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Abstract 

 
 
 Exchange rate markets exhibit correlation in the short run, but the issue is whether 
such correlation lingers over long periods of time, and under extreme events (i.e., either 
large appreciations or depreciations). In this paper, we analyze dependence between 
nominal exchange rates under extreme events for a sample of ten countries with dirty/free 
float regimes over the period 1998-2002. In addition, we investigate whether currencies 
have exhibited extremal dependence on the Euro, since its adoption in 1999. Our findings 
are the following. First, in general, there is no evidence of extremal dependence between 
returns pairs. Second, the degree of dependence is stronger under large appreciations than 
under large depreciations. These conclusions are robust to filtering out the data for serial 
correlation and heteroscedasticy.  
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I Introduction 
 
 There is a bulk of literature devoted to market co-movements. In a recent article, 
Forbes and Rigobon (2002) distinguish between contagion and interdependence. Contagion 
is defined as a significant increase in cross-market linkages after a shock to one country or 
to a group of countries takes place. If the co-movement does not increase significantly, but 
a high level of correlation persists in all periods, then the correct definition for this situation 
is interdependence.  
 
 One of the simplest ways to measure association between assets returns is by the 
Pearson correlation coefficient. However, this presents several flaws. First, it is only 
appropriate for detecting linear association between two random variables. Second, as 
Forbes and Rigobbon op cit. discuss, tests of contagion are biased under the presence of 
heterocedastic returns. Finally, given that the Pearson correlation coefficient is constructed 
from deviations from the sample mean, the weight given to extreme observations is the 
same as that given to all the other observations. Therefore, it is not an accurate measure of 
dependence if extreme observations present different patterns of dependence from the rest 
of the sample.  
 
 An alternative approach can be found in the extreme value theory (EVT). EVT 
studies the stochastic behavior of a process at unusually large or small levels. In particular, 
extremal dependence focuses on assets returns association under events which are more 
extreme than any other that has been previously observed. This concept differs from the 
definition of contagion or interdependence in that only extreme observations are taken into 
account. That is to say, the EVT approach does not look for a global measure of association 
between returns, but for a measure of dependence under unlikely scenarios over a long 
time-horizon (i.e. in large samples or asymptotically). However, one could analyze the 
existence of contagion under EVT by testing whether extremal dependence between two 
financial markets significantly increases after a shock occurs.  

 
There are two types of extreme-value dependence: asymptotic dependence and 

asymptotic independence. Both forms of dependence allow dependence between relatively 
large values of each variable, but the largest values from each variable can take place 
jointly only when the variables are asymptotically dependent (see, for example, Coles, 
Heffernan and Twan, 1999).  
 
 The existing literature in extreme value theory has primarily focused on the case of 
asymptotic dependence. However, if the series are asymptotically independent, this 
approach will overestimate extremal dependence and, therefore, the extent of financial risk. 
The degree of overestimation will depend upon the degree of asymptotic independence. 
This issue is discussed in a recent article by Poon, Rockinger, and Tawn (2003). Poon et al. 
control for asset returns heterocedasticity before testing for extremal dependence. Their 
estimation results show that tail dependence decreases when filtering out heteroscedasticity 
by univariate and bivariate GARCH models. In addition, Poon et al. find that extremal 
dependence is usually stronger in bear markets (left tails) than in bull markets (right tails).  
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 This study focuses on dependence under extreme events in exchange rates markets 
under dirty/free float regimes⎯Argentina, Brazil, The United States, Chile, Japan, Mexico, 
New Zealand, Peru, South Korea and Thailand⎯over the sample period 1998-2002. In 
addition, we analyze whether these countries’ currencies have exhibited extremal 
dependence on the Euro, since its adoption in 1999. Our findings show, in general, no 
evidence of extremal dependence between returns pairs, and that the degree of dependence 
is stronger under large appreciations than under large depreciations. These conclusions are 
robust to filtering out the data for serial correlation and heteroscedasticy by multivariate 
GARCH models.  
 
 This paper is organized as follows. Section II presents a theoretical background on 
dependence under extreme events. Section III presents descriptive statistics of the data and 
the estimation results. Finally, Section IV presents our main conclusions. 
 
