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Abstract

This paper examines the long-run dynamics and the cyclical structure of the US stock market
using fractional integration techniques. We implement a version of the tests of Robinson
(1994a), which enables one to consider unit (or fractional) roots both at the zero (long-run)
and at the cyclical frequencies. We examine the following series: inflation, real risk-free rate,
real stock returns, equity premium and price/dividend ratio, annually from 1871 to 1993. When
focusing exclusively on the long-run or zero frequency, the estimated order of integration
varies considerably, but nonstationarity is found only for the price/dividend ratio. When the
cyclical component is also taken into account, the series appear to be stationary but to exhibit
long memory with respect to both components in almost all cases. The exception is the
price/dividend ratio, whose order of integration is higher than 0.5 but smaller than 1 for the
long-run frequency, and is constrained between 0 and 0.5 for the cyclical component. Also,
mean reversion occurs in all cases. Finally, we use six different criteria to compare the
forecasting performance of the fractional (at zero and cyclical) models with other based on
fractional and integer differentiation exclusively at the zero frequency. The results show that
the fractional cyclical model outperforms the others in a number of cases.
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The empirical literature analysing stock markets typically tests whether the series of interest are

I(1) (stock prices), or I(0) (stock market returns). This is because, according to the Efficient

Market Hypothesis (EMH), it should not be possible to make systematic profits above

transaction costs and risk premia, and therefore stock prices are characterised as an entirely

unpredictable random walk process, which implies that stock returns should be I(0). Mean

reversion is seen as inconsistent with equilibrium asset pricing models (see the survey by

Forbes, 1996). Caporale and Gil-Alana (2002), though, stress that the unit root tests normally

employed impose too restrictive assumptions on the behaviour of the series of interest, in

addition to having low power. They suggest instead using tests which allow for fractional

alternatives (see Robinson, 1994a, 1995a,b), and find that US real stock returns are close to

being I(0) (which raises the further question whether the shocks are autocorrelated, with the

implication that markets are not efficient). Fractional integration models have also been used

for inflation and interest rates (see, e.g., Shea, 1991; Backus and Zhin, 1993; Hassler and

Wolters, 1995; Baillie et al., 1996, etc.).

However, it has become increasingly clear that the cyclical component of economic and

financial series is also very important. This has been widely documented, especially in the case

of business cycles, for which non-linear (Beaudry and Koop, 1993, Pesaran and Potter, 1997)

or fractionally ARIMA (ARFIMA) models (see Candelon and Gil-Alana, 2004) have been

proposed. Furthermore, it has been argued that cycles should be modelled as an additional

component to the trend and the seasonal structure of the series (see Harvey, 1985, Gray et al,

1989). The available evidence suggests that the periodicity of the series ranges between five

and ten years, in most cases a periodicity of about six years being estimated (see, e.g., Baxter

and King, 1999; Canova, 1998; King and Rebelo, 1999; Caporale and Gil-Alana, 2003).

In view of these findings, the present paper extends the earlier work by Caporale and

Gil-Alana (2002) by adopting a modelling approach which, instead of considering exclusively
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the component affecting the long-run or zero frequency, also takes into account the cyclical

structure. Furthermore, the analysis is carried out for the US inflation rate, real risk-free rate,

equity premium and price/dividend ratio, in addition to real stock returns. More precisely, we

use a procedure due to Robinson (1994a), which enables one to test simultaneously for unit and

fractional roots at both zero and the cyclical frequencies. This approach has several

distinguishing features compared with other methods, the most noticeable one being its

standard null and local limit distributions.1 Moreeover, it does not require Gaussianity (a

condition rarely satisfied in financial time series), with a moment condition only of order two

required. Additionally, using a large structure that involves simultaneously the zero and the

cyclical frequencies, we can solve at least to some extent the problem of misspecification that

might arise with respect to these two frequencies. We are able to show that our proposed

method represents an appealing alternative to the increasingly popular ARIMA (ARFIMA)

specifications found in the literature. It is also consistent with the widely adopted practice of

modelling many economic series as two separate components, namely a secular or growth

component and a cyclical one. The former, assumed in most cases to be nonstationary, is

thought to be driven by growth factors, such as capital accumulation, population growth and

technology improvements, whilst the latter, assumed to be covariance stationary, is generally

associated with fundamental factors which are the primary cause of movements in the series.

The structure of the paper is as follows. Section 1 briefly describes the statistical model.

Section 2 introduces the version of the Robinson’s (1994a) tests used for the empirical analysis.

Section 3 discusses an application to annual data on several US stock market series for the time

period 1871 – 1993. Section 4 is concerned with model selection for each time series, and the

preferred specifications are compared with other more classical representations. Section 5

contains some concluding comments.
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1. The statistical model

Let us suppose that {yt, t = 1, 2, …, n} is the time series we observe, which is generated by the

model:

       ,..,2,1,)cos21()1( 21 2 ==+−− tuyLLwL tt
dd       (1)

where L is the lag operator (Lyt = yt-1), w is a given real number, ut is I(0)2 and d1 and d2 can be

real numbers. Let us first consider the case of d2 = 0. Then, if d1 > 0, the process is said to be

long memory at the long-run or zero frequency, also termed ‘strong dependent’, so-named

because of the strong association between observations widely separated in time. Note that the

first polynomial in (1) can be expressed in terms of its Binomial expansion, such that for all

real d1:
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These processes were initially introduced by Granger (1980, 1981) and Hosking (1981), and

were theoretically justified in terms of aggregation by Robinson (1978), Granger (1980):  cross

section aggregation of a large number of AR(1) processes with heterogeneous AR coefficients

may create long memory. Parke (1999) uses a closely related discrete time error duration

model, while Diebold and Inoue (2001) relate fractional integration with regime switching

models.3  The differencing parameter d1 plays a crucial role from both economic and statistical

viewpoints. Thus, if d1 ∈  (0, 0.5), the series is covariance stationary and mean-reverting, with

shocks disappearing in the long run; if d1 ∈  [0.5, 1), the series is no longer stationary but still

mean-reverting, while d1  ≥  1  means nonstationarity and non-mean-reversion. It is therefore

crucial to examine if  d1 is smaller than or equal to or higher than 1. Thus, for example, if d1 <

