Stock market optimism and participation cost: a mean-variance estimation

M onica Paiella
Bank of Italy

A ndrea Tiseno
University of Chicago

October 22, 2003

Abstract

This paper estimates the costs of participating to the stock market, together with the cross sectional dispersion of stock market optimism. Our analysis is based on a mean-variance framework, when there is a riskless asset (cash), which makes the allocation of the investment in risky assets (stocks and bonds) independent on preferences. Within this framework, we derive "structural" decision rules for the composition of the risky asset portfolio to be ed cient. These rules depend on the amount invested in the risky portfolio and on investors' optimism, which are the determinants of the stock market return expected by a household, when participation involves a ..xed cost. Using these rules and the heterogeneity in risky assets holdings and in the degree of optimism, we identify both the ..xed costs of stock investment and the variance of optimism. Using the Italian Survey of Household Income and Wealth we ..nd that the risky asset portfolios of Italian households are coherent with a ...xed cost of participating to the stock market around 150 euros per year (0.9% of non-durable expenditure). Having a university degree, owning one's home and living in the North of the country contribute to lower the cost. The standard deviation of investors' optimism is estimated to be high, at around 30 percent.

J EL: D12, D14, G 11 K eywords: heterogeneous household portfolios, mean-variance frontier, participation cost, expectation error

1 Introduction ${ }^{1}$

This paper estimates the costs of participating to the stock market, that rationalize the choice of non investing in stocks by a large number of households. Furthermore, we identify the cross-sectional dispersion of the expectation error of investors on stock market returns which can be thought of as a broad measure of their stock market optimism. The analysis is based on a mean-variance framework, motivated by assuming that the rates of return of risky assets are multivariate normally distributed, for arbitrary preferences. W ithin this framework, when there is a riskless asset, the individual attitude towards risk awects just the split between cash and an eq cient portfolio of bonds and stocks. The composition of the portfolio of risky assets is dictated exclusively by mean-variance ed ciency considerations, given the ..rst and second moments of returns.

W hen investing in stocks involves a ..xed cost, the stock market return expected by a household depends on the amount it invests and on its optimism. Variation in the (observable) sizes of the risky portfolios maps into parallel shifts of the individual ed cient frontiers. Conversely, variation in the (unobservable) degrees of optimism rotates the individual ed cient frontiers. In turn, these two sources of variation map into the observed heterogeneity in the composition of the ed cient risky portfolios chosen by households, that can exhibit various degrees of diversi..cation.

Within this framework, where risky asset shares are determined exclusively by mean-variance consideration, given the participation cost, we derive "structural" decision rules for the composition of the risky asset portfolio to be ed cient, as a function of the amount invested in the risky portfolio and of the investor's expectation error. The rules are conditional on investing in risky assets and are obtained by maximizing the Sharpe ratio of the risky portfolio. The choice is between specialization in bonds, specialization in stocks and full diversi..cation. The probability of investing in stocks, the costly asset, is increasing in the amount invested in risky assets and in the the degree of stock market optmism. Conditional on investing in stocks diversi..cation is most likely, unless the investor's wealth is below a certain threashold, but she is very buoyant about stock returns. Using these rules

[^0]and exploiting the heterogeneity in risky assets holdings, which is observable, and in the degree of optimism, which is unobservable, we identify both the ..xed costs of stock investment and the variance of the stock market optimism. Our methodology relies on the information on the sub-sample of households who hold at least one risky asset and is based on the likelihood of the various ed cient combinations of risky assets. We present an application based on the Italian Survey of Household Income and Wealth, which suggests that the costs of participating to the stock market in Italy are around 150 euros per year. The standard deviation of the expectation error on the equity premium is estimated at around 30 percent. Overall, the empirical evidence on the nature and on the entity of the costs associated to ..nancial transactions is rather limited, especially at the household level, and a reason is that some of these costs are likely to be ..gurative and related to information gathering and processing. For the US, Vissing J ørgensen (2002) estimates the median of the distribution of the per-period costs of participating to the stock market to be around $\$ 350$; Paiella (2002) bounds from below the ..xed costs of stock market participation at around $\$ 100$ per year, corresponding to 1 percent of non-durable consumption; based on the US National Income and Product Account, the ratio of personal expenditure on brokerage charges, investment counseling, bank and trust service charges to expenditure on non-durable goods amounts to 3 percent in 2000 (2 percent in 1996). Our ..xed costs of participatig to the stock market correspond to 0:9 percent of mean non-durable household expendidure.

Related papers on the costs of stock holding are Luttmer (1999), Paiella (2002), V issing-J ørgensen (2002) and Attanasio and Paiella (2003), all focusing on the costs of adjusting consumption. Luttmer (1999) focuses on the losses for leaving unexploited some trading opportunities and proposes a lower bound on the level of ..xed transaction costs reconciling per-capita expenditure and asset returns. The frictions that Luttmer identi..es are the costs of trading that would justify not taking advantage of temporary changes in returns not matched by changes in the riskiness of assets. Paiella (2002) and Attanasio and Paiella (2003) aim at reconciling the choice of holding an incomplete portfolio of assets with the intertemporal consumption model, by invoking non-proportional costs of ..nancial market participation. By distinguishing between shareholders and non-shareholders, the two papers estimate a lower bound on the costs of entry from the necessary conditions for the optimality of observed behavior of non-participants. Using the implications of the consumption model for shareholders, Attanasio and Paiella are
also able to identify households preference parameters and build a powerful test of the theory of the intertemporal allocation of consumption. VissingJ ørgensen (2002) looks at the stock market participation costs structure from a panel of portfolio choice data. By estimating a censored regression model, based on the solution to the optimization problem for stockholders, she provides evidence on the distribution of the per-period participation costs in the cross-section, under various assumptions for the policy function of the investment in stocks. Other papers on the costs of stockholding are Haliassos and Bertaut (1995) and Bertaut (1998) who carry out theoretical simulations of how large entry and/ or per-period participation costs would make households stay out of the stock market, based on the basic expected-utility model.

The main novelty of our paper is that we identify the actual costs of entry to the stock market relying only on portfolio eq ciency considerations within a preference-free framework, which makes our results robust to alternative utility speci..cation. Furthermore, within our framework, there is room for individual beliefs, expectations and guesses regarding stock market returns and trends. These unobservable individual features, that we call stock market optimism, determine people's subjective evaluation of the potential returns from investing in stocks and can be expected to represent an important subset of motivations for stock ownership. An interesting paper on the impact of individual cognitive bias and private information on stock ownership is K ézdi and Willis (2001) who construct a measure of optimism and ..nd that it is strongly related to stock purchases.

The rest of the paper is organized as follows. Section 2 outlines the theoretical model of portfolio choice, discusses the set of investment opportunities and posits households' portfolio decision rules. Section 3 presents the empirical model. Section 4 describes the data and discusses the results. Section 5 concludes.

2 Individual problem

In the basic expected-utility model, an agent chooses asset holdings by maximizing her intertemporal, additively separable utility de..ned over non-durable expenditure subject to a budget constraint that summarizes her investment opportunities. Then, the timing of the problem is as follows: agents choose their consumption and then allocate their savings by maximizing the followingperiod value function. If we assume that non-..nancial income (e.g. labor
income) and asset returns are distributed identically and independently over time, ..nancial wealth turns out to be the only state of the problem. Furthermore, under the assumption that non-..nancial income and asset returns are normally distributed, from the point of view of every period, beginning-of-next period ..nancial wealth is normally distributed. Then, maximizing the expected value of next period value function is a mean-variance problem, where consumers only care for the mean and standard deviation of their portfolio return, regardless of the functional form of their preferences. ${ }^{2}$

2.1 Investment opportunities set

In every period, after their consumption decisions, households can invest all their ..nancial wealth in three assets: cash, bonds and stocks. Cash earns a riskless rate R. Bonds and stocks are risky and their rates of return are independently (over time) and identically distributed as normal:

To participate to the stock market, households must pay a ..xed fee, F, which re \ddagger ects the total costs of transaction, commission, information, etc. Such fee is unobservable and its size is the object of inference of this paper.

The existence of a ..xed cost makes the rate of return on stocks depend on the amount invested. Let w^{h} be household h's total ..nancial wealth, w^{h} the portion of ..nancial wealth allocated to the portfolio of stocks and bonds from here on called the "risky portfolio" - and ($W^{h} ; w^{h}$) the portion allocated to cash. Let ${ }^{\circledR}$ denote the fraction of w^{h} invested in stocks; the remaining fraction ($1 ;{ }^{\circledR}$) is invested in bonds. After paying the participation fee, conditional on the size of the risky investment w^{h} and on the share of stocks ® rates of return are

$$
\begin{aligned}
\text { Cash } & : R^{h}=R ; \\
\text { Bonds } & : R_{b}^{h}=R_{b ;} \\
\text { Stocks } & : R_{s}^{h}=R_{s} i \quad f=R N^{h}:
\end{aligned}
$$

Borrowing and leveraging one's ..nancial wealth is possible, as there is no restriction that w^{h}, w^{h}. B orrowing is at the same riskless rate R as lending.

