric about the mean
reservation price. In particular, the condition holds for valuations with a finite support [v, v] distributed as the truncation XI(|X−µ| < h)
of an arbitrary r.v. X with a log-concave density symmetric about (v + v)/2, where I(·) is the indicator function (see also Remark 2 in
An (1998)).

6This property is similar to the case of Vickrey auctions with two buyers (see Remark 2 in Palfrey (1983)).
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applying Proposition 0.1, Fang and Norman (2003) showed that a multiproduct monopolist providing bundles of

independently priced goods to consumers with log-concavely distributed valuations prefers selling them separately

to any other bundling decision of the marginal costs of all the products are greater than the mean valuation; under

some additional distributional assumptions, the seller prefers providing the goods as a single bundle to any other

bundling decision if the marginal costs of the goods are identical and are less than the mean reservation price. The

main intuition behind the analysis of optimal bundling decisions (see the discussion in Palfrey (1983), Schmalensee

(1984), Salinger (1995), Bakos and Brynjolfsson (1999) and Fang and Norman (2003)) is that, for light-tailed distri-

butions, consumers’ valuations per good for a bundle typically have a lower variance relative to the valuations for

individual goods7.

0.6. Extensions of Proposition 0.1 and its implications. A number of papers in probability and statistics

have focused on extension of Proschan’s results (see, e.g., Chan, Park and Proschan (1989), the review in Tong

(1994), Jensen (1997) and Ma (1998)). These studies allow one to readily obtain extensions of the results discussed

in Subsections 0.3-0.5 to more general classes of distributions8. One should emphasize, however, that in all the

studies that dealt with generalizations of Proposition 0.1, the majorization properties of the tail probabilities were

of the same type as in Proschan (1965). Namely, the results gave extensions of Proschan’s results concerning

Schur−convexity of the tail probabilities ψ(a, x), x > 0, to classes of r.v.’s more general than those considered

in Proschan (1965). We are not aware of any general results concerning Schur−concavity of the tail probabilities

ψ(a, x), x > 0, for certain classes of r.v.’s9.

One should also note here that departures from conditions of log-concavity of distributions are necessary in the

study of robustness of models involving them to heavy-tailedness assumptions since all moments of a log-concave

density are finite and thus any such density is very light-tailed (see An (1998)).

0.7. Main majorization results of the paper and their implications for monotone consistency and

portfolio VaR. In this paper, we present results on robustness of majorization properties of tail probabilities of

linear combinations of r.v.’s and models in economics and risk management based on them to thick-tailedness as-

sumptions. In particular, we show that majorization properties of convex combinations of r.v.’s given by Proposition

0.1 continue to hold for not too heavy distributions, as modelled by convolutions of stable distributions with (differ-

ent) characteristic exponents greater than the threshold value of one and log-concave distributions (Theorem 2.3).

However, the properties are reversed for r.v.’s with very thick-tailed distributions, as modelled by convolutions of

stable distributions with indices of stability less than one (Theorem 2.4). As discussed in the previous subsection,

to our knowledge, the latter results are the first ones that show that the general majorization properties given by

Proposition 0.1 are reversed for certain classes of distributions. Moreover, we obtain results that give analogues of

Proposition 0.1 for heavy-tailed r.v.’s and majorization comparisons between powers of coefficients of their linear
7Further intuition behind the power of bundling is that, for light-tailed distributions, it reduces uncertainty about consumers’ valua-

tions and leads to a decrease in extreme values of the distribution of valuations per good, thereby reducing buyer diversity and increasing
the predictive power of the selling strategy (see Schmalensee (1984) and Bakos and Brynjolfsson (1999)).

8For instance, from Chan, Park and Proschan (1989) it follows that the results in Subsection 0.3-0.5 continue to hold for (dependent)
r.v.’s (representing risks, consumers’ signals or valuations) that have a sign-invariant and Schur-concave joint density. From Ma (1998)
it follows that under certain additional assumptions, the results hold for non-identical log-concave distributions.

9One should note that the proof in Proschan (1965) can be reproduced word to word with respective changes of signs under the
”assumptions” that X1, ..., Xn are i.i.d. symmetric log-convexily distributed r.v.’s. However, as it is easy to see, the later objects do
not exist, namely, there does not exist a symmetric r.v.’s with a log-convex density (see also An (1998)). Therefore, this approach to
obtaining counterparts of Proposition 0.1 for Schur-concavity of ψ(a, x), x > 0, is hopeless.
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combinations (Theorems 2.1 and 2.2). From our results it follows, in particular, that the implications of the propo-

sition for monotone consistency of the sample mean and the portfolio value at risk discussed in Subsections 0.5 and

0.6 continue to hold for not too thick-tailed distributions (Corollaries 3.1 and 3.2). In addition, it is demonstrated

that the VaR is a coherent measure of risk in the case of not very-heavy tailed returns (see the discussion in Section

3). The results on the portfolio VaR are reversed, however, for very long-tailed distributions of the risks (Corollary

3.3). From our results it follows that a diversification of a portfolio of very heavy tailed risks, as modelled by

convolutions of stable distributions with characteristic exponents less than one, leads to an increase in the riskiness

of the portfolio. More specifically, the signs of inequalities in (0.2) and (0.3) are reversed for very long-tailed risks.

For instance, our results reveal that (see Corollary 3.3), in a world of very heavy-tailed risks, the value at risk always

has a strict superadditivity property instead of subadditivity in (0.3) and thus is not a coherent risk measure in the

sense of Artzner et. al. (1999). Using the general results on majorization properties of the tail probabilities of linear

combinations of r.v.’s derived in the paper, we also obtain sharp bounds on the VaR of portfolios of heavy-tailed

risks that give refinements of estimates (0.2) and their analogues in the very thick-tailed case (Corollaries 3.4 and

3.5).

0.8. Robustness of the model of demand-driven innovation and spatial competition to heavy-

tailedness assumptions. In a similar context, using the general probability results obtained in the paper, we focus

on the analysis of robustness of the properties of Jovanovic and Rob’s (1987) model of demand-driven innovation and

spatial competition to the assumptions of heavy-tailedness of signals’ distributions. In particular, we show that the

properties of the model for log-concavely distributed signals (see Subsection 0.4) remain valid for the class of not too

heavy-tailed distributions, as modelled by convolutions of stable distributions with the characteristic exponents in

the interval (1, 2) and log-concave distributions (Theorem 4.1). However, we prove that the above properties of the

model of demand-driven innovation and spatial competition are reversed under the assumption that the distributions

of the signals are very long-tailed (Theorem 4.2).

We prove inter alia that the following results hold: Suppose that in Jovanovic and Rob (1987), the signal shocks

ε1, ε2, ... are i.i.d. r.v.’s with a distribution which is a convolution of symmetric stable distributions with indices

of stability in the interval (0, 1). If the optimal levels (y, z) of the firm’s output and informational gathering effort

satisfy the first- and second-order conditions for a maximum, then

• The probability of rank reversals in adjacent periods (that is, the probability of the smaller of the two firms

becoming the larger one next period) is always greater than one half;

• This probability increases as the current size-difference increases;

• The distribution of future size is stochastically decreasing as a function of current size.

Furthermore, we show that if the cost K(z) of engaging in the informational gathering effort is increasing in z ≥ 0,

and the shocks ε1, ε2, ... are i.i.d. r.v.’s with a distribution which is a convolution of symmetric stable distributions

with characteristic exponents in the interval (0, 1), then the optimal choice of investment z is zero: z = 0 (Theorem

4.3). The latter result is quite intuitive and implies that, if the cost to the firms of gathering information is

increasing in z and the sample of signals consists of very long-tailed r.v.’s and is, therefore, uninformative about
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the next period’s ideal product θ, then all firms choose not to invest in information gathering. Furthermore, in

contrast to the model of demand-driven innovation and spatial competition with log-concavely distributed or not

too heavy-tailed signals, in the model with arbitrary convex cost functions C(y) and K(z) and very fat-tailed shocks

ε1, ε2, ..., it turns out that large firms are not likely to stay larger. In addition to that, under the assumptions of very

heavy-tailed signals, there is negative autocorrelation in the size-difference. Essentially, in the case of very heavy-

tailed signals, smaller firms, in fact, have an advantage over their larger counterparts. The underlying intuition is

that in the presence of very heavy-tailed shocks, the sample of signals is not informative about the ideal product

since it is likely to contain extreme outliers. Hence, it is sheer luck in choosing the product design θ̂ close to θ, and

not the informational advantage that matters. Smaller firms which get less useless information and spend less in its

gathering and processing are more likely to be more successful. It is important to note that from these results it

follows that, in the model with very heavy-tailed signals, the firm growth is likely to decrease with firm size. Similar

to the discussion in Subsection 0.4, the above implies that Gibrat’s law does not hold in the setup. Moreover, in the

case of very-heavy tailed signals, both the implications of Gibrat’s law fail. First, firm growth and size appear to

be dependent; second, the implication of Gibrat’s law that firm growth rates are non-autocorrelated over time does

not hold either.

0.9. Optimal bundling decisions for a multiproduct monopolist in the case of long-tailed reserva-

tion prices and interrelated goods. We develop a framework that allows one to model the optimal bundling

problem of a multiproduct monopolist providing interrelated goods with an arbitrary degree of complementarity or

substitutability. Using the general majorization results obtained in the paper, we derive characterizations of optimal

bundling strategies for the seller in this setup in the case of long-tailed valuations and tastes for the products. Among

other results, we show that if the goods provided on a Vickrey auction are independently priced or are substitutes (or

complements with not very high degree of complementarity) and bidders’ tastes for the objects are not very heavy

tailed, then the risk-neutral monopolist strictly prefers separate provision of the products to any other bundling

decision (Theorem 5.1). The results are reversed, however, in the case of a risk-averse auctioneer providing indepen-

dently priced goods or complements (or substitutes with not very high degree of substitutability) to consumers with

very long-tailed tastes for the products (Theorem 5.2)10. According to our analysis, in the latter case, regardless of

the number of consumers, the seller always strictly prefers providing the goods on a single Vickrey auction to any

other bundling decision, as in the setting with two buyers in Palfrey (1983). This conclusion provides, in particular,

a reversal of the results in Chakraborty (1999) from which it follows that, in the case of symmetric valuations satis-

fying comparisons (0.3), provision of independently priced goods through separate Vickrey auctions generates larger

expected profits to the seller than any other bundling decision if the number of buyers is sufficiently large. We also

obtain a characterization of consumers’ preferences over the monopolist’s bundling decision in a Vickrey auction in

the case of heavy-tailed valuations for the products. We show, for instance, that if bidders’ reservation prices for

independently priced goods are very heavy-tailed, as modelled by positive stable distributions (see Section 1), then

they unanimously prefer separate Vickrey auctions to any other bundling decision (Theorem 5.3). These results are

at odds with a setting where valuations have a finite distributional support in which, according to Palfrey (1983),

consumers never unanimously prefer separate provision of the products, as discussed in Subsection 0.5.
10The assumption of seller’s risk aversion is necessary in the case of very heavy-tailed tastes and valuations since otherwise the

monopolist’s expected profit is infinite for any bundling decision.

7



Using the main probabilistic results derived in this paper, we also obtain characterizations of optimal bundling

strategies for a monopolist who provides goods with an arbitrary degree of complementarity or substitutability to

consumers with heavy-tailed tastes for profit-maximizing prices (Theorems 5.4-5.7). We show, in particular, that,

for products with high marginal costs, the seller’s optimal strategy is to provide complements with very heavy-

tailed consumers’ tastes for them separately and those with sufficiently light-tailed valuations as a single bundle.

For relatively low marginal costs, these conclusions are reversed (Theorems 5.4 and 5.5). Contrary to the case

where goods with very light-tailed valuations are considered, as in Bakos and Brynjolfsson (1999) and Fang and

Norman (2003), if consumers’ tastes for the products are very long-tailed, then the monopolist’s optimal strategy is

to provide independently priced goods or complements (or substitutes with not very high degree of substitutability)

with relatively high marginal costs as a single bundle and those with sufficiently low marginal costs separately

(Theorem 5.7). Our results imply, for instance, that for positive stable distributions of tastes, irrespective of the

marginal costs of producing the goods in question, the optimal strategy is to provide the goods as a single bundle

if the goods are independently priced or are complements (or if the goods are substitutes with not very high degree

of substitutability).

The underlying intuition that drives our results on bundling is closely related to that based on the behavior

of variance in the world of light-tailed valuations (see Subsection 0.5). Namely, our majorization results imply,

essentially, that, in the case of not very heavy-tailed reservation prices, the consumers’ valuations for bundles of

goods always have less spread relative to the valuations for component goods, as measured by peakedness. On the

other hand, in the case of very heavy-tailed valuations, the spread of reservation prices for bundles is always greater

than that of valuations for components (see Section 5 for more on the intuition).