II Theoretical Background: Returns Dependence using EVT 
 
 Modeling only the probability distribution of the maximum or the minimum of a 
sample is inefficient if other data on extreme values are available. Therefore, an alternative 
approach consists of modeling the behavior of extreme values above a high threshold 
(“Peaks over threshold” or POT). Let us define the excess distribution above the threshold 
u as the conditional probability 
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 Under some regularity conditions, there exists a positive function β(u), for large 
enough u, such that (1) is well approximated by the generalized Pareto distribution (GPD) 
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where β(u)>0, and y≥0 when ζ≥0, and 0≤y≤−β(u)/ζ when ζ<0 (see, for example, Coles, 
2001, or Embrechts, Klüpperberg and Mikosch, 1997). If ζ>0, F is in the Fréchet family 
and Hζ,β(u) is a Pareto distribution; if ζ=0, F is in the Gumbell family and Hζ,β(u) is an 
exponential distribution; finally, if ζ<0, F is in the Weibull family and Hζ,β(u) is a Pareto 
type II distribution. In most applications of risk management, the data comes from a heavy-
tailed distribution, so that ζ>0.  
 
 Poon, Rockinger, and Tawn (2003) introduce a special case of threshold modeling 
connected with the generalized Pareto distribution, for the Fréchet case. For this particular 
case, the tail of a random variable Z above a (high) threshold u can be approximated as 
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where L(z) is a slowly varying function of z,2 and η>0. If treated as a constant for all z>u, 
that is L(z)=c, and under the assumption of n independent observations, the maximum-
likelihood estimators for η and c are 
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where z(1),…, z )n( u

, are the nu observations above the threshold u. η̂  is known as the Hill 
estimator. 
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 The first step is to transform the original variables to a common marginal 
distribution. Let (X,Y) be bivariate returns with corresponding cumulative distribution 
functions FX and FY. The bivariate returns are transformed to unit Fréchet marginals (S, T) 
using the transformation 
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 Under this transformation, Pr(S>s)=Pr(T>s)∼s−1. As both S and T are on a common 
scale, the events {S>s} and {T>s}, for large values of s, correspond to equally extreme 
events for each one. Given that Pr(S>s)→0 as s→∞, it is natural to consider the conditional 
probability Pr(T>s|S>s) for large s. If (S,T) are perfectly dependent, Pr(T>s|S>s)=1. By 
contrast, if (S,T) are exactly independent, Pr(T>s|S>s)=Pr(T>s), which tends to zero as 
s→∞. Let us define 
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 Two random variables are called asymptotically dependent if χ>0, and 
asymptotically independent if χ=0. In other words, χ measures the degree of dependence 
that lingers in the limit. Nonetheless, random variables, which are asymptotically 
independent, may show different degrees of dependence for finite levels of s. Based on this 
fact, Coles, Heffernan and Twan (1999) proposed the following measure of dependence 
 

                                                 
2 A function on L on (0, ∞) is slowly varying if limx→∞ L(tz)/L(z)=1 for t>0.  
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 This is a well-defined measure of asymptotic independence as it gives the rate at 
which Pr(T>s|S>s)→0. Values of χ >0, χ =0 and χ <0 are approximate measure of positive 
dependence, exact independence, and negative dependence.  
 
 The pair (χ, χ ) provides all the necessary information to characterize both the form 
and degree of extreme dependence. For asymptotically dependent variables, χ =1 and the 
degree of dependence is measured by χ>0. For asymptotic independent variables, χ=0 and 
the degree of dependence is measured by χ . Therefore, one should first test if χ =1 before 
reaching any conclusion about the dependence based on χ.  
 
 It can be shown that 
 
 Pr(S>s, T>s)∼L(s)s−1/ζ  as s→∞,     (8) 
 
where 0<ζ≤1 and L(s) is a slowly varying function. Given that Pr(S>s)∼s−1, χ  boils down 
to 12 −ζ=χ . 
 
 The test of dependence is implemented by letting Z=min(S,T), and noting that 
 
 Pr(Z>z)=Pr{min(S,T)>z} 
   = Pr(S>z, T>z) 
   = L(z) z−1/ζ 

  = d z−1/ζ  for z>u,     (9) 
 
for some high threshold u. The above equation shows that ζ is the tail index of the 
univariate random variable Z. Therefore, it can be obtained by the Hill estimator, 
constrained to the interval (0, 1]. The scale parameter d can be computed as explained 
earlier.  
 
 Under the assumption of independent observations on Z, we have 
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where χ̂  is asymptotically normal.  
 

