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Abstract
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information, the investor can revise her beliefs about the true value of the mean return,
which induces optimal allocations that can be significantly different from those of a
myopic agent. The hedging demand for the risky security is positive (negative) and
rises (falls) with more accurate information and the investor horizon, exactly when the
intertemporal elasticity of substitution is above (below) unity.
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1. INTRODUCTION

Samuelson [17] and Merton [16] were among the pioneers to solve the optimal consumption /
portfolio allocations for an agent maximizing her expected discounted utility with possibly a
terminal date bequest in a multi-period horizon. Both authors assume that a small investor
has complete information about the securities available on the market, i.e., can observe and
know the dynamics of all the economic state variables relevant in her decision to allocate
optimally her wealth between consumption and investment strategies. Unfortunately, in
many real life cases, the investor does not know (or cannot observe) with perfect accuracy
some characteristics of her investment opportunities. The main contribution of this paper is
to solve in closed form Merton’s problem [16] under incomplete information about the mean
return of the stock price, which allows us to shed some light about the effects of learning
on consumption and portfolio decisions.

1.1. Related Literature

Early attempts to introduce incomplete information about some non-observable fundamen-
tals of the economy include Detemple [5], Dothan and Feldman [9] and Gennote [10]. These
authors show that in a Markovian framework a separation principle holds: Agents first
solve an inference problem to form their expectations, and second solve their dynamic opti-
mization problem under the inferred information structure, incorporating learning as they
update their beliefs. Detemple and Murthy [6], Feldman [9] and Zapatero [20] consider
some equilibrium frameworks where investors have logarithmic utility preferences. Due to
the specific feature of logarithmic preferences (myopia), the equilibrium interest rate is a
weighted average (with weights equal to agents’ relative wealth) that oscillates between the
most pessimistic and the most optimistic agent’s valuations. Regarding optimal consump-
tion and investment decisions in a partial equilibrium framework, both a theoretical and
empirical literature blossomed during the last decade. A rigorous mathematical treatment
is presented in Lakner [14] who studies an investor who wishes to maximize the utility of her
terminal wealth when investment opportunities are only partially observable. He provides
some integral representation of portfolio allocations for several utility functions and multi-
dimensional stochastic processes when agents have normally distributed beliefs about the
mean return of the risky assets. Zohar [21] uses a similar framework to derive an extension
of the Cameron-Martin formula which allows him to compute the optimal utility of the
investor terminal wealth as well as the optimal portfolio in terms of Inverse Laplace Trans-
form. Honda [11] studies a similar economy to the one presented in this paper. He uses
dynamic programming techniques and relies on numerical methods to examine the optimal
consumption and portfolio allocations. Our work departs from his as we apply martingale
techniques to derive closed form solutions so we are able to perform a purely theoretical
analysis that includes the effects of outside market information on portfolio choice, issue
that is not addressed in Honda’s article. Other papers aim at clarifying and estimating
the role and importance of learning in portfolio decisions. Brennan [2] considers a CRRA
investor who cannot observe the drift (known to be constant) of some risky asset and has
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normally distributed beliefs about it. For a 1926-1994 period data base of annual returns on
the S&P500 index, using numerical simulations, the author shows that incomplete informa-
tion has a significant impact on investors’ portfolio choice for a 20 year horizon, reducing the
fraction of wealth invested in the risky security when agents are more risk averse than log-
arithmic preference investors. Barberis [1] calibrates a discrete time model using U.S. data
of monthly real returns of NYSE stocks and Treasury bills for the time periods 1952-1995
and 1986-1995 in order to study the effects of the estimation risk and investment horizon for
an investor maximizing her expected terminal wealth. The effects of the investor horizon
on portfolio strategies can be quite different depending on whether the agent takes into
account the new information to optimally rebalance her portfolio or chooses to ignore it.
Xia [19] building on the continuous-time framework developed by Kim and Omberg [13] ad-
dresses similar issues when returns are predictable allowing for intermediate consumption
and distinguishing two situations: (i) the investor knows the predictive relationship with
certainty, (ii) the investor learns about the predictive relationship. Using U.S. stock market
returns and dividend yields for the 1950-1997 period, she finds that the portfolio allocation
is more sensitive to the predictive variable for a long horizon investor than for a short one,
but learning mitigates this effect. Our model belongs to the category of learning without
return predictability. Another issue raised in this paper is how the accuracy of information
collected by an investor affects her portfolio selection. Veronesi [18] uses a general equi-
librium model to investigate the impact of information quality on stock returns when the
average growth of the dividend switches among several discrete states. He finds that the
precision of the signal can enhance or dampen the volatility of the equilibrium asset price
depending on whether the CRRA coefficient is above or below unity. The cut-off value of
unit CRRA coefficient plays an important role in the results of this paper.

1.2. Results

We use a martingale approach to derive closed form solutions to Merton’s problem [16]
when CRRA preference investors have incomplete information about the mean return of a
stock. Our information background is a continuous-time model of Bayesian learning as in
Bolton and Harris [2] where the decision maker knows that the non-observable parameter is
a constant but she hesitates over two possible values. After solving the filtering problem, we
transform the investor’s problem into an equivalent program that displays two important
features:

- the wealth dynamics are identical to those under complete information;
- the utility function is altered by a multiplying stochastic factor that incorporates

learning.
We determine the consumption-wealth ratio and the demand for the risky asset disen-

tangling the myopic demand and from the hedging demand. The consumption wealth-ratio
is governed by the agent’s desire to smooth her consumption across time. In particular,
this ratio is increasing (decreasing) in optimism and a better quality information when the
intertemporal elasticity of substitution (I.E.S.) is below (above). To achieve consumption
smoothing the investor has two assets at her disposal; when she is willing to tolerate alter-
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ations in her consumption plans, she relies more on the risky asset. As a consequence, the
hedging demand for this latter is positive (negative) when the I.E.S. is greater (smaller)
than one. It is increasing (decreasing) with optimism, the informativeness of the outside
market signal and horizon time when the I.E.S. is above (below) unity. Better information
means a higher variance of beliefs and faster updating which leads to more drastic changes in
portfolio choices. Finally, we briefly discuss the case when investor has normally distributed
beliefs about the mean return and find similar results.

The paper is organized as follows. Section 2 describes the economic setting and pro-
vides some insights on the structure of the optimal decision rules. Section 3 contains the
derivation of the optimal consumption and portfolio allocations using martingale techniques
and discusses the effects of changes in optimism, precision of the information received and
investor horizon on the consumption-wealth ratio and the hedging demand. Section 4 con-
cludes. Proofs of all results are collected in the appendix.

2. THE ECONOMIC SETTING

We consider an economy where an investor has to optimally allocate her wealth between
a risk-free bond, a risky asset and consumption. We first examine the case of an infinite
horizon.

Individual Preferences. There is a single perishable good available for consumption,
the numéraire. Preferences are represented by a time additive utility function

U(c) = E

·Z ∞

0
u(c(t))e−θtdt

¸
,

where the instantaneous utility function u is twice continuously differentiable, increasing
and strictly concave and θ denotes the subjective discount rate of future. In addition, u
satisfies the following Inada conditions: lim

c→0+
u0(c) =∞ and lim

c→∞u
0(c) = 0.

The Financial Market and Information Structure. Uncertainty is modeled by a
probability space (Ω,F , Pw) on which is defined a one dimensional (standard) Brownian
motion w. A state of nature ω is an element of Ω. F denotes the tribe of subsets of Ω that
are events over which the probability measure Pw is assigned. For the sake of simplicity,
there are only two securities available in the financial market:

- a risk-free bond whose price B evolves according to

dB(t) = rB(t)dt,

where r is the constant interest rate, and
- a risky non-paying dividend security (that can interpreted as a stock index) whose

price S is given by a geometric Brownian motion

dS(t) = S(t) (µdt+ σdw(t)) ,
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where dw(t) is the increment of the standard Wiener process under Pw, µ is the mean
return of the stock and σ is the instantaneous variance. The parameter µ is unknown to
the investor. However, she knows that µ is a constant and it is either equal to h (high) or
l (low). In the sequel, we assume that −M < r < l < h with M ≥ 0.

Even though the investor does not observe the true value for µ, she can observe the
realizations of the value of the stock S and therefore infer the true value for the drift. Let
Ft be the σ-algebra generated by the observations of the value of the stock up to time t,
{S(s); 0 ≤ s ≤ t)} and augmented. At time t, the investor’s information set is Ft. The
filtration F = {Ft, t ∈ R+} is the information structure and satisfies the usual conditions
(increasing, right-continuous, augmented). At time t, let p(t) be the probability or the
investor’s beliefs that µ is equal to h, i.e., p(t) = Pr(µ = h | Ft). Using Bayes’ rules, the
evolution across time of the posterior probability p is given by the following lemma.