1, there is less need for policy action than if d1 ≥ 1, since the series will return to its original

level sometime in the future. On the contrary, if d1 ≥ 1, shocks will be permanent, and active

policies are required to bring the variable back to its original long term projection. In fact, this
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is one of the most hotly debated topics in empirical finance. Lo and MacKinlay (1988) and

Poterba and Summers (1988) used variance-ratio tests and found evidence of mean reversion in

stock returns. On the contrary, Lo (1991) used a generalized form of rescaled range (R/S)

statistic and found no evidence against the random walk hypothesis for the stock indices,

contradicting his earlier finding using variance–ratio tests. Other papers examining the

persistence of shocks in financial time series are Lee and Robinson (1996), Fiorentini and

Sentana (1998) and May (1999).

Let us now consider the case of d1 = 0 and d2 > 0. The process is then said to exhibit

long memory at the cyclical frequency. It was examined by Gray et al. (1989, 1994), who

showed that the series is stationary if  cos w  < 1 and d2 < 0.50 or if  cos w  = 1 and d2 <

0.25. They also showed that the second polynomial in (1) can be expressed in terms of the

Gegenbauer polynomial 
2, djC , such that, calling µ = cos w,
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where Γ(x) represents the Gamma function and a truncation will be required in (2) to make the

polynomial operational. Of particular interest is the case of d2 = 1, i.e. when the process

contains unit root cycles; its performance in the context of macroeconomic time series was

examined, for example, by Bierens (2001).4 Such processes, for which the crucial issue is to

have a spectral density with a peak at (0, π], were later extended to the case of a finite number

of peaks by Giraitis and Leipus (1995) and Woodward et al (1998) (see also Gray et al (1989)

and Robinson (1994a)). The economic implications in (2) are similar to the previous case of

long memory at the zero frequency. Thus, if d2 < 1, shocks affecting the cyclical part will be
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mean reverting, while d2 ≥ 1 implies an infinite degree of persistence of the shocks. This type

of model for the cyclical component has not been previously used for financial time series,

though Robinson (2001, pp. 212-213) suggests its adoption in the context of complicated

autocovariance structures.

2. The testing procedure

Following Bhargava (1986), Schmidt and Phillips (1992) and others in the parameterisation of

unit-root models, Robinson (1994a) considers the regression model:

      ,...,2,1' =+= txzy ttt β                (3)

where yt is a given raw time series; zt is a (kx1) vector of deterministic regressors that may

include, for example, an intercept, (e.g., zt ≡ 1), or an intercept and a linear time trend (in the

case of zt = (1,t)’); β is a (kx1) vector of unknown parameters; and the regression errors xt are

such that:

     ,...,2,1);( == tuxL ttθρ            (4)

where ρ is a given function which depends on L, and the (px1) parameter vector θ, adopting the

form:

  ,)cos21()1()1();(
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for real given numbers d1, ds, d2, … dp-1, integer p, and where ut is I(0). Note that the second

polynomial in (5) refers to the case of seasonality (i.e. s = 4 in case of quarterly data, and s = 12

with monthly observations). Under the null hypothesis, defined by:

     Ho:   θ  =  0            (6)

(5) becomes:
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This is a very general specification that makes it possible to consider different models under the

null. For example, if d1 = 1 and ds, dj = 0 for j ≥ 2, we have the classical unit-root models

(Dickey and Fuller, 1979, Phillips, 1987; Phillips and Perron, 1988, Kwiatkowski et al., 1992,

etc.), and, if d1 is a real value, the fractional models examined in Diebold and Rudebusch

(1989), Baillie (1996) and others. Similarly, if ds = 1 and dj = 0 for all j, we have the seasonal

unit-root model (Dickey, Hasza and Fuller, 1984, Hyllerberg et al., 1990, etc.) and, if ds is real,

the seasonal fractional model analysed in Porter-Hudak (1990). If d3 = 1 and ds, dj = 0 for j ≠ 3,

the model becomes the unit root cycles of Ahtola and Tiao (1987) and Bierens (2001), and if d3

is real, the Gegenbauer processes examined by Gray et al. (1989, 1994), Ferrara and Guegan

(2001), etc.

In this paper we are concerned with both the long run and the cyclical structure of the

series, and thus we assume that ds = 0 and p = 3. In such a case (5) can be expressed as:

       ,)cos21()1();( 2211 2 θθθρ ++ +−−= dd LLwLL           (8)

and, similarly, (7) becomes:

     .)cos21()1()( 21 2 dd LLwLL +−−=ρ    (9)

Here, d1 represents the degree of integration at the long run or zero frequency (i.e., the

stochastic trend), while d2 affects the cyclical component of the series.

We next describe the test statistic. We observe {(yt, zt), t = 1,2,…n}, and suppose that

the I(0) ut in (4) have parametric spectral density given by:

πλπτλ
π

στλ ≤<−= ),;(
2

);(
2

gf ,

where the scalar σ2 is known and g is a function of known form, which depends on frequency λ

and the unknown (qx1) vector τ. Based on Ho (6), the residuals in (3), (4) and (8) are:
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Unless g is a completely known function (e.g., g ≡ 1, as when ut is white noise), we

need to estimate the nuisance parameter τ, for example by )(minargˆ 2 τστ τ T∈= , where T is

a suitable subset of Rq Euclidean space, and
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The test statistic, which is derived through the Lagrange Multiplier (LM) principle, then takes

the form:
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Based on Ho (6), Robinson (1994a) established that, under certain regularity conditions:5

.,ˆ 2
2 ∞→→ nasR d χ (12)

Thus, as shown by Robinson (1994a), unlike in other procedures, we are in a classical large-

sample testing situation, and furthermore the tests are efficient in the Pitman sense against local
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departures from the null.6 Because R̂  involves a ratio of quadratic forms, its exact null

distribution can be calculated under Gaussianity via Imhof’s algorithm. However, a simple test

is approximately valid under much wider distributional assumptions: a test of (6) will reject Ho

against the alternative Ha: d ≠ do if R̂  > 2
,2 αχ , where Prob ( 2

,2 αχ > 2
2χ ) = α. A similar version of

Robinson’s (1994a) tests (with d1 = 0) was examined in Gil-Alana (2001), where its

performance in the context of unit-root cycles was compared with that of the Ahtola and Tiao’s

(1987) tests, the results showing that the former outperform the latter in a number of cases.