[^1]However, we assume that households cannot leverage their position in one risky asset by shorting the other risky asset, i.e. that $\circledR 2[0 ; 1] .^{3}$ For a given participation fee F, household h's rate of return on a stock investment is increasing in the amount $\mathbb{R N}^{h}$. As $\mathbb{\circledR} \mathrm{N}^{h}$ increases from a very small to a very large amount, R_{s}^{h} increases from $; 1$ to R_{s}. It is not worth to participate to the stock market unless the amount to invest is sizeable. That is, it is not worth to participate to the stock market unless the participation fee F is small relative to the amount $\mathbb{R N}^{h}$ to invest. The return on household h's risky portfolio is determined by the allocation \circledR between bonds and stocks, given the amount w^{h} invested in the risky portfolio:

The subjective distribution of R_{s} is heterogeneous across households. From the point of view of household h, before paying any participation fees, the distribution of risky returns is

The expectation error "h can be interpreted as a measure of the optimism of household h on the return of the stock market. We are assuming that there is no expectation error on bond returns. ${ }^{4}$ "h is the individual error on the

[^2]expected excess return of stocks over bonds and it is normally distributed across the population: "h » $N(0 ; 3 / 4)$. From the point of view of household h the realization of the expectation error "h is a deterministic value, hence for h the return on w^{h} dollars invested in a risky portfolio with a fraction $®$ of stocks has expectation:
and standard deviation:

2.2 Optimal portfolio allocation

Regardless of her degree of risk aversion, a risk averse mean-variance investor maximizes the Sharpe ratio of her risky portfolio. Her indixerence curves are increasing and convex in the mean / standard deviation plane. It follows that the return of ed cient portfolios -of cash, bonds and stocks- must lay on the steepest of the lines connecting the return on cash holdings and the return on the risky portfolio. This is the capital allocation line between cash and the risky portfolio with the highest Sharpe ratio. Preferences determine the optimal split of household h's total ..nancial wealth between cash and risky portfolio. Regardless of preferences, the optimal risky portfolio must maximize the Sharpe ratio.

A positive participation cost F shifts the risky frontier downward and breaks its continuity. By "risky frontier" we mean the mean-variance frontier of risky portfolio returns. Equation 1 implies that from the point of view of household h, given its expectation error "h, the expected return ${ }^{1}{ }_{\circledR}^{\text {h }}$ of a risky portfolio of bonds and stocks -in which h invests w^{h} dollars- depends on F. However, from equation 2, F does not axect the standard deviation of the risky portfolio return, 3/6. Figure 1 plots hypothetical returns in the mean /
returns, rather than level of returns. Conversely, in order to go from the relative cost to the level of each cost, introducing the expectation error on bond returns would be a fruitful complication.

Figure 1: M ean-variance frontier with participation cost and optimism

standard deviation plane and illustrates that, unless $\mathrm{F}=0$, the risky frontier is not continuous as ®varies from zero to one. In the plot, the correlation between bond and stock returns is set to 0:2 and $F=w^{h}$ is 5 percent: The thin line connecting the square (stocks) and the circle (bonds) symbolizes the mean-standard deviation frontier of asset returns, gross of participation costs, when there is no expectation error, "h. For a given level of investment w^{h}, the thick concave line and the dark circle symbolize the risky frontier net of participation costs. W hen $F>0$;there is a point of discontinuity in the risky frontier at $\circledR^{\circledR}=1$, because ${ }^{1 h}$ is shifted downward by $F=w^{h}$ for any ${ }^{\circledR} 2(0 ; 1]$. For a given participation costs F, the downward shift and discontinuity are larger the smaller the amount w^{h} invested. For $\circledR^{\circledR}=0$ we are back on the "thin frontier". A non-zero expectation error "h rotates the risky frontier around the axis ${ }^{1}={ }^{1}{ }_{b}$ and $F=w^{h}$. The plot shows the case of a optimistic household, with positive expectation error "h on the expected rate of return of the stock market. "h is set at 3 percent. This household's risky frontier is symbolized by the empty circle and the medium-thick concave line.

Hence, within this framework, in addition to the ..rst two moments of stock and bond returns -dixerence in Sharpe ratios and correlation of returnshousehold h's optimal risky portfolio composition depends on the magnitude of the participation fee $\mathrm{F}=w^{h}$ along with the degree of optimism on stock market returns. There are four possible types of optimal behavior with regard to participation: participating to both bond and stock markets, participating to either one of the two, or not participating to any of the two. The intuition is the following. W hen $\mathrm{F} \Rightarrow \mathrm{w}^{\mathrm{h}}$ is suq ciently small, household h participates to both risky markets, so long as the dixerence in Sharpe ratios between the two investments is not too large and the correlation of their returns is sut ciently lower than one. As the costs $F=w^{h}$ increases, the Sharpe ratio of all risky portfolios is reduced. B eyond some level, it becomes eq cient to switch from a fully diversi..ed risky portfolio to one entirely invested in a single risky asset. This is a consequence of the discontinuity introduced by the fee in the risky frontier. Whether the single-asset et cient risky portfolio is in bonds or stocks depends on the relative sizes of the expected return on bonds versus the expected return on stocks net of the cost. For a given level of F, the percentage fee varies with the amount w^{h} invested in the risky portfolio.

A non-zero expectation error "h tilts consumer h's perception of the difference in Sharpe ratios between bond and stock investments. Introducing optimism/ pessimism about stock market returns dixerentiates household h from the average household. For example, for some values of the moments of risky returns, it is possible that although with a positive fee the average household should invest its whole risky portfolio in stocks, pessimism about the stock market tilts this eq cient rule towards bonds. This bias towards bonds would also axect the average household without fees in the same manner, if it is pessimistic about the stock market. If its pessimism is large enough, it might ..nd specialization in bonds the ed cient strategy. The opposite happens when consumers are optimistic about stock market returns: a positive "h tilts investments towards the stock market.

2.3 Decision rules

Household h chooses one of four mutually exclusive investment strategies, with regard to its risky portfolio: not investing in any risky asset, investing only in bonds, investing only in stocks or investing in both. Letting B and S be indicator functions for bond and stock holding respectively, the four mutually exclusive options are ($B=0 ; S=0$), $(B=1 ; S=0),(B=0 ; S=$

1) or $(B=1 ; S=1)$.

As we have illustrated, ed cient rules depend on the magnitude of the individual percentage participation fee, for given ..rst and second moments of bond and stock returns and given expectation error. The percentage fee in turn depends on the amount w^{h} invested in the risky portfolio, for given level of entry cost F. Heuristically, the larger is household h's wealth, hence the larger his potential risky investment w^{h}, the more likely that it moves from choice 1 , to choice 2 , to choice 3 or 4 .

The above array of choices can be re-mapped into a sequence of two choices:

1. choose ($B=0 ; S=0)$ vs. $f(B=1 ; S=0)$, $(B=0 ; S=1)$ or ($B=1 ; S=1$) $;$
2. conditional on not choosing ($B=0 ; S=0$), choose $(B=1 ; S=0)$ vs. $(B=0 ; S=1)$ vs. $(B=1 ; S=1)$.

Household h's optimal choice can be characterized by backward induction. Let's take as given the ..rst two moments of bond and stock returns, the entry cost F and household h's expectation error. In step 2, for each hypothetical amount w^{h} to invest, the eq cient choice between bonds and stocks would be the one yielding the highest Sharpe ratio. ${ }^{5}$ In step 1, household h's problem is to choose the optimal mix of risky and riskless assets for his wealth: ($W^{h} ; w^{h}$) dollars in cash and w^{h} dollars in the e cient portfolio of step 2 . This choice is made internalizing the fact that the latter portfolio and its return varies with the w^{h} invested. W hile choice 1 depends on household h's attitude towards risk, once we condition on its optimal risky investment w^{h}, its following choices are only driven by ed ciency and not preferences. This fact is what will drive our identi..cation strategy.