Lemma 1. The law of motion of the posterior beliefs P is

dp(s) =
h− l

σ
p(s)(1− p(s))dw(s),

where

dw(s) =
1

σS(s)

¡
dS(s)−EP [dS(s) | Fs]

¢
= dw(s) +

1

σ
(µ− (p(s)h+ (1− p(s))l)) ds,

is the increment of the standard Wiener process under P , relative to the filtration F.

Proof. See Liptser and Shiryaev, [15] p 317 and for a more intuitive derivation see Bolton
and Harris [2].

The innovation in beliefs is governed by the increment of a Brownian motion w which
is adapted to the investor information structure whereas w is not. Changes in beliefs are
increasing in the wedge h− l: when the two drifts differ significantly more information can
be obtained and the investor can revise her beliefs more quickly. Similarly, when the quality
of the signal is poor (high value of σ) or when the investor is almost certain of the value of
µ (p close to 0 or 1), little information can be extracted and therefore beliefs do not change
much. Finally, p is a martingale under P relative to F so on average, the investor’s beliefs
do not change1.

Let Pµ be the probability measure under which the price process S is a geometric
Brownian motion with constant mean return µ. Then, for µ ∈ {l, h}, define the processes
γp,µ and ξp,µ by

γp,µ(t) =
µ− (p(t)h+ (1− p(t))l)

σ
,

1This is due to the fact that the non-observable process is a constant.
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and

ξp,µ(t) = exp

µ
−
Z t

0
γp,µ(s)dw(s)−

1

2

Z t

0
γ2p,µ(s)ds

¶
.

ξp,µ is the density process of the Radon-Nikodym derivative of P with respect to Pµ, i.e.,

ξp,µ(t) =
dP (t)

dPµ(t)
.

It can be shown that when µ = h, then ξp,h(t) =
p0
p(t) and when µ = l, then ξp,l(t) =

1−p0
1−p(t) .

To avoid degeneracy of the problem, we impose the following condition.

Assumption A1. The investor’s beliefs are not trivial, i.e., p(0) ∈ (0, 1).
As mentioned in Veronesi [18], this implies that for all t > 0, p(t) > 0 and we choose to
express conditional expectations under the probability measure Pl. In particular note that

γp,l(t) = −
(h− l)(p(t)

σ
.

Let us define φ(t) = p(t)
1−p(t) . Under the probability measure Pl, the law of motion of the

process φ is given by

dφ(t) =
dp(t)

(1− p(t))2
+
(h− l)2p2(t)(1− p(t))2dt

(1− p(t))3

=
h− l

σ
φ(t)dw(t).

Hence φ is a geometric Brownian motion under Pl which would simplify greatly the analysis
in the sequel. Notice that φ is strictly increasing in p or equivalently, the more optimistic
the investor is that the average return of the risky security is equal to h, the higher the
value of φ. Finally let EP

t (respectively E
l
t) denote the conditional expectation with respect

to probability P (Pl). We now describe the investor problem.

2.1. The Investor Problem

At time t, the investor’s wealth is W (t) = x(t)+ z(t) where x is the amount invested in the
risk-free bond and z the amount invested in the risky asset.
Feasibility. A consumption plan c is feasible if there is a trading strategy (x, z) ∈ Q
financing it such that

dW (t) = x(t)r(t)dt+ z(t)
dS(t)

S(t)
− c(t)dt

W (t) ≥ −K.

To rule out arbitrage opportunities, we impose that at all times t, the investor’s wealth
W (t) must remain greater than a fixed amount −K, where K > 0 as exposed in Dybvig
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and Huang [8]. Let C denote the set of feasible consumption plans andQ the set of admissible
trading strategies. Under the investor’s probability beliefs P , the price of the stock evolves
according to

dS(s) = S(s) ((p(s)h+ (1− p(s))l)ds+ σdw(s)) .

The agent must choose optimal portfolio rules (x, z) and consumption c in order to maximize
her lifetime utility

J(W (t), p(t)) = max
(c∈C, (x,z)∈Q)

EP
t

·Z ∞

t
u(c(s))e−θ(s−t)ds

¸
s.t. dW (s) = (rW (s)− c(s) + z(s)(p(s)h+ (1− p(s))l − r) ds+ σz(s)dw(s)

dp(s) = h−l
σ p(s)(1− p(s))dw(s)

W (s) > −K, W (t) > 0, p (t) > 0 given.
(P )

Cuoco [4] provides technical restrictions on the stochastic processes r, c, x, z and σ to en-
sure existence of a solution. These conditions can be easily adapted to the infinite horizon
case. In addition, due to the infinite time horizon, we need to impose a Non-Ponzi game or
transversality condition.

Transversality Condition. The transversality condition for this problem can be writ-
ten:

lim
T→∞

EP
t

h
e−θ(T+t)J(W (t+ T ), p(t+ T ))

i
= 0

This condition is satisfied when

min(θ + (b− 1)(r + (l − r)2

2bσ2
), θ + (b− 1)(r + (h− r)2

2bσ2
)) > 0.

To see this note that

J(W (t), p(t)) ≤ p(t)J(W (t), 1) + (1− p(t))J(W (t), 0),

and recall that

θ + (b− 1)(r + (µ− r)2

2bσ2
) > 0

is the transversality condition for Merton’s problem [16] when the mean return is known to
be equal to µ.

We now use the Radon-Nikodym derivative of P with respect to Pl to rewrite program
P into an equivalent program P 0 involving variable φ instead on p. Since

EP
t

·Z ∞

t
u(c(s))e−θ(s−t)ds

¸
=

1

ξp,l(t)
El
t

·Z ∞

t
ξp,l(s)u(c(s))e

−θ(s−t)ds
¸
,

program P is equivalent to

max
(c∈C, (x,z)∈Q)

El
t

·Z ∞

t
(1 + φ(s))u(c(s))e−θ(s−t)ds

¸
7



s.t. dW (s) = (rW (s)− c(s) + z(s) (l − r)) ds+ σz(s)dw(s)

dφ(s) = h−l
σ φ(s)dw(s)

W (s) > −K, W (t) > 0, φ(t) > 0 given.
(P 0)

For program P 0 the evolution of wealth has been simplified since the drift of the price
process S is now equal to lS. Also worth noticing is that program P 0 is identical to the usual
Merton’s problem [16] under complete information for an investor whose utility function is

v(φ, c, t) = (1 + φ)u(c, t).

This new utility function is state dependent and inherits all the smoothness and concavity
properties of the usual utility function u with respect to the consumption argument c.
Finally, note that this methodology can be applied to more general set ups.

3. OPTIMAL CONSUMPTION AND PORTFOLIO ALLOCATIONS

In this section, we derive the optimal consumption and portfolio allocations for Bernoulli
beliefs and analyze how they respond to changes in optimism and quality of the information
received. At the end of the section, we briefly investigate the case of normally distributed
beliefs.

Program P 0 can be solved using standard martingale techniques as in the complete
information case. Define the state price density

πl(t) = exp

µ
−
Z t

0
(r +

1

2
κ2l )ds+

Z t

0
κldw(s)

¶
,

where

κl = − l − r

σ
.

It follows that
dπl(t) = πl(t) (−rdt+ κldw(t)) . (3.1)

As presented in Cuoco [4], the individual program is equivalent to

max
(c∈C, (x,z)∈Q)

El
t

·Z ∞

t
(1 + φ(s))u(c(s))e−θ(s−t)ds

¸
s.t. El

t

£R∞
t πl(s)c(s)ds

¤
= πl(t)W (t)

dφ(s) = h−l
σ φ(s)dw(s)

W (s) > −K, W (t) > 0, φ(t) > 0 given.
(P )

The optimal condition is
(1 + φ(s))u0(c(s))e−θs = λπl(s), (3.2)

with λ > 0 being the associated Lagrange multiplier. It follows that

c(s) = I(
λπl(s)

1 + φ(s)
, s),
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where I is the inverse of the marginal utility function and

W (t) =
1

πl(t)
El
t

·Z ∞

t
πl(s)I(

λπl(s)

1 + φ(s)
, s)

¸
.

