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Abstract

We analyze the problem of a seller who has multiple units of a good and faces a set of buyers

with unit demands, private information, and identity-dependent externalities. We derive the

seller’s optimal mechanism and characterize its main properties. As an application of the model,

we consider the problem of a shopping center’s developer who wants to sell its stores to a set

of potential firms whose willingness to pay depend on the flow of customers that will visit the

mall, which is in turn affected by the composition of the firms that locate in the center. We

show that a sequential selling procedure commonly used in practice is an optimal mechanism if

externalities are sufficiently large.
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1 Introduction

Consider the problem faced by the developer of a new shopping center who wants to allocate retail

space among a set of potential firms that are interested in locating in the mall. An important

constraint in this allocation problem is that each firm is privately informed about some of its

characteristics; e.g., some aspects of its cost of production or attributes of the demand for its

product. Another feature of this problem that is of paramount importance is the existence of

inter-store externalities: the mall’s customer traffic (and hence the volume of sales) depends on the

identities of the firms that locate in the center. Therefore, each firm’s willingness to pay is also

determined by the identities of the other firms that purchase some retail space. If the developer

wants to maximize her profits, what is the optimal selling procedure?

This is an example of an auction problem with multiple units, private information, and identity-

dependent externalities. For a contracting example that exhibits similar features, consider a firm

trying to fill several positions in its R&D department; each applicant has private information about

his disutility of effort, which depends also on the identities of the other people to be hired, with

whom he can enjoy some complementarities. In this setting, the firm should take these features

into account in the design of an optimal contract.

The present paper analyzes a simple model intended to capture the most salient aspects of the

examples described above. We consider the problem of a seller who has two identical units of a

good and who faces a set of potential buyers with unit demands. A buyer’s valuation for the good is

equal to the product of his privately known type and an externality parameter that depends on his

identity and that of the buyer who obtains the other unit of the good. Using the mechanism design

methodology, we characterize the optimal (profit maximizing) selling procedure in this context.

Our main results are the following. The seller should allocate the good to the pair of buyers

that generates the largest sum of virtual surpluses, weighted by the external effects they enjoy.

The allocation need not be ex-post efficient: first, as in the case without externalities, the seller

sometimes keeps one or both units of the good; second, since the presence of external effects

introduces an asymmetry in the model, the buyers who receive the good need not be the ones with

the largest sum of valuations. Unlike the case without externalities, a buyer with a negative virtual

surplus can receive a unit of the good so long as he creates a sufficiently large externality.
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Regarding the pricing of the units, we characterize an optimal payment rule with the following

features: a buyer only pays when he receives a unit, and the amount paid is equal to the value

the good would have had to him had he submitted the lowest winning report, plus the sum of the

increments in utility derived from the higher external benefits that the buyer would have enjoyed,

had he submitted the lowest winning report that allows him to join a neighbor that provides a

higher external benefit.

We also show that these results extend to more general quasi-linear utility functions that contain

the multiplicative form as a special case.

As an application of the model, we consider the shopping center developer’s problem. A common

procedure used in practice is to sign the ‘anchor stores’ first (e.g., Sears, JC Penney), which are

the main externality generators, and then approach the remaining firms interested in locating in

the mall. The evidence also suggests that anchors receive large discounts that are increasing in

the externalities they generate, and the firms that enjoy the external effects pay a premium that

is also increasing in their magnitude. We characterize the equilibrium properties of the sequential

procedure, and we show that it exhibits the main features documented by the empirical evidence.

More importantly, we show that this is an optimal mechanism when the externality generated

by the anchors is sufficiently large. For intermediate values of the external effects, however, the

sequential procedure allocates a unit to an anchor store more often than the optimal mechanism.

To the best of our knowledge, this is the first paper that analyzes an optimal auction design

problem with multiple units, private information, and identity-dependent externalities. As such, it

is related to several strands of literature. To be sure, it is closely related to the papers by Jehiel

et al. (1996, 1999), Jehiel and Moldovanu (2000), and Das Varma (2002), all of which analyze

auctions with externalities.1 Unlike our paper, these references deal with single unit auctions

and focus mainly on the case in which the winner imposes a negative externality on the losers,

1Jehiel et al. use the mechanism design approach, and they allow the external effects to be private information

as well. Jehiel and Moldovanu analyze second-price, sealed-bid auctions under the assumption that bidders interact

after the auction; this interaction makes each agent’s payoff to be a function of everybody’s types. Das Varma studies

the effects that (common knowledge) identity-dependent externalities have on bidding behavior in open ascending-bid

auctions; among other results, he shows that when externalities are non-reciprocal the open auction yields a higher

expected revenue to the seller than a sealed-bid auction.
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making the individual rationality constraints endogenous.2 Another related contribution is Segal

(1999), who analyzes a very general model of contracting situations with externalities but under

the assumption of complete information; he distinguishes between cases where the externalities are

on nontraders and those in which they are present on efficient traders. Our model is an instance

of a contracting situation with externalities on traders, but unlike Segal we also study the effects

that private information has on the optimal contract. Regarding the literature on optimal multi-

unit auctions, the paper relates to Maskin and Riley (1989), Bergin and Zhou (2001), and Levin

(1997). Without externalities, the optimal mechanism we characterize reduces to the one obtained

in Maskin and Riley in the unit demand case or in Bergin and Zhou with a cost function that is

zero for the first two units and infinite for additional ones. Moreover, the optimal payment rule

we derive is similar to the one derived by Levin in his analysis of an optimal selling mechanism

for complements: in that paper, a buyer’s payment internalizes the complementarities among the

goods in an incremental way that resembles how our payment rule internalizes the external effects.

Finally, the paper is related to the literature on pricing of space in shopping centers. Brueckner

(1993) analyzes a model of retail space allocation and pricing under complete information, assuming

that the developer has already chosen the firms that will locate in the mall. Among other things,

he shows that the effects of the externalities on prices paid are ambiguous when the developer

can perfectly discriminate; i.e., it is not necessarily true that firms pay less if they generate more

externalities. Pashigian and Gould (1998) provide extensive empirical evidence on the subject: they

estimate the effects of the externalities created by the anchor stores on rental prices, and they show

that anchors receive rent subsidies that are increasing in the externalities created, while the rest of

the firms pay rent premiums that are increasing in the external effects enjoyed. Unlike Brueckner,

our model incorporates private information and allows the seller to choose the composition of the

stores that will locate in the shopping center. Moreover, we show that when these features are

present the characteristics of the optimal mechanism are consistent with the evidence presented by

Pashigian and Gould.