 The decision rule is: if χ̂  is significantly less than 1, that is, if 1)ˆ(Var96.1ˆ <χ+χ , 
we conclude that the variables are asymptotically independent and take χ=0. In case there is 
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no enough evidence to reject the null hypothesis 1=χ , we estimate χ under the assumption 

that 1=ξ=χ . In such case, 
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III Description of the Data and Estimation Results 
 
3.1 The data 
 
 The section deals with extremal dependence of exchange rates in a group of ten 
countries, which are characterized by dirty/free float regimes.3 The sample is comprised by 
Brazil, Chile and Peru from South America, Mexico and The United States from North 
America, Japan, South Korea, and Thailand from Asia, and Australia and New Zealand 
from Australia/Oceania. Table 1 gives some development indicators of these ten nations for 
2001. Australia, The United States and Japan stand out as the most developed with high 
per-capita incomes, high penetration of technology—measured by the number of personal 
computers per 1,000 people and internet users over population, and high-technology 
exports as a percentage of manufactured exports. On the other extreme are Peru and 
Thailand, both of which have per-capita incomes below $2,000 a year, relatively high infant 
mortality rates (per 1,000 live birth), and low use of technology. However, Thailand’s 
exports are high-technology oriented when compared with the whole sample of countries.  
 
 All countries are characterized by relatively low inflation rates, as measured by the 
annual growth of the GDP implicit price deflator. In particular, Brazil, which suffered from 
chronic hyperinflation in the 1980’s, had a one-digit inflation rate in 2001.  
 

[Table 1 about here] 
 
 Table 2 in turn shows descriptive of the data series. All of them were obtained from 
the web site of the Bank of Canada. The sample period is January 1998-December 2002, 
and the data frequency is daily. When analyzing the dependence on the Euro, the sample 
shortens to January 1999-December 2002. The exchange rates are expressed in U.S. dollars, 
and the returns are continuously compounded. Mean returns are zero for all countries, 
except for Brazil for which the sample mean is slightly negative. All returns series strongly 
reject the assumption of normality, according to the Jarque-Bera test. Brazil, South Korea 
and Thailand stand out for the high kurtosis of their returns. Autocorrelation coefficients 
are not statistically significant in general, which suggests that returns are close to white 
noise from one day to the next. The evolution of the return series is shown in Figure 1.  

[Table 2 and Figure 1 about here] 
 
 Exchange rate markets exhibit correlation in the short run, but the issue is whether 
such correlation lingers over long periods of time, and under extreme events (i.e., either 
large appreciations or depreciations). For instance, the Chilean peso is very sensitive to the 
evolution of the Brazilian real, and the Pearson correlation coefficient between the two 

                                                 
3 A dirty float is a type of floating exchange rate that is not completely free because Central Banks interfere 
occasionally to alter the rate from its free-market level.  
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currencies is very high over some time periods. However, this shows an erratic pattern over 
long time horizons, as Figure 2 shows.  

 
[Figure 2 about here] 

 
The question we address in this article is whether there exists asymptotic 

dependence between currencies (that is, dependence in large samples), particularly under 
extreme events. In doing so, let us first consider independent observations of negative 
returns (Xt,Yt), t=2,…,T, with unknown distribution F. Large negative returns correspond, 
in this case, with large depreciations of currencies against the U.S. dollar. The random 
variables ut= )X(F tX  and vt= )Y(F tY  are both distributed as uniform, where FX and FY are 
the marginal distribution functions. An informal procedure to detect extremal dependence 
(in the left tail, in this case) consists of examining the large values of ut and vt (see, for 
example, Coles, Heffernan, and Tawn, 1999).4 Since FX and FY are unknown, estimates are 
obtained from the empirical distribution functions.  
 

Figure 3 shows left-tail dependence for selected returns pairs by geographic regions, 
and for selected large economies and the Euro. Except for the New Zealand dollar and the 
Australian dollar, the series do not exhibit strong patterns of dependence under high 
depreciations. Moreover, the dependence looks fairly low in some cases, like for the 
Japanese yen/Australian dollar pair.  

[Figure 3 about here] 
3.2 Estimation results 
 
 The next step consists of testing tail dependence formally by using the machinery 
described in Section 2. In doing so, one has to choose an appropriate threshold u to 
compute the tail index using the Hill estimator. The simplest approach is to plot its 
evolution against u and find a proper u, such that the Hill estimator appears to be stable 
(see, for instance, Tsay, 2001, chapter 7). Figure 4 shows the Hill estimator for the tail 
index ζ in equation (9) for the left tail of selected return pairs, evaluated at different values 
of the threshold u. As we see, simple inspection of the graphs does not shed much light on 
the optimal threshold to be selected in each case.  
 