The Lagrange multiplier λ is determined using the investor budget constraint, i.e. the
previous relationship at the initial date t = 0. We now focus our analysis on the case of a
CRRA preference agent

u(c) =
c1−b − 1
1− b

, b 6= 1
= ln c, b = 1.

We start by recalling the main findings of Merton’s model [16] under complete information
for such an investor.

3.1. Benchmark Case: Merton’s Problem

Within our financial market framework, the Merton’s problem [16] for a CRRA investor is

max
(c∈C, (x,z)∈Q)

Eµ
t

·Z ∞

t

c(s)1−b − 1
1− b

e−θsds
¸

s.t. dW (s) = (rW (s)− c(s) + z(s)(µ− r))ds+ σz(s)dw(s)
W (s) > −K, W (t) > 0 given.

(P )

The optimal solution of this problem is given by

c(t) = λ−
1
b π
−1
b

µ (t)e−
θ
b
t

c(t)

W (t)
=

θ

b
+

b− 1
b

µ
r +

(µ− r)2

2bσ2

¶
z(t)

W (t)
=

µ− r

bσ2
,

where πµ is the state price density defined as before and the Lagrange multiplier λ is given
by

λ =

µ
θ

b
+

b− 1
b
(r +

(µ− r)2

2bσ2
)

¶−b
W−b
0 .

Both the fraction of wealth invested into the risky asset and the consumption-wealth ratio
are constant. As shown in the sequel, incomplete information alters this result.
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3.2. Incomplete Information with Bernoulli beliefs

An explicit expression for the optimal condition (3.2) is

c(s) = λ−
1
b (1 + φ(s))

1
b π
−1
b

l (s)e−
θ
b
s.

Hence, at time t, the investor’s wealth is

W (t) =
λ−

1
b

πl(t)
El
t

·Z ∞

t
π
b−1
b

l (s)(1 + φ(s))
1
b e−

θ
b
sds

¸
.

Let denote ρ = θ
b +

b−1
b (r +

κ2

2b ) > 0 and α and β be the positive and negative roots
respectively of the quadratic

1

2

µ
h− l

σ

¶2
x2 +

Ã
1− b

b

(l − r)(h− l)

σ2
− 1
2

µ
h− l

σ

¶2!
x = ρ.

We have the following proposition.

Proposition 1. The wealth process is given by

W (t) =
λ−

1
b π
− 1
b

l (t)e−
θ
b
t

1
2

¡
h−l
σ

¢2
(α− β)

·Z ∞

0

³
(1 + φ(t)e−u)

1
b eβu + (1 + φ(t)eu)

1
b e−αu

´
du

¸
,

and the fraction of wealth invested into the risky asset z
W is given by

z(t)

W (t)
=

h− r

bσ2
− h− l

bσ2

R∞
0

³
(1 + φ(t)e−u)

1
b
−1eβu + (1 + φ(t)eu)

1
b
−1e−αu

´
duR∞

0

³
(1 + φ(t)e−u)

1
b eβu + (1 + φ(t)eu)

1
b e−αu

´
du

.

It is increasing with the degree of optimism φ and is always between the fraction of wealth
invested into the risky asset when µ = l and µ = h. Finally, the consumption-wealth ratio c

W
is given by

c(t)

W (t)
=

(1 + φ(t))
1
b

1
1
2(

h−l
σ )

2
(α−β)

hR∞
0 (1 + φ(t)e−u)

1
b eβu + (1 + φ(t)eu)

1
b e−αudu

i .
It is increasing (decreasing) in optimism φ exactly when b > 1 (b < 1).

Proof. See appendix A.

As the agent becomes more optimistic above the value of the mean return, when b < 1 or
equivalently when the elasticity of substitution s = 1

b > 1, she increases her consumption-
wealth ratio, reflecting consumption smoothing. We now examine in more detail the demand
for the risky asset that can be rewritten (dropping the time index)

z

W
=

φh
1+φ +

l
1+φ − r

bσ2
+

h− l

bσ2

 1

1 + φ
−
R∞
0

³
(1 + φe−u)

1
b
−1eβu + (1 + φeu)

1
b
−1e−αu

´
duR∞

0

³
(1 + φe−u)

1
b eβu + (1 + φeu)

1
b e−αu

´
du

 .
10



The first term is the myopic demand; it is increasing in optimism φ. The second term is
the hedging demand. It is always equal to zero for a myopic investor (b = 1) and equal to
zero when the investor knows the truth, i.e. when p = 0 or 1 or equivalently when φ equals
0 or ∞. Due to changes in investment opportunities, the hedging demand is no longer zero
and it has the following property.

Proposition 2. The hedging demand for the risky asset is positive (negative) exactly when
the coefficient of risk aversion is below (above) unity.

Proof. See appendix A.

Honda [12] conjectures this result and illustrates it using numerical simulations. How-
ever, he finds that for large enough values of the CRRA coefficient, the hedging demand can
be positive as he assumes that the non-observable mean return can switch between l and h.
We can reinterpret proposition 2 by recalling that the hedging demand aims at preparing
and forearming the investor in the face of uncertainty. To achieve this, the investor has
two assets at her disposal. When she does not mind too much altering her consumption
plans, i.e. s = 1

b > 1, she is more willing to hold the risky asset and the hedging demand is
positive. The opposite occurs when s < 1.

For the sake of simplicity, we have considered an infinite horizon model. In the next
section, we investigate the effect of the time horizon on the optimal consumption and
portfolio strategies.

3.2.1. Finite Horizon

We assume that there is no terminal bequest. As shown in appendix A, within a finite
horizon T > 0 the expressions of the consumption-wealth and the fraction of wealth invested
into the risky asset are given by

z(t)

W (t)
=

φ(t)h
1+φ(t) +

l
1+φ(t) − r

bσ2
+

h− l

bσ2

 1

1 + φ(t)
−

El
t

hR T
t (1 +X(s))

1
b
−1e−ρ(s−t)ds

i
El
t

hR T
t (1 +X(s))

1
b e−ρ(s−t)ds

i


c(t)

W (t)
=

(1 + φ(t))
1
b

El
0

hR T
t (1 +X(s))

1
b e−ρ(s−t)ds

i ,
where

dX(s) = X(s)

µ
1− b

b

(l − r)(h− l)

σ2
ds+

h− l

σ
dw(s)

¶
X(t) = φ(t).

All the results of propositions 1 and 2 remain valid. To see this, one can refer to appendix
A and realize that all the results were obtained using representations of the consumption-
wealth ratio and demand for the risky asset involving conditional expectations. The same
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proofs hold in the case of a finite horizon substituting
Z ∞

t
with

Z T

t
. Next, we explore the

impact of the investor horizon on the optimal allocations.

Proposition 3. The demand for the risky asset increases (decreases) with the horizon time
exactly when the coefficient of risk aversion is below (above) unity.

Proof. See appendix A.

In Merton’s problem [16], the optimal portfolio strategies are independent of time. Port-
folio managers often advise long run investors to allocate more aggressively in stocks. As
pointed out and confirmed through numerical simulations in Barberis [1], when investors
strive to learn about parameter uncertainty, it may be optimal to be more conservative
and allocate less to equity at longer horizons. Brennan [3] obtains a similar result using
numerical simulations. Proposition 3 clarifies the issue and shows the above argument of
investment advisors is founded for agents willing to substitute consumption overtime or
more precisely for the ones whose intertemporal elasticity of substitution is above unity.
Finally, note that the hedging demand that has the same sign as s − 1 rises in absolute
terms with the investor horizon or equivalently the deviation from the myopic demand is
magnified by the investor time horizon.

3.3. Outside Market Information

In this section, the agent has a free access to an additional signal outside the market place,
such as, for instance, some business and macroeconomic news, political news, release of
corporations’ earning reports, policymakers’ statements. The aim is to study how optimal
consumption and portfolio allocations respond to the quality or precision of the information
received. Uncertainty is now modeled by a probability space (Ω,F , Pw) on which is defined
a two dimensional (standard) Brownian motion w = (w1, w2) where w1 and w2 are inde-
pendent. The investor observes the price of the risky security S and an additional signal A
whose dynamics are given by

dS(t) = S(t) (µdt+ σdw1(t)) ,

with µ ∈ {l, h} and

dA(t) = A(t)

Ã
λdt+Σ1

r
a

1 + a
dw1(t) + Σ2

r
1

1 + a
dw2(t)

!
,

where a > 0, Σ1 > 0, Σ2 > 0 and λ are known parameters and (dw1(t), dw2(t)) are the
increments of two independent standard Wiener processes under Pw. The instantaneous
covariance between the security price and the signal is

covt(dS(t), dA(t)) = σΣ1

r
a

1 + a
S(t)A(t)dt.