0.10. Organization of the paper. The paper is organized as follows: Section 1 contains notations and

definitions of classes of distributions used throughout the paper. In Section 2, we derive the main results of the

paper on majorization properties of linear combinations of long-tailed r.v.’s. Section 3 presents implications of the

majorization results in Section 2 in the study of monotone consistency of the sample mean and portfolio value at

risk and in the analysis of coherency of the VaR. In Section 4, we obtain the applications of the general majorization

results in analysis of the robustness of the model of demand-driven innovation and spatial competition described in

Subsection 0.4 to the assumptions of heavy-tailedness of signals’ distributions. In Section 5 the general majorization

results are applied to the study of the optimal bundling strategies for a multiproduct monopolist in the case of

heavy-tailed tastes for and an arbitrary degree of complementarity or substitutability among the goods produced.

Finally, Section 6 contains the proofs of the results obtained in the paper.

1. NOTATIONS

For 0 < α ≤ 2, σ > 0, β ∈ [−1, 1] and µ ∈ R, we denote by Sα(σ, β, µ) the stable distribution with the

characteristic exponent (index of stability) α, the scale parameter σ, the symmetry index (skewness parameter) β

and the location parameter µ. That is, Sα(σ, β, µ) is the distribution of a r.v. X with the characteristic function

E(eixX) =

{
exp {iµx− σα|x|α(1− iβsign(x)tan(πα/2))} , α 6= 1,

exp {iµx− σ|x|(1 + (2/π)iβsign(x)ln|x|} , α = 1,

x ∈ R, where i2 = −1 and sign(x) is the sign of x defined by sign(x) = 1 if x > 0, sign(0) = 0 and sign(x) = −1
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otherwise. In what follows, we write X ∼ Sα(σ, β, µ), if the r.v. X has the stable distribution Sα(σ, β, µ).

A closed form expression for the density f(x) of the distribution Sα(σ, β, µ) is available in the following cases

(and only in those cases): α = 2 (Gaussian distributions); α = 1 and β = 0 (Cauchy distributions)11; α = 1/2 and

β ± 1 (Lévy distributions)12. Degenerate distributions correspond to the limiting case α = 0.

The index of stability α characterizes the heaviness (the rate of decay) of the tails of stable distributions

Sα(σ, β, µ). In particular, the p−th absolute moments E|X|p of a r.v. X ∼ Sα(σ, β, µ), α ∈ (0, 2) are finite if

p < α and are infinite otherwise. The symmetry index β characterizes the skewness of the distribution. The stable

distributions with β = 0 are symmetric about the location parameter µ. The stable distributions with β = ±1 and

α ∈ (0, 1) (and only they) are one-sided, the support of these distributions is the semi-axis [µ,∞) for β = 1 and is

(−∞, µ] (in particular, the Lévy distribution with µ = 0 is concentrated on the positive semi-axis for β = 1 and

on the negative semi-axis for β = −1). In the case α > 1 the location parameter µ is the mean of the distribution

Sα(σ, β, µ). The scale parameter σ is a generalization of the concept of standard deviation; it coincides with the

latter in the special case of Gaussian distributions (α = 2). For a detailed review of properties of stable distributions

the reader is referred to, e.g., the monographs by Zolotarev (1986) and Uchaikin and Zolotarev (1999).

Throughout the paper, LC denotes the class of symmetric log-concave distributions13, as defined in Subsection

0.2 in the introduction.

For 0 < r < 2, we denote by CS(r) the class of distributions which are convolutions of symmetric stable

distributions Sα(σ, 0, 0) with characteristic exponents14 α ∈ (r, 2] and σ > 0. That is, CS(r) consists of distributions

of r.v.’s X such that, for some k ≥ 1, X = Y1 + ... + Yk, where Yi, i = 1, ..., k, are independent r.v.’s such that

Yi ∼ Sαi(σi, 0, 0), αi ∈ (r, 2], σi > 0, i = 1, ..., k.

Further, CSLC stands for the class of convolutions of distributions from the classes LC and CS(1). That is, CSLC
is the class of convolutions of symmetric distributions which are either log-concave or stable with characteristic

exponents greater than one15. In other words, CSLC consists of distributions of r.v.’s X such that X = Y1 + Y2,

where Y1 and Y2 are independent r.v.’s with distributions belonging to LC or CS(1).

Finally, for 0 < r ≤ 2, we denote by CS(r) the class of distributions which are convolutions of symmetric stable

distributions Sα(σ, 0, 0) with indices of stability16 α ∈ (0, r) and σ > 0. That is, CS(r) consists of distributions

of r.v.’s X such that, for some k ≥ 1, X = Y1 + ... + Yk, where Yi, i = 1, ..., k, are independent r.v.’s such that

Yi ∼ Sαi(σi, 0, 0), αi ∈ (0, r), σi > 0, i = 1, ..., k.

A linear combination of independent stable r.v.’s with the same characteristic exponent α also has a stable

distribution with the same α. However, in general, this does not hold true in the case of convolutions of stable

distributions with different indices of stability. Therefore, the class CS(r) of convolutions of symmetric stable

11The densities of Cauchy distributions are f(x) = σ/(π(σ2 + (x− µ)2)).
12Lévy distributions have densities f(x) = (σ/(2π))1/2exp(−σ/(2x))x−3/2, x ≥ 0; f(x) = 0, x < 0, where σ > 0, and their shifted

versions.
13LC stands for ”log-concave”.
14Here and below, CS stands for ”convolutions of stable”; the overline indicates that convolutions of stable distributions with indices

of stability greater than the threshold value r are taken.
15CSLC is the abbreviation of ”convolutions of stable and log-concave”.
16The underline indicates considering stable distributions with indices of stability less than the threshold value r.
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distributions with different indices of stability α ∈ (r, 2] is wider than the class of all symmetric stable distributions

Sα(σ, 0, 0) with α ∈ (r, 2] and σ > 0. Similarly, the class CS(r) is wider than the class of all symmetric stable

distributions Sα(σ, 0, 0) with α ∈ (0, r) and σ > 0.

Clearly, CS(1) ⊂ CSLC and LC ⊂ CSLC. It should also be noted that the class CSLC is wider than the class of

(two-fold) convolutions of log-concave distributions with stable distributions Sα(σ, 0, 0) with α ∈ (1, 2] and σ > 0.

By definition, for 0 < r1 < r2 ≤ 2, the following inclusions hold: CS(r2) ⊂ CS(r1) and CS(r1) ⊂ CS(r2).

In some sense, symmetric (about µ = 0) Cauchy distributions S1(σ, 0, 0) are at the dividing boundary between

the classes CS(1) and CS(1) (and between the classes CS(1) and CSLC). Similarly, for r ∈ (0, 2), symmetric stable

distributions Sr(σ, 0, 0) with the characteristic exponent α = r are at the dividing boundary between the classes

CS(r) and CS(r). Further, symmetric normal distributions S2(σ, 0, 0) are at the dividing boundary between the class

LC of log-concave distributions and the class CS(2) of convolutions of symmetric stable distributions with indices of

stability17 α < 2.

In what follows, we write X ∼ LC (resp., X ∼ CSLC, X ∼ CS(r) or X ∼ CS(r)) if the distribution of the r.v. X

belongs to the class LC (resp., CSLC, CS(r) or CS(r)).

2. MAJORIZATION PROPERTIES OF HEAVY-TAILED DISTRIBUTIONS

Theorems 2.1-2.4 in this section give analogues of Proposition 0.1 in Subsection 0.2 in the introduction for

heavy-tailed r.v.’s. In particular, according to the following Theorem 2.1, the majorization properties of convex

combinations of r.v.’s in the classes CS(r) are of the same type as in Proposition 0.1 with respect to the comparisons

between the powers of the components of the vectors of weights of the combinations.

Theorem 2.1 Let r ∈ (0, 2). If X1, ..., Xn are i.i.d. r.v.’s such that Xi ∼ Sα(σ, β, 0), i = 1, ..., n, for some σ > 0,

β ∈ [−1, 1] and α ∈ (r, 2], or Xi ∼ CS(r), i = 1, ..., n, then the function ψ(a, x), a ∈ Rn
+ in Proposition 0.1 is strictly

Schur-convex in (ar
1, ..., a

r
n) for x > 0 and is strictly Schur-concave in (ar

1, ..., a
r
n) for x < 0.

As follows from Theorem 2.2 below, the majorization properties of the tail probabilities ψ(a, x) in Theorem 2.1

are reversed in the case of r.v.’s from the classes CS(r).

Theorem 2.2 Let r ∈ (0, 2]. If X1, ..., Xn are i.i.d. r.v.’s such that Xi ∼ Sα(σ, β, 0), i = 1, ..., n, for some σ > 0,

β ∈ [−1, 1] and α ∈ (0, r), or Xi ∼ CS(r), i = 1, ..., n, then the function ψ(a, x), a ∈ Rn
+ in Proposition 0.1 is strictly

Schur-concave in (ar
1, ..., a

r
n) for x > 0 and is strictly Schur-convex in (ar

1, ..., a
r
n) for x < 0.

According to Theorem 2.3 below, peakedness properties of linear combinations of r.v.’s with not too heavy-tailed

distributions, as modelled, e.g., by convolutions of log-concave distributions and symmetric stable distributions with

characteristic exponents greater than one, are the same as in the case of log-concave distributions in Proschan (1965).
17More precisely, the symmetric Cauchy distributions are the only ones that belong to all the classes CS(r) with r > 1 and all the

classes CS(r) with r < 1. Symmetric stable distributions Sr(σ, 0, 0) are the only ones that belong to all the classes CS(r′) with r′ > r
and all the classes CS(r′) with r′ < r. Symmetric normal distributions are the only distributions belonging to the class LC and all the
classes CS(r) with r ∈ (0, 2).
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Theorem 2.3 Proposition 0.1 holds if X1, ..., Xn are i.i.d. r.v.’s such that Xi ∼ Sα(σ, β, 0), i = 1, ..., n, for some

σ > 0, β ∈ [−1, 1] and α ∈ (1, 2], or Xi ∼ CSLC, i = 1, ..., n.

As follows from Theorem 2.4, peakedness properties given by Proposition 0.1 and Theorem 2.3 above are reversed

in the case of r.v.’s with very heavy-tailed distributions, as modelled by convolutions of stable distributions with

indices of stability less than one.

Theorem 2.4 If X1, ..., Xn are i.i.d. r.v.’s such that Xi ∼ Sα(σ, β, 0), i = 1, ..., n, for some σ > 0, β ∈ [−1, 1]

and α ∈ (0, 1), or Xi ∼ CS(1), i = 1, ..., n, then the function ψ(a, x) in Proposition 0.1 is strictly Schur-concave in

(a1, ..., an) ∈ Rn
+ for x > 0 and is strictly Schur-convex in (a1, ..., an) ∈ Rn

+ for x < 0.

Remark 2.1. If r.v.’s X1, ..., Xn have a symmetric Cauchy distribution S1(σ, 0, 0) which is, as discussed in Section

1, exactly at the dividing boundary between the class CS(1) in Theorem 2.4 and the class CSLC in Theorem 2.3, then

the function ψ(a, x) in the theorems depends only on
∑n

i=1 ai and x and so is both Schur-concave and Schur-convex

in a ∈ Rn
+ for all x ∈ R (see Proschan (1965)). Similarly, the function ψ(a, x), a ∈ Rn

+, in Theorems 2.1 and 2.2

depends only on
∑n

i=1 ar
i and x and so is both Schur-concave and Schur-convex in (ar

1, ..., a
r
n) for all x ∈ R if the r.v.’s

X1, ..., Xn in the theorems have a symmetric stable distribution Sr(σ, 0, 0) with the index of stability α = r which

is at the dividing boundary between the classes CS(r) and CS(r). As follows from the proof of Theorems 2.1-2.4,

the above implies that Theorems 2.3 and 2.4 continue to hold for convolutions of distributions from the classes

CSLC and CS(1) with symmetric Cauchy distributions S1(σ, 0, 0). Similarly, Theorem 2.1 and 2.2 continue to hold

for convolutions of distributions from the classes CS(r) and CS(r) with symmetric stable distributions Sr(σ, 0, 0).

The latter generalizations imply corresponding extensions in the applications of majorization properties of linear

combinations of heavy-tailed r.v.’s throughout the rest of the paper.

3. MONOTONE CONSISTENCY, PORTFOLIO VALUE AT

RISK AND COHERENCY OF THE VaR

Theorem 2.3 provides the following result concerning the monotone consistency properties of the sample mean

for data from heavy-tailed population.

Corollary 3.1 Let µ ∈ R. If X1, ..., Xn, n ≥ 1, are i.i.d. r.v.’s such that Xi ∼ Sα(σ, β, µ), i = 1, ..., n, for some

σ > 0, β ∈ [−1, 1] and α ∈ (1, 2], or Xi − µ ∼ CSLC, then the sample mean Xn = (1/n)
∑n

i=1 Xi exhibits monotone

consistency for µ, that is, P (|Xn − µ| > x) converges to zero monotonically in n for all x ≥ 0.