[Figure 4 about here] 
 
 Matthys and Beirlant (2000) discuss several methods of adaptive threshold selection 
methods that have been developed in recent years. The authors distinguish two approaches 
to estimating the optimal threshold u. One consists of constructing an estimator for the 
asymptotic mean-squared error (AMSE) of the Hill estimator, and choosing the threshold 
that minimizes it. This approach includes a bootstrap method, and an exponential regression 
model. The latter is studied in detailed in Beirlant, Diercks, Goegebeur, and Matthys 
(1999). The second approach derives estimators directly for u, based on the representation 
of the AMSE of the Hill estimator.  
 

                                                 
4 As a convention in the literature of extreme value theory, large negative returns are negated. So they 
correspond with large positive returns.  
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 Given that the exponential regression approach is easy to implement, we use it to 
find the optimal threshold. Specifically, Feuerverger and Hall (1999) and Beirlant et al 
(1999) derive an exponential regression model for the log-spacings of upper statistics 
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independent standard exponential random variables, and ρ≤0 is a real constant.  
 
 If we fix the threshold u at the (k+1)th largest observation, the Hill estimator can be 
rewritten as  
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 The Hill estimator written this way is the maximum likelihood estimator of γ in the 
reduced model 
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 Given that the Hill estimator is an average of independent exponential random 
variables, its variance can be approximated by 
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while its bias arises from neglecting the second term in the right-hand side of equation (11) 
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 For n→∞, k→∞, and k/n→0, the Hill estimator is asymptotically normal 
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 From above, the AMSE of the Hill estimator is given by 
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 Therefore, the optimal threshold opt
nk  is defined as the one that minimizes (15) 
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 The algorithm for the exponential regression goes as follows 
 

• In model (11) fix ρ at ρ0=−1 and calculate least-squares estimates kγ̂  and k,nb̂  for 
each k ∈ {3,…, n}.  

• Determine 
k
ˆ

ˆ1
b̂

HAMSE
2
k

2

k

k,n
n,k

γ
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ρ−
=  for k ∈ {3,…, n}, with 0kˆ ρ≡ρ . 5 

• Determine )HAMSE(minargk̂ n,k
nk3

opt
n

≤≤
=  and estimate γ by opt

nk̂
H .  

 
 The first step of the algorithm boils down to running a linear regression of 
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 In order to control for both heteroscedasticity and serial correlation of returns, we 
use a diagonal VEC model or DVEC (1, 1) 
 
 tltt εβrcr ++= −     t=2, …, T,   (17) 
 
where rt is a k x 1 vector of returns, c is a k x 1 vector of constant terms, rt−1 is a k x 1 
vector containing the first lag of rt, β is a k x 1 vector, and εt is a k x 1 white noise vector 
with zero mean. The matrix variance-covariance of εt is given in this case by 
 
 1t1t1t10t )'( −−− ⊗+⊗+= ΣBεεAAΣ  t=2, …, T,   (18) 
 
where A0, A1, B, Σt and εt−1εt−1′ are k x k matrices, for t=2, …,T, and ⊗ denotes the 
Hadamar product (e.g., Bollerslev, Engle, and Wooldridge, 1988; Zivot and Wang, 2003, 
chapter 13). In order to obtain the elements of Σt,, only the lower part of the system in (18) 
is considered. 
 
 We tested extremal dependence for the returns series (raw data) and for the data 
filtered by the DVEC(1,1) model. In order to estimate DVEC models, we split the sample 
by geographic regions, and, when analyzing the dependence on the Euro, we selected some 
of the largest economies in the sample. Such an approach relies on previous inspection of 
the data. In the raw data, the extremal dependence between Japan and Chile’s currencies, 

                                                 
5 Matthys and Beirlant point out that for many distributions the exponential regression method works better, 
in MSE-sense, if the nuisance parameter ρ is fixed at some value ρ0 rather than estimated.  
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for example, was fairly low not to include Chile in the Asia/Oceania model. The same 
applied to other pairs of currencies.  
 
 Regarding the Euro and large economies, both Brazil and Mexico were excluded 
from the corresponding DVEC model because of the low dependence of their currencies on 
the Euro. In addition, a practical reason to estimate separate DVEC models rather than only 
one was not to have an excessive number of parameters to estimate. It is well-known that 
both efficiency and stability is reduced when having many parameters to estimate at once. 
All estimation was carried out with the statistical package S-Plus 6.1.  
 