12



The higher a, the higher the correlation between the signal A and the price S, thus the
more informative the signal is.

Let Ft be the σ-algebra generated by the observations of the values of the price S of
the risky security and the signal A, {S(s), A(s); 0 ≤ s ≤ t)} and augmented. At time t,
the investor’s information set is Ft. The filtration F = {Ft, t ∈ R+} satisfies the same
conditions as before. We first solve the optimal filtering problem.

Proposition 4. Given the observations of the stock price and the additional signal, the
law of motion of the posterior beliefs P is given by

dp(t) =
h− l

σ
(1− p(t))p(t)

µ
dw1(t)−

√
a
Σ1
Σ2

dw2(t)

¶
,

where

dw1(t) = dw1(t) +
1

σ
(µ− (p(t)h+ (1− p(t))l))dt

dw2(t) = dw2(t)−
√
a
Σ1
Σ2σ

(µ− (p(t)h+ (1− p(t))l))dt,

are the increments of two independent (standard) Wiener processes under P , relative to the
filtration F.

Proof. See appendix B.

The evolution of beliefs is similar to the one previously obtained. It is worth noticing
that the (instantaneous) variance of changes in beliefs isµ

h− l

σ

¶2
(1− p(t))2p2(t)(1 + a

Σ21
Σ22
),

so the more informative signal A, the greater changes in beliefs and the higher the instan-
taneous variance Σ22, the noisier signal A is, so the smaller changes in beliefs are. Then
under the investor beliefs P , the security price, beliefs and the signal evolve according to
the following laws of motion

dS(t) = S(t) ((p(t)h+ (1− p(t))l)dt+ σdw1(t))

dp(t) =
h− l

σ
(1− p(t))p(t)

µ
dw1(t)−

√
a
Σ1
Σ2

dw2(t)

¶
dA(t) = A(t)

Ã
λdt+Σ1

r
a

1 + a
dw1(t) + Σ2

r
1

1 + a
dw2(t)

!
.

As before, we choose to express conditional expectations under the probability measure Pl.
We still have ξp,l(t) =

1−p0
1−p(t) . We define φ =

p
1−p and using Ito lemma under probability

measure Pl we obtain

dφ(t) =
h− l

σ
φ(t)

µ
dw1(t)−

√
a
Σ1
Σ2

dw2(t)

¶
.

13



The state price density is defined as before

πl(t) = exp

µ
−
Z t

0
(r +

1

2
κ2l )ds+

Z t

0
κldw1(s)

¶
,

where

κl = − l − r

σ
.

The agent’s program is exactly the same as before. In order to investigate how an additional
source of information affects the optimal allocations, we look at instantaneous correlations2

between the two state variables πl and φ. We have

d [πl, πl] (t) = π2l (t)κ
2
l dt

d [φ, φ] (t) =

µ
h− l

σ

¶2µ
1 +

aΣ21
Σ22

¶
φ2(t)dt

d [φ, πl] (t) = κl
h− l

σ
πl(t)φ(t)dt.

The only difference with the previous case is the instantaneous variance of the process φ. As
explained in appendix B., we need to replace

¡
h−l
σ

¢2
by
¡
h−l
σ

¢2 ³
1 +

aΣ21
Σ22

´
and thus define

α and β respectively as the positive and negative roots of the new quadratic

1

2

µ
h− l

σ

¶2µ
1 +

aΣ21
Σ22

¶
x2 +

Ã
1− b

b

(l − r)(h− l)

σ2
− 1
2

µ
h− l

σ

¶2µ
1 +

aΣ21
Σ22

¶!
x = ρ.

All the previous results derived in absence of an additional signal remain valid. However,
the introduction of outside market information allows us to investigate how optimal con-
sumption and portfolio allocations respond to a change in the informativeness of the signal.
Such an analysis is impossible within the previous framework as parameters (h − l and
σ) determining the precision of the signal have multiple effects and one cannot properly
disentangle their specific effect on the quality of the information received. We address this
issue in the next proposition.

Proposition 5. An increase in the informativeness of the outside market signal raises
(lowers) the fraction of wealth invested into the risky asset z

W when b < 1 (b > 1) and raises
(lowers) the consumption-wealth ratio c

W when b > 1 (b < 1).

Proof. See appendix B.

Proposition 5 can be reinterpreted as follows. When the intertemporal elasticity of sub-
stitution s is above unity, an investor with a more accurate information invests a higher

2 If X and Y are Ito processes with diffusion vectors σX and σY , their quadratic covariation is defined by

[X,Y ] (t) =

Z t

0

σX(s)
|σY (s)ds.
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fraction of her wealth into the risky asset and consumes a higher fraction of her wealth with
respect to an identical but less informed investor. The reason is that the agent understands
that when she receives a more informative signal, she can update her beliefs more quickly
which in turn can lead to larger changes in her optimal consumption and portfolio alloca-
tions. She devotes more of her wealth into the risky asset only if she is willing to tolerate
changes in her consumption pattern. Finally, notice that only the hedging demand depends
on the quality of the information received by the investor. These results are consistent
with those obtained numerically by Brennan [3] when the investor has normally distributed
beliefs. Again, the same results apply to a finite horizon model.

In most of the existing literature - see for instance Brennan [3], Feldman [9], Lakner
[14], authors assume that the investor has normally distributed beliefs. In the next section,
we provide a closed form solution to the Merton’s problem under this assumption.

3.4. Incomplete Information with Normally Distributed Beliefs

In this section, the horizon time T is finite and the investor has normally distributed beliefs
about the non-observable mean return µ. As before, Ft is σ-algebra generated by the
observations of the price S, {S(s); 0 ≤ s ≤ t)} and augmented. Being at time t, a sufficient
statistics vector for the beliefs is the conditional meanm(t) = EP [µ | Ft] and the conditional

variance γ(t) = EP
h
(µ−m(t))2 | Ft

i
. Using Bayes’ rules, the evolution across time of the

posterior beliefs P is given by the following lemma.

Lemma 2. The law of motion of the posterior beliefs P is

dm(s) =
γ(s)

σ
dw(s)

.
γ(s) = −γ

2(s)

σ2
,

where

dw(s) =
1

σS(s)

¡
dS(s)−EP [dS(s) | Fs]

¢
= dw(s) +

1

σ
(µ−m(s)) ds,

is the increment of the (standard) Wiener process under P , relative to the filtration F.

Proof. See Liptser and Shiryaev, [15] p 317.

The variance γ is a measure of the precision of the knowledge about µ: it is deterministic,
decreasing over time as knowledge about the true value of µ improves. Changes in γ are
negatively related with the variance of the stock σ2 which as mentioned before negatively
affects the quality of information received. Changes in the mean m are increasing in γ
(when γ is high, a lot remains to be learned so learning takes place at a faster speed) and
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decreasing with σ. In addition, m is a martingale under P relative to F so on average,
the investor’s beliefs do not change as far as the mean is concerned but the accuracy of
her beliefs improves across time. Finally, that under the probability measure P , the mean
process m is given by

m(s) = m(t) +

Z s

t

γ(u)

σ
dw(u).

So under P , givenFt,m(s) is normally distributed with meanm(t) and variance
R s
t

γ2(u)
σ2

du =
γ(t)− γ(s).

In order to have existence of the investor problem, we make the following technical
assumption.

Assumption A2. 1 + b−1
b

γ0
σ2T > 0.

The condition is trivially satisfied for b > 1 and when b ∈ [0, 1] , we must have

γ0 <
bσ2

(1− b)T
,

which means that initial beliefs need to be precise enough. Note that this condition is
similar to the one provided by Lakner [14] in proposition 4.6.

Contrarily to the Bernoulli belief case, it is here more convenient to work under the
investor probability measure P . Then define the state price density

πm(t) = exp

µ
−
Z t

0
(r +

1

2
κm(s)

2)ds+

Z t

0
κmdw(s)

¶
, (3.3)

where

κm(t) = −m(t)− r

σ
.

The investor’s problem is

max
(c∈C, (x,z)∈Q)

EP
t

·Z T

t

c(s)1−b − 1
1− b

e−θsds
¸

s.t. dW (s) = (rW (s)− c(s) + z(s)(m(s)− r))ds+ σz(s)dw(s)

dm(s) = γ(s)
σ dw(s),

.
γ(s) = −γ2(s)

σ2

W (s) > −K, W (t) > 0
m(t), γ(t) > 0 given.