In addition to Corollary 3.1, from the majorization results given by Theorem 2.3 it follows, similar to the case

of log-concave distributions in Subsection 0.3 in the introduction, that diversification of a portfolio of not too thick-

tailed risks Xi ∼ CSLC, i = 1, ..., n, with weights w = (w1, ..., wn) ∈ Rn
+,

∑n
i=1 wi = 1, leads to a decrease in the

riskiness of its return Zw =
∑n

i=1 wiXi in the sense of (first-order) stochastic dominance. Let, as in Subsection 0.3

in the introduction, for α ∈ (0, 1/2), V aRα(Zw) be the value at risk of Zw associated with the loss probability α.

We obtain the following result.
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Corollary 3.2 Let Xi, i = 1, ..., n, be i.i.d. r.v.’s such that Xi ∼ CSLC, i = 1, ..., n. Then V aRα(Zv) < V aRα(Zw)

if v ≺ w and v is not a permutation of w. In particular, V aRα(Zw) < V aRα(Zw) < V aRα(Zw) for all α ∈
(0, 1/2) and all weights w such that w 6= w and w is not a permutation of w. For all α ∈ (0, 1/2), one also has

V aRα(X1 + X2) < V aRα(X1) + V aRα(X2).

In contrast, the results in Theorem 2.4 imply that the results for the VaR of portfolios discussed in Subsection

0.3 in the introduction are reversed under the assumption that the distributions of the risks X1, ..., Xn are very

long-tailed, as modelled by convolutions of stable distributions with indices of stability less than 1. In the latter

setup, diversification of a portfolio of the risks increases riskiness of its return. We have the following

Corollary 3.3 Let Xi, i = 1, ..., n, be i.i.d. r.v.’s such that Xi ∼ CS(1), i = 1, ..., n. Then V aRα(Zv) > V aRα(Zw)

if v ≺ w and v is not a permutation of w. In particular, V aRα(Zw) < V aRα(Zw) < V aRα(Zw) for all α ∈
(0, 1/2) and all weights w such that w 6= w and w is not a permutation of w. For all α ∈ (0, 1/2), one also has

V aRα(X1) + V aRα(X2) < V aRα(X1 + X2).

Theorems 2.1 and 2.2 imply the following results that give sharp bounds on the value at risk of portfolios of

heavy-tailed returns (risks). These bounds refine and complement the estimates given by Corollaries 3.2 and 3.3 in

the worlds of not too heavy-tailed and very heavy-tailed risks.

Corollary 3.4 Let r ∈ (0, 2) and let X1, ..., Xn be i.i.d. risks such that Xi ∼ CS(r), i = 1, ..., n. Then the following

sharp bounds hold:

n1−1/r(
n∑

i=1

wr
i )

1/rV aRα(Zw) < V aRα(Zw) < (
n∑

i=1

wr
i )

1/rV aRα(Zw)

for all α ∈ (0, 1/2) and all weights w such that w 6= w and w is not a permutation of w.

Corollary 3.5 Let r ∈ (0, 2], α ∈ (0, 1/2) and let X1, ..., Xn be i.i.d. risks such that Xi ∼ CS(r), i = 1, ..., n. Then

the following sharp bounds hold :

(
n∑

i=1

wr
i )

1/rV aRα(Zw) < V aRα(Zw) < n1−1/r(
n∑

i=1

wr
i )

1/rV aRα(Zw)

for all α ∈ (0, 1/2) and all weights w such that w 6= w and w is not a permutation of w.

Let X be a certain linear space of r.v.’s X defined on a probability space (Ω,=, P ). We assume that X contains

all degenerate r.v.’s X ≡ a ∈ R. According to the definition in Artzner et. al. (1999) (see also Embrechts et. al.

(1999) and Fritelli and Gianin (2002)), a functional R : X → R is said to be a coherent measure of risk if it satisfies

the following axioms:

A1. (Monotonicity) R(X) ≥ R(Y ) for all X, Y ∈ X such that Y ≤ X (a.s.), that is, P (X ≤ Y ) = 1.

A2. (Translation invariance) R(X + a) = R(X) + a for all X ∈ X and any a ∈ R.

A3. (Positive homogeneity) R(λX) = λR(X) for all X ∈ X and any λ ≥ 0.
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A4. (Subadditivity) R(X + Y ) ≤ R(X) +R(Y ) for all X, Y ∈ X .

In some papers (see, e.g., Fritelli and Gianin (2002) and Fölmer and Schied (2002)), the axioms A3 and A4 were

replaced by the following weaker axiom of convexity:

A5. (Convexity) R(λX + (1− λ)Y ) ≤ λR(X) + (1− λ)R(Y ) for all X,Y ∈ X and any λ ∈ [0, 1]

(clearly, A5 follows from A3 and A4). The above axioms are natural conditions to be imposed on measures of risk in

the setting where positive values of r.v.’s X ∈ X represent losses18 of a risk holder, in particular, from the regulatory

point of view as well as from liquidity considerations (see the discussion in Artzner et. al. (1999)). In addition

to that, the properties A1-A5 are important because, as follows from Huber (1981, Ch. 10) (see also Artzner et.

al. (1999)), in the case of a finite Ω, a risk measure R is coherent (that is, it satisfies A1-A4) if and only if it is

representable as R(X) = supQ∈P EQ(X), where P is some set of probability measures on Ω and, for Q ∈ P, EQ

denotes the expectation with respect to Q. In other words, the risk measure R is the worst result of computing the

expected loss EQ(X) over a set P of ”generalized scenarios” (probability measures) Q. A similar representation

holds as well in the case of an arbitrary Ω and the space X = L∞(Ω,=, P ) of bounded r.v.’s (see Fölmer and Schied

(2002)); moreover, as discussed in Fritelli and Gianin (2002), by duality theory, the convexity axiom A5 alone implies

analogues of such characterizations for an arbitrary Ω and the space X = Lp(Ω,=, P ), p ≥ 1, of r.v.’s X with a finite

p−th moment E|X|p < ∞.

It is easy to verify that the value at risk V aRα(X) satisfies the axioms of monotonicity, positive homogeneity

and translation invariance A1, A3 and A4. However, as follows from the counterexamples constructed by Artzner

et. al. (1999) and Embrechts et. al. (1999), in general, it fails to satisfy the subadditivity and convexity properties

A2 and A5, in particular, for certain Pareto distributions (Examples 6 and 7 in Embrechts et. al. (1999)).

On the other hand, our comparisons for not very heavy-tailed i.i.d. r.v.’s Xi ∼ CSLC given by Corollary 3.2,

imply that the value at risk is, in fact, a coherent measure of risk in the world of such risks.

Furthermore, from Corollary 3.3 it follows that axioms A2 and A5 are always violated for risks with very heavy-

tailed distributions, (even) under their independence. Thus, the value at risk is not a coherent risk measure in the

world of very long-tailed distributions.

Remark 3.1. It is well-known that if r.v.’s X and Y are such that P (X > x) ≤ P (Y > x) for all x ∈ R, then

EU(X) ≤ EU(Y ) for all increasing functions U : R → R for which the expectations exist (see, e.g., Shaked and

Shanthikumar (1994, pp. 3-4)). This fact and Theorems 2.1-2.4 imply corresponding results concerning majorization

properties of expectations of (utility or payoff) functions of linear combinations of heavy-tailed r.v.’s. In particular,

Theorems 2.1 and 2.2 give sharp bounds on the expected payoffs of contingent claims written on a portfolio of heavy-

tailed risks similar to those in Corollaries 3.4 and 3.5. For instance, we get that if U : R+ → R is an increasing

function, then, assuming existence of the expectations, the function ϕ(a) = EU(|∑n
i=1 aiXi|), a ∈ Rn

+ is Schur-

convex in (ar
1, ..., a

r
n) under the assumptions of Theorem 2.1 and is Schur-concave in (ar

1, ..., a
r
n) under the assumptions

of Theorem 2.2. In particular, EU
(∣∣n1−1/r

(∑n
i=1 wr

i

)1/r
Zw

∣∣) ≤ EU(|Zw|) ≤ EU
(∣∣(∑n

i=1 wr
i

)1/r
Zw

∣∣) for all port-

18This interpretation of losses follows that in Embrechts et. al. (1999) and is in contrast to Artzner et. al. (1999) who interpret
negative values of risks in X as losses.
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folios of risks satisfying Theorem 2.1 and EU
(∣∣(∑n

i=1 wr
i

)1/r
Zw

∣∣) ≤ EU(|Zw|) ≤ EU
(∣∣n1−1/r

( ∑n
i=1 wr

i

)1/r
Zw

∣∣)

for all portfolios of risks satisfying Theorem 2.2. We also get that the function ϕ(a), a ∈ Rn
+ is Schur-concave in

(a2
1, ..., a

2
n) if Xi ∼ Sα(σ, β, 0), i = 1, ..., n, for some σ > 0, β ∈ [−1, 1] and α ∈ (0, 2), or Xi ∼ CS(2). The latter

results complement those in Efron (1969) and Eaton (1970) (see also Marshall and Olkin (1979, pp. 361-365)) who

studied classes of functions U : R → R and r.v.’s X1, ..., Xn for which Schur-concavity of ϕ(a), a ∈ Rn
+ in (a2

1, ..., a
2
n)

holds. Further, we obtain that ϕ(a) is Schur-convex in a ∈ Rn
+ under the assumptions of Theorem 2.3 and is Schur-

concave in a ∈ Rn
+ under the assumptions of Theorem 2.4. It is important to note here that in the case of increasing

convex functions U : R+ → R and r.v.’s X1, ..., Xn satisfying the assumptions of Theorem 2.4, the expectations

EU(|∑n
i=1 aiXi|) are infinite19 for all a ∈ Rn

+. Therefore, the last result does not contradict the well-known fact

that (see Marshall and Olkin (1979, p. 361)) the function Ef(
∑n

i=1 aiXi) is Schur-convex in (a1, ..., an) ∈ R for all

i.i.d. r.v.’s X1, ..., Xn and convex functions f : R → R as it might seem on the first sight.

4. DEMAND-DRIVEN INNOVATION AND SPATIAL COMPETITION

Let ρ(x, y) = (x − y)2, x, y ∈ R, denote the quadratic loss function. In the setting of Jovanovic and Rob’s

(1987) model of demand-driven innovation and spatial competition described in Subsection 0.6 in the introduction,

let a consumer of type u ∈ R have the utility function u− ρ(θ̂, θ)− pθ̂, if she purchases one unit of good produced

by the firm, and 0, if not, where pθ̂ is the price the consumer pays for the good. Consumers are assumed to be

perfectly informed about all price-quality combinations offered by various sellers and the firm is assumed to be a

price taker. Under the former assumption, a necessary condition for an equilibrium is that ρ(θ̂, θ) + pθ̂ = p for all

θ̂ ∈ R, where p is the price of the ideal product θ. The size N of the sample S of signals about the next period’s ideal

product observed by the firm follows a distribution π(n; y + z) conditionally on y + z : π(n; y + z) = P (N = n|y + z),

n = 0, 1, 2, ... Below, we denote by St, θ̂t, θt, yt and zt the values of the variables in period t. In the model, the

sequence of events is as follows: in period t, first St is observed, next θ̂t is chosen; then θt is observed and yt and zt

are chosen; the period then ends.

Let L be the set of measures on the set R2 of pairs of decisions (y, z) among firms; we consider Markovian

equilibria with the aggregate state being the distribution of decisions νt ∈ L such that νt = α(θt, νt−1) (see Brock

and Mirman (1972), Jovanovic and Rob (1987) and Stokey and Lucas (1989)). In such an equilibrium, the price p

of the ideal product at t can be expressed as a function of νt−1 (see Jovanovic and Rob (1987)); this equilibrium

relationship will be denoted p(νt−1). The price of the product for a firm that locates as θ̂ at t is

pθ̂ = p(νt−1)− ρ(θ̂, θt).(4.1)

For n > 0, denote sn = n−1
∑n

i=1 si and εn = n−1
∑n

i=1 εi. Further, let F (x;n) = P (|εn| ≤ x), x ≥ 0, n = 1, 2, ...,

denote the cdf of |εn|, n = 1, 2, ..., on R+. Assuming a diffuse prior for θ ∈ R, the optimal choice of θ̂ = θ̂(S) in the

case N > 0 is (see Jovanovic and Rob (1987)20) θ̂ = argmaxθ̃ N−1
∑N

i=1 ρ(θ̃, si) = argmaxθ̃ N−1
∑N

i=1(θ̃−si)2 = sN .

It is not difficult to see that the loss associated with the choice of the product design θ̂(S) for N > 0 is ρ(θ̂(S), θ) = ε 2
N .

19Since the function (f(x)− f(0))/x is increasing in x > 0 by, e.g., Marshall and Olkin (1979), p. 453.
20In the setting of Jovanovic and Rob (1987), the absolute deviation ρ(θ, θ̂) = |θ − θ̂| needs to be replaced by the quadratic loss

ρ(θ̂, θ) = (θ̂ − θ)2, as in the present section, for the product design to be given by the sample mean of signals: θ̂ = sN . No conclusion
derived in Jovanovic and Rob (1987) is affected by this small modification.