The rest of the paper proceeds as follows. The next section presents the model and some

2Jehiel and Moldovanu (2001) analyze a general model that can accommodate multi-unit auctions with identity-

dependent externalities. Their focus, however, is on efficiency rather than revenue maximization. We are grateful to

Benny Moldovanu for pointing this reference out to us.
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preliminary results. Section 3 characterizes the optimal mechanism, while Section 4 focuses on the

application of the model to the shopping center developer’s problem. Section 5 extends the results

to more general quasi-linear payoffs, and Seccion 6 concludes.

2 The Model

There are I+1 risk-neutral agents: a seller, whom we call agent 0, and I potential buyers, numbered

1, 2, ..., I. The seller owns two identical units of an indivisible good, and buyers have unit demands

(i.e., each one demands at most one unit of the good).3

The seller has zero valuation for the good.4 Buyer i’s valuation for a unit depends on two

factors. First, it depends on a parameter or type θi that is private information and it is distributed

on Θi = [θi, θi], 0 ≤ θi < θi, with positive and atomless density φi(·) and cumulative distribution

function Φi(·); moreover, buyers’ types are independently distributed. Second, a buyer’s valuation

depends also on who gets the other unit. We model this by introducing a matrix of external effects

{αij}1≤i≤I,0≤j≤I , with αij ≥ 1, αii = αi0 = 1.5 If buyer i gets a unit of the good, j gets the other

unit, and i pays the seller −ti, then buyer i’s utility is αijθi + ti. Notice that i does not derive any

extra utility if he gets the second unit, and he does not enjoy an external effect if the seller keeps

the second unit. The matrix of external effects is common knowledge.

As the following examples illustrate, the model encompasses several interesting applications.

Example 1: Consider the case of a shopping center where each potential store owner is a branch

of a large firm whose headquarters sets a uniform pricing policy for all of its stores in a particular

region, a common practice of, for instance, some apparel stores. If we denote such a price by Pi,

the privately known marginal cost of production by ci, the flow of customers that would visit i if j

were also located in the mall by αij , and the quantity that i would sell by Qi = kiαij , ki > 0, then

i’s profits would be αijki(Pi − ci) = αijθi, where θi = ki(Pi − ci).

Example 2: Alternatively, suppose each firm i faces a separate linear demand for the product it

3The extension to more than two units is immediate, albeit cumbersome in terms of notation.
4This is a standard simplifying assumption that can be relaxed without affecting the main results of the paper.
5This is just a normalization; it is only required that αii = αi0 = mini,j αij . We only consider the case of positive

externalities in this paper.
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sells, and let the slope be private information and the intercept be affected by the identity of the

other firm located in the shopping center; e.g. Pi =
√

αij − biQi. Suppose the cost of production

is zero. Then, firm i’s profit function (after choosing the optimal Qi) is αij
1

4bi
= αijθi, where

θi = 1
4bi

.6

Example 3: Finally, consider the case in which the seller is a firm that is trying to fill two positions

in its R&D department. Each applicant i is privately informed about his disutility of effort, which

also depends on who will be the candidate j that will fill the other position; e.g., i’s payoff would

be ti − αijθi. It is straightforward to see that a slight modification of the model described above

subsumes this contracting problem with externalities as a special case.

The goal of the seller is to design a mechanism that maximizes her expected profits, taking

into account that buyers have private information, that ownership entails external effects, and

that participation is voluntary. If no trade occurs, then for simplicity the payoffs of all agents are

normalized to zero.

By the Revelation Principle we can, without loss of generality, restrict the search for the optimal

selling scheme to direct revelation mechanisms (DRM) that are incentive compatible and individu-

ally rational. In the present case, since the two units are identical and buyers have unit demands,

we can describe a DRM as follows. Let Λ = {[i, j] | i, j = 0, 1, ..., I} be the set of unordered pairs

[i, j] (that is, pairs (i, j) and (j, i) are regarded to be the same),7 and let y = (y[i,j])0≤i,j≤I be a

probability distribution over Λ: that is, y[i,j] is interpreted as the probability that i gets one unit

and j gets the other unit. A DRM is a pair of functions (y(θ), t(θ)), where y(θ) = (y[i,j](θ))0≤i,j≤I ,

t(θ) = (t0(θ), ..., tI(θ)), and θ = (θ1, ..., θI); y[i,j](θ) is the probability that i and j get the units of

the good when θ is the vector of announced types, and ti(θ), i = 1, ..., I, is the amount of money

transferred to buyer i in that case.

Since t0(·) = −∑I
i=1 ti(·) and 1 − y[0,0](·) =

∑
[i,j]6=[0,0] y[i,j](·), the seller’s problem can be

6Examples 1 and 2 make the multiplicative case look more restrictive than it actually is. We could allow firms to

make multiple decisions (investment, advertising, etc.) after the auction takes place, so long as the final profits are

affected multiplicatively by the externality parameter.
7The notation is borrowed from Shiryaev (1996, p. 6). Notice that the number of unordered pairs is (I+2)(I+1)

2
.
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written as follows:

max
(y[i,j](·))[i,j]6=[0,0],(ti(·))1≤i≤I

Eθ

[
−

I∑

i=1

ti(θ)

]
(1)

subject to Ui(θi) ≥ θivi(θ̂i) + ti(θ̂i) ∀(i, θi, θ̂i) (2)

Ui(θi) ≥ 0 ∀(i, θi) (3)

y[i,j](θ) ≥ 0 ∀([i, j], θ) (4)

1 −
∑

[i,j]6=[0,0]

y[i,j](θ) ≥ 0 ∀θ, (5)

where vi(θ̂i) = Eθ−i
[vi(θ̂i, θ−i)] = Eθ−i

[
∑I

j=0 αijy[i,j](θ̂i, θ−i)] is the expected external effect buyer

i enjoys if he reports θ̂i; ti(θ̂i) = Eθ−i
[ti(θ̂i, θ−i)] is i’s expected transfer if he reports θ̂i; and

Ui(θi) = θivi(θi) + ti(θi) is buyer i’s expected utility if his type is θi and he reports it truthfully.