Other versions of his tests have been successfully applied to raw time series in Gil-Alana and

Robinson (1997, 2001) to test for I(d) processes with the roots occurring at zero and the

seasonal frequencies respectively. However, this is the first empirical finance application,

which tests simultaneously the roots at zero and the cyclical frequencies, a statistical approach

which is shown in the present paper to represent a credible alternative to the more conventional

ARIMA (ARFIMA) specifications used for the parametric modelling of many time series.

3.     An empirical application to the US stock market

The dataset includes annual data on US inflation, real risk-free rate, real stock returns, equity

premium and price/dividend ratio from 1871 to 1993, and is a slightly updated version of the

dataset used in Cecchetti et al (1990) (see that paper for further details on sources and

definitions).

 (Insert Figure 1 about here)

Figure 1 contains plots of the original series with their corresponding correlograms and

periodograms. All of them, with the exception of the price/dividend ratio, appear to be

stationary. However, deeper inspection of the correlograms shows that there are significant

values even at some lags relatively distant from zero, along with slow decay and/or cyclical

oscillation in some cases, which could indicate not only fractional integration at the zero
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frequency but also cyclical dependence. Similarly, the periodograms also have peaks at

frequencies other than zero. For the price/dividend ratio, the slow decay in the correlogram

clearly suggests that the series is not I(0) stationary.

(Insert Figure 2 about here)

Figure 2 displays similar plots for the first differenced data. The correlograms and

periodograms now strongly suggest that all series are overdifferenced with respect to the 0

frequency. On the other hand, there are significant peaks in the periodograms at frequencies

different from zero. In view of this, it might be of interest to examine more in depth the

behaviour of these series using a fractional model at both the zero and the cyclical frequencies.

As a first step, we focus on the long run or zero frequency and implement a simple

version of Robinson’s (1994a) test, which is based on a model given by (3) and (4), with zt =

(1,t)’, t ≥ 1, (0,0)’ otherwise, and ρ(L; θ) = (1 – L)d+θ. Thus, under Ho (6), we test the model:

...,2,1,10 =++= txty tt ββ             (13)

 ,...,2,1,)1( ==− tuxL tt
d          (14)

for values d = 0, (0.01), 2, and different types of disturbances. In such a case, the test statistic

greatly simplifies, taking the form given by (11), with ψ(λs) being exclusively defined by

ψ1(λs) and .'ˆ)1(ˆ tt
d

t wyLu β−−=  The null limit distribution will then be a 2
1χ  distribution.

However, if ρ(L; θ) = (1 – L)d+θ, then p = 1,  and therefore we can consider one-sided tests

based on ,ˆˆ Rr =  with a standard N(0,1) distribution: an approximate one-sided 100α% level

test of Ho (6) against the alternative: Ha: θ > 0 (θ < 0) will be given by the rule: “Reject Ho if  r̂

> zα ( r̂   < - zα)”, where the probability that a standard normal variate exceeds zα is α. Note that

by testing the null hypothesis with d = 1, this becomes a classical unit-root tests of the same

form as those proposed by Dickey and Fuller (1979) and others. However, instead of using

autoregressive (AR) alternatives of the form: (1 – (1+θ)L)xt = ut, we use fractional alternatives.
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Moreover, the use of AR alternatives involves a dramatic change in the asymptotic behaviour

of the tests. Thus, if θ < 0, xt is stationary; it contains a unit root if θ = 0, and it becomes

nonstationary and explosive for θ > 0. On the contrary, under fractional alternatives of the form

as in (14), the behaviour of xt is smooth across d, this being the intuitive reason for its standard

asymptotic behaviour.

The results presented in Table 1 correspond to the 95%-confidence intervals of those

values of d where Ho (6) cannot be rejected, using white noise disturbances.7 We examine

separately the cases of β0 = β1 = 0 a priori (i.e., with no regressors in the undifferenced model

(13)); β0 unknown and β1 = 0 (with an intercept); and β0 and β1 unknown (an intercept and a

linear time trend). The inclusion of a linear time trend may appear unrealistic in the case of

financial time series. However, it should be noted that in the context of fractional (or integer)

differences, the time trend disappears in the long run. Thus, for example, suppose that ut in (14)

is white noise. Then, testing Ho (6) in (13) and (14) with do = 1, the series becomes, for t > 1, a

pure random walk process if β1 = 0, and a random walk with an intercept if both β0 and β1 are

unknown. The results vary substantially from one series to another. For instance, for inflation

and real risk-free rates, the values are always higher than 0 but smaller than 0.5, oscillating

between 0.07 (inflation rate with a linear trend) and 0.49 (real risk-free rate with no regressors).

For real stock returns and equity premium, the values of d where Ho (6) cannot be rejected

widely oscillates around 0, ranging between –0.18 (equity premium with a linear trend) and

0.14 (stock returns with no regressors). Finally, for the price/dividend ratio, all the non-

rejection values are higher than 0.5, implying nonstationarity with respect to the zero

frequency.

 (Insert Tables 1 and 2 about here)

The significant results in Table 1 may be in part due to the fact that I(0) autocorrelation

in ut has not been taken into account. Thus, we also performed the tests imposing AR(1)
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disturbances (see Table 2). Higher AR orders were also tried and the results were very similar.