14



In the case when N = 0 belongs to the support of N, so that π(0; y+z) 6= 0, it is usually assumed that ρ(θ̂(S), θ) = ∞
for N = 0. The cdf of ρ(θ̂(S), θ) (on R+) conditional on y + z is

ξ(x; y + z) = P (ρ(θ̂(S), θ) ≤ x|y + z) =
∞∑

n=0

F (
√

x;n)π(n; y + z),(4.2)

x ≥ 0 (with F (
√

x; 0) = 0 if N = 0 belongs to the support of N under the above convention).

The dynamic programming formulation of the firm’s problem of choosing y and z, following a realization ρ(θ̂, θ) =

x, is V (x, ν−1) = maxy,z

{
y(p(ν−1)−x)−C(y)−K(z)+β

∫
V (x̃, α(ν−1))dξ(x̃; y+z)

}
(see Jovanovic and Rob (1987)).

Let G(y + z) = β
∫

V (x̃, α(ν−1))dξ(x̃; y + z). The first-order necessary conditions for an interior maximum (y, z)

are

pθ̂ − C ′(y) + G′(y + z) = 0, −K ′(z) + G′(y + z) = 0.(4.3)

The second-order conditions for a maximum are

G′′(y + z) < C ′′(y), C ′′(y)K ′′(z) > G′′(y + z)(C ′′(y) + K ′′(z))(4.4)

(conditions (4.4) imply G′′(y + z) < K ′′(z)). If

G′(y + z) ≤ K ′(z)(4.5)

for all (y, z), then the optimal level of informational gathering effort is zero:

z = 0.(4.6)

In the latter case, the first- and second-order conditions for a point (y, 0) in the interior of {(y, 0)} to be optimal are

pθ̂ − C ′(y) + G′(y) = 0,(4.7)

G′′(y) < C ′′(y).(4.8)

We assume that, for any continuous f : R → R, the expression
∫

f(x̃)dξ(x̃;λ) is differentiable in λ. Under

the latter assumption, one can implicitly differentiate first-order conditions (4.3) and (4.7) (see Jovanovic and Rob

(1987)).

Evidently, the condition G′′ < 0 suffices for conditions (4.4) and (4.8) to hold. However, G′′ > 0 is also consistent

with maxima being interior. By Proposition 4 in Jovanovic and Rob (1987), if the function G is convex (G′′ > 0),

then larger firms invest more in information. One should note that, according to empirical studies, there is a positive

relationship between R&D expenditures and firm size, that suggests that G(y +z) is indeed convex (see Kamien and

Schwartz (1982) and the discussion following Proposition 4 in Jovanovic and Rob (1987)).

Suppose that, conditionally on y + z, N has a Poisson distribution with

π(n; y + z) = π0(n; y + z) =
[µ(y + z)]n

n!
exp(−µ(y + z)), n = 1, 2, ...(4.9)
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(with the convention that ρ(θ̂, θ) = ∞ for N = 0) or a shifted Poisson distribution

π(n; y + z) = π1(n; y + z) =
[µ(y + z)]n−1

(n− 1)!
exp(−µ(y + z)), n = 1, 2, ...(4.10)

(the latter distribution allows one to avoid the ambiguity concerning the value of ρ(θ̂, θ) in the case N = 0).

Lemma 4.1 obtained by Jovanovic and Rob (1987) gives sufficient conditions for concavity of the function G(y+z);

under the assumptions of the lemma, therefore, the second-order conditions for an interior maximum with respect

to y and z are satisfied.

Lemma 4.1 (Jovanovic and Rob (1987)). Suppose that, conditionally on y + z, N has a Poisson distribution

π0(n; y+z) given by (4.9). The function G(y+z) is strictly concave in y+z if the sequence {F (x;n+1)−F (x;n)}∞n=0

is strictly decreasing in n for all x > 0.

As noted in Jovanovic and Rob (1987), the conditions of Lemma 4.1 are satisfied for normal r.v.’s εi ∼ N (0, σ2),

i = 1, 2...

Jovanovic and Rob (1987) obtained the following Proposition 4.2. In the proposition and its analogues for heavy-

tailed signals below (Theorems 4.1 and 4.2), y
(1)
t and y

(2)
t are sizes of two firms at period t; y

(1)
t+1 and y

(2)
t+1 stand for

their sizes next period.

Proposition 4.2 (Jovanovic and Rob (1987)). Suppose that, conditionally on y + z, N has a Poisson distribution

π0(n; y + z) in (4.9). Let the shocks ε1, ε2, ... be i.i.d. r.v.’s such that εi ∼ LC, i = 1, 2, ... If the optimal levels (yt, zt)

of output and informational gathering effort satisfy (4.3) and (4.4) or (4.6)-(4.8), then

(a) The probability of rank reversals in adjacent periods P (y(1)
t+1 > y

(2)
t+1|y(2)

t > y
(1)
t ) is always less than 1/2.

(b) This probability diminishes as the current size-difference y
(2)
t − y

(1)
t increases (holding constant the size of

one of the firms).

(c) The distribution of future size is stochastically increasing as a function of current size yt, that is, P (yt+1 >

y|yt) is increasing in yt for all y ≥ 0.

Note that, using the arguments completely similar to the proof of above Lemma 4.1 and Proposition 4.2 in

Jovanovic and Rob (1987), one has that the lemma and the proposition also hold under the assumption that N has

a shifted Poisson distribution π1(n; y +z) given by (4.10) as well as under the assumption that conditions (4.6)-(4.8)

are satisfied.

The following theorem provides a generalization of Proposition 4.2 that shows that the results obtained by

Jovanovic and Rob (1987) hold in the case of not very thick-tailed signals.

Theorem 4.1 Suppose that, conditionally on y + z, N has a Poisson distribution π0(n; y + z) in (4.9) or a shifted

Poisson distribution π1(n; y+z) in (4.10). Let the shocks ε1, ε2, ... be i.i.d. r.v.’s such that εi ∼ Sα(σ, β, 0), i = 1, 2, ...,

for some σ > 0, β ∈ [−1, 1] and α ∈ (1, 2], or εi ∼ CSLC, i = 1, 2, ... Then conclusions (a), (b) and (c) in Proposition

4.2 hold.
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Lemma 4.2 below shows that the sufficient conditions for an interior maximum in Lemma 4.1 which imply

strict concavity of the function G(y + z) are satisfied for shocks ε1, ε2, ... with not very fat-tailed symmetric stable

distributions.

Lemma 4.2 If the shocks ε1, ε2, ... are i.i.d. r.v.’s such that εi ∼ Sα(σ, 0, 0), i = 1, 2, ..., for some σ > 0, and

α ∈ (1, 2], then the sequence {F (x;n + 1)− F (x; n)}∞n=0 is decreasing in n for all x > 0.

As the following theorem shows, the conclusions of Proposition 4.2 and Theorem 4.1 are reversed in the case of

shocks ε1, ε2, ... with very fat tails.

Theorem 4.2 Suppose that, conditionally on y + z, N has a shifted Poisson distribution π1(n; y + z) given by

(4.10). Let the shocks ε1, ε2, ... be i.i.d. r.v.’s such that εi ∼ Sα(σ, β, 0), i = 1, 2, ..., for some σ > 0, β ∈ [−1, 1] and

α ∈ (0, 1), or εi ∼ CS(1), i = 1, 2, ... If the optimal levels (yt, zt) of output and informational gathering effort satisfy

(4.3) and (4.4) or (4.6)-(4.8), then

(a’) The probability of rank reversals in adjacent periods P (y(1)
t+1 > y

(2)
t+1|y(2)

t > y
(1)
t ) is always greater than 1/2.

(b’) This probability increases as the current size-difference y
(2)
t − y

(1)
t increases (holding constant the size of one

of the firms).

(c’) The distribution of future size is stochastically decreasing as a function of current size yt, that is, P (yt+1 >

y|yt) is decreasing in yt for all y ≥ 0.

According to Theorem 4.3 below, condition (4.5) and, thus, relation (4.6) is satisfied in the case of very fat-tailed

shocks ε1, ε2, ... and the increasing costs K(z) of engaging in the informational gathering effort. That is, if the

function K(z) is increasing in z ≥ 0 and the distribution of the signal shocks is very heavy-tailed, then each firm

chooses zero informational gathering effort: z = 0.

Theorem 4.3 Under the assumptions of Theorem 4.2, G′(y+z) ≤ 0. Therefore, if K ′(z) > 0, then (4.5) is satisfied

and the optimal choice of informational gathering effort is z = 0.

Proposition 4.2 and Theorem 4.1 imply that, in the case of not very heavy-tailed signals, relatively large firms

are likely to stay larger; in addition, the size-difference is positively autocorrelated. According to Theorem 4.2,

these conclusions are reversed in a world of very fat-tailed signals: relatively large firms are not likely to stay larger

and the size-difference exhibits negative autocorrelation. The intuition for the results given by Proposition 4.2 and

Theorems 4.1-4.3 is that the larger is a firm’s size, the greater is the amount of information the firm gets21. The

samples of consumers’ signals are informative about the ideal product θ if the signals’ distributions are not very

heavy tailed, as in Proposition 4.2 and Theorem 4.1. However, they are uninformative about θ in the case of very

long-tailed distributions in Theorems 4.2 and 4.3. The larger firms that learn more are thus more likely to come up

with a successful product if the signals are not very fat-tailed (see the discussion in Jovanovic and Rob (1987)). In

21One should also note that, under (4.3) and (4.4), large firms will not reduce their investment in information to the point where their
informational advantage disappears (Proposition 3 in Jovanovic and Rob (1987)) and, with an additional assumption of convexity of G,
they always invest more according to Proposition 4 in Jovanovic and Rob (1987) (see also Nelson and Winter (1978)).
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a world of very heavy-tailed signals, on the other hand, smaller firms that get less uninformative signals have an

advantage over their larger counterparts (see Subsection 0.8 in the introduction). The fact that heavy-tailed samples

are uninformative about the next period’s ideal product also drives the conclusion that it is optimal not to invest

into the informational gathering if the cost K(z) of the investment is increasing in z.

5. OPTIMAL BUNDLING DECISIONS FOR COMPLEMENTS

AND SUBSTITUTES UNDER HEAVY-TAILEDNESS

Consider a setting with a single profit-maximizing risk-neutral22 seller providing m goods to n consumers. Let

M = {1, 2, ..., m} be the set of goods sold on the market and let J = {1, 2, ..., n} denote the set of buyers. Let 2M

be the set of all subsets of M. As in Palfrey (1983), the seller’s bundling decisions B are defined as partitions of

the set of items M into a set of subsets, {B1, ..., Bl} = B, where l is the cardinality of B; the subsets Bs ∈ 2M ,

s = 1, ..., l, are referred to as bundles. That is, Bs 6= ∅ for s = 1, ..., l; Bs ∩ Bt = for s 6= t, s, t = 1, ..., l; and

∪l
s=1Bs = M (see Palfrey (1983) and Fang and Norman (2003)). It is assumed that the seller can offer one (and

only one) partition B for sale on the market (this referred to as pure bundling, see Adams and Yellen (1976))23.

We denote by B = {{1}, {2}, ..., {n}} and B = {1, 2, ..., n} the bundling decisions corresponding, respectively, to the

cases when the goods are sold separately (that is, on separate auctions or using unbundled sales) and as a single

bundle M. For a bundle B ∈ 2M , we write card(B) for a number of elements in B and denote by πB the seller’s profit

resulting from selling the bundle. For a bundling decision B = {B1, ..., Bl}, we write ΠB for the seller’s total profit

resulting from following B, that is, ΠB =
∑l

s=1 πBs . The risk-neutral seller (strictly) prefers a bundling decision B1

to a bundling decision B2 ex ante if EΠB1 ≥ EΠB2 (resp., if EΠB1 > EΠB2). The seller prefers a bundling decision

B1 to a bundling decision B2 ex post if ΠB1 ≥ ΠB2 (a.s.), that is, if P (ΠB1 ≥ ΠB2) = 1.

A representative consumer’s preferences over the bundles B ∈ 2M , on the other hand, are determined by her

reservation prices (valuations) v(B) for the bundles and, in particular, by their valuations v({i}) for goods i ∈ M

(when the goods are sold separately) which are referred to as stand-alone reservation prices. In the case when

the reservation prices for bundles are nonnegative: v(B) ≥ 0, B ∈ 2M , it is said that the goods in M and their

bundles satisfy the free disposal condition24. The free disposal assumption is particularly important in the case of

information goods and in the economics of the Internet (see Bakes and Brynjolfsson (1999, 2000)). If consumers’

valuations for a bundle of goods is additive in those of component goods: v(B) =
∑

i∈B v({i}), then the products

provided by the monopolist are said to be independently priced (see Venkatesh and Kamakura (2003)). Under free

disposal, the natural analogues of this property for interrelated goods are subadditivity v(B) ≤ ∑
i∈B v({i}) in the

case of substitutes and superadditivity
∑

i∈B v({i}) ≤ v(B) in the case of complements (see Dansby and Conrad

(1984), Lewbel (1985) and Venkatesh and Kamakura (2003)).