Suppose that the outcome of choice 1, wh , is observed. Let the level of participation costs F and the ..rst and second moments of bond and stock returns be a given. Household h's ed cient choice among ($B=1 ; S=0$), ($B=0 ; S=1$) and ($B=1 ; S=1$) depends on its optimism on stock market returns and on w^{h}, which together determine the individual Sharpe ratios of the three alternative portfolios, as explained in Section 2.1 and shown with equations (1) and (2). In order to characterize the decision rules, we draw

[^3]Figure 2: Decision Regions

in Figure 2^{6} an ed ciency map: we partition the ${ }^{i} F=w^{h^{4}}$ i "h space in three regions corresponding to the three dixerent ed cient choices. Such trinomial partition can be obtained as the overlap of three distinct and independent binary partitions of the $\mathrm{F}=\mathrm{w}^{\mathrm{h}} \mathrm{i}^{\text {"h }}$ space, each representing the ed cient choice when there are only two alternatives, i.e. the choice with the highest Sharpe ratio. In the F igure, $f_{1}\left(F \neq w^{h}\right)$ is obtained by comparing (equating) the Sharpe ratios of a portfolio specialized in bonds and of a portfolio specialized in stocks; along $f_{2}\left(F \neq w^{h}\right)$ the Sharpe ratio of a portfolio specialized in stocks is the same as the Sharpe ratio of a well-diversi..ed portfolio of bonds and stocks; $f_{3}\left(F=w^{h}\right)$ considers the choices between diversi..cation and specialization in bonds. Overall, if the percentage participation fee is relatively low, specialization in bonds will occur only if the household is very

[^4]pessimistic. Conditional on investing in stocks diversi..cation is most likely, unless the investor's wealth is below a certain threashold, but she is very buoyant about stock returns. For levels of optimism "in-between", h will fully diversify. Notice that for the average household (" = 0), diversi..cation is the optimal strategy for a percentage participation fee up to 0:07 percent. As $F=w^{h}$ increases, diversi..cation becomes less likely and the type of specialization will crucially depend on the value taken on by "h. The propositions that follow formalize these arguments by deriving explicitely $f_{1}\left(F \Rightarrow w^{h}\right)$, $f_{2}\left(F \neq w^{h}\right)$, and $f_{3}\left(F \Rightarrow w^{h}\right)$ from the comparisons of the Sharpe ratios based on (1) and (2) associated to the relevant choices. ${ }^{7}$ Let ε_{s} and ε_{b} denote the mean excess returns of stocks and bonds over the riskless asset.

Proposition $1(B=0 ; S=1) \hat{A}(B=1 ; S=0)$ when

$$
\begin{equation*}
{ }^{h}{ }^{h}>i e_{s}+\frac{3 / 4}{3 / \notin} e_{b}+F \frac{1}{w^{h}}: \tag{3}
\end{equation*}
$$

Proposition 1 considers the case when the choice is exclusively between specialization in stocks or specialization in bonds, hence when there is no possibility of exploiting diversi..cation. Specialization in stocks is ed cient when stock market optimism is above the level that equates the Sharpe ratios. As $1 \Rightarrow w^{h}$! 0 -because the amount to invest becomes large- the entry costs become irrelevant and the two Sharpe ratios coincide when "h $=e_{b} 3 / 4=3 / 4 ; \quad e_{5} .{ }^{8}$ As $1 \Rightarrow w^{h}$ increases because the amount w^{h} to invest decreases, the expected "after-cost" return of the stock market is reduced and the threshold level of optimism becomes larger. For a very small investment w^{h} the "after-cost" return of the stock market approaches minus in..nity and only an in..nite optimism would rationalize preferring the stock market to the bond market. $f_{1}\left(F=w^{h}\right)$ in F igure 2 can be obtained by replacing the inequality of equation 1 with an equality.

Proposition $2(B=0 ; S=1) \hat{A}(B=1 ; S=1)$ when

$$
\begin{equation*}
{ }^{n h}>{ }_{i} e_{s}+\frac{13 / 4}{1 / 3 / 3 / 8} e_{b}+1_{i} \frac{13 / 4}{1 / 2 / 8 / 8} F \frac{1}{W^{h}}: \tag{4}
\end{equation*}
$$

[^5]Proposition 2 considers the case when the choice is between specialization in stocks and full diversi..cation. A gain, specialization in stocks is eф cient when stock market optimism is above the level that equates the Sharpe ratios. As $1 \neq w^{h}!\quad 0$ the two Sharpe ratios coincide when $" h=e_{b}(3 / 4=3 / 8) 1=1 / 2 ; \quad e_{s} .{ }^{9}$ B oth the alternatives considered here involve the payment of the cost. The choice between the two is crucially axected by the degree of correlation, $1 / 2$ between bond and stock returns. If the returns on the two assets are uncorrelated, specialization in stocks would occur only if optimism were in..nite. If the returns are perfectly and positively correlated, specialization in stocks will be generally preferable unless the household is severely pessimistic. If the returns are perfectly, but negatively correlated, household h is the more likely to specialize in stocks the more optimistic and the wealthier. $\mathrm{f}_{2}\left(\mathrm{~F}=\mathrm{w}^{h}\right)$ in Figure 2 is based on equation 3.

Proposition $3(B=1 ; S=1) \hat{A}(B=1 ; S=0)$ when

Proposition 3 considers the case when the choice is between full diversi..cation and specialization in bonds. The relationship between "h and $1 \neq w^{h}$ is no longer linear, unless asset returns were perfectly correlated ($1 / 2=\S 1$). As $1 \neq w^{h}!\quad 0$, the entry cost becomes irrelevant and the two Sharpe ratios coincide when "h $=e_{b}(3 / 4=3 / 8) 1 / 2 e_{s} .{ }^{10}$ As in Proposition 1, for a very small investment, diversi..cation, which involves the cost payment, occurs only if the degree of optimism is very large. Instead, if w^{h} is relatively large, specialization in bonds requires a high degree of pessimism. By replacing the inequality in equation 3 with an equality yields $f_{3}\left(F=w^{h}\right)$ of Figure 2.

[^6]
3 Probabilistic structure and identi..cation

The structural decision rules in Propositions 1 through 3 allow us to identify the parameters of interest F and $3 / 4$, by imposing a probabilistic structure on the investment choice problem. Let's focus on risky asset holders. Let D denote an index function that takes on value 1 if (besides investing in cash) the household invests just in bonds ($B=1 ; S=0$), 2 if it invests in bonds and stocks ($B=1 ; S=1$), and 3 if it invests just in stocks ($B=0 ; S=1$). To simplify the notation, let's adopt the following de..nitions:

$$
\begin{align*}
& ®=i e_{s}+\frac{3 / 9}{3 / 4} e_{b} ; \\
& \mathbb{B}_{2}=i e_{\mu}+\frac{13 / 4}{1 / 3 / 4} e_{b} ; \\
& -_{2}=1_{i} \frac{13 / 4}{1 / 2 / 4} \text {; } \tag{6}\\
& @_{3}=i e_{s}+1 / \frac{3 / 4}{3 / 4} e_{b} ; \\
& -_{3}=1 i^{1 / 3 / 4} \frac{3 / 4}{3} ;
\end{align*}
$$

Then, formally, based on the criterion functions of P ropositions 1 through 3, the index function can be characterized as follows:

$$
\begin{align*}
& D^{h}=1: \text { if }:{ }^{n h}<®_{1}+\frac{F}{W^{h}} \backslash \text { "h }^{h}<\mathbb{B}_{3}+{ }^{-}-\frac{F}{3^{h}}+g^{\mu} \frac{1}{w^{h}} \text {; }{ }^{\text {q }} \\
& D^{h}=2: \text { if }:{ }^{n h}<\mathbb{B}_{2}+{ }^{-} \frac{F}{w^{h}} \backslash{ }^{n h}>®_{3}+-{ }_{3} \frac{F}{w^{h}}+g{\frac{1}{w^{h}}}^{\prime} \text {; } \tag{7}
\end{align*}
$$

Given w_{h} the conditional probability that for household h we observe $D^{h}=1$ ($B=1 ; S=0$) is given by:

$$
\begin{align*}
& \operatorname{Pr}^{i} D^{h}=1 j w^{h}{ }^{\Phi}=0^{\mu} \frac{\mathbb{R}_{1}}{3 / 4}+\frac{F}{3 / 4} \frac{1}{w^{h}} \text { I }^{\mu} \frac{1}{w^{h}}, \frac{1}{w^{h}}{ }^{\text {q }}+ \tag{8}\\
& \text { © }{ }^{\mu} \frac{R_{3}}{3 / 4}+\frac{{ }_{3} F}{3 / 4} \frac{1}{w^{h}}+\frac{1}{3 / 4} g{\frac{1}{w^{h}}}^{\mu} \text { वी } \frac{1}{w^{h}}<\frac{1}{w^{h}} \text {; }
\end{align*}
$$

where © is the cumulative standard normal distribution function. I () is an index function that takes on value 1 depending on the value of w^{h} relative to a threshold $w^{h x}$. At $w^{h x}$ the household is indixerent between holding either just bonds or just stocks and fully diversifying. The indixerence condition yield:

The ..rst term in equation (8) allows for the choice between specialization in bonds and specialization in stocks (and identi..es the area above $f_{1}\left(F=v^{h}\right)$ in Figure 2); the second term allows for the choice between specialization in bonds and full diversi..cation (and identi..es the area above $f_{3}\left(F \neq w^{h}\right)$ in the Figure). If w^{h} is sut ciently low, the household will prefer bonds to stocks unless it is very optimistic about the stock market. If w^{h} is above the threshold w^{h} a , it will prefer bonds to diversifying only if it is relatively pessimistic.