Using a procedure that is standard in the literature on optimal auctions, we can simplify the

seller’s problem as follows. First, the incentive compatibility constraints (2) can be replaced by the

following conditions:

Lemma 1 (Myerson) A selling mechanism is incentive compatible if and only if for i = 1, 2, ..., I

(i) vi(·) is increasing;8 and

(ii) Ui(θi) = Ui(θi) +
∫ θi

θi
vi(s)ds, ∀θi ∈ Θi.

Second, the lemma reveals that the individual rationality constraints (3) are satisfied if and

only if Ui(θi) ≥ 0.

Third, since −ti(θi) = θivi(θi)−Ui(θi), we can use condition (ii) in the lemma and rewrite the

objective function as follows:

Eθ

[
−

I∑

i=1

ti(θ)

]
=

I∑

i=1

Eθi

[
θivi(θi) −

∫ θi

θi

vi(s)ds

]
−

I∑

i=1

Ui(θi)

=

I∑

i=1

Eθi

[(
θi −

1 − Φi(θi)

φi(θi)

)
vi(θi)

]
−

I∑

i=1

Ui(θi)

=

I∑

i=1

Eθ



(

θi −
1 − Φi(θi)

φi(θi)

)


I∑

j=0

αijy[i,j](θ)




−

I∑

i=1

Ui(θi), (6)

where the second line follows by integration by parts, and the last one uses the definition of vi(·).
8Throughout the paper, increasing is used in the weak sense.
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Fourth, it is clear from the objective function that Ui(θi) = 0 at the optimum for i = 1, 2, ..., I.

Therefore, the seller’s problem becomes:

max
(y[i,j](·))[i,j]6=[0,0]

I∑

i=1

Eθ



(

θi −
1 − Φi(θi)

φi(θi)

)


I∑

j=0

αijy[i,j](θ)




 (7)

subject to (4)-(5) and condition (i) in Lemma 1.

3 Main Results

Consider the ‘relaxed problem’ of maximizing (7) subject to (4)-(5) only. Let

Ji(θi) = θi −
1 − Φi(θi)

φi(θi)
,

and assume Ji(·) is a strictly increasing function. Rewrite the seller’s objective function as follows:

Eθ




I∑

i=1

I∑

j=0

Ji(θi)αijy[i,j](θ)


 . (8)

By inspection, the seller’s relaxed problem is equivalent to solving, for each θ = (θ1, ..., θI),

max
(y[i,j](θ))[i,j]6=[0,0]

I∑

i=1

I∑

j=0

Ji(θi)αijy[i,j](θ) (9)

subject to (4)-(5).

Straightforward algebra reveals that the objective funtion in (9) is equal to (recall αi0 = αii = 1)

I∑

i=1

Ji(θi)y[i,0](θ) +
∑

i≥j≥1

J[i,j](θi, θj)y[i,j](θ), (10)

where, with a slight abuse of notation, we have set

J[i,j](θi, θj) = αijJi(θi) + αjiJj(θj)

J[i,i](θi, θi) = Ji(θi).

It is evident that the solution to this linear programming problem is given by the following

allocation rule:

y∗[i,j](θ) =





1 if J[i,j](θi, θj) ≥ max{0, maxi Ji(θi), max[l,k],l 6=k,l,k≥1 J[l,k](θl, θk)}

0 otherwise
(11)
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In words, the allocation is as follows: “Given the buyers’ reports, the seller chooses the pair

that generates the largest combined virtual surplus weighted by the external effects. If this number

is nonnegative and greater than the virtual surplus of every single buyer, then the seller allocates

the goods to the aforementioned pair of buyers; otherwise, she gives the units (or only one of them)

to the buyer who has the largest nonnegative virtual surplus. If there is no buyer or pair of buyers

with nonnegative (combined) virtual surplus, the seller keeps the two units of the good.”

In order to prove that this is an optimal allocation rule for the seller, we still need to show

that it satisfies condition (i) of Lemma 1. If y∗
[i,j](·) were increasing in θi for any given θ−i, then

condition (i) would easily follow. The next example reveals that y∗
[i,j](·) need not be increasing in

θi when externalities are present:

Example 4: There are three bidders with valuations distributed uniformly on [0, 1], so Ji(θi) =

2θi − 1. Let θ = (θ1, θ2, θ3), with θi > 1
2 for all i. Suppose the following conditions hold: (i)

y∗[1,2](θ1, θ−1) = 1, (ii) α13 > α12, (iii) α21(2θ2 − 1) > α31(2θ3 − 1), (iv) α21(2θ2−1)−α31(2θ3−1)
α13−α12

< 1.

Under these assumptions, we will show that there exists a type θ′1 > θ1, such that y∗[1,2](θ
′
1, θ−1) = 0

and y∗[1,3](θ
′
1, θ−1) = 1, proving that y∗[1,2](·, θ−1) cannot be increasing. It suffices to show that there

exist values θ1 > 1
2 and θ′1 ∈ (θ1, 1] such that the following inequalities are satisfied:

α12(2θ1 − 1) + α21(2θ2 − 1) > α13(2θ1 − 1) + α31(2θ3 − 1)

α13(2θ
′
1 − 1) + α31(2θ3 − 1) > α12(2θ

′
1 − 1) + α21(2θ2 − 1).

These inequalities and (ii) yield

θ′1 >
1

2

(
1 +

α21(2θ2 − 1) − α31(2θ3 − 1)

α13 − α12

)
> θ1.

But (iv) ensures that the value of the squeezed term belongs to the interval ( 1
2 , 1); therefore there

exist numbers θ1 and θ′1 with the aforementioned properties. For a numerical illustration, set

θ2 = 0.8, θ3 = 0.6, θ1 = 0.7, θ′1 = 0.95, α21 = α31 = 1, α12 = 1.5, α13 = 2, and α23 = α32 = 1.3.

This example notwithstanding, it is easy to prove that the allocation rule y∗
[i,j](·) is indeed

optimal.

Proposition 1 The allocation rule given by (11) satisfies condition (i) in Lemma 1 and it is

therefore optimal for the seller.
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Proof: To show that vi(·) is increasing, it is enough to prove that vi(·, θ−i) =
∑I

j=0 αijy
∗
[i,j](·, θ−i)

is increasing. Take θ′i > θ′′i ; we will show that vi(θ
′
i, θ−i) ≥ vi(θ

′′
i , θ−i). The result follows trivially

when vi(θ
′′
i , θ−i) = 0, since vi(·, θ−i) is a nonnegative function. Thus, without loss of generality

suppose vi(θ
′′
i , θ−i) = αil.