Throughout this section, Xi, i ∈ M, denote i.i.d. r.v.’s representing the distribution of consumers’ tastes for goods

i ∈ M that determine their reservation prices for the goods and their bundles. We suppose that a representative
22So that the seller’s utility of wealth function is linear.
23The analysis of mixed bundling, in which consumers can choose among all bundling decisions available (see Adams and Yellen (1976)

and McAfee et. al. (1989)) is beyond the scope of this paper.
24The case when the support of the valuations v(B) intersects with (−∞, 0) corresponds to the situation when the goods have negative

value to some consumers (e.g., articles exposing certain political views, advertisements or pornography in the case of information goods,
see Bakos and Brynjolfsson (1999)).
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consumer’s reservation price v(B) for a bundle B of goods produced by the monopolist is a function of her tastes

for the component goods in the bundle. More precisely, we model the setting with interrelated goods by assuming

that a representative consumer’s valuations for bundles B ∈ 2M are given by v(gr, B) = gr

( ∑
i∈B Xi

)
or v(hr, B) =

hr

( ∑
i∈B Xi

)
where, for r ∈ (0, 2], gr(x) = xrI(x ≥ 0), hr(x) = x|x|r−1, x ∈ R, and I(·) denotes the indicator

function. The valuations for goods i ∈ M in the case when they are sold separately are thus v(gr, {i}) = gr(Xi)

or v(hr, {i}) = hr(Xi), i ∈ M. Clearly, in the case r = 1, one has v(h1, {i}) = h1(Xi) = Xi, i ∈ M. Also, the

reservation prices v(gr, B) satisfy the free-disposal condition: v(gr, B) ≥ 0 for all B ∈ 2M . It is easy to see that,

for all B ∈ 2M , v(gr, B) ≤ ∑
i∈B v(gr, {i}), if r ≤ 1, and

∑
i∈B v(gr, {i}) ≤ v(gr, B), if r ≥ 1, and Xi ≥ 0, i ∈ B.

That is, consumers’ reservation price v(gr, B) for a bundle is subadditive in those for the component products if

r ≤ 1, as it is typically required for substitutes, and is superadditive in the rectangle of non-negative tastes if

r ≥ 1, as it is usually assumed in the case of complements. Similarly, for r ≤ 1, the reservation prices v(hr, B) are

subadditive in those for component products in the rectangle of non-negative stand-alone valuation v(hr, {i}) i ∈ M,

and are superadditive in the components’ valuations in the case when all the stand-alone valuations are non-positive.

For r ≥ 1, the valuations for bundles v(hr, B) are superadditive in those for the components if all the stand-alone

reservation prices are non-negative and are subadditive if the valuations for all component products are non-positive.

More precisely, if v(hr, {i}) ≥ 0, i ∈ B, then
∑

i∈B v(hr, {i}) ≤ v(hr, B) for r ≥ 1, and v(hr, B) ≤ ∑
i∈B v(hr, {i})

for r ≤ 1. If v(hr, {i}) ≤ 0, i ∈ B, then v(hr, B) ≤ ∑
i∈B v(hr, {i}) for r ≥ 1, and

∑
i∈B v(hr, {i}) ≤ v(hr, B)

for r ≤ 1. The above super- and subadditivity properties of v(hr, B) for r ≥ 1 are consistent with the assumption

typically imposed on the value function of (complementary) gains and losses in mental accounting and prospect

theory (see, e.g., Kahneman and Tversky (1979) and Thaler (1985)). The case r = 1 with reservation prices for

bundles v(h1, B) =
∑

i∈B Xi models the case of independently priced goods.

For j ∈ J, the jth consumer’s tastes for goods in M are assumed to be X̃ij , i ∈ M, where X̃(j) = (X̃1j , ..., X̃nj),

j ∈ M, are independent copies of the vector (X1, ..., Xn), and her reservation prices vj(B) for bundles B ∈ 2M of

goods in M are given by vj(gr, B) = gr

(∑
i∈B X̃ij

)
or vj(hr, B) = hr

( ∑
i∈B X̃ij

)
. The seller is assumed to know

only the distribution of consumers’ reservation prices for goods in M and their bundles. The valuations vj(gr, B)

(vj(hr, B)) for bundles B ∈ 2M , are known to buyer j, however, the buyer has only the same incomplete information

about the other consumers’ reservation prices as does the seller (see Palfrey (1983)).

Let us consider first the case in which the goods in M and their bundles are provided by a risk-neutral seller

through Vickrey auctions (see Palfrey (1983)). In this setting, the buyers submit simultaneous sealed bids for bundles

of goods sold by the seller. The bidder with the highest bid wins the auction and pays the seller the second highest

bid. It is well-known that, in such a setup, a dominant strategy for each bidder is to bid her true reservation prices.

In accordance with the assumption of nonnegativity of bids and valuations usually imposed in the auction theory,

we suppose that, for j ∈ J, the jth consumer’s reservation price for a bundle B ∈ 2M of goods sold is given by

vj(gr, B) = gr(
∑

i∈B X̃ij) ≥ 0. The seller’s profit from following a bundling decision B = {B1, ..., Bl} is, evidently,
∑l

s=1 v(n−1)(gr, Bs), where, for s = 1, ..., l, v(n−1)(gr, Bs) denotes the second highest of consumers’ reservation prices

for the bundle Bs (that is, the second highest order statistic of the reservation prices for the bundle). The following

Theorem 5.1 extends the results in Palfrey (1983) and Chakraborty (1999) to the case of interrelated goods (with

an arbitrary degree of complementarity or substitutability) and consumers with long-tailed valuations. According to
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the theorem, if consumers’ tastes are not very heavy-tailed and the goods are independently priced or are substitutes

(or are complements with not very high degree of complementarity) then the auctioneer strictly prefers separate

provision of goods to any other bundling decision.

Theorem 5.1 Let r ∈ (0, 2), and let the reservation prices for bundles B ∈ 2M of goods from M be given by v(gr, B).

Suppose that the tastes Xi, i ∈ M, are i.i.d. r.v.’s such that Xi ∼ Sα(σ, β, 0), i ∈ M, for some σ > 0, β ∈ [−1, 1]

and α ∈ (r, 2], or Xi ∼ CS(r), i ∈ M. Then, for all n ≥ 2, the seller strictly prefers (ex ante) B (that is, n separate

Vickrey auctions) to any other bundling decision.

Remark 5.1. From the proof of Theorem 5.1 it follows that, under its assumptions, for any bundle B ∈ 2M

with the number of elements card(B) = k ≥ 2, the seller’s profit πB from selling B on a Vickrey auction is strictly

(first-order) stochastically dominated by the profit from selling one of goods in B, say good i ∈ B, separately k times,

that is, by the r.v. kπi, where πi = πBi
with Bi = {i}. Namely, for all x > 0, one has P (πB > x) < P (kπi > x)

that means that selling one of goods in B k times separately is always likely to generate higher profits to the seller

than selling the bundle B. As in Remark 3.1, we get, therefore, by Shaked and Shanthikumar (1994, pp. 3-4), that

EU(πB) ≤ EU(kπi) for all increasing functions U : R+ → R for which the expectations exist. Similar to the proof

of Theorem 5.2 below, this, in turn, implies that Theorem 5.1 holds as well in the case of a risk-loving seller with

any increasing convex utility of wealth function U such that U(0) = 0.

The intuition behind the results given by Theorem 5.1 is that, in the case of not very heavy-tailed tastes, similarly

to the case of log-concave distributions, the valuations per good become increasingly more concentrated about the

mean valuations with the size of bundles. In particular, in the case of not very long-tailed reservation prices, buyers

with high valuations for the bundle are more likely to win the bundled auction and the next highest bidder is likely

to have relatively lower valuations than in the case of separate auctions. Since it is increasingly likely that at least

one of the buyers will have valuations on the upper tail of the distribution as the number of bidders gets larger, it

becomes more likely that the winner of the auction prefers bundled auctions (see Palfrey (1983)).

There are no counterparts of Theorem 5.1 for very heavy tailed distributions of consumers’ valuations (such as

CS(r)) if the seller’s utility of wealth is linear since, as it is not difficult to see, in this case, the seller’s expected

profits from following any bundling decision are infinite. However, in the case of a risk-averse seller with a concave

utility of wealth function, the following reversal of Theorem 5.1 holds.

Suppose that the seller (strictly) prefers a bundling decision B1 to a bundling decision B2 if EU(ΠB1) ≥ EU(ΠB2)

(resp., if EU(ΠB1) > EU(ΠB2)), where U : R+ → R is an increasing concave function with U(0) = 0 (that represents

the seller’s utility of wealth satisfying the property of diminishing returns). According to the following Theorem

5.2, in the latter case, the auctioneer strictly prefers providing all the items through one Vickrey auction to any

other bundling decision, if consumers’ tastes are very heavy-tailed and the goods are independently priced or are

complements (or are substitutes with not very high degree of substitutability).

Theorem 5.2 Let r ∈ (0, 2], and let the reservation prices for bundles B ∈ 2M of goods from M be given by v(gr, B).

Suppose that the tastes Xi, i ∈ M, are i.i.d. r.v.’s such that Xi ∼ Sα(σ, β, 0), i ∈ M, for some σ > 0, β ∈ [−1, 1]
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and α ∈ (0, r), or Xi ∼ CS(r), i ∈ M. If the seller’s utility of wealth is concave, then, for all n ≥ 2, the seller strictly

prefers (ex ante) B (that is, a single Vickrey auction) to any other bundling decision.

Using the general majorization properties of long-tailed distributions presented in Section 2, one can also obtain

the following Theorem 5.3 that characterizes buyers’ preferences over the bundled auctions in the case of indepen-

dently priced goods and very heavy-tailed reservation prices.

Let j ∈ J and let x̃(j) = (x̃1j , ..., x̃nj) ∈ Rn
+. If a bundle B consisting of independently priced goods is offered for

sale on a Vickrey auction then the expectation of the surplus Sj(B, x̃(j)) to consumer j with the values of stand-alone

reservation prices X̃(j) = x̃(j) and induced valuations for bundles vj(B) =
∑

i∈B x̃ij , B ∈ 2M , is (see Palfrey (1983))

ESj(B, x̃(j)) = P
(

max
s∈J,s6=j

vs(B) < vj(B)
)(

vj(B)− E
(

max
s∈J,s6=j

vs(B)| max
s∈J,s6=j

vs(B) < vj(B)
))

,

where vt(B) =
∑

i∈B X̃it, B ∈ 2M , t ∈ J, t 6= j. If the seller follows a bundling decision B = {B1, ..., Bl}, then

the expectation of the surplus Sj(B, x̃(j)) to the jth buyer with the vector of stand-alone valuations X̃(j) = x̃(j) is

ESj(B, x̃(j)) =
∑l

s=1 ESj(Bs, x̃
(j)). The jth buyer with X̃(j) = x̃(j) is said to (strictly) prefer a bundling decision

B1 to a bundling decision B2, ex ante, if ESj(B1, x̃
(j)) ≥ ESj(B2, x̃

(j)) (resp., if ESj(B1, x̃
(j)) > ESj(B2, x̃

(j))). If

all buyers j ∈ J (strictly) prefer a bundling decision B1 to a bundling decision B2 ex ante for almost all realizations

of their reservation prices X̃(j), it is said that buyers unanimously (strictly) prefer B1 to B2 ex ante. More precisely,

buyers unanimously (strictly) prefer a partition B1 to a partition B2 if, for all j ∈ J, P [E(Sj(B1, X̃
(j))|X̃(j)) ≥

E(Sj(B2, X̃
(j))|X̃(j))] = 1 (resp., P [E(Sj(B1, X̃

(j))|X̃(j)) > ESj(B2, X̃
(j))|X̃(j))] = 1), where, as usual, E(·|X̃(j))

stands for the expectation conditional on X̃(j). Clearly, in the case of absolutely continuous reservation prices Xi,

i ∈ M, consumers unanimously prefer B1 to B2 ex ante if each of them prefers B1 to B2 for all but a finite number

of realizations of her stand-alone valuations.

According to Theorem 5.3, consumers unanimously prefer (ex ante) separate provision of goods in Vickrey

auctions to any other bundling decision in the case of an arbitrary number of buyers, if their valuations are very

long-tailed, as modelled by positive stable distributions. These results are reversals of those given by Theorem 6 in

Palfrey (1983) from which it follows that if consumers’ valuations are concentrated on a finite interval, then buyers

never unanimously prefer separate provision auctions if there are more than two buyers on the market (Theorem

5.3 does not contradict Theorem 6 in Palfrey (1983) since the support of heavy-tailed distributions in Theorem 5.3

is the infinite positive semi-axis R+).