For all series, except the price/dividend ratio, the values oscillate around 0, implying that the

series may be I(0) stationary. However, for the price/dividend ratio, the values are still above 0,

ranging from 0.13 (with a linear time trend) to 0.83 (in the case of no regressors). Comparing

the results of this table with those of Table 1 (white noise ut), we are left with the impression

that the orders of integration are smaller by about 0.20 when autocorrelation is allowed for.

This may be related to the fact that the estimates of the AR coefficients are Yule-Walker, which

entails AR roots that, although automatically less than one in absolute value can be arbitrarily

close to one. Hence, they might compete with the order of integration at the zero frequency

when describing the behaviour at such a frequency.

It may also be of interest to examine d, independently of the way of modelling the I(0)

disturbances, at the same zero frequency. For this purpose, we use a semiparametric procedure

due to Robinson (1995a), which we now describe. The Quasi Maximum Likelihood Estimator

(QMLE) of Robinson (1995a) is basically a ‘Whittle estimator’ in the frequency domain,

considering a band of frequencies that degenerates to zero. The estimator is implicitly defined

by:
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and d ∈  (-0.5, 0.5).8 Under finiteness of the fourth moment and other mild conditions,

Robinson (1995a) proved that:
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,)4/1,0()ˆ( ∞→→− nasNddm do

where do is the true value of d, with the only additional requirement that m → ∞ slower than n.

Robinson (1995a) showed that m must be smaller than n/2 to avoid aliasing effects. A

multivariate extension of this estimation procedure can be found in Lobato (1999). There also

exist other semiparametric procedures for estimating the fractional differencing parameter, for

example, the log-periodogram regression estimator (LPE), initially proposed by Geweke and

Porter-Hudak (1983) and modified later by Künsch (1986) and Robinson (1995b), and the

averaged periodogram estimator (APE) of Robinson (1994b). However, we have chosen to use

here the QMLE, primarily because of its computational simplicity. Note that, when using the

QMLE, one does not need to employ any additional user-chosen numbers in the estimation (as

in the case of the LPE and the APE). Also, there is no need to assume Gaussianity in order to

obtain an asymptotic normal distribution, the QMLE being more efficient than the LPE.

(Insert Figure 3 about here)

Figure 3 reports the results based on the QMLE of Robinson (1995a), i.e., d̂  given by

(15) for a range of values of m from 1 to n/2.9 It also displays the confidence intervals

corresponding to the I(0) hypothesis for all series and the unit root for the price/dividend ratio.

We see that, for inflation and the real risk-free rate, there are some estimates that are within the

I(0) interval, especially if m is small; however, for most of the values of m, the estimates are

higher than those corresponding to the confidence interval. For real stock returns and equity

premium, almost all values are within such intervals, while for the price/dividend ratio they are

clearly not. Also, for the latter series, the values are lower than those within the unit root

interval, clearly suggesting that d is greater than 0 but smaller than 1. Consequently, the

findings are the same as with the parametric procedure, namely there is strong evidence in

favour of I(0) stationarity for real stock returns and equity premium, some evidence of long
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memory for inflation and real risk-free rates, and strong evidence of fractional integration for

the price/dividend ratio.

The above approach to investigating the long-run behaviour of a time series consists of

testing a parametric model for the series and estimating a semiparametric one, relying on the

long run-implications of the estimated models. The advantage of the first procedure is the

precision gained by providing all the information about the series through the parameter

estimates. A drawback is that these estimates are sensitive to the class of models considered,

and may be misleading because of misspecification. It is well known that the possibility of

misspecification can never be settled conclusively in the case of parametric (or even

semiparametric) models. However, the problem can be partly addressed by considering a larger

class of models. This is the approach used in what follows, where we employ another version

of the tests of Robinson (1994a) that enables us simultaneously to consider roots at zero and the

cyclical frequencies.

For this purpose, let us consider now the model given by (3) and (4), with ρ(L; θ) as in

(8) and zt = (1,t)’ . Thus, under Ho (6), the model becomes:

...,2,1,10 =++= txty tt ββ          (16)

....,,2,1,)cos21()1( 21 2 ==+−− tuxLLwL tt
dd          (17)

and, if d2 = 0, the model reduces to the case previously studied of long memory exclusively at

the long-run or zero frequency. We assume that w = wr = 2πj/n, j = n/r, and r indicating the

number of time periods per cycle.

(Insert Table 3 about here)

We computed the statistic R̂  given by (11) for values of d1 and d2 = -0.50, (0.10), 2, and

r = 2, …, n/2,10 assuming that ut is white noise. For brevity, we do not report the results for all

statistics. In brief, the null hypothesis (6) was rejected for all values of d1 and d2 if r was

smaller than 4 or higher than 9, implying that, if a cyclical component is present, its periodicity
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is constrained to be between these two years. This is consistent with the empirical finding in

Canova (1998), Burnside (1998), King and Rebelo (1999) and others that cycles have a

periodicity between five and ten years. We report in Table 3 the non-rejection cases at the 5%

level, with an intercept and with r = 6. The reason for giving the results only for the case of an

intercept is that those based on a linear time trend were very similar, together with the fact that

the coefficient corresponding to the linear time trend was found to be insignificantly different

from zero in virtually all cases. Note that the test statistic is obtained from the null differenced

model, which is assumed to be I(0), and therefore standard t-tests apply. Further, we focus on r

= 6 since the non-rejection values with r = 4, 5, 7, 8 and 9 formed a proper subset of those non-

rejections obtained with r = 6. We see that for inflation and real risk rate the non-rejection

values oscillate between 0.10 and 0.40 for d1, and between 0 and 0.3 for d2. They are slightly

smaller for d2 in the case of stock returns and equity premium, in some cases being even

negative. Finally, for the price/dividend ratio, the values of d1 range between 0.5 and 1, while

d2 seems to be constrained between 0 and 0.5.