Notice that it must be the case that vi(θ
′
i, θ−i) > 0, for αilJi(θ

′
i)+αliJl(θl) > αilJi(θ

′′
i )+αliJl(θl)

implies that, if the seller finds it optimal to allocate a unit to i when he reports θ′′i , she must find

it optimal to do so under θ′i (recall θ−i is kept fixed). Therefore, vi(θ
′
i, θ−i) = αik for some k.

To complete the proof, we show that αik ≥ αil. Since y∗[i,l](θ
′′
i , θ−i) = 1 and y∗[i,k](θ

′
i, θ−i) = 1, it

follows that

αilJi(θ
′′
i ) + αliJl(θl) ≥ αikJi(θ

′′
i ) + αkiJk(θk)

αikJi(θ
′
i) + αkiJk(θk) ≥ αilJi(θ

′
i) + αliJl(θl). (12)

These inequalities yield (αil − αik)(Ji(θ
′′
i ) − Ji(θ

′
i)) ≥ 0; but Ji(·) is strictly increasing and hence

αik ≥ αil.

Example 5: Consider the special case with no external effects; i.e., αij = 1 for all i = 1, 2, ..., I,

j = 0, 1, ..., I. The allocation rule becomes

y∗[i,j](θ) =





1 if Ji(θi) + Jj(θj) ≥ max{0, maxi Ji(θi), max[l,k],l 6=k,l,k≥1 Jl(θl) + Jk(θk)}

0 otherwise

It follows that y∗[i,j](θ) = 1 if and only if (i) Ji(θi) ≥ 0, (ii) Jj(θj) ≥ 0, (iii) Ji(θi) ≥ Jk(θk) for k 6= j,

and (iv) Jj(θj) ≥ Jk(θk) for k 6= i. Thus, the seller simply allocates the units of the good to the

buyers with the largest virtual surpluses, as in Maskin and Riley (1989). In particular, they show

that if types are identically distributed then a standard auction with a reserve price is an optimal

mechanism.

Notice that, unlike the single object and the multi-unit cases without externalities, it could

happen under the allocation rule (11) that a buyer receives a unit despite having Ji(θi) < 0, so

long as he is paired with another buyer who enjoys a large external effect from being with i. In the

special case in which Ji(θ) > 0 for every i, the allocation rule simply instructs the seller to allocate

the goods to the pair of buyers with the largest combined virtual surplus.
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To complete the characterization of an optimal mechanism, we need a payment rule that, along

with the allocation rule (11), constitute an optimal selling procedure. From Lemma 1, it is enough

to find one that guarantees incentive compatibility. Using condition (ii) in the lemma and the

definition of Ui(θi) we obtain

−ti(θi) = θivi(θi) −
∫ θi

θi

vi(s)ds, (13)

which is equivalent to

Eθ−i
[−ti(θi, θ−i)] = Eθ−i

[
θivi(θi, θ−i) −

∫ θi

θi

vi(s, θ−i)ds

]
. (14)

Therefore,

−t∗i (θi, θ−i) = θivi(θi, θ−i) −
∫ θi

θi

vi(s, θ−i)ds

= θi

I∑

j=0

αijy
∗
[i,j](θi, θ−i) −

∫ θi

θi




I∑

j=0

αijy
∗
[i,j](s, θ−i)


 ds (15)

for every i and every θ = (θi, θ−i), is an optimal payment rule. We have thus shown the following

result.

Theorem 1 The mechanism (y∗, t∗) is an optimal selling procedure.

Let’s characterize the payment rule further. In the proof of Proposition 1, we show that vi(·, θ−i) =
∑I

j=0 αijy
∗
[i,j](·, θ−i) is an increasing function. Given the shape of y∗

[i,j](·), it is actually a step

function that, without loss of generality, can be assumed to be right-continuous. Let {θ1
i , θ

2
i , ..., θ

n
i },

with θ1
i < θ2

i < ... < θn
i , be the set of points where the function jumps. Notice that, given θ−i, θ1

i

is the smallest type that i could report and still obtain a unit of the good. It is evident from (15)

that if θi < θ1
i then −t∗i (θi, θ−i) = 0. Suppose θi ≥ θ1

i , and let j1, j2, ..., jn be the identities of i’s

neighbors at the jump points. Notice that αij1 < αij2 < ... < αijn by the monotonicity of vi(·, θ−i).

Then (setting θn+1
i = θi),

∫ θi

θi

vi(s, θ−i)ds =
n∑

p=1

αijp(θp+1
i − θ

p
i ),

10



and therefore,

−t∗i (θi, θ−i) = θiαijn −
n∑

p=1

αijp(θp+1
i − θ

p
i )

= θ1
i αij1 +

n−1∑

p=1

(αijp+1 − αijp)θp+1
i . (16)

Figure 1 provides an illustration of the payment rule in the case of three alternative neighbors with

whom i could be paired given (θi, θ−i).

−ti(θi, θ−i)

αij3

αij2

αij1

θi = 0 θ1
i θ2

i θ3
i θi

Figure 1

In summary, the optimal payment rule characterized above is given by

−t∗i (θi, θ−i) =





θ1
i αij1 +

∑n−1
p=1 (αijp+1 − αijp)θp+1

i if θi ≥ θ1
i

0 if θi < θ1
i .