 Specification tests for the different DVEC models are presented in Table 3. None of 
the equations of the DVEC models for Asia/Oceania and the selected large economies and 
the Euro show evidence of either serial correlation or missing ARCH effects using 12 lags. 
For South and North America, all country equations accept the null hypothesis of no 
missing ARCH effect, and, except for Peru, there is no evidence of serial correlation left 
over.6 In other words, the DVEC model works fairly well in filtering out both 
heterocedasticity and autocorrelation.  

[Table 3 about here] 
 
 The estimation results to test the null hypothesis of asymptotic dependence under 
extreme events are reported in Table 4. All the returns pairs strongly reject the existence of 
asymptotic dependence in both tails. The only exception is the New Zealand/Australia pair, 
for which the null cannot be rejected at the 4-percent level in either case. One interesting 
feature is that some pairs show more dependence in the right tail than in the left tail (e.g., 
Mexican peso/U.S. dollar, Japanese Yen/Australian dollar, Japanese Yen/Euro). That 
means that currencies are more dependent under large appreciations than under large 
depreciations. Poon et al, who work with stock indices, find exactly the opposite: bear stock 
markets (left tail) exhibit a higher degree of extremal dependence than bull stock markets 
(right tail).  
 
 When filtering out the data, the dependence between all pairs of currencies is 
substantially reduced. However, our finding about the existence of more dependence in the 
right tail still holds, in general.  

[Table 4 about here] 
 
IV Conclusions 
 
 This article presents an alternative approach to the literature of 
contagion/interdependence, which is based on the extreme value theory (EVT). EVT 
studies the stochastic behavior of a process at unusually large or small levels. In particular, 
extremal dependence focuses on assets returns association under events which are more 
extreme than any other that has been previously observed. This concept differs from the 
definition of contagion or interdependence in that only extreme observations are taken into 

                                                 
6 Given that we are working with daily data, it is not surprising to find some lingering serial correlation in 
some equation. We also tested the presence of serial correlation in Peru’s equation using more than 12 lags, 
and, as expected, this tends to fade away with time.  
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account. This implies that the EVT approach does not pursue a global measure of 
association between returns, but a measure of dependence under extreme events over a long 
period of time. 
 
 Our application deals with the extreme-value dependence between nominal 
exchange rates for a sample of ten countries with dirty/free float regimes⎯Argentina, 
Brazil, The United States, Chile, Japan, Mexico, New Zealand, Peru, South Korea and 
Thailand⎯over the sample period 1998-2002. In addition, we investigate whether these 
countries’ currencies have exhibited extremal dependence on the Euro, since its adoption in 
1999. In order to measure tail dependence, we use mathematical results that have been 
recently derived in the statistics field. In addition, we present a simple way to determine the 
optimal threshold to compute the Hill estimator, a non-parametric measure of the tail index 
of a probability distribution.  
 
 Our findings show no evidence of extremal dependence between returns pairs, and 
suggest that the degree of dependence is stronger under large appreciations than under large 
depreciations. Our results are robust to filtering out the data for serial correlation and 
heteroscedasticy by multivariate GARCH models.  
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Table 1  Development Indicators for 2001 
 

 Australia Brazil   United States Chile Mexico 

People      
Population, total (millions) 19.4 172.4 285.3 15.4 99.4 
Population growth (annual %)  1 1.2 1.1 1.1 1.5 
Life expectancy (years)  79.1 68.3 77.5 75.8 73.4 
Infant mortality rate (per 1,000 live births)  6 31 2.1 10 24 

Economy      
GNI, Atlas method (US$ billions)  385.9 528.9 9,800 70.6 550.2 
GNI per capita, Atlas method (US$)  19,900 3,070 34,400 4,590 5,530 
GDP (US$ billions)  368.7 502.5 10,100 66.5 617.8 
GDP growth (annual %)  3.9 1.5 0.3 2.8 -0.3 
GDP implicit price deflator (annual % growth)  2.4 7.4 2.3 1.5 5.5 

Technology and infrastructure      
Fixed lines and mobile telephones (per 1,000 people)  1,095 385.1 1,118 574.8 354.0 
Personal computers (per 1,000 people)  515.8 62.9 625 106.5 68.7 
Internet users (millions) 7.2 8 143 3.1 3.6 
Internet users/Population (%) 37.11 4.6 50 20.1 3.6 
Aircraft departures  388,700 654,100 8,500,000 83,100 291,000 