(Insert Figure 4 about here)

In order to have a more precise view about the non-rejection values of d1 and d2, we re-

computed the tests but this time for a shorter grid, with d1, d2 = -0.25, (0.01), 2. Figure 4

displays the regions of (d1, d2) values where Ho cannot be rejected at the 5% level. Essentially,

the series can be grouped into three categories: inflation rate and real risk-free rate; real stock

returns and equity premium; finally price/dividend ratio. Starting with the first group (inflation

and real risk-free rates), we observe that the values of d1 range between 0.1 and 0.5 while d2

seems to be constrained between 0 and 0.3. Thus, we observe a slightly higher degree of

integration at the long run or zero frequency compared to the cyclical one. For real stock

returns and equity premium, the values of both orders of integration oscillate around 0. Finally,

for the price/dividend ratio the values of d1 range between 0.5 and 1, while d2 is between 0 and
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0.5, implying nonstationarity with respect to the zero frequency but stationarity with respect to

the cyclical component, and mean reversion with respect to both. Consequently, shocks to the

latter series will disappear in the long run, with those affecting the cyclical part tending to

disappear faster than those affecting its long-run or trending behaviour.11

4. Forecasting and comparisons with other models

In this section, we try first to determine the best model specification for each time series. Then,

we compare the selected models with other approaches based on I(0) and I(1) hypotheses.

Given the lack of efficient procedures for estimating the parameters involved in the

model given by (16) and (17), we have decided to use the following strategy: first, we

recompute the values of the test statistic for d1o, d2o = -0.50, (0.01), 2 and r = 2, …, n/2, for the

three cases of no regressors, an intercept and an intercept with a linear time trend. Then, we

discriminate between the three cases according to the t-values of the estimated coefficients in

(16), and choose the values of d1o, d2o and r which produce the lowest statistic in absolute

value. The selected model for each time series is reported in the second column in Table 4. We

observe that for inflation rate and real risk-free rate, both orders of integration are constrained

to be between 0.10 and 0.30, the order of integration at zero being slightly higher than the

cyclical one; for real stock returns and equity premium, the values of the d’s are close to zero,

being slightly negative for the zero frequency; finally, for the price-dividend ratio we see that it

is nonstationary at the long-run frequency (d1 = 0.68), and stationary with d2 close to zero for

the cyclical component.

(Insert Table 4 about here)

The third column of the table reports the selected models taking into account

exclusively the component affecting the long run or zero frequency, while the fourth refers to

the case of integer differentiation with respect to such a frequency. In both cases, we model the
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cyclical structure using ARMA specifications. Starting with the case of fractional integration,

we observe that the highest degree of integration is obtained for the price/dividend ratio (d =

0.73), followed by inflation (d = 0.19). For the remaining three series, the values are practically

zero (0.03 for real risk-free rate; 0.01 for real stock returns, and –0.04 for equity premium).

Imposing integer orders of integration, for the first four variables, we use d = 0 while for the

price-dividend ratio we try both d = 0 and 1. With respect to the short-run components we use

ARMA(p, q) models, with p, q ≤ 3, and choose the best model specification using both LR tests

and likelihood criteria (AIC, BIC). We see that, for most of the series, the short-run structure

can be described by simple MA models, the only exception being the real risk-free rate where

an AR(1) process is imposed.

Next, we compare the various models in terms of their forecasting performance.

Standard measures of forecast accuracy are the following: Theil’s U, the mean absolute

percentage error (MAPE), the mean-squared error (MSE), the root-mean-squared error

(RMSE), the root-mean-percentage-squared error (RMPSE) and mean absolute deviation

(MAD) (Witt and Witt, 1992). Let yt be the actual value in period t; ft the forecast value in

period t, and n the number of periods used in the calculation. Then:

a) Theil’s U: 
( )
( )

;
2

1

2

∑
∑

−−

−

tt

ft

xx

fy

b) Mean absolute percentage error (MAPE):  
( )

;
/

n
xfx ttt∑ −

 c) Mean squared error (MSE):
( )

n
fx tt∑ − 2

;

d) Root-mean-percentage-squared error (RMSP):  
( )

;
/2

n
ffx ttt∑ −



17

e) Root-mean-squared error (RMSE): 
( )

;
2

n
fx tt∑ −

f) Mean absolute deviation (MAD): .
n

fx tt∑ −

The first type of evaluation criteria measures the spread or dispersion of the forecast

value from its mean. The MAD belongs to this category. It measures the magnitude of the

forecast errors. Its principal advantages are ease of interpretation and the fact that each error

term is assigned the same weight. However, by using the absolute value of the error term, it

ignores the importance of over or underestimation.

The second type of accuracy measure is based on the forecast error, which is the

difference between the observation, xt, and the forecast, ft. This category includes MSE, RMSE

and RMSPE. MSE is simply the average of squared errors for all forecasts. It is suitable when

more weight is to be given to big errors, but it has the drawback of being overly sensitive to a

single large error. Further, just like MAD, it is not informative about whether a model is over-

or under-estimating compared to the true values. RMSE is the square root of MSE and is used

to preserve units. RMSPE differs from RMSE in that it evaluates the magnitude of the error by

comparing it with the average size of the variable of interest. The main limitation of all these

statistics is that they are absolute measures related to a specific series, and hence do not allow

comparisons across different time series and for different time intervals. By contrast, this is

possible using the third type of accuracy measure, such as MAPE, which is based on the

relative or percentage error. This is particularly useful when the units of measurement of x are

relatively large. However, MAPE also fails to take over or under estimation into consideration.

Unlike the measures mentioned above, Theil’s U is a relative measure, allowing

comparisons with the naïve (xt = xt-1) or random walk model, where a U = 1 indicates that the

naïve method is as good as the forecasting technique, whilst U < 1 means that the chosen
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forecasting method outperforms the naïve model. The smaller the U-statistic, the better the

performance of the forecasting technique relative to the naïve alternative. Despite some

attractive properties, the U-statistic has the disadvantage of not being as easily interpretable as

MAPE; further, it does not have an upper bound, and therefore is not robust to large values.