Theorem 5.3 Let the reservation prices for bundles B ∈ 2M be given by v(B) =
∑

i∈B Xi. Suppose that the stand-

alone reservation prices Xi, i ∈ M, for goods in M are i.i.d. r.v.’s such that Xi ∼ Sα(σ, 1, 0) for some σ > 0 and

α ∈ (0, 1). Then buyers unanimously strictly prefer (ex ante) B (that is, n separate auctions) to any other bundling

decision.

The underlying intuition behind the reversals of the results on optimal bundling decisions in Vickrey auctions in

the case of very long-tailed tastes in Theorems 5.2 and 5.3 is that the distributions of the valuations for individual

goods are more peaked than those of the valuations per good in bundles. This implies, in particular, that buyers

who are on the upper tail of the distributions for the goods are more likely to win separate auctions and the next
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highest bidder is likely to have relatively lower valuations than in the case of a bundled auction. In the case of

positive stable valuations, the latter implications hold even in the case of any consumer, whatever the values of her

reservation prices are. Therefore, contrary to the case of very light-tailed valuations (see the discussion preceding

Theorem 5 in Palfrey (1983)), as the number of buyers gets larger, the winner of the auction is likely to prefer

separate provision of the products.

Remark 5.2. As shown by Palfrey (1983), in Vickrey auctions with independently priced goods and an arbitrary

number of bidders, the total surplus (that is, the sum of the seller’s profit and buyers’ surplus) is always maximized

in the case when the goods are provided on separate auctions. Palfrey (1983) also proves that, with two buyers, the

bidders unanimously prefer separate provision of items ex post and thus ex ante and the seller, on the other hand,

prefers a single auction. Since the above results are, essentially, deterministic, all they are robust with respect to risk

attitudes of the seller and the buyer. However, as discussed in Palfrey (1983), the ex post results on the seller’s and

the buyers’ preferences available in the two-buyer setup cannot be extended in any way to the case when there are

more than two buyers. On the other hand, from Theorem 5.2 with r = 1 and Theorem 5.3 it follows that, in the case

of an arbitrary number of buyers with (very heavy-tailed) positive stable reservation prices, the market participants’

ex ante preferences over the bundling decisions are the same as in the case of the ex post analysis for two-buyer

setting in Palfrey (1983). Namely, the seller’s expected utility of wealth is maximized in the case of a single auction

and the buyers unanimously prefer separate provision of goods to any other bundling decision. Thus, the effects of

bundling on the seller’s expected utility of wealth and the buyers’ expected surplus continue to be the opposites of

one another, although (by Palfrey (1983)) the expected total surplus is still maximized under the separate provision.

Let us now turn to the case in which the prices for goods on the market and their bundles are set by the

monopolist. Let ci, i ∈ M, be the marginal costs of goods in M. Suppose that the seller can provide bundles B of

goods in M for prices per good p ∈ [0, pmax], where pmax is the (regulatory) maximum price, with the convention

that pmax can be infinite. For a bundle of goods B ∈ 2M , denote by pB the profit-maximizing price per good for the

bundle, so that the seller’s expected profit from selling B (at the price pB) is πB = J(kpB−
∑

i∈B ci)P (v(B) ≥ kpB),

where k = card(B). Clearly, in the case when the marginal costs are identical for goods produced by the seller, that

is, ci = c for all i ∈ M, the values of pB are the same for all bundles B that consist of the same number card(B) of

goods: pB = pB′ , if card(B) = card(B′). With identical marginal costs, we denote by p the profit maximizing price

per good in the case when all the goods in M are sold as a single bundle and by p the profit maximizing price of

each good i ∈ M under unbundled sales. That is, in the case when ci = c for all i ∈ M, p = pB with B = M, and

p = pB with B = {i}, i ∈ M.

The following Theorems 5.4 and 5.5 characterize the optimal bundling strategies for a multiproduct monopolist

in the latter setting with an arbitrary degree of complementarity or substitutability for goods in M (the cases of

valuations v(gr, B) and v(hr, B) with an arbitrary r ∈ (0, 2]). From Theorem 5.4 it follows that if consumers’ tastes

are not very heavy-tailed and the goods are independently priced or are substitutes (or are complements with not

very high degree of complementarity), then the patterns in seller’s optimal bundling strategies are the same as in

the case of independently priced goods with log-concavely distributed valuations (see Bakos and Brynjolfsson (1999)

and Fang and Norman (2003) and the discussion in Subsection 0.5 in the introduction).
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Theorem 5.4 Let µ ∈ R, r ∈ (0, 2), and let the reservation prices for bundles B ∈ 2M of goods from M be given

by v(gr, B) or by v(hr, B). Suppose that the tastes Xi, i ∈ M, are i.i.d. r.v.’s such that Xi ∼ Sα(σ, β, µ), i ∈ M, for

some σ > 0, β ∈ [−1, 1] and α ∈ (r, 2], or Xi−µ ∼ CS(r), i ∈ M. The seller strictly prefers B to any other bundling

decision (that is, the goods are sold as a single bundle), if ci = c, i ∈ M, and p < µ. The seller strictly prefers B to

any other bundling decision (that is, the goods are sold separately), if ci ≥ µ, i ∈ M, or if ci = c, i ∈ M, and p > µ.

According to Theorem 5.5, the patterns in the solutions to the seller’s optimal bundling problem in Theorem 5.4

are reversed if consumers’ tastes are very heavy-tailed and the goods are independently priced or are complements

(or are substitutes with not very high degree of substitutability).

Theorem 5.5 Let µ ∈ R, r ∈ (0, 2], pmax < ∞, and let the reservation prices for bundles B ∈ 2M of goods from M

be given by v(gr, B) or by v(hr, B). Suppose that the tastes Xi, i ∈ M, are i.i.d. r.v.’s such that Xi ∼ Sα(σ, β, µ),

i ∈ M, for some σ > 0, β ∈ [−1, 1] and α ∈ (0, r), or Xi − µ ∼ CS(r), i ∈ M. The seller strictly prefers B to any

other bundling decision (that is, the goods are sold separately), if ci = c, i ∈ M, and p < µ. The seller strictly prefers

B to any other bundling decision (that is, the goods are sold as a single bundle), if ci ≥ µ, i ∈ M, or if ci = c, i ∈ M,

and p > µ.

Theorem 5.6 and 5.7 below give analogues of the results in Theorems 5.4 and 5.5 in the case of independently

priced goods (r = 1).

Theorem 5.6 Let µ ∈ R, and let the reservation prices for bundles B ∈ 2M be given by v(h1, B) =
∑

i∈B Xi.

Suppose that the stand-alone reservation prices v(h1, {i}) = Xi, i ∈ M, for goods in M are i.i.d. r.v.’s such that

Xi ∼ Sα(σ, β, µ), i ∈ M, for some σ > 0, β ∈ [−1, 1] and α ∈ (1, 2], or vi − µ ∼ CSLC, i ∈ M. Then the conclusion

of Theorem 5.4 holds.

Theorem 5.7 Let µ ∈ R, pmax < ∞, and let the reservation prices for bundles B ∈ 2M be given by v(h1, B) =
∑

i∈B Xi. Suppose that the stand-alone reservation prices v(h1, {i}) = Xi, i ∈ M, for goods in M are i.i.d. r.v.’s

such that Xi ∼ Sα(σ, β, µ), i ∈ M, for some σ > 0, β ∈ [−1, 1] and α ∈ (0, 1), or vi − µ ∼ CS(1), i ∈ M. Then the

conclusion of Theorem 5.5 holds.

Similar to the analysis in Bakos and Brynjolfsson (1999), the underlying intuition for Theorems 5.4 and 5.6 is

that, for not very heavy-tailed distributions of reservation prices and the marginal costs of goods on the right of

the mean valuation, bundling decreases profits since it reduces peakedness of the valuation per good and thereby

decreases the fraction of buyers with valuations for bundles greater than their total marginal costs. For the identical

marginal costs of goods less than the mean valuation, bundling is likely to have the opposite effect on the profit.

On the other hand, the results in Theorems 5.5 and 5.7 are driven by the fact that, in the case of very heavy-tailed

reservation prices, peakedness of the valuations per good in bundles decreases with their size. Therefore, bundling

of goods in the case of very long-tailed valuations and marginal costs of goods higher than the mean reservation

price increases the fraction of buyers with reservation prices for bundles greater than their total marginal costs and
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thereby leads to an increase in the monopolist’s profit. This effect is reversed in the case of the identical marginal

costs on the left of the mean valuation.

Remark 5.3. The assumptions of Theorem 5.5 with r ≥ 1 (and those of Theorem 5.7) are satisfied, in particular,

for positive stable tastes (stand-alone reservation prices) Xi ∼ Sα(σ, 1, µ), i ∈ M, where σ > 0 and α ∈ (0, 1), for

which thus the free disposal condition holds, including the Lévy distributions S1/2(σ, 1, µ). Furthermore, from the

proof of Theorems 5.4-5.7 it follows that the first parts (second parts) of conclusions in the theorems hold as well in

the case of arbitrary marginal costs ci if the price per good pB in each bundle B ∈ 2M is less than (greater than) µ.

One should also note here that the conditions pmax < ∞ in Theorems 5.5 and 5.7 are necessary since otherwise the

monopolist would set an infinite price for each bundle of goods under very heavy-tailed distributions of consumers’

tastes considered in the theorems.

Remark 5.4. It is important to note that Theorems 5.5 and 5.7 shed new light on marketing strategies involving

exclusion of goods for which observations of extreme (both positive and negative) valuations are more likely from

the bundle and selling them separately. Such strategies are often observed on the market, in particular, in the

bundling decisions of cable and direct satellite broadcast television firms that have marginal costs of reproduction

close to zero. The latter firms typically offer a ”basic” bundle and use such strategies as pay-per-view approach for

unusual special events such as boxing matches (see Bakos and Brynjolfsson (1999)). The high valuations for the

special events are concentrated among a small fraction of consumers and thus are likely to be very heavy-tailed.

Therefore, the optimal bundling strategies for the special events are likely to be the opposites of those for light-tailed

distributions of valuations and thus, in contrast to the basic bundles, the events are likely to be provided on pay-

per-view basis. Season tickets for entertainment performances offered by sporting and cultural organizations that

have sufficiently high marginal costs of production might illustrate the dual pattern in bundling. It seems plausible

that most of the demand for season tickets is concentrated around a relative small fraction of consumers that have

high valuations for performances offered by the entertainment organization. The optimal strategy is to offer tickets

to such consumers as a bundle, as predicted by our results for heavy-tailed tastes under the free disposal assumption

or symmetric long-tailed valuations in the case of sufficiently large marginal costs. This strategy is the opposite

of separate provision of the most of tickets to performances to consumers who are likely not to have very extreme

valuations.

6. PROOFS

Proof of Theorems 2.1 and 2.2. Let r, α ∈ (0, 2], σ > 0, β ∈ [−1, 1], and let a = (a1, ..., an) ∈ Rn
+ and b =

(b1, ..., bn) ∈ Rn
+ be such that (ar

1, ..., a
r
n) ≺ (br

1, ..., b
r
n) and (ar

1, ..., a
r
n) is not a permutation of (br

1, ..., b
r
n) (clearly,

∑n
i=1 ai 6= 0 and

∑n
i=1 bi 6= 0). Let X1, ..., Xn be independent r.v.’s such that Xi ∼ Sα(σ, β, 0), i = 1, ..., n. It is not

difficult to see that if c = (c1, ..., cn) ∈ Rn
+,

∑n
i=1 ci 6= 0, then

∑n
i=1 ciXi/ (

∑n
i=1 cα

i )1/α ∼ Sα(σ, β, 0). Consequently,

for x ∈ R,

ψ(c, x) = P
(
X1 > x/

( n∑

i=1

cα
i

)1/α)
.(6.1)

According to Proposition 3.C.1.a in Marshall and Olkin (1979), the function φ(c1, ..., cn) =
∑n

i=1 cα
i is strictly Schur-

convex in (c1, ..., cn) ∈ Rn
+ if α > 1 and is strictly Schur-concave in (c1, ..., cn) ∈ Rn

+ if α < 1. Therefore, we have
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∑n
i=1 aα

i =
∑n

i=1(a
r
i )

α/r <
∑n

i=1(b
r
i )

α/r =
∑n

i=1 bα
i , if α/r > 1 and

∑n
i=1 bα

i =
∑n

i=1(b
r
i )

α/r <
∑n

i=1(a
r
i )

α/r =
∑n

i=1 aα
i , if α/r < 1. This, together with (6.1), implies that

ψ(a, x) < ψ(b, x)(6.2)

if x > 0, α > r or x < 0, α < r, and

ψ(a, x) > ψ(b, x)(6.3)

if x > 0, α < r or x < 0, α > r. This completes the proof of the theorems in the case of stable distributions

Sα(σ, β, 0).