The conditional probability of $D^{h}=2(B=1 ; S=1)$ is given by:
(which identi..es the area between $f_{2}\left(F \Rightarrow w^{h}\right)$ and $f_{1}\left(F \Rightarrow w^{h}\right)$ in F igure 2). The ..rst term in equation (9) allows for the choice between full diversi..cation and specialization in stocks and implies that the household will diversify unless it is super-optimistic. The second term allows for the choice between full diversi..cation and specialization in bonds and gives the probability of investing just in bonds. Hence, if its optimism is suc ciently low not to induce to invest just in stocks, the household will diversify unless it is so pessimistic about the stock market to invest just in bonds. Notice that the probability of $D^{h}=2$ is de. ned just for w^{h} above the threshold $w^{h x}$ For lower wealth, full diversi..cation is never ed cient. If its wealth is low, the household will invest in stocks only if it is very optimistic about the stock market, because the investment in stocks involves a ..xed costs. However, if it so optimistic about the stock market to be willing to pay the cost despite the relatively small investment, it will want to put all its money in the stock market, disregarding bonds. If its wealth is low and it is not very optimistic
about the stock market, the household will invest just in bonds (conditioning on risky asset holding), which do not involve ...xed costs.

Finally, the conditional probability that $D^{h}=3(B=0 ; S=1)$ is given by:

The ..rst term in equation (10) allows for the choice between specialization in stocks and specialization in bonds (and identi..es the area above $f_{1}\left(F \neq w^{h}\right)$ in Figure 2) and implies that if w^{h} is suф ciently low, diversi..cation is not an eф cient alternative. For low w^{h} the household will specialize in stocks if it is very optimistic about stock market returns. The second term (which identi..es the area above $f_{2}\left(F \neq w^{h}\right)$ in the Figure) implies that if w^{h} is above the threshold w^{h} a , the household will either specialize in stocks or diversify depending on how optimistic it is.

Given (8), (9) and (10), the probability on our observed sample is:
where we assume that the ..rst H_{1} households in our sample have a preference for specializing in bonds, the following ($\mathrm{H}_{2} \mathrm{i} \mathrm{H}_{1}$) prefer to diversify fully,
 while I^{i} denotes $I \frac{1}{w^{h}}<\frac{1}{w^{h}}{ }^{x} \ddagger$.

Given the ..rst and second moments of asset returns and the de..nitions in (6), we can maximize the log- of the likelihood function in (11) with respect to F and $3 / 4$ and obtain asymptotically ed cient estimates both of the cost of stock market participation and of the variance of stock market optimism.

Problems arise if the mean of the expectation error on stock returns, ", is not truly zero. Let z denote a set of observable covariates such that
" $={ }^{\circ} Z+A ̀$ with $A ̀ N(0 ; 3 /$ 层 $)$. Then, the estimate of F based on the maximization of (11) will be biased if the variables in z are correlated with $1 \neq w^{h}$. Furthermore, $3 / 4=023 / 4+3 / 4+2^{\circ} 3 / \mathrm{A} ; z$. The problem can be addressed by rede..ning the choices in (7) in terms of À which implies:

$$
\begin{aligned}
& \begin{array}{l}
D^{h}=1: \text { if : } A^{h}<®_{+}+{ }^{\circ} z^{h}+\frac{F}{W^{h}} \backslash \\
\dot{A}^{h}<®_{3}+{ }^{\circ} z^{h}+{ }^{-} \frac{F}{w^{h}}+g \frac{1}{W^{h}} ;
\end{array}
\end{aligned}
$$

$$
\begin{align*}
& \dot{A}^{h}>®_{3}+{ }^{\circ} z^{h}+-\frac{F}{3} \frac{w}{}_{h}^{h}+g{\frac{1}{W^{h}}}^{\mu} \text {; } \tag{12}\\
& D^{h}=3: \text { if }: \grave{A}^{h}>\mathbb{B}+{ }^{\circ} z^{h}+\frac{F}{W^{h}} \backslash \\
& \dot{A}^{h}>\mathbb{B}_{2}+{ }^{\circ} z^{h}+-{ }_{2} \frac{F}{W^{h}}:
\end{align*}
$$

The likelihood based on the probabilities implied by (12) yields an unbiased estimate of F unless F depends on a set of covariates that are correlated with the variables in z If $F=F(x)$, with x coinciding or not with z, the likelihood becomes:

$$
\begin{aligned}
& \psi_{h=1}^{\psi_{1}}{ }^{1}{ }^{A} \frac{\mathbb{B}_{1}+{ }^{\circ} z^{h}+F^{i} x^{h}{ }^{\Phi} \neq w^{h}}{{ }^{h} / A^{\prime}} I^{+}+
\end{aligned}
$$

$$
\begin{aligned}
& \psi_{2}{ }^{"} \bigodot_{h=H_{1}+1}^{\odot} \tilde{A}_{\mathbb{A}_{2}+{ }^{\circ} z^{h}+{ }_{2}{ }_{2} F^{i} x^{h}{ }^{\Phi} \neq w^{h}}^{3 / A}+
\end{aligned}
$$

Maximizing (13) with respect to x^{h} and $3 / 4$ yields asymptotically consistent and ed cient estimates of the costs of participating to the stock market and of the variance of (the unobservable component of) optimism.

4 Empirical Application

4.1 Data

4.1.1 The Shiw

The estimation of the ..nancial participation costs is based on data from the Survey of Household Income and Wealth (SHIW), which is run biannually by the B ank of Italy. ${ }^{11}$ Each wave surveys a representative sample of the Italian resident population and covers about 8,000 households. It collects detailed information on the composition of Italian households' wealth, both real and ..nancial, in addition to data on households' income, consumption and demographics. For our analysis, we rely on a sequence of 5 waves, covering the period 1991-2000.

The SHIW was ..rst run in the mid-60s but has been available on tape only since 1984. Over time, it has gone through a number of changes in sample size and design, sampling methodology and questionnaire. However, sampling methodology, sample size and the broad contents of the information collected have been unchanged since 1989. We choose to start our analysis in 1991 because, in the 1989 wave, for each asset, respondents report just the percentage share of ..nancial wealth ${ }^{12}$, whereas in all subsequent waves they report the asset bracket in a list of 14 possible brackets. The problem of bracketing can be handled by assuming that households own the mid-point of the interval or by applying more sophisticated imputation procedures. Imputation requires modelling the responses within each bracket and its advantage diminishes when the number of brackets is relatively large, as in the case at hand. We thus proceed using the mid-point.

[^7]For the purpose of the analysis, we need to de..ne separately the investments in currency and deposits, in bonds and in stocks. Currency is de..ned as the sum of cash, bank and postal accounts and deposits, certi..cates of deposits and postal saving certi..cates. ${ }^{13}$ B onds include government securities, corporate bonds and loans to coops. Stocks include direcly-held shares of listed (at end-of-year market value) and unlisted companies and partnerships (at end-of-year estimated realizable value). An asset that has become increasingly popular in Italy in the 1990s is mutual funds, whose classi..cation is problematic because of lack of information on their composition. To avoid any assumption regarding the composition of mutual funds, we carry out our estimates of the costs by dropping those households who do not hold both stocks and bonds in addition to mutual funds. ${ }^{14}$ We ignore foreign asset holdings, which in year 2000 were held by just 1:3 percent of households. All balance sheet items are end-of-year values; they are in thousands of euros, at prices of year 2000.

Tables 1 to 3 report some summary statistics regarding the wealth of the sample used for the analysis (inclusive of all mutual funds holders). Table 1 groups households based on the year of the survey and provides evidence on time trends in asset holdings; Table 2 groups them by area of residence and provides evidence on regional dixerences; Table 3 distinguishes them according to their portfolios. The picture that emerges from Table 1 is wellknown. Household net worth has increased by over 30 percent over the decade and mean ..nancial assets have almost doubled. A fter peaking in 1995, bond holdings in 2000 were about the same as in 1991. The share of bond owners has somewhat fallen, with the sharp drop in government bond holders partly oxset by a rise in corporate bond holders. However, most of the action has concerned equity and mutual funds holdings: the amount of wealth invested in these assets has increased steadily over the 1990s and in 2000 it was 7 times the amount held in 1991 with the share of investors gone from 6 percent of

[^8]the population to 20 percent. The increase can be attributed both to a rise in direct ownership of stocks and to the increasing popularity of mutual funds. If we look at ..nancial asset shares, the percentages held in cash and deposits and in bonds have fallen by over 10 percentage points each; the share held in equity has more than doubled; that in mutual funds has increased ..ve-fold. The picture based on (non-asset) income shares is similar.

Table 2 looks at the dixerences in asset ownership across geographical areas and distinguish among households depending on whether they live in the North, in the Center or in the South (and islands). People living in the North are much wealthier than those living in the South and the discrepancy is particularly strong when it comes to ..nancial assets, with the amount held by the representative family in the North about three times as large as that held by the representative household in the South. W ith respect to the latter, the average household in the North holds 4 times as many bonds, 6 times as much directly-held equity and 8 times as many mutual funds. The dixerences in terms of participation rates are as sharp. W hen looking at portfolio shares, households in the South hold almost 90 percent of their ..nancial wealth in cash, bank deposits and bonds, versus 70 percent in the North. The picture based on income shares is similar apart from the percentages of cash and deposits which do not exhibit any signi..cant regional variation.