The three selected time series models (fractional and cyclical differencing, FCD;

fractional differencing, FD; and integer differencing, ID) for each of the series were used to

generate the 5-year-ahead out-of-sample forecasts. Each forecast value was calculated and

compared with the actual value of the series. Then, the above six criteria were used to rank the

three forecasting models for each series. The ranking in terms of forecasting performance is

given in Table 5. We observe that for inflation and real risk-free rate the FCD model

outperforms FD and ID for all the criteria. For real stock returns and equity premium, the ID

specification seems to be the most adequate, while for the price/dividend ratio the results are

mixed. Therefore, on the basis of the MAPE, MSE, RMSP and RMSE criteria, the fractional

and cyclical (FCD) model emerges as the best specification, while the other two criteria, MAD

and Theil’s U, suggest that the simple fractional model (with d = 0.73) is the most adequate

one.

(Insert Table 5 about here)

5. Conclusions

In this paper we have examined the time series behaviour of the US stock market for the time

period 1871 - 1993 by means of new statistical techniques based on long memory processes.

Specifically, we have used a procedure due to Robinson (1994a) that has enabled us to test for

unit and fractional roots not only at zero but also at the cyclical frequencies. These tests have

standard null and local limit distributions and can easily be applied to raw time series.12
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We initially focused exclusively on the long run or zero frequency, performing a

suitable version of Robinson’s (1994a) parametric tests along with a semiparametric estimation

procedure. We used these methods because of the distinguishing features that make them

particularly relevant in the context of financial time series. Specifically, they do not require

Gaussianity (which is an assumption that is not satisfied in most financial data), but only a

moment condition of order 2. Additionally, they have standard null limit distributions, which is

another advantage of these tests compared to other procedures based on AR alternatives. The

order of integration estimated using these methods varies considerably, but nonstationarity is

found only in the case of the price/dividend ratio.

However, the non-rejection values obtained at the zero frequency could be partly due to

the fact that attention has not been paid to other possible (cyclical) frequencies of the process.

Thus, we adopted a method suitable for simultaneously testing for the presence of roots at zero

and the cyclical frequencies, as in Robinson (1994a). For the latter frequencies, the model is

based on Gegenbauer processes. The results suggest that the periodicity of the series ranges

between 5 and 10 years, which is consistent with most of the empirical literature on cycles

finding a periodicity of about six years (see, e.g., Baxter and King, 1999, Canova, 1998, and

King and Rebelo, 1999). Further, the series can be grouped into three different categories:

inflation and real risk-free rates, with the order of integration at the zero frequency fluctuating

between 0 and 0.5 and d2 (cyclical integration) between 0 and 0.3; real stock returns and equity

premium, with both orders of integration fluctuating around 0; and finally, the price/dividend

ratio, with d1 ranging between 0.5 and 1 and d2 between 0 and 0.5. Thus, we found evidence of

stationary long memory with respect to both components for inflation and real risk-free rates;

I(0) stationarity for stock returns and equity premium; and nonstationary long memory at the

zero frequency but stationary at the cyclical component for the price/dividend ratio. Finally, the

fact that all orders of integration are smaller than 1 suggests that mean reversion takes place
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with respect to both components for all series, though the rate of adjustment varies across

series.

An argument that could be employed against this type of models for the cyclical

component is that, unlike seasonal cycles, business cycles are typically weak and irregular and

are spread evenly over a range of frequencies rather than peaking at a specific value. A strong

counterargument is that, in spite of the fixed frequencies used in this specification, flexibility

can be achieved through the first differenced polynomial, the ARMA components and the error

term.  In fact, Bierens (2001) uses a model of this kind (with d2 = 1) to test for the presence of

business cycles in the annual change of monthly unemployment in the UK. Our analysis also

yields clear-cut results, which are consistent with earlier findings on the periodicity of cycles.

The selected models for each time series were then compared with other approaches

based on fractional and integer differentiation with respect to the zero frequency. Six

forecasting criteria were employed and the results showed that the fractional cyclical model

outperforms the others in a number of cases.

It would also be worthwhile to obtain point estimates of the fractional differencing

parameters in this context of trends and cyclical models. For the trending component the

literature is vast (see, e.g., Fox and Taqqu, 1986; Dahlhaus, 1989; Sowell, 1992; Tanaka, 1999,

etc.). For the cyclical part, there are fewer contributions such as Arteche and Robinson (2000)

and Arteche (2002). However, the goal of this paper is to show that a fractional model with the

roots simultaneously occurring at the zero and the cyclical frequencies can be a credible

alternative to the conventional ARIMA (ARFIMA) specifications. In fact, our approach leads

us to some unambiguous conclusions, with the periodicity ranging between 4 and 10 years and

most of the orders of integration within the intervals (0, 0.5) and (0.5, 1) depending on the

series and the component under study.
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Further research could be carried out in this context. For instance, the tests of Robinson

(1994a) can be extended to allow for more than one cyclical component underlying the process.

The existence of multiple cycles in financial series has not yet been examined empirically, and

might be of interest in the context of various latent variates. Further, daily data could also be

used to examine intraday periodicity, e.g. in the volatility of asset returns. As an alternative to

the cyclical fractional approach, Andersen and Bollerslev (1997) modelled periodicity in

returns by means of deterministic weights. The inclusion of deterministic components is

possible in Robinson’s (1994a) set-up, and its significance can be tested by means of a joint test

of the deterministic regressors and of the order of integration. The univariate nature of the

present study is also a limitation in terms of theorising, policy-making or forecasting.

Theoretical models and policy-making involve relationships between many variables, and

forecast performance can be improved through the use of many variables (e.g., factor based

forecasts based on data involving hundreds of time series beat univariate forecasts, as shown,

e.g., in Stock and Watson, 2002). However, the univariate approach taken in the present paper

is useful, as it enables one to decompose the series into a long run and a cyclical component.