(3.4)

The optimal condition (3.2) becomes

c(s) = λ−
1
b π
− 1
b

m (s)e−
θ
b
s.

Hence, at time t, the wealth process is given by

W (t) =
λ−

1
b

πm(t)
EP
t

·Z T

t
π
b−1
b

m (s)e−
θ
b
sds

¸
.
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The next step is to express the state price density as a function of state variables (m, γ, t)
to exploit the fact that under P the mean return is normally distributed.

Lemma 3. The state price density πm can be written as a function of (m, γ, t) given by

πm(s) = πm(t)

s
γ(t)

γ(s)
exp

µ
−r(s− t)− 1

2γ(s)
(m(s)− r)2 +

1

2γ(t)
(m(t)− r)2

¶
.

Proof. See appendix C.

In appendix C, using the previous expression of the state price density, we derive the
optimal consumption and portfolio allocations. Results are gathered in the following propo-
sition.

Proposition 6. The wealth process is given by

W (t) = λ−
1
b π
− 1
b

m (t)e−
θ
b
t

Z T−t

0

³
1 + γ(t)

σ2
u
´ b−1

2bq
1 + b−1

b
γ(t)
σ2 u

e
−1
b
(θ+(b−1)(r+ (m(t)−r)2

2bσ2
1

1+ b−1
b

γ(t)

σ2
u
))u

du,

the fraction of wealth invested into the risky asset z
W is given by

z(t)

W (t)
=

m(t)− r

bσ2

R T−t
0

³
1+γ(t)

σ2
u
´ b−1

2b³
1+ b−1

b
γ(t)u

σ2

´ 3
2
e
− 1
b
(θ+(b−1)(r+ (m(t)−r)2

2bσ2
1

1+ b−1
b

γ(t)

σ2
u
))u

du

R T−t
0

³
1+

γ(t)

σ2
u
´ b−1

2bq
1+ b−1

b
γ(t)

σ2
u
e
− 1
b
(θ+(b−1)(r+ (m(t)−r)2

2bσ2
1

1+ b−1
b

γ(t)

σ2
u
))u

du

(3.5)

and the ratio consumption-wealth c
W is given by

c(t)

W (t)
=

1R T−t
0

³
1+γ(t)

σ2
u
´ b−1

2bq
1+ b−1

b
γ(t)

σ2
u
e
− 1
b
(θ+(b−1)(r+ (m(t)−r)2

2bσ2
1

1+ b−1
b

γ(t)

σ2
u
))u

du

. (3.6)

Proof. See appendix C.

Not surprisingly, we observe that the investor is willing to hold a long position in the
risky asset as long as its expected returnm(t) exceeds the risk free rate r. Relationship (3.5)
indicates that the demand for the risky asset is above (below) the myopic demand m(t)−r

bσ2

exactly b < 1 (b > 1) so as before, the hedging demand is positive3 (negative) when the
CRRA coefficient is below unity (above unity) provided that m(t) > r. As in the Bernoulli

3Brennan [3] also obtains this result using a dynamic programming approach and the non-satiation of
the indirect utility function..
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beliefs case, we show in appendix C that the demand for the risky asset is increasing in
the mean return m and the more precise the beliefs are (the smaller the variance γ is), the
higher (lower) the ratio

¯̄
z
W

¯̄
is when b > 1 (b < 1). The effects of the investor horizon on the

demand for the risky asset are the same as before, with the same cut off value of 1 for the
I.E.S.. The consumption-wealth ratio is increasing (decreasing) in m exactly when b > 1
(b < 1). We also prove in appendix C that the ratio consumption over wealth is increasing
in the precision of the beliefs, i.e. the lower the variance γ the higher c

W when b < 1.When
the investor’s CRRA coefficient is above unity, results are more ambiguous. On the one
hand, when |m(t)− r| is small enough, then the lower γ, the lower the ratio c

W . On the
other hand, when |m(t)− r| is large enough, the opposite occurs.

Broadly speaking, the results obtained under normally distributed beliefs corroborate
the findings in the Bernoulli framework.

4. CONCLUSION

We study the optimal consumption / portfolio allocations problem under incomplete infor-
mation about the mean return of the risky asset. Our approach is to convert the investor’s
problem into an equivalent program for which standard martingale techniques can be easily
implemented. Dynamic learning induces decisions that can be significantly different from
the myopic behavior ones. The quality of the information received affects the speed at
which the investor can revise her beliefs: the more accurate the information, the more dras-
tic portfolio rebalances can be. The paper highlights the role of consumption smoothing in
the optimal portfolio strategies with respect to the investor horizon, optimism and outside
market information when the agent strives to learn about her investment opportunities. In
particular, the conventional advice according to which long horizon investors should allocate
aggressively their wealth to equity is founded only for agents whose intertemporal elasticity
of substitution is above unity. The role of outside market information has been examined
when its access is free and its amount is fixed. One possible extension would be to endog-
enize its acquisition and let the investor choose how much she wants to be informed. This
is left for future research.
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5. APPENDIX

APPENDIX A

Wealth process. Define H(πl, φ) = El
t

·R∞
t π

b−1
b

l (s)(1 + φ(s))
1
b e−

θ
b
(s−t)ds

¸
. Then H

satisfies the following PDE

θ

b
H = π

b−1
b

l (1 + φ)
1
b − rπlH1 +

κ2l
2
π2lH11 + κl

h− l

σ
πlφH12 (5.1)

+
1

2

µ
h− l

σ

¶2
φ2H22.

Due to the homogeneity of degree b−1
b in πl, we look for a solution of the type H(πl, φ) =

G(φ)π
b−1
b

l . It follows that G must satisfy the following ODEµ
θ

b
− 1− b

b
(r +

κ2l
2b
)

¶
G = (1 + φ)

1
b +

b− 1
b

κl
h− l

σ
φG0

+
1

2

µ
h− l

σ

¶2
φ2G00,

with initial conditions

G(0) =
1

θ
b − 1−b

b (r +
κ2l
2b )

G0(0) =
1

θ − (1− b)(r − κl
h−l
σ +

κ2l
2b )

.

The solution of this ODE is given by the Feyman-Kac representation (see Duffie [7], appen-
dix E.)

G(φ) = El
t

·Z ∞

t
(1 +X(s))

1
b e−ρ(s−t)ds

¸
,

where ρ = θ
b − 1−b

b (r +
κ2l
2b ) > 0, X(t) = φ and the law of motion of the process X is

dX(s) = X(s) (ηds+Σdw(s)) , (5.2)

with

η =
b− 1
b

κl(h− l)

Σ =
h− l

σ
.

As presented in Harrison [11] p 45, let α and β be the positive and negative roots respectively
of the quadratic

1

2

µ
h− l

σ

¶2
x2 +

Ã
b− 1
b

κl
h− l

σ
− 1
2

µ
h− l

σ

¶2!
x = ρ.
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Then

G(φ) =
1

1
2

¡
h−l
σ

¢2
(α− β)

·Z 0

−∞
(1 + φeu)

1
b e−βudu+

Z ∞

0
(1 + φeu)

1
b e−αudu

¸
=

1
1
2

¡
h−l
σ

¢2
(α− β)

·Z ∞

0

³
(1 + φe−u)

1
b eβu + (1 + φeu)

1
b e−αu

´
du

¸
.

Note that G is well defined as the condition θ − (1 − b)(r − κl
h−l
σ +

κ2l
2b ) > 0 implies that

α > 1 and the transversality condition implies that 1b < α. Finally,

W (t) =
λ
1
b π
− 1
b

l (t)e−
θ
b
t

1
2

¡
h−l
σ

¢2
(α− β)

·Z ∞

0
(1 + φ(t)e−u)

1
b eβu + (1 + φ(t)eu)

1
b e−αudu

¸
.