(17)

The interpretation is the following. Suppose that, given (θi, θ−i), i obtains a unit of the good and

jn receives the other unit. Then the amount that i pays for the unit is the sum of two components:

(i) he pays an amount αij1θ1
i , which is the value the good would have had to him had he submitted

the lowest winning report given θ−i, namely θ1
i ; (ii) he pays the sum of the increments in utility

derived from the higher external benefits that i would have enjoyed, had he submitted the lowest

winning report that allows him to join a neighbor who provides a higher external benefit. For

instance, the smallest winning report above θ1
i that pairs i with a neighbor that generates higher

externalities than j1 is θ2
i , and the incremental utility i gets is (αij2 − αij1)θ2

i .
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Example 6: Suppose there are three bidders and Ji(θi) > 0 for i = 1, 2, 3. Without loss of

generality, let θ = (θ1, θ2, θ3) be a vector of reports such that y∗
[1,2](θ) = 1. That is, (i) α12J1(θ1) +

α21J2(θ2) ≥ α13J1(θ1) + α31J3(θ3) and (ii) α12J1(θ1) + α21J2(θ2) ≥ α23J2(θ2) + α32J3(θ3). As an

illustration, let us calculate −t1(θ). There are two cases to consider:

Case 1: Suppose α12 < α13. Then it must be the case that α21J2(θ2) > α31J3(θ3), for otherwise

the seller would prefer [1, 3] to [1, 2]. Buyer 1’s payment is

−t1(θ) = θ1
1α12, (18)

with θ1
1 = θ1 if α12J1(θ1) + α21J2(θ2) ≥ α23J2(θ2) + α32J3(θ3), and θ1

1 = θ̂1 otherwise, where

θ̂1 = J−1
1 ( (α23−α21)J2(θ2)+α32J3(θ3)

α12
) is the value of θ1 that satisfies (ii) with equality (see Figure 2).

Notice that ∂θ̂1
∂α21

< 0; that is, buyer 1 pays less the higher the external effect he imposes on buyer

2.

0 J1(θ1)J1(θ̂1) J1(θ1) J1(θi)

α12J1(θ1) + α21J2(θ2)

α13J1(θ1) + α31J3(θ3)

α13J1(θ1) + α31J3(θ3)

α12J1(θ1) + α21J2(θ2)

α23J2(θ2) + α32J3(θ3)

Figure 2

Case 2: Suppose α12 ≥ α13. In this case, either α21J2(θ2) ≥ α31J3(θ3) and we are back in Case 1,

or α21J2(θ2) < α31J3(θ3) and there are two subcases to consider, namely α13J1(θ) + α31J3(θ3) ≥

α23J2(θ2) + α32J3(θ3) and α13J1(θ) + α31J3(θ3) < α23J2(θ2) + α32J3(θ3).

If α13J1(θ) + α31J3(θ3) ≥ α23J2(θ2) + α32J3(θ3), then

−t1(θ) = θ1
1α13 + (α12 − α13)θ

2
1, (19)
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with θ1
1 = θ1 and θ2

1 = θ̃1, where θ̃1 = J−1
1 (α31J3(θ3)−α21J2(θ2)

α12−α13
) is the value of θ1 that satisfies (i)

with equality (see Figure 3). As in the previous case, ∂θ̃1
∂α21

< 0, which makes buyer 1’s payment a

decreasing function of the external effect that buyer 2 enjoys.

J1(θ1) J1(θ̃1) J1(θ1) J1(θ1)

α12J1(θ1) + α21J2(θ2)

α13J1(θ1) + α31J3(θ3)

α12J1(θ1) + α21J2(θ2)

α13J1(θ1) + α31J3(θ3)

α23J2(θ2) + α32J3(θ3)

Figure 3

If α13J1(θ1) + α31J3(θ3) < α23J2(θ2) + α32J3(θ3), then either θ̂1 ≥ θ̃1 and −t1(θ) is given by (18)

with θ1
1 = θ̂1, or θ̂1 < θ̃1 and −t1(θ) is given by (19) with θ1

1 = θ̂1 and θ2
1 = θ̃1 (see Figure 4).

J1(θ1)J1(θ1) J1(θ̂1) J1(θ̃1) J1(θ̂1) J1(θ1)

α12J1(θ1) + α21J2(θ2)

α13J1(θ1) + α31J3(θ3)

α12J1(θ1) + α21J2(θ2)

α13J1(θ1) + α31J3(θ3)

α23J2(θ2) + α32J3(θ3)

Figure 4

To conclude this section, notice that the allocation rule y∗
[i,j](·) need not yield an (ex-post)

efficient allocation of the goods. If types were common knowledge, the seller’s optimal mechanism

13



is to allocate the units of the goods to the pair [i, j] with the largest αijθi + αjiθj , and to charge

αijθi to buyer i and αjiθj to j, thereby extracting all the surplus from the buyers who obtain the

units of the good. Notice that the allocation that ensues is efficient. Moreover, since θi ≥ 0 for all

i and αij ≥ 1, the seller should always sell the two units to different buyers. Under the optimal

allocation rule y∗[i,j](·), however, the seller may keep one or both units, and even when she sells both

units, she need not allocate them to the pair of buyers [i, j] with the largest αijθi + αjiθj , as the

following example illustrates.

Example 7: There are three bidders with valuations distributed uniformly on [θ, θ], 2θ > θ, which

implies that Ji(θi) = 2θi − θ > 0 for all θi and for all i; hence, the seller always sells both units.

Suppose that the external effects are given by α21 = α31 = α > 1, α12 = α13 = α23 = α32 = 1; that

is, buyer 1 is the only one who generates externalities. Consider a vector of reports θ = (θ1, θ2, θ3),

with θ2 > θ3. Notice that in this case it will never be optimal for the seller to allocate the goods to

[1, 3]. It is easy to verify that the goods will be sold to [1, 2] if and only if (θ1 + αθ2)− (θ2 + θ3) ≥
θ
2(α − 1) > 0. Thus, it could happen that the seller allocates the two units to [2, 3] even though

(θ1 + αθ2) > (θ2 + θ3); i.e., the allocation is inefficient. For a numerical illustration, set θ = 1.05,

θ = 2, α = 1.1, θ1 = 1.07, θ2 = 1.2, and θ3 = 1.1.

Intuitively, the inefficiency illustrated in the example is a consequence of the asymmetry in-

troduced by the presence of external effects in the allocation process. Another consequence of the

asymmetric nature of the model is that it makes it extremely difficult to find an indirect mechanism

that implements the optimal auction (y∗, t∗), a daunting task even in the asymmetric single-unit

case with no externalities. In the next section, we focus on a particular application of the model

in order to shed some light on the optimality properties of a commonly used procedure.

4 Application: Selling a Shopping Center’s Stores

As an application of the model, consider the problem of the owner (developer) of a shopping center

who wants to sell its stores to a set of potential firms that are interested in locating there. The

literature suggests that inter-store externalities are of paramount importance in the determination

14



of the prices paid and of the composition of the firms that are awarded the stores.9 Indeed, a

common procedure used in practice by shopping mall developers is to first sign at lower per square

foot prices the ‘anchor stores’ (e.g., Sears, JC Penney), which are the ones that typically generate

the largest externalities, and only then the seller offers the remaining space to the rest of the

potential neighboring firms (Pashigian and Gould (1993), pp. 119 and 130). The price paid by an

anchor store is a decreasing function of the externalities it creates, and the prices paid by the rest

of the firms are increasing functions of the size of the external effects they enjoy (Pashigian and

Gould (1993), Sections IV and V, especially pp. 126-128 and 135).