F inally, Table 3 distinguishes between riskless asset holders (..rst column), who hold just currency, and those who also hold some risky assets: bond holders are in the second column, bond and stock holders (with or without mutual funds) are in the third, stock holders are in the fourth and those with mutual funds alone, or with either just stocks or just bonds are in the last. On average, riskless asset holders are the less wealthy and the most heavily indebted. They tend to be older, less educated, more likely to be headed by a woman, less likely to be married and tend to live in the South. A mong risky asset holders, those specialized in bond holdings are the poorest, both in terms of asset holding and in terms of income and appear quite heavily indebted. Furthermore, they are older, less educated, more likely to be retired and less likely to be self-employed than the rest of the risky asset holders. Those who are fully diversi..ed are the wealthiest, the most educated, the most likely to be married and the most likely to live in the North. Those specialized in stock holdings are somewhere in between. They are younger than the other risky asset holders, less likely to be retired and more likely to be self-employed. This picture is coherent with the framework outlined in the previous sections. Stock market participation is costly: hence households
must have a suф ciently large amount of resources to invest. However, the super-rich are unlikley to specialize in stocks and more likely to allocate at least a small amount of their resource to bonds. A mong the moderately rich, specialization will occur among the most optimistic and risk-loving, such as the young and the self employed. Those in the last column are in between the fully diversi..ed and those specialized in stocks.

4.1.2 The Italian ..nancial markets ${ }^{15}$

A nnual returns on stocks and bonds are taken from Panetta and Violi (1999). In their paper, Panetta and Violi reconstruct the series of the real returns on Italian equities and long-term government bonds from 1860 to today. The returns include both capital gains and losses and dividends or coupons paid. ${ }^{16}$ Overall, the Italian equity market provided Iong-term returns comparable to those of the other major countries. However, a large fraction of the risk premium for the period starting from 1860 can be accounted for by the performance following the high in \ddagger ation episodes of the wars. As a consequence owing to the much larger volatility, the risk-return trade-ow compares unfavorably with other markets. Because of this, for our analysis we have chosen to focus on the past ..fty years of return, based on the presumption that households form their expectations of stock returns and risk premia, using just the information that go as far back as the 1950s. This is

[^9]the same as assuming that after the war there was a structural break such that the hypothesis of i.i.d. returns holds over the pre-1950 period and over the post-1950 period, but not over the two sample periods taken jointly. We will check the robustness of our results by considering also longer and shorter windows.

Table 4 reports summary statistics for the returns used in the analysis: the ..rst column refers to after-tax real returns on bank deposits (the riskless asset); the second and third columns refer to the after-tax real total returns on long-term government bonds and on the stock market; the last column reports the correlation between the excess returns of stocks and bonds over the riskless asset. Stock and bond returns are also plotted in Figure 3. Over the period running from 1914 to 1998, the excess returns on equity and long-term government bonds over bank deposits amounted to almost 11 and over 2 percent respectively, and the equity premium over bonds was around 8 percent, with a correlation between bond and stock (excess) returns of $0: 24$. Restricting the period to 1951-1998, the excess returns drop to just below 9 and 3 percent, respectively, with a correlation of 0:18. In the ..rst half of the XX century, asset prices went through two periods of high in \ddagger ation, during the ..rst and the second world war, which caused major drops of real returns, and the Great Depression when share prices dropped by almost 40 percent in real terms. In the 1950s share prices rose sharply by a factor of 8 in conjunction with the rapid income growth of the postwar era. During the same years, the price of government securities rose by approximately 50 percent. The sixties were characterized by a much slower growth of the Italian economy and the seventies registered a sharp rise of in \ddagger ation. Furthermore, the share market was depressed by a series of other factors such as the nationalization of the electricity companies and the introduction of the withholding tax on dividends. In the early sixties share prices declined sharply and in 1964 they were about half their record
 again and rock-bottomed at the end of 1977 after the ..rst oil crisis. The seventies are characterized by a sharp fall of the price also of government bonds as a result of the capital losses caused by the rise in nominal interest rates. Nonetheless, their return remained above that of shares throughout the period. The 1980s represent a positive era for the Italian economy and for the share market. In 1986, stock prices rose by over 200 percent in nominal terms as result of the introduction of investment funds, of the several initial public oxerings and of the general enthusiasm that followed. Stock returns
began to fall again towards the end of the decade as a consequence of worldwide recession, whereas government-bond prices were not much axected. The second half of the nineties is characterized by a new phase of rising share prices. Several factors contributed to the bull market: these include the privatizations of the utilities, the public oxerings of several small companies, which bene.ted of the ..scal incentives wanted by Tremonti, and the new legislation (testo unico della ..nanza, d.Igs. n. 58/ 1998) which brought about far-reaching changes in the structure of the stock market.

4.2 Results

Tables 5 through 10 reports the results from the maximization of the likelihood in equation (13), which is reported here for convenience:
where $\mathbb{R}, \mathbb{B}_{2}, \mathbb{B}_{3},{ }^{-}{ }_{2},{ }^{-}{ }_{3}$ and $g(:)$ depend on the distribution of asset returns according to the de..nitions in (6).

The coed cients reported in the upper part of each Table refer to the cost of participating to the stock market and correspond to the coed cients of the polynomial $F(x)$ based on the assumption that the participation cost depends on the set of covariates x. We set $F(x)=F+A ́ x$, with $A ́=0$ implying that all households in the sample face the same cost F. $F(x)$ enters
the likelihood as the "coed cient" of $1 \neq w$. The coe ϕ cients reported in the bottom part of the tables refer to the expectation error regarding the equity premium, which was parameterized as " $={ }^{\circ} \mathrm{z}+\mathrm{v}$ They correspond to the standard deviation $3 / 4$ and to the coeq cients ${ }^{\circ}$ on the covariates z, shifting the mean of the error. Clearly when ${ }^{\circ}=0,3 / 4=3 / 4$. Given the lack of theoretical priors regarding x and z we set them equal and let them include a second-order polynomial in age, education dummies, a gender dummy, occupation dummies and dummies for homeownership, area of residence and year of survey. Computational constraints limit our ability to saturate the regressions with more household-speci..c as well as "supply" variables.

Tables 5, 6 and 7 are based on a sample that excludes those households who do invest in mutual funds but not also in both bonds and stocks. Tables 8, 9 and 10 include all mutual funds holders and classi..es them as fully diversi..ed. Finally, Tables 11,12 and 13 are based on the following assumptions: those who hold just mutual funds are included in the group of bondholders; those who hold mutual funds and either just bonds or just stocks are considered as fully diversi..ed. The moments of asset returns are computed using the data for the period 1951-1998, which implies excess returns on stocks and bonds over bank deposit (the riskless asset) of 8:73 and 2:70 percent with standard deviations of 28 and 6 percent, respectively, and a correlation between the returns of 0:1755.

The evidence reported in the ..rst column of Table 5 is based on the assumption that neither the cost of participating, nor the expectation error depend on household characteristics, i.e. $F(x)=F$ and ${ }^{\circ}=0$. In this instance the ..xed cost consistent with observed portfolio choices, i.e. the coed cient on $1=w^{h}$ reported in the ..rst row of the Table, is estimated to be around 160 euros (prices of year 2000) per year. This is the ..xed costs in which households incur for investing and managing their investment in stocks. It includes monetary charges and opportunity costs of investor's time for choosing, carrying out and managing the investment. The standard deviation of the expectation error, $3 / 4$, is estimated to be quite high at over 30 percent. Both F and $3 / 4 a r e$ estimated with great precision. As a matter of fact, our estimate of the standard deviation of the expectation error is likely to be overstated because it has to compensate for the lack of \ddagger exibility of the theoretical model. To gain in tractability, we have assumed that there is no entry cost in the bond market. This makes the stock market investment undesirable, for anyone with a low amount to invest, unless optimism is high. As indeed there are several people with small portfolio who actually hold a
pure stock investment, the estimate of the standard deviation of optimism must be large to ..t the data. Had the bond market entry cost not been restricted to zero, this bias would not be a problem.