Portfolio allocations. Applying Ito lemma, we obtain

dW (t) = µW (t)dt−
κl
b
W (t)dw(t)

+
λ−

1
b π
−1
b

l (t)1b
¡
h−l
σ

¢
φ(t)

1
2

¡
h−l
σ

¢2
(α− β)

·Z ∞

0
(1 + φ(t)e−u)

1
b
−1e(β−1)u + (1 + φ(t)eu)

1
b
−1e(1−α)udu

¸
dw(t),

for some process µW . Identifying coefficients with the wealth dynamics in program P 0 yields

z

W
=

l − r

bσ2
+
(h− l)φ

bσ2

R∞
0

³
(1 + φe−u)

1
b
−1e(β−1)u + (1 + φeu)

1
b
−1e(1−α)u

´
duR∞

0

³
(1 + φe−u)

1
b eβu + (1 + φeu)

1
b e−αu

´
du

=
h− r

bσ2
− h− l

bσ2

R∞
0

³
(1 + φe−u)

1
b
−1eβu + (1 + φeu)

1
b
−1e−αu

´
duR∞

0

³
(1 + φe−u)

1
b eβu + (1 + φeu)

1
b e−αu

´
du

=
h− r

bσ2
− h− l

bσ2

El
t

hR∞
t (1 +X(s))

1
b
−1e−ρ(s−t)ds

i
El
t

hR∞
t (1 +X(s))

1
b e−ρ(s−t)ds

i .

The desired result follows easily, and in particular, we have z
W ∈

£
l−r
bσ2

, h−r
bσ2

¤
.

Risky asset demand and optimism. Writing φt = φ and z(t)
W (t) =

z
W

∂
¡
z
W

¢
∂φ

= −h− l

bσ2
1− b

bφD2

µ
El
t

·Z ∞

t
X(s)(1 +X(s))

1
b
−2e−ρ(s−t)ds

¸
El
t

·Z ∞

t
(1 +X(s))

1
b e−ρ(s−t)ds

¸
− 1

bφ
El
t

·Z ∞

t
(1 +X(s))

1
b
−1e−ρ(s−t)ds

¸
El
t

·Z ∞

t
X(s)(1 +X(s))

1
b
−1e−ρ(s−t)ds

¸¶
,

where

D = El
t

·Z ∞

t
(1 +X(s))

1
b e−ρ(s−t)ds

¸
.
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In order to show that z
W is increasing in φ it is enough to show that Q is non-negative where

Q = El
t

·Z ∞

t
(1 +X(s))

1
b
−1e−ρ(s−t)ds

¸
El
t

·Z ∞

t
X(s)(1 +X(s))

1
b
−1e−ρ(s−t)ds

¸
−El

t

·Z ∞

t
X(s)(1 +X(s))

1
b
−2e−ρ(s−t)ds

¸
El
t

·Z ∞

t
(1 +X(s))

1
b e−ρ(s−t)ds

¸
.

Notice that if (x, y) is in R2++ and k > 0 then

x(1 + x)k−1(1 + y)k−1 + y(1 + y)k−1(1 + x)k−1 (5.3)

−x(1 + x)k−2(1 + y)k − y(1 + y)k−2(1 + x)k

= (x− y)2(1 + y)k−2(1 + x)k−2 > 0.

Now consider two independent stochastic processes X and X 0 both starting at time t at φ
and having the same law of motion under Pl given by relationship (5.2). Thus given identity
(5.3), for times s ≥ t and u ≥ t, we have

El
t

h
X(s)(1 +X(s))k−1

i
El
t

h
(1 +X 0(u))k−1

i
−El

t

h
X(s)(1 +X(s))k−2

i
El
t

h
(1 +X 0(u))k

i
=

1

2
El
tE

0l
t

h
(X 0(u)−X(s))k−2(1 +X 0(u))k−2(1 +X(s))k−2

i
> 0.

Multiplying by e−ρ(s−t+u−t) and integrating with respect to s and u from t to infinity yields
that Q is positive.

Consumption-wealth ratio and optimism. Given what precedes, we have

c

W
=

(1 + φ)
1
b

El
t

hR∞
t (1 +X(s))

1
b e−ρ(s−t)ds

i , so

∂
¡
W
c

¢
∂φ

=
El
t

hR∞
t X(s)(1 +X(s))

1
b
−1e−ρ(s−t)ds

i
(1 + φ)− φEl

t

hR∞
t X(s)(1 +X(s))

1
b e−ρ(s−t)ds

i
bφ(1 + φ)

1
b
+1

=
−El

t

hR∞
t (1 +X(s))

1
b
−1e−ρ(s−t)ds

i
(1 + φ) +El

t

hR∞
t X(s)(1 +X(s))

1
b e−ρ(s−t)ds

i
bφ(1 + φ)

1
b
+1

In order to show that
∂(Wc )
∂φ > 0 (< 0) when b < 1 (b > 1), it is equivalent to show that

when b < 1, then

1

1 + φ
>

El
t

hR∞
t (1 +X(s))

1
b
−1e−ρ(s−t)ds

i
El
t

hR∞
t (1 +X(s))

1
b e−ρ(s−t)ds

i ,
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and the opposite inequality when b > 1. Actually, it is enough to show that for u ≥ t, then

El
t(1 +X(u))

1
b ≥ (1 + φ)El

t(1 +X(u))
1
b
−1,

when b < 1 and the opposite inequality when b > 1. We write

El
t(1 +X(u))

1
b = El

t

h
(1 +X(u))

1
b
−1(1 +X(u))

i
= El

t(1 +X(u))
1
b
−1El

t(1 +X(u)) + covt

³
(1 +X(u))

1
b
−1, (1 +X(u)

´
.

Note that when b < 1 (b > 1), then for x ≥ 0, the function x 7→ (1 + x)
1
b
−1 is strictly

increasing (decreasing) so covt

³
(1 +X(u))

1
b
−1, (1 +X(u)

´
> 0 (< 0). It follows that for

b < 1,

El
t(1 +X(u))

1
b ≥ El

t(1 +X(u))
1
b
−1El

t(1 +X(u))

≥ El
t(1 +X(u))

1
b
−1(1 + φe

1−b
b

l−r
σ2
(h−l)(u−t))

≥ El
t(1 +X(u))

1
b
−1(1 + φ) since b < 1.

The proof is similar for b > 1 using the fact that this time El
t(1 +X(u)) ≤ 1 + φ.

Hedging demand. Same proof as for the consumption-wealth ratio and optimism.

Risky asset demand and finite horizon time. Under a finite horizon T , the wealth
process is given by

W (t) = λ
1
b π
− 1
b

l (t)e−
θ
b
tEl

t

·Z T

t
(1 +X(s))

1
b e−ρsds
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1
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2 e−ρsdsdy.

Hence using Ito lemma and Fubini theorem we obtain

dW (t) = µW (t)dt−
κl
b
W (t)dw(t) + λ−

1
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¸
dw(t)

= µW (t)dt−
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W (t)dw(t)
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b
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1
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µ
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σ

¶
El
t

·Z T

t
X(s)(1 +X(s))

1
b
−1e−ρsds

¸
dw(t),

for some process µW . Again, identifying coefficients with the wealth dynamics in program
P 0 yields

z(t)

W (t)
=

h− r

bσ2
− h− l

bσ2
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hR T
t (1 +X(s))

1
b
−1e−ρ(s−t)ds

i
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t

hR T
t (1 +X(s))

1
b e−ρ(s−t)ds
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It follows that

∂

∂T

µ
z(t)

W (t)

¶
= −h− l
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(
e−ρT

hR T
t El

t(1 +XT )
1
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=
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1
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We now show that for all t ≤ s ≤ T

El
t(1 +X(s))

1
b
−1El

t(1 +XT )
1
b −El

t(1 +XT )
1
b
−1El

t(1 +X(s))
1
b ,

is positive (negative) exactly when b < 1 (b > 1). Since X is a Markovian process, it is
enough to show the property for t = 0. To do so, it is enough to prove that the function

F : s 7→ El
0(1+X(s))

1
b
−1

El
0(1+X(s))

1
b
is decreasing (increasing) exactly when b < 1 (b > 1). For notational

convenience, we set k = 1
b and we first compute

∂El
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Hence

F 0(s) =
(k − 1)
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¤
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Now recall that

η = (k − 1)(l − r)(h− l)

σ
.

Thus F 0 has the same sign as ( k − 1) (U + V ) , where

U =
(l − r)(h− l)

σ

³
(k − 1)El

0

h
X(s)(1 +X(s))k−2

i
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0
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0
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i
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i
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i
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0

h
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.

The next step is to show that U and V are negative. To do so, it is enough to show that
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0

h
X(s)(1 +X(s))k−2

i
El
0

h
(1 +X(s))k

i
−El

0

h
X(s)(1 +X(s))k−1

i
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0

h
(1 +X(s))k−1

i
< 0
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0

h
X2(s)(1 +X(s))k−3

i
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0

h
(1 +X(s))k

i
−El

0

h
X2(s)(1 +X(s))k−2

i
El
0

h
(1 +X(s))k−1

i
< 0.