Suppose now that X1, ..., Xn are i.i.d. r.v.’s such that Xi ∼ CS(r), i = 1, ..., n. By definition of the class CS(r),

there exist independent r.v.’s Yij , i = 1, ..., n, j = 1, ..., k, such that Yij ∼ Sαi(σi, 0, 0), αi ∈ (0, r), σi > 0, i = 1, ..., n,

j = 1, ..., k, and Xi =
∑k

j=1 Yij , i = 1, ..., n. By (6.2) and (6.3), for j = 1, ..., k, the r.v.
∑n

i=1 biYij is strictly more

peaked than
∑n

i=1 aiYij , that is, for all x > 0 and all j = 1, ..., k,

P
(∣∣∣

n∑

i=1

aiYij

∣∣∣ > x
)

> P
(∣∣∣

n∑

i=1

biYij

∣∣∣ > x
)
.(6.4)

The r.v.’s Yij , i = 1, ..., n, j = 1, ..., k, are symmetric and unimodal by Theorem 2.7.6 in Zolotarev (1986, p. 134).

Therefore, from Theorem 1.6 in Dharmadhikari and Joag-Dev (1988, p. 13) it follows that the r.v.’s
∑n

i=1 aiYij ,

j = 1, ..., k, and
∑n

i=1 biYij , j = 1, ..., k, are symmetric and unimodal as well. From Lemma in Birnbaum (1948) and

its proof it follows that if X1, X2 and Y1, Y2 are independent absolutely continuous symmetric unimodal r.v.’s such

that, for i = 1, 2, Xi is more peaked than Yi, and one of the two peakedness comparisons is strict, then X1 + X2

is strictly more peaked than Y1 + Y2. This, together with (6.4) and symmetry and unimodality of
∑n

i=1 aiYij and
∑n

i=1 biYij , j = 1, ..., k, imply, by induction on k (see also Theorem 1 in Birnbaum (1948) and Theorem 2.C.3 in

Dharmadhikari and Joag-Dev (1988)), that ψ(a, x) = 1/2P
(∣∣ ∑k

j=1

∑n
i=1 aiYij

∣∣ > x
)

> 1/2P
(∣∣ ∑k

j=1

∑n
i=1 biYij

∣∣ >

x
)

= ψ(b, x) for x > 0 and ψ(a, x) = 1 − ψ(a,−x) < 1 − ψ(b,−x) = ψ(b, x) for x < 0. Therefore, the conclusion of

Theorem 2.4 for the class CS(r) holds. The part of Theorem 2.1 for the class CS(r) might be proven in a completely

similar way. The proof is complete.

Proof of Theorems 2.3 and 2.4. Theorem 2.3 for the case of stable i.i.d. r.v.’s Xi ∼ Sα(σ, β, 0), i = 1, ..., n,

and Theorem 2.4 for both the cases of stable distributions Sα(σ, β, 0) and distributions from the class CS(1) are

immediate consequences of Theorems 2.1 and 2.2 with r = 1. Let us prove Theorem 2.3 for the case of the class

CSLC. Let vectors a = (a1, ..., an) ∈ Rn
+ and b = (b1, ..., bn) ∈ Rn

+ be such that a ≺ b and a is not a permutation of

b. Let X1, ..., Xn be i.i.d. r.v.’s such that Xi ∼ CSLC, i = 1, ..., n. By definition, Xi = γYi0 +
∑k

j=1 Yij , i = 1, ..., n,

where γ ∈ {0, 1}, k ≥ 0 and (Y1j , ..., Ynj), j = 0, 1, ..., k, are independent vectors with i.i.d. components such that

Yi0 ∼ LC, i = 1, ..., n, and Yij ∼ Sαi(σi, 0, 0), αi ∈ (1, 2], σi > 0, i = 1, ..., n, j = 1, ..., k. From (6.2) and Proposition

0.1 in the introduction it follows that, for j = 0, 1, ..., k, the r.v.
∑n

i=1 aiYij is strictly more peaked than
∑n

i=1 biYij .

Furthermore, from Theorem 2.7.6 in Zolotarev (1986, p. 134) and Theorems 1.6 and 1.10 in Dharmadhikari and

Joag-Dev (1988, pp. 13 and 20) by induction it follows that the r.v.’s
∑n

i=1 aiYij and
∑n

i=1 biYij , j = 0, 1, ..., k,

are symmetric and unimodal. Similar to the proof of Theorems 2.1 and 2.2, by Lemma in Birnbaum (1948) and its
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proof and induction, this implies that
∑n

i=1 aiXi = γ
∑n

i=1 aiYi0 +
∑k

j=1

∑n
i=1 aiYij is strictly more peaked than

∑n
i=1 biXi = γ

∑n
i=1 biYi0 +

∑k
j=0

∑n
i=1 biYij . This completes the proof of Theorem 2.3.

Proof of Corollary 3.1 . The corollary follows from Theorem 2.3 and relations (0.1) since Xn is weakly consistent

for µ under its assumptions.

Proofs of Corollaries 3.2-3.5. It is easy to observe (see Marshall and Olkin (1979, p. 7)) that

(6.5)
( n∑

i=1

ai/n, ...,

n∑

i=1

ai/n
)
≺ (a1, ..., an) ≺

( n∑

i=1

ai, 0, ..., 0
)
,

for all a ∈ Rn
+. From these relations it follows that

( n∑

i=1

wr
i /n, ...,

n∑

i=1

wr
i /n

) ≺ (wr
1, ..., w

r
n) ≺ ( n∑

i=1

wr
i , 0, ..., 0

)

for all portfolio weights w and all r ∈ (0, 2]. From the latter comparisons and Theorem 2.2 it follows that, under the

assumptions of Corollary 3.5, for all α ∈ (0, 1/2) and all w such that w 6= w and w is not a permutation of w,

P (Zw > V aRα(Zw)) = α = P (Zw > V aRα(Zw)) < P
(
Zw > n1/r−1V aRα(Zw)/

( n∑

i=1

wr
i

)1/r)
,

P (Zw > V aRα(Zw)) = α = P (Zw > V aRα(Zw)) > P
(
Zw > V aRα(Zw)/

( n∑

i=1

wr
i

)1/r)
.

This implies the bounds in Corollary 3.5. Sharpness of the bounds in Corollaries 3.4 and 3.5 follows from the fact

that, as it is not difficult to see, the bounds become equalities in the limit as α → r for symmetric stable r.v.’s

Xi ∼ Sα(σ, 0, 0), i = 1, ..., n. Corollaries 3.2-3.4 might be proven in a similar way, with the use of Theorems 2.1, 2.3

and 2.4 instead of Theorem 2.2 (the strict versions of inequalities (0.2) in Corollary 3.2 are consequences of bounds

in Corollary 3.5 with r = 1).

Proof of Theorem 4.1. Let j ∈ {0, 1}, and let, conditionally on y + z, N have a distribution πj(n; y + z). Then

from (4.2) it follows, similar to the proof of Lemma 2 in Jovanovic and Rob (1987), that, for x ≥ 0,

∂ξ(x; λ)/∂λ = µ

∞∑

n=j

πj(n; λ)(F (
√

x; n + 1)− F (
√

x;n))(6.6)

(with F (
√

x; 0) = 0 if j = 0). Theorem 2.3 and relations (0.1) in the introduction imply that, under the assumptions

of the theorem,

F (
√

x;n + 1) = 1− P (|εn+1| >
√

x) > 1− P (|εn| >
√

x) = F (
√

x;n),(6.7)

x > 0, n = 1, 2, ... From (6.6) and (6.7) it follows that, under the assumptions of the theorem,

∂ξ(x; λ)/∂λ > 0(6.8)

for all x > 0, that is, ξ(x, λ) is increasing in λ for all x > 0. As in Jovanovic and Rob (1987) we have

∂y/∂pθ̂ = (1/C ′′)[1 + G′′K ′′/(C ′′K ′′ −G′′(C ′′ + K ′′))] > 0,(6.9)
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if (4.3) and (4.4) hold, and

∂y/∂pθ̂ = 1/(C ′′ −G′′) > 0,(6.10)

if (4.7) and (4.8) hold, that is, y is increasing in pθ̂. Conclusion (c) of the theorem now follows from (6.8)-(6.10) and

the property that, by (4.1), pθ̂ is decreasing in ρ(θ̂, θ):

∂pθ̂/∂ρ < 0.(6.11)

Let λ(i) = y(i) + z(i), ρ(i) = ρ(θ̂(i), θ) and ξ(i)(x) = ξ(x; λ(i)), i = 1, 2, and let y(2) > y(1). As in the proof of

Proposition 6 in Jovanovic and Rob (1987), the latter implies, by (6.9), that p
(2)

θ̂
> p

(1)

θ̂
under (4.3) and (4.4). Since

y + z is increasing in pθ̂ under (4.3) and (4.4) by Proposition 3 in Jovanovic and Rob (1987), we get, therefore, that,

under the assumptions of the theorem, λ(2) > λ(1) and thus

ξ(2)(x) > ξ(1)(x)(6.12)

for all x > 0 by (6.8). As in the proof of Proposition 6 in Jovanovic and Rob (1987), we have

P (ρ(1) > ρ(2)|y(1), y(2)) =
∫

ξ(2)(x)dξ(1)(x) =
∫

ξ(1)(x)dξ(1)(x) +
∫

(ξ(2)(x)− ξ(1)(x))dξ(1)(x).(6.13)

Since
∫

ξ(1)(x)dξ(1)(x) = 1/2 using integration by parts, from (6.12) and (6.13) we get

P (ρ(1) > ρ(2)|y(1), y(2)) > 1/2.(6.14)

Relations (6.9), (6.11) and (6.14) imply conclusion (a) of the theorem.

As in the proof of Proposition 6 in Jovanovic and Rob (1987), conclusion (b) of the theorem follows from (6.9)-

(6.11) and (6.13) since, by (6.8), holding y(1) constant and increasing y(2) or holding y(2) constant and decreasing

y(1) increases ξ(2)(x)− ξ(1)(x) for all x > 0. The proof is complete.

Proof of Lemma 4.2. We have that, under the assumptions of the lemma, n−1/α
∑n

i=1 εi ∼ Sα(σ, 0, 0). Further-

more, by Theorem 2.7.6 in Zolotarev (1986, p. 134), the distribution of the r.v.’s εi are unimodal. Therefore, the

function P (ε1 ≤ x) is concave in x > 0. This, together with strict concavity of the function x1−1/α, α > 1, in x > 0,

implies that, for n ≥ 2 and x > 0,

F (x; n) = 2P (ε1 ≤ xn1−1/α)− 1 > 2P
(
ε1 ≤ x/2((n + 1)1−1/α + (n− 1)1−1/α)

)− 1 ≥

P
(
ε1 ≤ x(n + 1)1−1/α

)
+ P

(
ε1 ≤ x(n− 1)1−1/α

)− 1 = 1/2(F (x; n + 1) + F (x; n− 1)).

For n = 1, using again unimodality of ε1 and ε2, we get that, for all x > 0,

F (x; 1) = 2P (ε1 ≤ x)− 1 ≥ 2
[
2−(1−1/α)P (ε1 ≤ 21−1/αx) + (1− 2−(1−1/α))1/2

]
− 1 >

P (ε1 ≤ 21−1/αx)− 1/2 = 1/2F (x; 2).

The proof is complete.

Proof of Theorems 4.2 and 4.3. The proof is similar to the proof of Proposition 6 in Jovanovic and Rob (1987)

and the proof of Theorem 4.1, with the use of Theorem 2.4 instead of Theorem 2.3 in this paper and Proposition
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0.1 in Jovanovic and Rob (1987). Under the assumptions of Theorem 4.2, one has, by Theorem 2.4 and relations

(0.1), that, similar to relation (6.7),

F (
√

x;n + 1) = 1− P (|εn+1| >
√

x) < 1− P (|εn| >
√

x) = F (
√

x;n),(6.15)

x > 0, n = 1, 2, ... Relations (6.6) and (6.15) imply that, under the assumptions of Theorem 4.2,

∂ξ(x; λ)/∂λ < 0(6.16)

x > 0, that is, ξ(x, λ) is decreasing in λ for all x > 0. Similar to the proof of Lemma 2 in Jovanovic and Rob

(1987), from (6.16) it follows that G′(λ) ≤ 0. This implies that conditions (4.5) is satisfied and the optimal choice of

informational gathering effort is z = 0 if the cost function K(z) is increasing: K ′(z) > 0. Thus, Theorem 4.3 holds.

Relations (6.9)-(6.11) and (6.16) imply conclusion (c’) of Theorem 4.2.