W hen we allow F to vary across households with a set of observable sociodemographic charcteristics and include a set of covariates in the mean of ", the across household average of the estimated cost turns out to be around 150 euros (with a standard deviation of almost 50 euros). The analysis reported in the third column of Table 5, suggests that the cost is convex in age and peaks around 60 years of age, which might re \ddagger ect some opportunity cost of time: for those in their ..fties, the costs are about 50 euros higher than the costs for those in their thirties. A s expected, education lowers the cost of participation (see Haliassos and Bertaut (1995) for a discussion), but what really makes a dixerence is having a university degree: for such investors the costs are on average around 30 euros lower than the costs faced by those with elementary school or less (the benchmark, omitted education dummy). The coed cient on the gender dummy for male-headed households is positive, but insigni..cant; that on the single-person household dummy is also positive and suggests that for singles the ..xed cost of stock market participation are higher by just over 25 euros. Interestingly, the costs are lower for homeowners (-25 euros) which might re \ddagger ect deeper "investment culture/ knowledge" and greater familiarity with ..nancial instruments, although a dummy for having a mortgage (not included in this speci..cation) is never signi..cant. The coed cient on the dummy for self emplyed head is positive and signi..cant, which might once again re \ddagger ect the opportunity cost of time. The dummies for the area of residence suggest that with respect to those living in the North (omitted benchmark), for those living in the South investing in stocks is over 70 euros costlier. Finally, and quite surprisingly, the year dummies are not consistent with any regular time trend in the costs and suggest that the ..xed costs of investing in 2000 (omitted benchmark) are slightly higher than in 1995 and even than in 1991.

The role of age, education, gender, occupation, area of residence, etc. turn out to be more important in determining households' optimism. For the most educated, the male, the homeowners, the self employed, optimism seems to play a relatively smaller role in determining stock ownership, via the exect of such characteristics on the expected equity premium, which is negative making these households relatively less bullish about the stock market. If anything, the importance of optimism has fallen over time. $3 / 4$ is estimated at $0: 42$.

The last columns of the Table report the results of the estimation based on a smaller set of covariates, which is the speci..cation adopted in most of the rest of the analysis due primarily to computational limitations. No important dixerence can be detected.

Next, we split the sample and distinguish between households living in the North, Center and South of the country in Table 6 and between pre- and after-1996 in Table 7. Notice that by splitting the sample, we are not only allowing for costs to vary across the splits, but we are also assuming that the distribution of optimism varies across the splits and this might explain some of the unexpected dixerences in the estimates. Without controls (panel (a) of Table 6), the costs of investing in stocks turn out to be around 175 euros for those living in the North of the country, 190 euros for those living in the Center and 260 euros for those living in the South. The costs do not appear to vary much across socio-demographic groups. University education turns out to be a signi..cant cost-reducing factor, but only for those living in the North or in the Center. This might suggest that most of the ..xed costs associated to direct stock ownership and captured by our set up are monetary (as opposed to ..gurative). W hen we look at time trends in Table 7 , costs appear to have fallen from over 300 euros in the ..rst half of the decade to around 160 euros and $3 / 4$ has increased. ${ }^{17}$ Interestingly, over time, the North-South dixerence in the costs of direct investment in stocks (not reported) has increased, although the costs have fallen in all regions.

To conclude, it must be mentioned that the results are quite sensitive to the equity premium used in the estimation and clearly the lower the premium, the lower the costs consistent with observed portfolio choices. Speci..cally, based on the sample used in Table 11 and considering the returns over the period $1914-1998, F$ is estimated at around 80 euros and $3 / 4$ turns out around 20 percent. Considering the returns over the period 1961-1998 and over the period 1971-1998, F and $3 / 4$ turn to be around 100 euros and 30 percent and 150 euros and 50 percent, respectively.

[^10]
5 Concluding Remarks

This paper estimates the costs of participating to the stock market that rationalize the choice of non investing in stocks. We also identify the crosssectioanl dispersion of the expectation errors of investors on the size of the equity premium, which can be thought of as a broad measure of their stock market optimism. Our analysis is based on a mean-variance framework, when there is a riskless asset (cash), which makes the allocation of the investment in risky assets (stocks and bonds) independent on preferences and based exclusively on mean-variance eф ciciency considerations. Within this framework, we derive "structural" decision rules for the composition of the risky asset portfolio to be ed cient. These rules depend on the amount invested in the risky portfolio and on investors' optimism or pessimism regarding asset returns, which are the determinants of the stock market return expected by a household, when participation involves a ..xed cost. Using these rules and the heterogeneity in risky assets holdings and in the degree of optimism, we are able to identify both the ..xed costs of stock investment and the variance of optimism and to estimate the parameters of interest via maximum likelihood.

We then use the Bank of Italy's Survey of Household Income and Wealth to analyze the cost that rationalize Italian households portfolio choices and ..nd that the risky asset portfolios of individual investors are coherent with a ..xed cost of participating directly to the stock market around 150 euros per year, which corresponds to 0:9 percent of mean non-durable household expendidure. Having a university degree, owning one's home and living in the North of the country contribute to lower the cost. Investors' optimism as measured by the standard deviation of the expectation error is estimated to be high, at over 30 percent. As mentioned, this estimate is likely to be biased, hence it should be looked into further.

Overall, the empirical evidence on the nature and on the entity of the costs associated to ..nancial transactions is rather limited, especially at the household level, and a reason is that some of these costs are likely to be ..gurative and related to information gathering and processing. For the US, V issing J ørgensen (2002) estimates the median of the distribution of the perperiod costs of participating to the stock market to be around \$350; Paiella (2002) bounds from below the ..xed costs of stock market participation at around $\$ 100$ per year, corresponding to 1 percent of non-durable consumption. Based on the US National Income and Product Account, the ratio
of personal expenditure on brokerage charges, investment counseling, bank and trust service charges to expenditure on non-durable goods amounts to 3 percent in 2000 (2 percent in 1996). None of these evidence distinguishes between direct and indirect stockholding.

Table 1: Household portfolios over time

	1991	1993	1995	1998	2000
Net worth	129.660	152.303	150.308	163.208	171.614
Financial wealth	16.041	19.395	19.081	25.187	27.882
Real assets	116.160	136.242	134.491	140.885	147.174
Cash and deposits	9.406	9.271	8.898	12.604	13.471
Owners of deposits (share)	0.811	0.838	0.835	0.860	0.805
Bonds	5.292	6.540	7.699	4.683	5.396
Owners of government bonds and bills (share)	0.233	0.227	0.263	0.118	0.118
Owners of private bonds (share)	0.015	0.021	0.039	0.063	0.068
Equity and mutual funds	1.309	2.891	2.489	7.649	8.640
Owners of equity and funds (share)	0.060	0.082	0.077	0.154	0.186
Directly held equity	0.644	1.120	0.902	1.856	2.679
Owners of directly held equity (share)	0.035	0.041	0.039	0.079	0.097
Mutual funds	0.421	1.166	1.009	3.195	4.093
Owners of mutual funds (share)	0.025	0.044	0.042	0.097	0.117
Managed accounts	0.244	0.605	0.577	2.598	1.868
Owners of managed accounts (share)	0.010	0.010	0.010	0.029	0.030
Financial asset shares:					
Cash and deposits	0.586	0.478	0.466	0.500	0.483
Bonds	0.330	0.337	0.403	0.186	0.194
Directly held equity	0.040	0.058	0.047	0.074	0.096
Mutual funds	0.026	0.060	0.053	0.127	0.147
(Non-financial) income share:					
Total financial assets	0.643	0.799	0.795	1.025	1.094
Cash and deposits	0.377	0.382	0.371	0.513	0.529
Bonds	0.212	0.270	0.321	0.190	0.212
Directly held equity	0.026	0.046	0.038	0.076	0.105
Mutual funds	0.017	0.048	0.042	0.130	0.161

Note: all figures are mean values. They have been deflated to 2000 currency and are in thousands of euros. 175 households (out of 39,558) have been dropped from the sample because they reported zero cash and zero bank and postal deposits. Real assets include real estate, land and business assets. Financial wealth includes also foreign assets which are ignored in the rest of the analysis because they account for a negligible share of households wealth. Deposits include both bank and postal current and saving accounts and saving certificates. Equity includes both listed and private shares. Asset and income shares are computed as ratios of averages. Financial asset shares do not add up to 1, because of foreign assets and managed accounts which have been included in the denominator.

Table 2: Household portfolios across geographical area

	N	C	S
Net worth	178.738	167.759	106.663
Financial wealth	29.068	20.821	10.445
Real assets	153.400	150.240	98.244
Cash and deposits	11.971	12.160	7.903
Owners of deposits (share)	0.912	0.864	0.686
Bonds	8.844	5.406	2.003
Owners of government bonds and bills (share)	0.274	0.184	0.081
Owners of private bonds (share)	0.060	0.040	0.012
Equity and mutual funds	7.527	3.089	0.888
Owners of equity and funds (share)	0.170	0.095	0.031
Directly held equity	2.376	0.769	0.409
Owners of directly held equity (share)	0.088	0.048	0.018
Mutual funds	3.218	1.334	0.413
Owners of mutual funds (share)	0.100	0.054	0.016
Managed accounts	1.933	0.986	0.066
Owners of managed accounts (share)			0.001
Financial asset shares:			
Cash and deposits	0.412	0.584	0.757
Bonds	0.304	0.260	0.192
Directly held equity	0.082	0.037	0.039
Mutual funds	0.111	0.064	0.040
(Non-financial) income share:			
Total financial assets	1.060	0.780	0.539
Cash and deposits	0.436	0.456	0.408
Bonds	0.322	0.203	0.103
Directly held equity	0.087	0.029	0.021
Mutual funds	0.117	0.050	0.021

Note: see note to Table 1.