To prove the first relationship, we note that if (x, y) is in R2++, then

x(1 + x)k−2(1 + y)k + y(1 + y)k−2(1 + x)k

−x(1 + x)k−1(1 + y)k−1 − y(1 + y)k−1(1 + x)k−1

= −(x− y)2(1 + x)k−2(1 + y)k−2 < 0. (5.4)

Now consider two independent stochastic processes X and X 0 both starting at time 0 at φ
and having the same law of motion under Pl given by relationship (5.2). Thus given identity
(5.4), for times s ≥ 0, we have

El
0

h
X(s)(1 +X(s))k−2

i
El
0

h
(1 +X 0(s))k

i
−El

0

h
X(s)(1 +X(s))k−1

i
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0
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(1 +X 0(s))k−1

i
= −1

2
El
0E

0l
0

h
(X 0(s)−X(s))2(1 +X 0(s))k−2(1 +X(s))k−2

i
< 0.

To prove the second relationship, we proceed exactly as before using the following identity:
if (x, y) is in R2++, then

x2(1 + x)k−3(1 + y)k + y2(1 + y)k−3(1 + x)k

−x2(1 + x)k−2(1 + y)k−1 − y2(1 + y)k−2(1 + x)k−1

= −(x− y)2 (x(1 + y) + y(1 + x)) (1 + x)k−3(1 + y)k−3 < 0.

24



And again, we have to consider two identical but independent stochastic processes. Details
of the rest of the proof for the second relationship are omitted. To sum up, we have proved
that F 0 has the same sign as 1 − 1

b . We conclude that
∂
∂T

³
z(t)
W (t)

´
is positive (negative)

exactly when b < 1 (b > 1).

APPENDIX B

Filtering problem. Observing S and A is equivalent to observing x = lnS
σ and

y =
√
1+aσ lnA−√aΣ1 lnS

Σ2σ
. Using Ito’s lemma, it is easy to check that

dx(t) =
1

σ

µ
µ− σ2

2

¶
dt+ dw1(t)

dy(t) =
1

Σ2σ

µ√
1 + am−√aΣ1

µ
µ− σ2

2

¶¶
dt+ dw2(t),

with m = λσ − αΣ21
2(1+a) −

Σ22
2(1+a) . Applying Bayes ’rule, we have

p(t+ dt) =
p(t)H(h)

p(t)H(h) + (1− p(t))H(l)
,

where

F (µ) =
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³
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2

´´
dt)2
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 ,

and H(µ) = F (µ)G(µ) is the probability of observing (dx(t), dy(t)). Hence

dp(t) =
(1− p(t))p(t)( eH(h)− eH(l))
p(t) eH(h) + (1− p(t)) eH(l) ,

where
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.
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It follows that

eH(µ) = 1 +
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where we have suppressed the terms of degree dt
3
2 and higher and use the fact that (dx(t))2 =

(dy(t))2 = 1 and dx(t)dy(t) = 0. Therefore

dp(t) =

h−l
σ (1− p(t))p(t)

³
dx(t)−√aΣ1Σ2dy(t)

´
1 + 1

σ (p(t)(h− l) + l)− σ2

2 )dx(t) +
³√
1 + am−√aΣ1(p(t)(h− l) + l − σ2

2 )
´

dy(t)
Σ2σ

=
h− l

σ
(1− p(t))p(t)

µ
dx(t)−√aΣ1

Σ2
dy(t)− 1

σ
(p(t)h+ (1− p(t))l)− σ2

2
)dx(t)

− 1

Σ2σ

µ√
1 + am−√aΣ1(p(t)h+ (1− p(t))l − σ2

2
)

¶
dy(t)

¶
=

h− l

σ
(1− p(t))p(t)

·
dw1(t) +

1

σ
(µ− (p(t)h+ (1− p(t))l))dt

− √aΣ1
Σ2

µ
dw2(t)−

√
a
Σ1
Σ2σ

(µ− (p(t)h+ (1− p(t))l))dt

¶¸
=

h− l

σ
(1− p(t))p(t)

µ
dw1(t)−

√
a
Σ1
Σ2

dw2(t)

¶
,

with
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1
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Wealth process. As before, let us define

26



H(πl, φ) = El
t

·R∞
t π
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l (s)(1 + φ(s))
1
b e−

θ
b
(s−t)ds

¸
that satisfies the following PDE

θ

b
H = π

b−1
b

l (1 + φ)
1
b − rπlH1 +

κ2l
2
π2lH11 + κl

h− l

σ
πlφH12

+
1

2

µ
h− l

σ

¶2µ
1 +

aΣ21
Σ22

¶
φ2H22.

This PDE is similar to PDE (5.1) obtained in appendix 1 but the coefficient of H22 is now
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. The analysis conducted in appendix 1 still holds

but the roots α and β must now be defined as the solutions of the following quadratic
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and the expression for the wealth obtained in appendix 1 remains valid.

Consumption-wealth ratio. The ratio c
W is given by

c

W
=
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1
b
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t
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1
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i ,
where

dX(s) = X(s) (ηds+Σdw(s)) . (5.5)
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where the introduction of the derivative under the integral sign can be justified using
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Lebesgue’s dominated theorem. Then
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It follows that this derivative is positive (negative) exactly when k > 1 ( k < 1). Since

c
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=

(1 + φ)
1
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1
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i ,
we obtain that this ratio is increasing (decreasing) in Σ exactly when b > 1 (b < 1).

Risky asset demand and precision of the signal. The ratio z
W is given by
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Hence
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The derivative expression can be rewritten as
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where
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The next step is to show that M > 0 so we can conclude that
∂( z

W )
∂Σ is positive (negative)

exactly when b < 1 (b > 1). Notice that if (x, y) is in R2++, then

x2(1 + x)k−2(1 + y)k−1 + y2(1 + y)k−2(1 + x)k−1 (5.6)

−x2(1 + x)k−3(1 + y)k − y2(1 + y)k−3(1 + x)k

= (x− y)2(1 + x)k−3(1 + y)k−3(x+ y + 2xy) > 0.

Again, consider two independent stochastic processes X and X 0 both starting at time 0
at φ and having the same law of motion under Pl given by relationship (5.5). Thus given
identity (5.6), for times s ≥ 0 and u ≥ 0, we have
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Multiplying by sue−ρ(s+u) and integrating with respect to s and u from 0 to infinity yields
the desired result.

APPENDIX C

Under the probability measure P the process U = πme
rt satisfies

dU(t) = −U(t)
µ
m(t)− r

σ

¶
dw(t).

Writing U(t) = U(m(t), γ(t)) and using Ito lemma leads to
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This implies
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The general solution to (5.7) is
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.
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Plugging this expression into (5.8) and after simplification shows that f must satisfy

f 0(γ)
f(γ)

= − 1
2γ
+
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.

Hence, f(γ) = A√
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.

Wealth process. Using relationships (3.3), the result of lemma 3 and Fubini Theorem,
the investor wealth at time t can be written
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γ(t)−γ(s)q

(γ(t)− γ(s))( b−1bγ(s) +
1

γ(t)−γ(s))

=
e

(1−b)(m(t)−r)2

2bγ(s)

µ
1+ b−1

b
γ(t)

σ2
(s−t)

¶
q
1 + b−1

b
γ(t)
σ2 (s− t)

.

Finally, the wealth process is given by

W (t) = λ−
1
bπ
−1
b

m (t)e−
θ
b
t

Z T−t

0

³
1 + γ(t)u

σ2

´ b−1
2bq

1 + b−1
b

γ(t)u
σ2

e
−1
b
(θ+(b−1)(r+ (m(t)−r)2

2bσ2
1

1+ b−1
b

γ(t)u

σ2

))u

du.

Portfolio allocations. Using Ito lemma, we obtain

dW (t) = µW (t)dt−
κm(t)

b
W (t)dw(t)− (b− 1)(m(t)− r)γ(t)

b2σ3
λ−

1
b π
− 1
b

m (t)×Z T−t

0

³
1 + γ(t)u

σ2

´ b−1
2bq

1 + b−1
b

γ(t)u
σ2

u

1 + b−1
b

γ(t)u
σ2

e
− 1
b
(θ+(b−1)(r+ (m(t)−r)2

2bσ2
1

1+ b−1
b

γ(t)u

σ2

))u

du

 dw(t),
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for some process µW . Identifying coefficients with relationship (3.4) leads to the desired
result.