To cast some light on the properties of this sequential mechanism, we will consider the case of

three potential buyers in which only buyer 1 generates externalities; formally, α21 = α31 = α > 1,

α12 = α13 = α23 = α32 = 1. For simplicity, let θi be distributed on [θ, θ] with density φ(·) for all i,

and let θφ(θ) > 1 (this ensures that J(θ) > 0 and hence J(θi) > 0 for all θi, i = 1, 2, 3).

The seller proceeds as follows: in the first stage, she makes a take-it-or-leave-it offer to buyer 1.

If buyer 1 accepts, he obtains one store and the seller then uses a first-price auction to allocate the

remaining unit between buyers 2 and 3 in the second stage. If buyer 1 rejects, then the seller sells

one unit to buyer 2 and one unit to buyer 3 at a price θ per unit in the second stage. Notice that,

given the assumptions made, the seller uses an optimal mechanism in each possible case in which

she deals with buyers 2 and 3.10

Consider the second stage. If there are two units left, buyers 2 and 3 accept the offer and the

seller’s revenue is equal to 2θ. If there is only one unit left, then the buyer with the highest type

between 2 and 3 receives the store; it is straightforward to see that the seller’s expected revenue in

this case is 2α
∫ θ

θ
s(1 − Φ(s))φ(s)ds, which is equal to the expected value of min{θ2, θ3} times the

external effect.

In the first stage, the seller solves

max
θ∗1≥θ

(1 − Φ(θ∗1))

(
θ∗1 + 2α

∫ θ

θ

s(1 − Φ(s))φ(s)ds

)
+ Φ(θ∗1)2θ, (20)

where θ∗1 is the take-it-or-leave-it offer tendered to buyer 1.

9See Pashigian and Gould (1993) for empirical evidence on the subject and for estimates of the size of the external

effects.
10If J(θ) < 0, then the only modification needed is to introduce a ‘reserve price’ θr in the second stage determined

by J(θr) = 0.
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The solution to this problem is the following: if α ≥ α∗, then θ∗1 = θ, while if α < α∗, then θ∗1

is the unique solution to

J(θ∗1) = 2θ − 2α

∫ θ

θ

s(1 − Φ(s))φ(s)ds. (21)

The threshold value of the external effect, α∗, is given by

α∗ =
θφ(θ) + 1

2φ(θ)
∫ θ

θ
s(1 − Φ(s))φ(s)ds

. (22)

The properties of the sequential mechanism can be summarized as follows. Straightforward

differentiation of (21) reveals that the seller makes buyer 1 an offer θ∗1 that is decreasing in the size

of the external effect he generates; if he accepts the offer, then the price paid for the remaining unit

is an increasing function of α. These properties are consistent with the empirical evidence on the

subject.

When the size of the externality is relatively small, there is a positive probability that buyer

1 will not obtain a store. However, if the externality that buyer 1 generates is sufficiently large,

namely α ≥ α∗, then the seller ensures that buyer 1 receives a unit with probability one, and her

expected revenue is θ + 2α
∫ θ

θ
s(1 − Φ(s))φ(s)ds.

It is worth pointing out that these features depend crucially on the existence of private infor-

mation on the part of the buyers. For instance, if buyers’ types were common knowledge and if

the seller decided to sell a unit to buyer 1, then she would do it with probability one and would

extract all of the surplus; the price paid by buyer 1 would be independent of the external effect he

creates. That is, there would be no ‘discounts’ to anchors.

Let’s compare the results of the sequential procedure with the optimal mechanism characterized

in the previous section and analyzed in Example 6 for the case of three buyers with J(θ) > 0. The

comparison relies on the following result.

Lemma 2 In the optimal mechanism buyer 1 obtains a unit of the good with probability one if and

only if α ≥ α̂ = θφ(θ)
θφ(θ)−1 .

Proof: We need to find the smallest value of α such that the following inequalities hold for every
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(θ1, θ2, θ3):

J(θ1) + αJ(θ2) ≥ J(θ2) + J(θ3) (23)

J(θ1) + αJ(θ3) ≥ J(θ2) + J(θ3). (24)

Consider (23); it holds if and only if, for every (θ1, θ2, θ3),

α ≥ J(θ2) + J(θ3) − J(θ1)

J(θ3)
.

In particular, this must hold for every θ = (θ, θ, θ3); that is,

α ≥ J(θ) − J(θ) + J(θ3)

J(θ3)
.

The right side of this expression is of the form f(x) = a+x
x

, with a > 0; notice that ∂f(x)
∂x

< 0. Hence,

the right side achieves its maximum at θ3 = θ, and its value is J(θ)
J(θ) = θφ(θ)

θφ(θ)−1 = α̂. Therefore,

(23) holds if and only if α ≥ α̂, and a similar analysis reveals that this condition is necessary and

sufficient for (24) as well.

It is straightforward to calculate the payments when α ≥ α̂ (see Example 6). Since buyer 1

always receives one store, his smallest winning report is θ, and this is the amount he pays. Buyer

2 obtains the other unit if and only if θ2 ≥ θ3; the smallest report that would make him obtain the

remaining unit in this case is θ3, and he therefore pays αθ3. This yields an expected revenue for

the seller equal to θ +αE[min{θ2, θ3}]. Notice that the allocation and payments under the optimal

mechanism when α ≥ α̂ are the same as in the sequential mechanism when α ≥ α∗. We have thus

proved the following result:

Proposition 2 If α ≥ max{α̂, α∗}, then the sequential mechanism is optimal.