Table 3: Household wealth and demographic characteristics by portfolios holdings

	$\mathrm{B}=0, \mathrm{~S}=0$	$\mathrm{~B}=1, \mathrm{~S}=0$	$\mathrm{~B}=1, \mathrm{~S}=1$	$\mathrm{~B}=0, \mathrm{~S}=1$	Others with mutual funds
Total assets	111.459	209.409	505.505	308.879	348.48
Liabilities	2.949	2.591	5.22	4.99	4.466
Bonds	0	23.32	44.972	0	13.034
Stocks	0	0	27.06	20.135	3.727
Mutual funds	0	0	28.128	0	36.433
Non-financial income	20.945	30.322	47.462	35.356	39.066
Consumption	16.288	21.956	32.687	25.542	27.743
Age				50.935	50.967
Gender	54.875	54.834	52.967	0.784	
Up to 5th grade	0.692	0.783	0.84	0.764	0.158
8th grade	0.485	0.343	0.117	0.195	0.261
High school diploma	0.266	0.263	0.182	0.241	0.413
University degree	0.204	0.296	0.416	0.43	0.167
Married	0.045	0.098	0.285	0.134	0.773
Household components	0.665	0.751	0.804	0.739	2.864
Income recipients	2.786	2.853	2.952	2.947	1.92
Pensioner	1.644	1.88	2.034	1.919	0.304
Self-employed	0.427	0.441	0.318	0.251	0.255
Publicic sector employee	0.156	0.153	0.29	0.317	0.185
North	0.148	0.174	0.171	0.149	0.758
Center	0.404	0.651	0.788	0.63	0.166
South	0.195	0.194	0.141	0.198	0.177
Nobs	0.401	0.155	0.07	0.172	2,460

Note: see note to Table 1. Column 3 refers to the holders of bonds and stocks with or without mutual funds; column 5 refers to those with mutual funds, but no stocks, nor bonds, those with mutual funds and stocks, but no bonds and those with mutual funds and bonds, but no stocks. Age, gender, the education dummies, marital status and occupation refer to the household head. North, Center and South refer to the area of residence. South includes the islands.

Table 4: Asset returns

	Bank deposits (R)	Shares $\left(\mathrm{R}_{\mathrm{s}}\right)$	Gov. bonds $\left(\mathrm{R}_{\mathrm{b}}\right)$	$\operatorname{Corr}\left(\mathrm{R}_{\mathrm{s}}-\mathrm{R}, \mathrm{R}_{\mathrm{s}}-\mathrm{R}\right)$
$1914-1998$	-0.0382	0.0709	-0.016	0.2419
$1951-1998$	(0.1288)	(0.3182)	(0.1548)	
	-0.0051	0.0822	0.0219	0.1755
$1971-1998$	(0.0329)	(0.2866)	(0.0776)	
	-0.0056	0.0712	0.0290	0.1379
	(0.0384)	(0.3288)	(0.0977)	

Note: real after tax returns. The last column reports the correlation between the excess returns on shares over the riskless asset and the excess returns on bonds over the riskless asset. Annual frequencies. Standard deviations in parentheses.

Table 5: Stock market participation costs and optimism: pooled estimation on "restricted" sample

		Coef.	S. E.	Coef.	S. E.	Coef.	S. E.
1/w		312.000	0.698	-32.205	93.474	56.559	92.689
"	* age			10.116	3.843	4.998	3.631
"	* age2			-6.543	3.726	-1.939	3.524
"	* $8{ }^{\text {th }}$ grade			-15.304	26.844	-3.426	19.077
"	* diploma			-9.078	24.865	-3.405	17.965
"	* degree			-65.287	28.629	-48.317	21.436
"	* gender			30.695	17.357	9.749	15.614
"	* single			55.216	27.688		
"	* home			-56.075	19.710		
"	* public			5.567	17.019		
"	* self			41.671	19.755		
"	* Center			49.356	18.888	13.110	16.670
"	* South			150.733	22.333	73.203	16.153
"	* yr 1991			-136.872	20.498	-114.929	18.996
"	* yr 1993			26.327	30.175	4.761	20.367
"	* yr 1995			-50.686	20.174	-53.622	17.288
"	* yr 1998			-21.378	19.850	16.074	20.287
σ_{v}		0.304	0.007	0.421	0.013	0.452	0.013
age				-0.014	0.004	-0.017	0.004
age2				0.014	0.003	0.017	0.003
$8^{\text {th }}$ grade				-0.148	0.023	-0.139	0.024
diploma				-0.304	0.022	-0.307	0.023
degree				-0.395	0.026	-0.395	0.027
gender				-0.054	0.019	-0.095	0.019
single				0.044	0.024		
home				-0.040	0.017		
public				0.068	0.019		
self				-0.165	0.018		
North				0.617	0.100	0.674	0.105
Center				0.663	0.100	0.725	0.106
South				0.667	0.101	0.736	0.106
yr 1991				0.504	0.026	0.540	0.027
yr 1993				0.372	0.023	0.409	0.024
yr 1995				0.429	0.023	0.459	0.025
yr 1998				0.076	0.021	0.084	0.022
N. obs		8,494		8,486		8,495	
Wald χ^{2}		(1) 199,771		(17) 1,671		(13) 2,424	

Note: The sample is "restricted" because those holding just mutual funds, mutual funds and just bonds and mutual funds and just stocks have been dropped. Omitted (benchmark) dummies: less-than $-8^{\text {th }}$ grade (interacted with $1 / \mathrm{w}$); North (interacted with $1 / \mathrm{w}$); yr 2000 (alone and interacted with $1 / \mathrm{w}$). Gender takes on value 1 if the head is a male. The degrees of freedom of the Wald χ^{2} are in parentheses. In the estimation w is measured in thousands of lira of year 2000. Hence, the coefficients of the variables interacted with $1 / \mathrm{w}$ should be divided by 1.92736 to obtain the costs in euros.

Table 6: Geographical differences in stock market participation costs and optimism: estimation on "restricted" sample
Panel(a)

	North	Center			South	
	Coef.	S. E.	Coef.	S. E.	Coef.	S. E.
$1 / \mathrm{w}$	339.283	2.371	363.621	2.907	505.452	4.444
σ_{v}	0.285	0.008	0.255	0.013	0.261	0.015
N. obs	5,172		1,841		1,479	
Wald $\chi^{2}(1)$	20,470		15,648		12,938	

Panel (b)

		North		Center		South	
		Coef.	S. E.	Coef.	S. E.	Coef.	S. E.
1/w		375.510	137.726	795.833	350.333	-46.204	362.334
"	* age	-4.121	5.392	-17.573	14.567	8.356	14.430
"	* age2	7.207	5.176	19.265	15.269	-4.171	13.551
"	* $8^{\text {th }}$ grade	27.577	27.362	-99.534	98.895	33.999	83.377
"	* diploma	10.813	24.006	-217.133	90.868	168.834	109.269
"	* degree	-56.861	23.999	-267.614	104.275	90.256	107.026
"	* gender	-29.373	29.091	19.966	60.476	-14.264	97.418
"	* yr 1991	-202.191	25.197	-0.100	66.258	-48.084	91.838
"	* yr 1993	-24.376	31.907	139.484	96.174	-46.543	85.147
"	* yr 1995	-61.329	26.244	86.268	57.543	-135.088	94.081
"	* yr 1998	-41.270	27.954	163.300	64.032	39.522	74.709
σ_{v}		0.384	0.014	0.428	0.034	0.531	0.051
age		0.008	0.001	0.003	0.003	0.001	0.004
age2		-0.006	0.002	0.000	0.003	0.005	0.005
$8^{\text {th }}$ grade		-0.114	0.025	-0.138	0.048	0.045	0.076
diploma		-0.271	0.024	-0.204	0.046	-0.154	0.065
degree		-0.376	0.029	-0.305	0.054	-0.186	0.070
gender		-0.084	0.020	-0.028	0.039	-0.194	0.066
yr 1991		0.451	0.028	0.615	0.071	0.712	0.093
yr 1993		0.328	0.026	0.418	0.055	0.640	0.085
yr 1995		0.359	0.026	0.435	0.054	0.842	0.104
yr 1998		0.047	0.024	0.153	0.047	0.174	0.065
N. obs		5,173		1,842		1,479	
Wald χ^{2}	(11)	1,059		206		123	

Note: see note to Table 5.