Demand for the risky asset and variance of beliefs. Let define

f(γ, t) = g(γ, t)h(γ, t),

with

g(γ, t) =

¡
1 + γt

σ2

¢ b−1
2b¡

1 + b−1
b

γt
σ2

¢ 3
2

h(γ, t) = e
− 1
b
(θ+(b−1)(r+ (m−r)2

2bσ2
1

1+ b−1
b

γt

σ2

))t

.

It follows that
g1(γ, t)

g(γ, t)
=

3

2γ

1

1 + b−1
b

γt
σ2

− b− 1
2bγ

1

1 + γt
σ2

− 3

2γ
+

b− 1
2bγ

h1(γ, t)

h(γ, t)
=

(1− b)2

2bσ2
(m− r)2

γ
σ2
t2

(1 + b−1
b

γt
σ2
)2
.

Then
∂

∂t
log

µ
h1(γ, t)

h(γ, t)

¶
=

2

(1 + b−1
b

γt
σ2
)t

> 0.

So we can conclude that the function t 7→ h1(γ,t)
h(γ,t) is increasing in t.

∂

∂t
log

µ
g1(γ, t)

g(γ, t)

¶
=
1− b

2bσ2

Ã
3

(1 + b−1
b

γt
σ2 )

2
− 1

(1 + γt
σ2 )

2

!
.

Thus if b < 1, the function t 7→ g1(γ,t)
g(γ,t) is also increasing in t and so is t 7→ f1(γ,t)

f(γ,t) . The
demand for the risky asset can be written

z

W
=

Z τ

0
f(γ, t)dtZ τ

0
(1 + b−1

b
γt
σ2
)f(γ, t)dt

,

with τ = T − t. Hence
∂

∂γ
(
z

W
) =

M(τ)

D2
,

with

M(τ) =

Z τ

0
f1(γ, t)dt

Z τ

0
(1 +

b− 1
b

γt

σ2
)f(γ, t)dt

−
Z τ

0
f(γ, t)dt

Z τ

0

µ
b− 1
b

t

σ2
f(γ, t) + (1 +

b− 1
b

γt

σ2
)f1(γ, t)

¶
dt

D =

Z τ

0
(1 +

b− 1
b

γt

σ2
)f(γ, t)dt.

31



∂
∂γ (

z
W ) and M(τ) have the same sign. Note that M(0) = 0 and after some simple algebra

and re-arranging terms

M 0(τ) =
(1− b)

b

Z τ

0
f(γ, t)f(γ, τ)

·µ
f1(γ, τ)

f(γ, τ)
− f1(γ, t)

f(γ, t)

¶
γ(τ − t)

σ2
+

t+ τ

σ2

¸
dt.

Now recall when b < 1, the function t 7→ f1(γ,t)
f(γ,t) is also increasing in t. Hence M 0 is positive

when b < 1. Since M(0) = 0, we conclude that M is positive when b < 1. To analyze the
case when b > 1 we rewrite the demand for the risky asset as follows

z

W
=

Z γτ

0
G(y)e−

θ+(b−1)A(y)
bγ

ydyZ γτ

0
(1 + b−1

bσ2 y)G(y)e
− θ+(b−1)A(y)

bγ
ydy

,

with

G(y) =

¡
1 + y

σ2

¢ b−1
2b¡

1 + b−1
b

y
σ2

¢ 3
2

A(y) = r +
(m− r)2

2bσ2
1

1 + b−1
b

y
σ2

.

∂

∂γ
(
z

W
) =

1− b

bσ2
G(γτ)e−

θ+(b−1)A(γτ)
b

τ

D2

Z γτ

0
(γτ − y)G(y)e−

θ+(b−1)A(y)
bγ

ydy +
1− b

bσ2γ2
N(τ)

D2
,

with

N(τ) =

Z γτ

0
(θ + (b− 1)A(y))y2G(y)e− θ+(b−1)A(y)

bγ
ydy ×

Z γτ

0
G(y)e−

θ+(b−1)A(y)
bγ

ydy

−
Z γτ

0
(θ + (b− 1)A(y))yG(y)e−

θ+(b−1)A(y)
bγ

ydy ×
Z γτ

0
yG(y)e−

θ+(b−1)A(y)
bγ

ydy.

It is enough to show that N is positive to obtain that ∂
∂γ (

z
W ) is positive when b > 1. After

some simple algebra and re-arranging terms, we have

N 0(τ) = G(τ)e−
θ+(b−1)A(γτ)

b
τ

Z γτ

0
R(γτ, y)G(y)e−

θ+(b−1)A(y)
bγ

ydy,

where

R(γτ, y) = γ2τ2(θ + (b− 1)A(γτ)) + y2(θ + (b− 1)A(y))
−γτ(θ + (b− 1)A(γτ))y − γτ(θ + (b− 1)A(y))y

= (γτ − y)2

Ã
θ + (b− 1)(r + (m− r)2

2bσ2
1

(1 + b−1
b

γτ
σ2 )(1 +

b−1
b

y
σ2 )

!
.
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Hence, when b > 1, R(γτ, y) is positive so is N 0. It follows that N is strictly increasing and
since N(0) = 0, we can conclude that N is positive and the proof is complete.

Consumption-wealth ratio and variance of beliefs. We look at the effect of beliefs

on the wealth. We have

∂W

∂γ
=
1− b

2b2σ2

Z τ

0

Ã
2b+ (2b+ 1) γt

σ2

(1 + b−1
b

γt
σ2
)(1 + γt

σ2
)
+
(1− b)(m− r)2

(1 + b−1
b

γt
σ2
)2

!
tg(γ, t)h(γ, t)dt.

Hence, if b < 1, W is increasing in γ and consequently the consumption-wealth ratio c
W is

decreasing in γ. If b > 1 then when |m− r| is small, given what precedes, the ratio c
W can

be increasing in γ. The opposite can occur if |m− r| is large enough.
Demand for the risky asset and mean return. Let us rewrite

g(γ, t) =

¡
1 + γt

σ2

¢ b−1
2b¡

1 + b−1
b

γt
σ2

¢ 3
2

e
1−b
2b2σ2

K(γ,t)(m−r)2− 1
b
(θ+(b−1)r)t

K(γ, t) =
t

1 + b−1
b

γt
σ2

.

So

∂

∂m
(
z

W
) =

1

bσ2

Z τ

0
f(γ, t)dt

Z τ

0
(1 + b−1

b
γt
σ2
)(1 + b−1

b
γt
σ2
)f(γ, t)dt+O(τ)

D2
,

with

O(τ) =
1− b

b2σ2
(m− r)2

µZ τ

0
f(γ, t)K(γ, t)dt

Z τ

0
(1 +

b− 1
b

γt

σ2
)f(γ, t)dt

−
Z τ

0
f(γ, t)dt

Z τ

0
tf(γ, t)dt

¶
.

In order to show that ∂
∂m(

z
W ) is positive, it is enough to show that O(τ) is positive. Then

after rearranging terms we have

O0(τ) =
(m− r)2

bγ

Z τ

0
f(γ, t)f(γ, τ)

Ã
b− 1
b

γt

σ2
+

b− 1
b

γτ

σ2
−

b−1
b
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σ2
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σ2
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σ2

(1 +
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b

γτ

σ2
)

!
dt.

Set X = b−1
b

γt
σ2 and Y = b−1

b
γτ
σ2 . Note that 1+X > 0 and 1+Y > 0. In order to show that

O0 is positive, it is enough to show that

X + Y − X(1 + Y )

1 +X
− Y (1 +X)

1 + Y
> 0
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or equivalently
(Y −X)2

(1 +X)(1 + Y )
> 0,

which is always satisfied. So O is strictly increasing in τ and since O(0) = 0, we conclude
that O is positive and the proof is complete.

Demand for the risky asset and finite horizon. Writing the demand for the risky
asset as

z

W
=

m− r

bσ2

Z τ

0
g(γ, t)dtZ τ

0
(1 + b−1

b
γt
σ2
)g(γ, t)dt

,

it follows that

∂

∂τ

³ z

W

´
=
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bσ2

g(γ, τ)

Z τ

0
(1 + b−1

b
γt
σ2
)g(γ, t)dt− (1 + b−1

b
γτ
σ2
)g(γ, τ)

Z τ

0
g(γ, t)dt

D2

=
(1− b)γ(m− r)

b2σ2

g(γ, τ)

Z τ

0
(τ − t)g(γ, t)dt

D2
.

We conclude that
¯̄
z
W

¯̄
is increasing (decreasing) in τ exactly when b < 1 (b > 1).
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