Trade and finance      
Trade in goods as a share of GDP (%)  34.5 23.2 19 52.2 54.2 
High-technology exports (% of manufactured exports) 10 17.9 32.1 0.8 21.7 
Foreign direct investment, net inflows (US$ billions)  4.4 22.6 130.8 4.5 24.7 

 
 Japan Peru South Korea Thailand  

People     
Population, total (millions) 127 26.3 47.3 61.2 
Population growth (annual %)  0.1 1.5 0.6 0.7 
Life expectancy (years)  81.1 69.6 73.6 69 
Infant mortality rate (per 1,000 live births)  3 30 5 24 

Economy     
GNI, Atlas method (US$ billions)  4,522.5 52.2 447.6 118.5 
GNI per capita, Atlas method (US$)  35,610 1,980 9,460 1,940 
GDP (US$ billions)  4,245 54 422.2 114.7 
GDP growth (annual %)  -0.6 0.2 3 1.8 
GDP implicit price deflator (annual % growth)  -1.4 1.3 1.3 2.2 

Technology and infrastructure     
Fixed lines and mobile telephones (per 1,000 people)  1,184.8 136.7 1,106.4 221.9 
Personal computers (per 1,000 people)  348.8 47.9 256.5 27.8 
Internet users (millions) 55.9 3 24.4 3.5 
Internet users/Population (%) 44.0 11.4 51.6 5.7 
Aircraft departures  641,300 30,000 225,700 102,400 

Trade and finance     
Trade in goods as a share of GDP (%)  18.2 29.1 69.1 110.9 
High-technology exports (% of manufactured exports)  26 1.5 29.1 31.1 
Foreign direct investment, net inflows (US$ billions)  6.2 1.1 3.2 3.8 

 
Source: World Development indicators database, April 2003. The World Bank.  
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Table 2  Descriptive statistics of Exchange Rates Returns 
 

 Australia Brazil United States Chile Japan 
# observations 1,253 1,253 1,253 1,253 1,253 

Average 0.000 −0.001 0.000 0.000 0.000 
Median 0.000 −0.001 0.000 0.000 0.000 

Standard deviation 0.007 0.013 0.004 0.006 0.008 
Interquartile range 0.008 0.009 0.004 0.007 0.010 

Minimum −0.033 −0.129 −0.016 −0.038 −0.038 
Maximum 0.035 0.095 0.016 0.025 0.051 
Kurtosis 4.71 19.30 4.25 5.98 5.87 

Skewness 0.10 −0.74 0.01 −0.37 0.48 
ρ1 −0.049 0.042 −0.009 0.044 0.008 
ρ2 0.002 0.005 0.000 −0.075* 0.023 
ρ3 −0.024 0.058* 0.009 0.052 −0.055 
ρ4 0.007 0.018 −0.006 0.007 0.012 
ρ13 0.048 −0.043 −0.041 −0.030 0.001 
ρ26 −0.011 −0.016 −0.015 −0.031 −0.015 
ρ60 0.018 0.001 −0.041 −0.025 0.030 

p-value JB test 0.00 0.00 0.00 0.00 0.00 
 

 Mexico New Zealand Peru South Korea Thailand 
# observations 1,253 1,253 1,253 1,253 1,253 

Average 0.000 0.000 0.000 0.000 0.000 
Median 0.000 0.000 0.000 0.001 0.000 

Standard deviation 0.006 0.005 0.008 0.009 0.008 
Interquartile range 0.007 0.005 0.009 0.007 0.007 

Minimum −0.033 −0.025 −0.031 −0.047 −0.048 
Maximum 0.039 0.028 0.039 0.092 0.061 
Kurtosis 6.30 5.38 4.87 20.65 16.26 

Skewness −0.17 −0.12 0.06 1.40 1.13 
ρ1 0.054 0.030 −0.034 0.051 0.084* 
ρ2 −0.021 −0.015 −0.052 −0.045 −0.023 
ρ3 -0.016 0.029 0.033 −0.063 −0.088* 
ρ4 0.032 0.008 −0.020 0.001 0.041 
ρ13 0.009 −0.025 0.046 −0.045 0.052 
ρ26 −0.013 0.046 −0.039 0.039 −0.015 
ρ60 0.007 0.012 0.004 0.016 0.051 

p-value JB test 0.00 0.00 0.00 0.00 0.00 
 

Notes: (1) The sample period is 1998-2002. The data is on a daily frequency, and was obtained from the Bank 
of Canada. (2) ρj represents the autocorrelation coefficient of order j. ‘*’ indicates significant at the 5 percent 
level. (3) JB test stands for the Jarque-Bera test to detect departures from normality. (4) Data source: The 
Bank of Canada.  
 