Let, as in the proof of Theorem 4.1, λ(i) = y(i) + z(i), ρ(i) = ρ(θ̂(i), θ) and ξ(i)(x) = ξ(x; λ(i)), i = 1, 2, and let

y(2) > y(1). By (6.9) and Proposition 3 in Jovanovic and Rob (1987) we have p
(2)

θ̂
> p

(1)

θ̂
under (4.3) and (4.4) and,

therefore, λ(2) > λ(1) under the assumptions of Theorem 4.2. This and (6.16) imply that

ξ(2)(x) < ξ(1)(x),(6.17)

for all x > 0. From (6.13) and (6.17) it follows, similar to the proof Proposition 6 in Jovanovic and Rob (1987) and

to the proof of Theorem 4.1 in the present paper, that

P (ρ(1) > ρ(2)|y(1), y(2)) = 1/2 +
∫

(ξ(2)(x)− ξ(1)(x))dξ(1)(x) < 1/2.(6.18)

Relations (6.9)-(6.11) and (6.18) imply conclusion (a’) of Theorem 4.2.

Conclusion (b’) of Theorem 4.2 follows from (6.9)-(6.11) and (6.13) and the fact that, by (6.16), increase in the

current size-difference y(2) − y(1) (holding constant y(1) or y(2)) decreases ξ(2)(x) − ξ(1)(x) for all x > 0 under the

assumptions of the theorem. The proof is complete.

Proof of Theorem 5.1. Let r ∈ (0, 2) and let Xi, i ∈ M, be i.i.d. r.v.’s such that Xi ∼ Sα(σ, β, 0), i ∈ M, for some

σ > 0, β ∈ [−1, 1] and α ∈ (r, 2], or Xi ∼ CS(r), i ∈ M. Consider any bundle B ∈ 2M with card(B) = k ≥ 2. Denote

Hk(x) = P (
∑k

i=1 Xi ≤ x), x ∈ R. Clearly, the cdf of the r.v. v(gr, B) = gr(
∑

i∈B Xi) is P (v(gr, B) ≤ x) = Hk(x1/r)

for x ≥ 0, P (v(gr, B) ≤ x) = 0 otherwise. Therefore, we have that, for all x > 0, the cdf of the seller’s profit πB

resulting from selling B is

P (πB ≤ x) = P (v(n−1)(gr, B) ≤ x) = n(Hk(x1/r))n−1 − (n− 1)(Hk(x1/r))n(6.19)

(this cdf is zero for x < 0). For i ∈ M, let πi be the seller’s profit resulting from selling good i separately, that is,

πi = πBi with Bi = {i}. For x > 0, the cdf of the r.v. kπ1 (that represents the seller’s profit resulting from selling

good 1 k times) is

P (kπ1 ≤ x) = P (v(n−1)(gr, {1}) ≤ x/k) = n(H1(x1/r/k1/r))n−1 − (n− 1)(H1(x1/r/k1/r))n.(6.20)

By Theorem 2.1 and comparisons (0.1), Hk(xk1/r) > H1(x), x > 0, and, therefore, Hk(x1/r) > H1(x1/r/k1/r),

x > 0. Since the function nyn−1 − (n− 1)yn is increasing in y ∈ (0, 1), this, together with (6.19) and (6.20) implies

28



that P (πB ≤ x) > P (kπ1 ≤ x) for all x > 0, and, therefore (see Shaked and Shanthikumar (1994, pp. 3-4) and

Remark 2), E(πB) < E(kπ1) =
∑

i∈B E(πi). Consequently, we get that for any bundling decision B = {B1, ..., Bl}
such that card(Bs) = ks, s = 1, ..., l, and kt ≥ 2 for at least one t ∈ {1, ..., l},

E(ΠB) =
l∑

s=1

E(πBs) <

l∑
s=1

∑

i∈Bs

E(πi) =
m∑

i=1

E(πi) = E(ΠB).(6.21)

The proof is complete.

Proof of Theorem 5.2. Let r ∈ (0, 2) and let Xi, i ∈ M, be i.i.d. r.v.’s such that Xi ∼ Sα(σ, β, 0), i ∈ M, for

some σ > 0, β ∈ [−1, 1] and α ∈ (0, r), or Xi ∼ CS(r), i ∈ M. Consider any bundle B ∈ 2M with card(B) = k ≤
m − 1. With the same notations as in the proof of Theorem 5.1, comparisons (0.1) and Theorem 2.2 imply that

Hk(xk1/r) > Hm(xm1/r), x > 0, and, therefore, Hk(x1/r) > Hm(x1/rm1/r/k1/r), x > 0. Similar to the proof of

Theorem 5.1, we get, therefore, that P (πB ≤ x) > P ((k/m)ΠB ≤ x) for all x > 0. By Shaked and Shanthikumar

(1994, pp. 3-4) and the property that U is an increasing concave function with U(0) = 0, we get, therefore, that

EU(πB) < EU((k/m)ΠB) ≤ (k/m)EU(ΠB). Consequently, for any bundling decision B = {B1, ..., Bl} such that

card(Bs) = ks, s = 1, ..., l, and kt ≤ m− 1 for at least one t ∈ {1, ..., l},

EU(ΠB) = EU(
l∑

s=1

πBs) ≤
l∑

s=1

EU(πBs) <

l∑
s=1

EU((ks/m)ΠB) ≤
l∑

s=1

(ks/m)EU(ΠB) = EU(ΠB).

The proof is complete.

Proof of Theorem 5.3. Let j ∈ J. Let the vector X̃(j) of the jth buyer’s reservation prices for goods in M take

a value x̃(j) = (x̃1j , ..., x̃nj) ∈ Rn
+, (x̃1j , ..., x̃nj) 6= (0, 0, ..., 0). Consider any bundle B ∈ 2M with card(B) = k ≥ 2.

The j−th buyer’s reservation price for the bundle is vj(B) =
∑

i∈B x̃ij . Using the same notations as in the proof of

Theorem 5.1, we get, similar to Palfrey (1983), that the expected surplus to the buyer when B is offered for sale is

ESj(B, x̃(j)) =
∫ vj(B)

0

(Hk(x))n−1dx = k

∫ vj(B)/k

0

(Hk(kx))n−1dx.(6.22)

On the other hand, the expected surplus to consumer j when good i ∈ B is offered for sale separately is ESj({i}, x̃(j))

=
∫ x̃ij

0
(H1(x))n−1dx. By Theorem 2.4 and (0.1), Hk(kx) < H1(x) for all x > 0. This, together with (6.22), implies

ESj(B, x̃(j)) < k

∫ vj(B)/k

0

(H1(x))n−1dx(6.23)

if vj(B) > 0. Since the function (H1(y))n−1 is increasing in y ∈ R+, from Theorem 3.C.1 in Marshall and Olkin (1979)

we get that the function F (y1, ..., yk) =
∑k

i=1

∫ yi

0
(H1(x))n−1dx is Schur-convex in (y1, ..., yk) ∈ Rk

+. Therefore, from

majorization comparisons (6.5) it follows that F (y1, ..., yk) ≥ F (
∑k

i=1 yi/k, ...,
∑k

i=1 yi/k) for all (y1, ..., yk) ∈ Rk
+

(see also the proof of Theorem 5 in Palfrey (1983)). In particular,

k

∫ vj(B)/k

0

(H1(x))n−1dx ≤
∑

i∈B

∫ x̃ij

0

(H1(x))n−1dx =
∑

i∈B

ESj({i}, x̃(j)).(6.24)

From (6.23) and (6.24) we get

ESj(B, x̃(j)) <
∑

i∈B

ESj({i}, x̃(j))(6.25)
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if vj(B) > 0 (clearly, (6.25) holds as equality if vj(B) = 0). By (6.25), we have that if the seller follows a bundling

decision B = {B1, ..., Bl} such that card(Bs) = ks, s = 1, ..., l, and kt ≥ 2 for at least one t ∈ {1, ..., l}, then

the expected surplus ESj(B, x̃(j)) to buyer j satisfies ESj(B, x̃(j)) =
∑l

s=1 ESj(Bs, x̃
(j)) <

∑n
i=1 ESj({i}, x̃(j)) =

ESj(B, x̃(j)). The proof is complete.

Proofs of Theorems 5.4-5.7. Let r ∈ (0, 2] and let ci, i ∈ M, be arbitrary marginals costs of goods in M. Let the

reservation prices v(B) for bundles B ∈ 2M be given by v(B) = v(gr; B) = gr

(∑
i∈B Xi

)
or by v(B) = v(hr;B) =

hr

( ∑
i∈B Xi

)
. Further, let µ ∈ R and pmax < ∞. Suppose that the tastes Xi, i ∈ M, are i.i.d. r.v.’s such that

Xi ∼ Sα(σ, β, µ), i ∈ M, for some σ > 0, β ∈ [−1, 1] and α ∈ (0, r), or Xi − µ ∼ CS(r), i ∈ M. We will show

that the seller’s profit maximizing bundling decision is B if the prices per good pB < µ for all bundles B ∈ 2M ,

and is B if pB > µ for all B ∈ 2M . For a bundle B ∈ 2M , the profit maximizing price per good in the bundle

is pB = arg maxp∈[0,pmax]

(
p − (1/k)

∑
i∈B ci

)
P (v(B) ≥ kp) and the seller’s profit per good resulting from selling

the bundle B (at the price per good pB) is E(πB) = Jk
(
pB −

∑
i∈B ci

)
P (v(B) ≥ kpB), where k = card(B) is the

number of goods in B. For i ∈ M, let pi be the price of good i in the case when the goods are sold separately (that

is, in the case of the bundling decision B) and let, as in the proof of Theorem 5.1, πi be the monopolist’s profit from

selling the good, namely, pi = pBi and πi = πBi with Bi = {i}. As in the setup of the optimal bundling problem in

Section 5, in the case when ci = c for all i ∈ M, we write p = pM for the price per good in the case when all the n

goods are sold as a single bundle B = M (that is, in the case of the bundling decision B) and p for the price of each

good under unbundled sales (that is, p = pB with B = {i}, i ∈ M).

Suppose that pB < µ for all B ∈ 2M . Then from Theorem 2.4 and relations (0.1) it follows that, for any

bundle B ∈ 2M with the number of goods card(B) = k ≥ 2, E(πB) = J
(
kpB − ∑

i∈B ci

)
P (v(B) ≥ kpB) =

J
(
kpB −∑

i∈B ci

)
P (

∑
i∈B Xi ≥ (kpB)1/r) < J

∑
i∈B

(
pB − ci

)
P

(
Xi ≥ (pB)1/r

) ≤ ∑
i∈B E(πi). This implies that

for any bundling decision B = {B1, ..., Bl} such that card(Bs) = ks, s = 1, ..., l, and kt ≥ 2 for at least one

t ∈ {1, ..., l}, comparisons (6.21) hold.

Suppose now that pB > µ for all B ∈ 2M . Then using again Theorem 2.4 and relations (0.1) we get that, for

any bundle B ∈ 2M with card(B) = k ≤ m − 1, E(πB) = J
(
kpB −∑

i∈B ci

)
P (

∑
i∈B Xi ≥ (kpB)1/r) < J

(
kpB −

∑
i∈B ci

)
P (

∑m
i=1 Xi ≥ (mpB)1/r). Therefore, for any bundling decision B = {B1, ..., Bl} such that card(Bs) = ks,

s = 1, ..., l, and kt ≤ m− 1 for at least one t ∈ {1, ..., l},

E(ΠB) =
l∑

s=1

E(πBs) < J

l∑
s=1

(
kspBs −

∑

i∈Bs

ci

)
P (

m∑

i=1

Xi ≥ (mpB)1/r) =

J

l∑
s=1

ks

(
pBs − (1/m)

m∑

i=1

ci

)
P (

m∑

i=1

Xi ≥ (mpB)1/r) ≤
l∑

s=1

(ks/m)E(ΠB) = E(ΠB).(6.26)

From (6.21) and (6.26) we get that the profit maximizing bundling decision is B if pB > µ for all B ∈ 2M and is

B if pB < µ for all B ∈ 2M .

Clearly, the condition that pB > µ for all B ∈ 2M is satisfied if ci ≥ µ for all i ∈ M. Furthermore, in the

case of identical marginal costs ci = c, i ∈ M, the condition that pB > µ for all B ∈ 2M holds if p > µ. Indeed,

suppose this not the case and that there exists a bundle B ∈ 2M with card(B) = k > 1 and pB ≤ µ. Then, as
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above, we get kE(π1) = Jk(p− c)P (X1 ≥ (p)1/r) < Jk(p− c)P (
∑k

i=1 Xi ≥ (kp)1/r) ≤ E(πB). On the other hand,

E(πB) = Jk(pB − c)P (
∑k

i=1 Xi ≥ (kp)1/r) < Jk(pB − c)P (X1 ≥ (pB)1/r) ≤ kE(π1), which is a contradiction.

Similarly, we get that if ci = c, i ∈ M, then p < µ implies that pB < µ for all B ∈ 2M . This completes the proof of

Theorem 5.5. Theorem 5.7 follows from Theorem 5.5 with r = 1. Theorems 5.4 and 5.6 could be proven in a similar

way, with the use of Theorems 2.1 and 2.3 instead of Theorem 2.2. The proof is complete.
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