Moreover, theoretical econometric models for both long run and cyclical fractional structures in

a multivariate framework are not yet available. In this respect, the present study can be seen as

a preliminary step in the analysis of financial data from a different time series perspective. Of

particular interest in future work would be a more extensive study of the out-of-sample

forecasting performance of our preferred model. In order to increase the number of out-of-

sample observations and gain power, a rolling design could be used. Alternatively, larger

sample could be obtained using higher frequency data, such as quarterly series. Data mining is

an additional relevant issue worth exploring.
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Footnotes

1. Note that, for example, most of the “classical” unit root tests (i.e., Dickey and Fuller,

1979; Kwiatkowski et al., 1992; etc.) are non-standard, in the sense that the critical values have

to be calculated numerically on a case by case simulation study.

2. For the purposes of the present paper, we define an I(0) process as a covariance

stationary process with spectral density function that is positive and finite at any frequency on

the spectrum.

3. Crozcek-Georges and Mandelbrot (1995), Taqqu et al. (1997), Chambers (1998) and

Lippi and Zaffaroni (1999) also use aggregation to motivate long memory processes.

4. Unit root cycles were also examined by Ahtola and Tiao (1987), Chan and Wei (1988)

and Gregoir (1999a, b).

5. These conditions are very mild and concern technical assumptions to be satisfied by

ψ1(λ) and ψ2(λ).

6. In other words, if the tests are implemented against local departures of the form: Ha: θ =

δn-1/2, for δ ≠ 0, the limit distribution is a )(2
2 vχ with a non-centrality parameter v, which is

optimal under Gaussianity of ut.

7. The confidence intervals were built up according to the following strategy. First, choose

a value of d from a grid. Then, form the test statistic testing the null for this value. If the null is

rejected at the 95% level, discard this value of d. Otherwise, keep it. An interval is then

obtained after considering all the values of d in the grid.

8. Velasco (1999a, b) has recently showed that the fractionally differencing parameter can

also be consistently semiparametrically estimated in nonstationary contexts by means of

tapering.
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9. In the case of the price/dividend ratio, and in order to ensure stationarity, the estimates

were based on the first differenced data, adding then one to the estimated values of d to get the

proper orders of integration.

10. Note that in the case of r = 1, the model reduces to the case previously studied of long

memory exclusively at the long run or zero frequency.

11. This procedure was also conducted in the context of autocorrelated (AR(1) and AR(2))

disturbances and the results did not substantially differ from those reported here based on white

noise ut.

12. A diskette containing the FORTRAN codes for the programs is available from the

authors upon request.
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FIGURE 1
Raw time series, with their corresponding correlograms and periodograms

Inflation rate Correlogram* Periodogram

Real risk free rate Correlogram* Periodogram

Real stock return Correlogram* Periodogram

Equity premium Correlogram* Periodogram

Price / Dividend ratio Correlogram* Periodogram
X

 * The large sample standard error under the null hypothesis of no autocorrelation is 1/√n or roughly 0.09 for series of
length considered here.
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FIGURE 2
First differenced time series, with their corresponding correlograms and periodograms
Inflation rate Correlogram* Periodogram

Real risk free rate Correlogram* Periodogram

Real stock return Correlogram* Periodogram

Equity premium Correlogram* Periodogram

Price / Dividend ratio Correlogram* Periodogram

* The large sample standard error under the null hypothesis of no autocorrelation is 1/√n or roughly 0.09 for series of
length considered here.
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TABLE 1

Confidence intervals of the non-rejection values of d using R̂  in (11) with ρ(L; θ) = (1 – L)d+θ

and white noise ut

Time Series No regressors An intercept A linear trend

INFLATION RATE [0.12  -  0.45] [0.13  -  0.46] [0.07  -  0.44]

REAL RISK FREE RATE [0.19  -  0.49] [0.17  -  0.47] [0.15  -  0.47]

REAL STOCK RETURN [-0.09  -  0.14] [-0.10  -  0.13] [-0.10  -  0.13]

EQUITY PREMIUM [-0.12  -  0.10] [-0.14  -  0.10] [-0.18  -  0.08]

PRICE / DIVIDEND RATIO [0.72  -  1.02] [0.58  -  0.92] [0.59  -  0.92]

We test the null hypothesis: d = do in a model given by (1-L)dxt = εt.

TABLE 2

Confidence intervals of the non-rejection values of d using R̂  in (11) with ρ(L; θ) = (1 – L)d+θ

and AR(1) ut

Time Series No regressors An intercept A linear trend

INFLATION RATE [-0.13  -  0.19] [-0.18  -  0.20] [-0.44  -  0.11]

REAL RISK FREE RATE [-0.11  -  0.33] [-0.08  -  0.28] [-0.14  -  0.27]

REAL STOCK RETURN [-0.17  -  0.20] [-0.25  -  0.18] [-0.26  -  0.18]

EQUITY PREMIUM [-0.22  -  0.00] [-0.30  -  0.00] [-0.41  -  -0.04]

PRICE / DIVIDEND RATIO [0.24  -  0.83] [0.15  -  0.58] [0.13  -  0.60]

We test the null hypothesis: d = do in a model given by (1-L)dxt = ut;  ut = τut-1 + εt.
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FIGURE 3

Semiparametric estimates of d based on the QMLE (Robinson, 1995a)

INFLATION RATE REAL RISK FREE RATE

REAL STOCK RETURN EQUITY PREMIUM

PRICE  /  DIVIDEND RATIO PRICE  /  DIVIDEND RATIO (FIRST DIFF)

The horizontal axes corresponds to the bandwidth parameter number m, while the vertical one refers to the order
of integration.
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TABLE 3

Testing Ho (6) in (16), (4) and (8) with zt ≡ 1, w = wr, r = 6 and white noise ut