Notice that α̂ − α∗ > 0 if and only if

1 − θ2φ(θ)2 + θφ(θ)22

∫ θ

θ

s(1 − Φ(s))φ(s)ds > 0. (25)

But 2
∫ θ

θ
s(1 − Φ(s))φ(s)ds = E[min{θ2, θ3}] ≥ θ; hence, the left side of (25) is greater than

1 + θφ(θ)2(θ − θ) > 0, thereby proving that α̂ > α∗. Thus,

Proposition 3 If α∗ ≤ α ≤ α̂, then the sequential mechanism allocates a unit to buyer 1 more

often than the optimal mechanism.
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The analysis reveals that the common procedure used in practice is in fact an optimal mecha-

nism for the seller for sufficiently large values of the external effect. For lower values, however, the

sequential procedure need not be optimal; there is a range of values for the externality in which the

seller can increase her expected revenue by allocating the two units to buyers 2 and 3 with positive

probability, thereby raising the amount buyer 1 pays whenever he obtains a unit of the good. It is

easy to show that it is still the case that when buyer 1 receives a unit his payment is decreasing in

α, while the other buyer who obtains the remaining store pays a sum that is an increasing function

of the external effect enjoyed.11 Notice, however, that when buyer 1 does not obtain a store in

the sequential mechanism, the payments of buyers 2 and 3 are independent of α, whereas in the

optimal mechanism their payments are still an increasing function of α, as the following example

illustrates.

Example 8: Suppose that θ = (θ1, θ2, θ3) is such that y[2,3](θ) = 1. That is, (i) J(θ2) + J(θ3) ≥

αJ(θ2) + J(θ1) and (ii) J(θ2) + J(θ3) ≥ αJ(θ3) + J(θ1). Then αJ(θ3) + J(θ1) > J(θ) + J(θ3) >

αJ(θ) + J(θ1), where the first inequality is obvious and the second one holds since otherwise the

seller would always prefer [1, 2] over [2, 3]. It follows that −t2(θ) = θ̂2 = J−1(J(θ1)+ (α− 1)J(θ3)),

which is an increasing function of α (see Figure 5). A similar analysis holds for −t3(θ3).

J(θ) J(θ̂2) J(θ) J(θ2)

αJ(θ) + J(θ1)

J(θ) + J(θ3)

αJ(θ2) + J(θ1)

J(θ2) + J(θ3)

αJ(θ3) + J1(θ1)

Figure 5

11For instance, it follows from Example 6 that if α ≤ α̂ and buyer 1 obtains a store, then −t1(θ) is equal either to

θ or to θ̂1, which is the unique solution to J(θ̂1) = J(θ3) − (α − 1)J(θ2) and is a decreasing function of α.
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5 Generalization of the Results

The analysis of the model and the examples presented above exploit the assumption that a buyer’s

type and the external effect interact multiplicatively in his utility function. Although this as-

sumption makes the derivation of the results easier and their interpretation more transparent, it

precludes the application of the model to natural modifications of the shopping center problem, as

the next example illustrates:

Example 9: Consider the following variation of Example 2. Suppose that if firm i locates in the

shopping mall, then it will face a linear demand Pi = αij −Qi for its product, where j denotes the

identity of the neighboring firm. Suppose also that i can produce at a constant marginal cost ci

that is private information. It is easy to see that i’s profit function is
(αij−ci)

2

4 =
(αij+θi)

2

4 , where

θi = −ci. Notice that profits are increasing in αij and θi, (strictly) convex in θi, and (strictly)

supermodular in (αij , θi).
12

Using this example as motivation, we will show that all the results extend to the case where

buyers’ utility functions are given by ui(αij , θi) + ti with ui(·, ·) nonnegative, ∂ui

∂αij
> 0, ∂ui

∂θi
> 0,

∂2ui

∂θ2
i

≥ 0, and ∂2ui

∂αij∂θi
≥ 0. Note in passing that αijθi satisfies all these properties.

Define

Si(αij , θi) = ui(αij , θi) −
(1 − Φi(θi))

φi(θi)

∂ui(αij , θi)

∂θi
.

We will assume that Si(αij , θi) is strictly increasing in θi and supermodular in (αij , θi); in the

multiplicative case analyzed in the previous sections, Si(αij , θi) = αijJi(θi), which clearly satisfies

these properties.

For ease of exposition, we have placed in the Appendix the details of the analysis of the general

model as well as the proof of the following result.

Theorem 2 If ui(αij , θi) and Si(αij , θi) satisfy the aforementioned assumptions, then the following

12A function of two variables f(x, y) is supermodular if given (x1, y1) and (x2, y2),

f(x1 ∨ x2, y1 ∨ y2) + f(x1 ∧ x2, y1 ∧ y2) ≥ f(x1, y1) + f(x2, y2).

If the function is C2, this is equivalent to ∂2f(x,y)
∂x∂y

≥ 0.
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mechanism (y∗, t∗) is optimal for the seller:

y∗[i,j](θ) =





1 if S[i,j](αij , αji, θi, θj) ≥ max{0, maxi Si(αi0, θi), max[l,k],l 6=k,l,k≥1 S[l,k](αlk, αkl, θl, θk)}

0 otherwise,

and

−t∗i (θi, θ−i) =

I∑

j=0

ui(αij , θi)y
∗
[i,j](θi, θ−i) −

∫ θi

θi




I∑

j=0

∂ui(αij , s)

∂θi
y∗[i,j](s, θ−i)


 ds,

where S[i,j](αij , αji, θi, θj) = Si(αij , θi) + Sj(αji, θj).

Notice that the allocation and payment rules stated in Theorem 2 are suitable generalizations of

the ones derived in the multiplicative case. It is evident by inspection that the intuition of the

allocation rule is the same as before, and a bit of work reveals that the payment rule also has

similar properties as (17) does.

6 Concluding Remarks

This paper studies the optimal auction design problem of a seller in the presence of buyers’ private

information and identity-dependent externalities. We show that the optimal allocation is to give

the goods to the set of buyers that generate the largest sum of virtual surpluses; this rule sometimes

leads to an ex-post inefficient allocation. We characterize an optimal payment rule that illustrates

how the seller can structure payments in such a way that buyers who obtain the goods pay according

to the external benefits they enjoy and generate. As an application of the model, we analyze the

selling problem faced by a shopping center’s developer, and we characterize the main properties of

a sequential mechanism commonly used in practice. It turns out that the sequential procedure is

optimal when inter-store externalities are large, but it differs from the optimal mechanism in other

cases. Finally, we generalize the main results to a larger class of quasi-linear utility functions that

contains the multiplicative case as a special one.
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Appendix

In the general case with buyers’ utility functions ui(αij , θi) + ti, the seller’s problem is:

max
(y[i,j](·))[i,j]6=[0,0],(ti(·))1≤i≤I

Eθ

[
−

I∑

i=1

ti(θ)