 15

Table 3  Specification Tests 
 

(a) South and North America 
 

Equation Ljung-Box test for autocorrelation  
(12 lags) 

Lagrange multiplier test for ARCH effects 
(12 lags) 

 Statistic p-value Statistic p-value 
Chilean peso 9.266 0.680 6.105 0.911 
Brazilian real 13.903 0.307 8.976 0.705 

U.S. dollar 15.358 0.224 10.652 0.559 
Peruvian new sol 41.17 0.000 17.31 0.138 

Mexican peso 14.35 0.279 10.31 0.589 
 

(b) Asia and Oceania 
 

Equation Ljung-Box test for autocorrelation 
(12 lags) 

Lagrange multiplier test for ARCH effects 
(12 lags) 

 Statistic p-value Statistic p-value 
Australian dollar 12.537 0.404 14.033 0.299 

Japanese yen 4.617 0.970 10.730 0.552 
Thai Baht 17.304 0.139 9.335 0.674 

South Korean won 20.48 0.059 12.824 0.382 
New Zealand dollar 12.35 0.418 5.774 0.927 

 
(c) Selected Large Economies and the Euro 

 
Equation Ljung-Box test for autocorrelation 

(12 lags) 
Lagrange multiplier test for ARCH effects 

(12 lags) 
 Statistic p-value Statistic p-value 

Japanese yen 5.939 0.919 7.688 0.809 
U.S. dollar 12.277 0.424 7.189 0.881 

Euro 3.028 0.995 8.038 0.782 
Australian dollar 9.299 0.677 13.470 0.336 

South Korean won 21.322 0.046 6.240 0.904 
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Table 4  Tail dependence 
 

(a) North and South America 
 

Raw data 
 Left Tail Right Tail 
 ρ k* χ  s.e t-test p-value k* χ  s.e t-test p-value

Chilean $/ Real 0.376 194 0.399 0.100 −5.987 0.000 73 0.110 0.130 −6.586 0.000 
Chilean $/Sol 0.529 120 0.459 0.133 −4.054 0.000 184 0.535 0.113 −4.109 0.000 

Mexican $/Real 0.277 183 0.515 0.112 −4.325 0.000 196 0.285 0.092 −7.798 0.000 
Mexican $ /Can $ 0.362 180 0.625 0.121 −3.100 0.000 164 0.553 0.121 −3.688 0.000 
 

Filtered data 
 Left Tail Right Tail 
 k* χ  s.e t-test p-value k* χ  s.e t-test p-value 

Chilean $/ Real 149 0.147 0.094 −9.082 0.000 52 0.001 0.139 −7.203 0.000 
Chilean $/Sol 199 0.346 0.095 −6.849 0.000 190 0.211 0.088 −8.978 0.000 

Mexican $/Real 172 0.160 0.088 −9.503 0.000 185 0.208 0.089 −8.916 0.000 
Mexican $ /Can $ 191 0.262 0.091 −8.080 0.000 199 0.204 0.085 −9.331 0.000 

 
(b) Asia and Oceania 

 
Raw data 

 Left Tail Right Tail 
 ρ k* χ  s.e t-test p-value k* χ  s.e t-test p-value

Won/Thai Baht 0.296 181 0.572 0.177 −3.666 0.000 183 0.538 0.114 −4.062 0.000 
Yen/Thai Baht 0.330 183 0.324 0.098 −6.906 0.000 131 0.313 0.115 −5.983 0.000 

Yen/Australian $ 0.283 193 0.424 0.103 −5.622 0.000 198 0.547 0.110 −4.115 0.000 
N. Zealand$/Australia$ 0.737 184 0.775 0.131 −1.720 0.042 126 0.740 0.155 −1.676 0.047 

 
Filtered data 

 Left Tail Right Tail 
 k* χ  s.e t-test p-value k* χ  s.e t-test p-value 

Won/Thai Baht 153 0.431 0.116 −4.921 0.000 65 0.362 0.169 −3.777 0.000 
Yen/Thai Baht 181 0.265 0.094 −7.822 0.000 187 0.182 0.086 −9.454 0.000 

Yen/Australian $ 199 0.121 0.079 −11.066 0.000 168 0.313 0.101 −6.786 0.000 
N. Zealand$/Australia$ 198 0.239 0.088 −8.640 0.000 197 0.399 0.099 −6.031 0.000 
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(c) Selected Large Economies and the Euro 
 