D1 d2 INFLATION RISK RATE STOCK RT PREMIUM PRICE / DIV

-0.10 -0.10 39.49 51.69 4.03 4.84 236.63
-0.10  0.00 36.06 55.05 3.38* 0.69* 254.45
-0.10  0.10 36.86 58.98 4.64* 0.90* 265.93
-0.10  0.20 37.25 60.01 6.61 3.03* 272.99
 0.00 -0.10 28.25 30.70 0.14* 4.35* 170.35
 0.00  0.00 16.73 24.09 0.43* 0.54* 186.83
 0.00  0.10 13.29 23.03 2.96* 1.81* 197.19
 0.00  0.20 12.66 22.78 6.60 5.29* 202.97
 0.10 -0.10 25.25 22.51 1.32* 5.49* 112.99
 0.10  0.00 8.42 9.72 1.95* 2.74* 125.92
 0.10  0.10 3.04* 6.19 5.64* 5.11* 133.05
 0.10  0.20 2.72* 6.26 10.39 9.57 137.62
 0.10   0.30 4.70* 7.72 15.49 14.84 141.08
 0.20 -0.10 24.90 20.29 3.41* 6.91 68.85
 0.20  0.00 5.70* 4.50* 5.18* 5.48* 76.73
 0.20  0.10 0.20* 0.50* 9.78 8.87 81.48
 0.20  0.20 1.09* 1.78* 15.19 13.99 83.13
 0.20  0.30 4.84* 5.32* 20.69 19.63 82.15
 0.30 -0.10 25.10 20.09 5.89* 8.23 38.97
 0.30  0.00 5.65* 3.62* 8.78 8.19 41.56
 0.30  0.10 0.98* 0.40* 14.06 12.43 43.27
 0.30  0.20 3.32* 3.19* 19.81 18.00 43.31
 0.30  1.00 26.02 25.29 32.69 34.37 4.71*

  0.40  0.00 6.45 4.45* 12.23 10.73 19.63
 0.40  0.10 3.30* 2.70* 17.98 15.68 19.12
 0.40  0.70 34.13 23.32 31.40 31.13 5.73*

 0.40  0.80 26.00 25.28 31.98 32.02 5.08*

 0.40  0.90 27.50 26.85 32.64 32.80 5.11*

 0.50  0.00 7.49 5.84* 15.38 13.12 7.89
 0.50  0.10 6.14 5.83* 21.44 18.62 6.30
 0.50  0.20 11.24 11,36 27.34 24.62 5.81*

 0.50  0.30 18.20 18.46 32.72 30.33 5.86*

 0.60  0.00 8.59 7.38 18.23 15..40 2.70*

 0.60  0.10 9.02 9.15 24.48 21.31 1.00*

 0.60  0.20 15.22 15.70 30.31 27.36 1.25*

 0.60  0.30 22.70 23.22 35.51 32.95 2.59*

 0.60  0.40 29.91 30.36 40.08 37.95 4.70*

 0.70  0.00 9.77 9.00 20.82 17.60 1.22*

 0.70  0.10 12.04 12.49 27.15 23.80 0.04*

 0.70  0.20 19.01 19,76 32.86 29.84 1.26*

 0.70  0.30 26.72 27.46 37.85 35.28 3.77*

 0.80  0.00 11.09 10.73 23.20 19.75 1.72*

 0.80  0.10 14.97 15.66 29.54 26.13 1.39*

  0.80  0.20 22.57 23.51 35.10 32.10 3.57*

 0.90  0.00 12.57 12.58 25.41 21.85 3.19*

 0.90  0.10 17.86 18.77 31.70 28.33 3.82*

 1.00  0.00 14.22 14.56 27.49 23.90 5.05*

In bold and with “*”, the non-rejection values of the null hypothesis at the 5% significance level.
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FIGURE 4

Non-rejection values of d1 and d2 in (16), (4) and (8) with r = 6 and white noise ut
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TABLE 4

Selected models for each time series

 Models  /

Series
Fractional and cyclical differencing

(FCD)

Fractional differencing

(FD)

Integer differencing

(ID)

Inflation

rate tt

tt

xLLwL

xy

ε=+−−

+=

14.02
7

17.0 )cos21()1(

)006.0(
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tt

tt

xL

xy

ε=−

+=

19.0)1(

)009.0(
;017.0

1396.0
)009.0(
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−+=

+=

ttt

tt

x

xy

εε

Real risk

free rate tt
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xLLwL

xy

ε=+−−
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6

25.0 )cos21()1(

)015.0(
;0348.0

ttr

tt
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uu
uxL

xy

ε+=
=−

+=

−1

03.0

35.0
)1(
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ttt
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xy

ε+=
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−1381.0
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Real stock
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tt
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xy
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=−
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012.0
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;0970.0 tty ε+=

Equity

premium
tt

tt
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xy

ε=+−−

+=

− 03.02
6

06.0 )cos21()1(

)004.0(
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tt
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xL

xy

ε=−

+=

− 04.0)1(
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;0546.0

21 239.0176.0
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−− −
+=
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tt
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x

xy

εε
ε

Price–

Dividend

ratio
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68.0 )cos21()1(

)679.6(
;811.18

tt

tt

xL

xy

ε=−

+=

73.0)1(

)123.6(
;762.18

21 340.0078.0

)018.0(
;163.0)1(
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Standard errors are in parenthesis.
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TABLE 5

Overall ranking of forecasting performance using different criteria

Series Model Theil’s U MAPE MSE RMSD RMSE MAD

FCD 2 1 1 1 1 1

FD 1 2 2 2 2 3Inflation rate

ID 3 3 3 3 3 2

FCD 1 1 1 1 1 1

FD 3 3 3 3 3 2

Real risk

free rate
ID 2 2 2 2 2 3

FCD 3 3 3 3 2 3

FD 2 2 2 2 3 2

Real stock

return
ID 1 1 1 1 1 1

FCD 3 3 3 3 3 3

FD 1 2 2 2 2 1

Equity

premium
ID 2 1 1 1 1 2

FCD 2 1 1 1 1 2

FD 1 2 2 2 2 1

Price – Dividend

ratio

ID 3 3 3 3 3 3

FCD means Fractional and Cyclical Differentiation; FD is Fractional Differentiation and ID Integer
Differentiation.
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