Table 7: Time trends in stock market participation costs and optimism: estimation on "restricted" sample

		1991-1995				1998-2000			
		Coef.	S. E.						
1/w		597.505	4.094	436.514	172.167	321.216	6.602	-161.741	114.997
"	* age			-13.368	6.309			15.314	4.733
"	* age2			14.351	5.864			-11.770	4.798
"	* $8^{\text {th }}$ grade			26.606	23.987			-25.845	30.371
"	* diploma			-2.723	26.032			-1.091	36.858
"	* degree			-39.392	32.767			-48.537	39.973
"	* gender			8.726	28.250			10.334	22.619
"	* Center			89.641	26.024			13.591	24.160
"	* South			59.926	25.416			102.982	27.397
σ_{v}		0.140	0.003	0.533	0.024	0.394	0.013	0.401	0.015
Age				-0.023	0.006			-0.009	0.005
Age2				0.021	0.006			0.012	0.005
$8^{\text {th }}$ grade				-0.143	0.037			-0.151	0.032
Diploma				-0.365	0.037			-0.269	0.031
Degree				-0.496	0.043			-0.321	0.036
Gender				-0.178	0.034			-0.036	0.023
North				1.538	0.180			0.379	0.137
Center				1.608	0.183			0.407	0.138
South				1.692	0.185			0.366	0.139
N. obs		5,882		5,885		2,610		2,610	
Wald χ^{2}		(1) 21,304		(9) 682		(1) 367		(9) 1,364	

Note: see note to Table 5.

Figure 3: Returns on an index of Italian equities and on an index of long-term government bonds

R eferences

[1] Aleotti, A., 1990, B orsa e industria 1861-1989: cento anni di rapporti di¢ cili, Milano, Edizioni Comunità.
[2] Attanasio, O. and M. Paiella, 2003, Reconciling Undiversi..ed Portfolios with the Intertemporal Consumption Model, unpublished manuscript.
[3] Bertaut, C., 1998, Stockholding Behavior of U.S: Households: Evidence from the 1983-1989 Survey of Consumer Finances, Review of Economcs and Statistics, 80, 263-275.
[4] Haliassos, M. and C. Bertaut, 1995, Why Do So Few Hold Stocks?, E conomic J ournal, 1110-11129.
[5] K ézdi, G. and R. Willis, W ho Becomes a Stockholder?, mimeo, University of Michigan.
[6] Luttmer, E., 1999, What Level of Fixed Costs Can Reconcile Asset Returns and Consumption Choices?, J ournal of Political Economy, 107, 969-997.
[7] Merton, R., 1971, Optimum Consumption and Portfolio Rules in Continuous-Time M odel, J ournal of Economic Theory, 3, 373-413.
[8] Merton, R., 1973, An Intertemporal Capital Asset Pricing Model, E conometrica, 41, 867-87.
[9] Paiella, M., 2002, The Foregone Gains of Incomplete Portfolios, mimeo, Bank of Italy.
[10] Panetta, F. and R. Violi (1999), Is There an Equity Premium Puzzle in Italy? A look at A sset Returns, Consumption and Financial Structure Data over the Last Century, Banca d'Italia, Temi di Discussione, No.353.
[11] Sicilano, G. (2001), Cento anni di borsa in Italia, Bologna, Edizioni II Mulino.
[12] V issing-J ørgensen, A ., (2002), Towards an Explanation of Household P ortfolio Choice Heterogeneity: Non..nancial Income and Participation Cost Structures, mimeo, University of Chicago.

[^0]: ${ }^{1}$ We are grateful to Fabio Panetta for providing us with the series of the real returns on Italian equities and long-term government bonds. Cristiana Rampazzi provided skilful assistance with the data. All views expressed belong to the authors and do not necessarily re \ddagger ect those of the Bank of Italy.

[^1]: ${ }^{2}$ See M erton (1971, 1973) for more details on these issues.

[^2]: ${ }^{3}$ This assumption is not essential to the model, which can be extended to the case in which \circledR is unconstrained. However, ®h $2[0 ; 1]$ holds for all the households in the sample that we use to evaluate the cost and restricting the model to this case simpli.es the discussion.
 ${ }^{4}$ Dealing with both expectation errors
 would require dealing with the bivariate distribution:

 Although this would add to the realism of the model, it would complicate identi..cation without adding information to the subject of interest of this paper, which is the relative cost of participating to stock markets vs. bond markets. This depends mostly on excess

[^3]: ${ }^{5}$ Both the Sharpe ratios and the optimal choices vary with the amount w^{h} to invest.

[^4]: ${ }^{6}$ Figure 2 is obtained by computing the Sharpe ratio based on the following assumptions: the mean return on stocks, bonds and cash are set to 0:0824, 0:0060 and ; 0:0038, respectively; the standard deviation are set to $0: 2415,0: 0840$ and 0 . The correlation between the excess returns on stocks and bonds is set to 0:2.

[^5]: ${ }^{7}$ The proofs are avilable upon request.
 ${ }^{8} \mathrm{~T}$ his is a negative number when the Sharpe ratio of the stock market exceeds that of the bond market.

[^6]: ${ }^{9}$ For a positive $1 / 2$ if the Sharpe ratio of the stock market exceeds that of the bond market, $\left(\dot{e}_{b} 3 / 4=3 / 4\right) 1=1 / 2 \quad e_{5}>0$ for $1 / 2$ suc ciently small. For a negative $1 / 2$ the inequality never holds. The coed cient on the percentage fee is negative for any value taken on by $1 / 2$ (unless $3 / 4>3 / 8$).
 ${ }^{10} e_{b}(3 / 4=3 / 4)^{1 / 2} ; e_{s}<0$ for any value taken on by $1 / 2$ (unless the Sharpe ratio of bonds is much greater than that of stocks).

[^7]: ${ }^{11}$ An exception was the 1998 wave which was run three years after the previous survey.
 ${ }^{12}$ For cash and bank deposits they are asked to report also the amount. Hence, one can estimate the amount invested in each ..nancial asset combning this information with the fact that portfolio shares add up to one. The validity of this procedure for eliciting asset values relies on the assumptions that households are less reluctant to report portofolio shares rather than amounts and they are less reluctant to report small amounts of assets, such as with currency.

[^8]: ${ }^{13}$ All households in the sample hold some riskless asset in the form of cash. In the original data set there were 175 household (out of 39,558) who reported zero cash and deposits and they have been excluded.
 ${ }^{14}$ The same applies to managed accounts, whose composition is also non-reported, but whose dixusion is limited. The mutual fund and managed accounts holders whose classi..: cation in terms of risky portfolio composition is problematic represent about 6 percent of the whole sample: 3 percent hold just mutual funds; just over 2 percent report bonds and mutual funds holdings (but no directly-held stocks) and less than 1 percent hold mutual funds and directly-held equity (but no bonds). As a share of risky asset holders, they amount to 10, 8 and 3 percent, respectively.

[^9]: ${ }^{15}$ This section draws heavily from Panetta and Violi (1999).
 ${ }^{16}$ For their total return index for shares, Panetta and Violi used various sources. From 1860 to 1895 their index is based on the general index of the Genoa Stock Exchange. From 1896 to 1907 it was calculated with reference to all the shares listed on the Milan Stock Exchange. From 1907 to 1911 it was obtained from A leotti (1990). From 1912 to 1977 it was based on the Bank of Italy's indeces of prices and dividends for a sample of 40 companies, which accounted for over three quarters of the total market capitalization. A fter 1977 the index was calculated using the B ank of Italy Research Department's data base on the share market, which covers all listed shares. As to long-term government securities, Panetta and Violi's index is based on the return on the consolidated debt of the Treasury for the period 1862 to the second world war (the 5\% consolitated Rendita issues, the 4th, 5th and 6th national loans and the Littorio loan). For the period 1945 onwards, they constructed an index of total returns on the Treasury bonds (BTPs) listed on the stock exchange. The calculation of returns takes into account the witholding tax on government securities coupons and on dividends, allowing for the frequent changes occurred during the period. See Panetta and Violi (1999) for further details on the sources and methods used for the caluclation of the indeces. See also Siciliano (2001), who uses basically the same data, for a discussion on the issues of taxation.

[^10]: ${ }^{17}$ The increase in $3 / 4$ implies a restriction on the covariance between the time dummies and the truly unobservable component of ". Formally, let " $=\circledR{ }^{8}+\grave{A}$, where d takes value 1 if the survey takes place before 1998 and 0 otherwise. The unconditional variance of " would be: $\operatorname{Var}(")=\mathbb{B}^{2} \operatorname{Var}(\mathrm{~d})+\operatorname{Var}(\mathrm{A})+2 \mathbb{®} \operatorname{Cov}(\mathrm{~d}$; $\dot{A}):$ Conditioning on $\mathrm{d}, \mathrm{Var}(\mathrm{kjd})=$ $\operatorname{Var}(\dot{A})$: It follows that: $\operatorname{Var}(" j d)>\operatorname{Var}(")$ only if: $\mathbb{B}^{2} \operatorname{Var}(\mathrm{~d})+2 \mathbb{B C o v}(\mathrm{~d}$; $\dot{A})<0$, i.e. if $2 \operatorname{Cov}(\mathrm{~d} ; \dot{\mathrm{A}})<\mathrm{i}{ }^{\circledR} \mathrm{V} \operatorname{ar}(\mathrm{d})$.