Raw data 
 Left Tail Right Tail 
 ρ k* χ  s.e t-test p-value k* χ  s.e t-test p-value 

Yen/Euro 0.344 170 0.392 0.101 −6.014 0.000 167 0.534 0.119 −3.924 0.000 
U.S.$/Euro 0.344 168 0.484 0.114 −4.507 0.000 183 0.468 0.109 −4.902 0.000 

Australian $/Euro 0.356 147 0.395 0.115 −5.256 0.000 199 0.586 0.112 −3.679 0.000 
Won/Euro 0.231 190 0.409 0.102 −5.785 0.000 199 0.448 0.103 −5.384 0.000 

 
Filtered data 

 Left Tail Right Tail 
 k* χ  s.e t-test p-value k* χ  s.e t-test p-value 

Yen/Euro 184 0.181 0.087 −9.405 0.000 171 0.233 0.094 −8.139 0.000 
U.S.$/Euro 155 0.428 0.115 −4.981 0.000 153 0.248 0.101 −7.445 0.000 

Australian $/Euro 93 0.130 0.117 −7.429 0.000 107 0.169 0.113 −7.348 0.000 
Won/Euro 186 0.258 0.092 −8.048 0.000 152 0.066 0.086 −10.795 0.000 

 
Notes: (1) The sample period is 1998-2002 for panels (a) and (b), and 1999-2002 for panel (c). The data is on 
a daily frequency, and was obtained from the Bank of Canada. (2) ρ is the Pearson correlation coefficient over 
the whole sample period. (3) k* represents the optimal threshold obtained by exponential regression 
procedure. (4) χ  is computed based on tail index estimation of Fréchet transformed margins of daily co-
exceedances of return pairs, Z=min(S,T). Asymptotic dependence cannot be rejected if 1=χ .  
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Figure 1 Evolution of the Nominal Exchange Rate for some Selected Countries:1998-2002 
Australia
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Figure 1 Continued 
 

New Zealand
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Notes: (1) Data source: Bank of Canada. (2) The figures are daily.  
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Figure 2 Moving Average Correlation Coefficient between the Returns on the Brazilian Real and the 
Chilean Peso 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: The correlation coefficient corresponds with an equally weighted moving average Pearson correlation 
coefficient between the daily percent changes of Chile and Brazil’s exchange rates. The coefficient is 
calculated by taking moving blocks of 20 observations (i.e., the average number of business days in a month). 
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Figure 3 LeftTail Dependence of Returns Pairs 
 

(a) South and North America 
 

Chilean Peso and Brazilian Real

Fx

Fy

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Chilean Peso and Peruvian New Sol

Fx

Fy

0.0 0.1 0.2 0.3 0.4
0.

0
0.

1
0.

2
0.

3
0.

4

 
 

Peruvian New Sol and Brazilian Real

Fx

Fy

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Mexican New Peso and Brazilian Real

Fx

Fy

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

 
 
 
 
 
 



 22

(a) South and North America (continued) 
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(b) Asia and Oceania 

 

 

South Korean Won and Thai Bait

Fx

Fy

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Japanese Yen and Thai Bait

Fx

Fy

0.0 0.1 0.2 0.3 0.4
0.

0
0.

1
0.

2
0.

3
0.

4

 
Japanese Yen and Australian Dollar

Fx

Fy

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Australian Dollar and New Zealand Dollar

Fx

Fy

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

 
 



 24

 
 (c) Selected Large Economies and the Euro 
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Notes: (Xt,Yt) represents a pair of negative returns, t=2,…,T. The random variables ut= )X(F tX  and vt= )Y(F tY  
are both distributed as uniform, where FX and FY are the marginal distribution functions. An informal 
procedure to detect extremal dependence consists of examining the large values of ut and vt.  
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Figure 4 Hill estimator of Left Tail of Returns Pairs 
 

(i) South and North America 
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Left-tail dependence of Mexican peso and Real
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(ii) Asia and Oceania 
 

Left-tail dependence of Won and Thai baht
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(iii) Selected Large Economies and the Euro 
 

 
 

Left-tail dependence of Australian dollar and Euro
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Notes: (1) ζ̂  is the Hill estimator of the tail index of Fréchet transformed margins of daily co-exceedances of 
return pairs, Z=min(S,T). (2) The dotted lines are 95-percent confidence bands.  
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