]
(26)

subject to Ui(θi) ≥ Eθ−i




I∑

j=0

ui(αij , θi)y[i,j](θ̂i, θ−i)


+ ti(θ̂i) ∀(i, θi, θ̂i) (27)

Ui(θi) ≥ 0 ∀(i, θi) (28)

1 ≥ y[i,j](θ) ≥ 0 ∀([i, j], θ) (29)

1 −
∑

[i,j]6=[0,0]

y[i,j](θ) ≥ 0 ∀θ, (30)

The following conditions are necessary and sufficient for incentive compatibility:

(i) Eθ−i

[∑I
j=0

∂ui(αij ,·)
∂θi

y[i,j](·, θ−i)
]

is increasing; and

(ii) Ui(θi) = Ui(θi) +
∫ θi

θi
Eθ−i

[∑I
j=0

∂ui(αij ,s)
∂θi

y[i,j](s, θ−i)
]
ds, ∀θi ∈ Θi.

To prove necessity, suppose (y, t) is incentive compatible. Then (ii) follows from an application

of the Envelope Theorem (Milgrom and Segal (2002)). Regarding (i), consider without loss of

generality θ̂i > θi; then

Ui(θi) ≥ Ui(θ̂i) + Eθ−i




I∑

j=0

(ui(αij , θi) − ui(αij , θ̂i))y[i,j](θ̂i, θ−i)




Ui(θ̂i) ≥ Ui(θi) + Eθ−i




I∑

j=0

(ui(αij , θ̂i) − ui(αij , θi))y[i,j](θi, θ−i)


 .

These inequalities yield

Eθ−i




I∑

j=0

(ui(αij , θ̂i) − ui(αij , θi))y[i,j](θ̂i, θ−i)


 ≥ Eθ−i




I∑

j=0

(ui(αij , θ̂i) − ui(αij , θi))y[i,j](θi, θ−i)


 ,

which is equivalent to

Eθ−i




I∑

j=0

ui(αij , θ̂i)y[i,j](θ̂i, θ−i)


 + Eθ−i




I∑

j=0

ui(αij , θi)y[i,j](θi, θ−i)


 ≥ (31)

Eθ−i




I∑

j=0

ui(αij , θ̂i)y[i,j](θi, θ−i)


 + Eθ−i




I∑

j=0

ui(αij , θi)y[i,j](θ̂i, θ−i)


 ,
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thereby showing that Eθ−i

[∑I
j=0 ui(αij , θi)y[i,j](θ̂i, θ−i)

]
is supermodular in (θi, θ̂i) or, equivalently,

Eθ−i




I∑

j=0

∂ui(αij , θi)

∂θi
y[i,j](·, θ−i)


 (32)

is increasing. Since ∂2ui

∂θ2
i

≥ 0, (32) is increasing in θi as well. Take θ′′i > θ′i; then

Eθ−i




I∑

j=0

∂ui(αij , θ
′′
i )

∂θi
y[i,j](θ

′′
i , θ−i)


 ≥ Eθ−i




I∑

j=0

∂ui(αij , θ
′
i)

∂θi
y[i,j](θ

′′
i , θ−i)




≥ Eθ−i




I∑

j=0

∂ui(αij , θ
′
i)

∂θi
y[i,j](θ

′
i, θ−i)


 ,

where the first inequality follows by ∂2ui

∂θ2
i

≥ 0 and the second by supermodularity. This proves

necessity.

Suppose that (i) and (ii) hold, and let θ̂i > θi. Then,

Ui(θ̂i) − Ui(θi) =

∫ θ̂i

θi

Eθ−i




I∑

j=0

∂ui(αij , s)

∂θi
y[i,j](s, θ−i)


 ds

≥
∫ θ̂i

θi

Eθ−i




I∑

j=0

∂ui(αij , s)

∂θi
y[i,j](θi, θ−i)


 ds, (33)

where the inequality follows from (32). Similarly,

Eθ−i




I∑

j=0

ui(αij , θ̂i)y[i,j](θi, θ−i)


+ ti(θi) − Ui(θi) = Eθ−i




I∑

j=0

(ui(αij , θ̂i) − ui(αij , θi))y[i,j](θi, θ−i)




=

∫ θ̂i

θi

Eθ−i




I∑

j=0

∂ui(αij , s)

∂θi
y[i,j](θi, θ−i)


 ds. (34)

Expressions (33) and (34) yield

Ui(θ̂i) ≥ Eθ−i




I∑

j=0

ui(αij , θ̂i)y[i,j](θi, θ−i)


+ ti(θi),

which completes the proof of sufficiency.

Let Si(αij , θi) = ui(αij , θi) − (1−Φi(θi))
φi(θi)

∂ui(αij ,θi)
∂θi

; the seller’s problem can then be written as

follows:

max
(y[i,j](·))[i,j]6=[0,0]

I∑

i=1

Eθ




I∑

j=0

Si(αij , θi)y[i,j](θ)


 (35)
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subject to (29)-(30) and condition (i).

Proof of Theorem 2: Consider the relaxed problem in which condition (i) is ignored. It is

immediate to show that the solution to this problem is given by the allocation rule described in

the statement of the theorem. If this allocation rule satisfied (i), then it would be optimal for the

seller and so would the payment rule given in the statement of the theorem, which can be derived

using the same steps that led to (17). The only remaining task is to prove that y∗
[i,j](·) satisfies (i),

and it suffices to show that
∑I

j=0
∂ui(αij ,·)

∂θi
y∗[i,j](·, θ−i) is increasing in θi.

Take θ′i > θ′′i and suppose y∗[i,l](θ
′′
i , θ−i) = 1 (the other case is trivial); i.e.,

∑I
j=0

∂ui(αij ,θ′′i )
∂θi

y∗[i,j](θ
′′
i , θ−i) =

∂ui(αil,θ
′′
i )

∂θi
. As in Proposition 1, it is easy to show that

∑I
j=0

∂ui(αij ,θ′i)
∂θi

y∗[i,j](θ
′
i, θ−i) > 0; without

loss of generality, suppose that this sum is equal to
∂ui(αik,θ′i)

∂θi
.

To complete the proof, we need to show that
∂ui(αik,θ′i)

∂θi
≥ ∂ui(αil,θ

′′
i )

∂θi
; by supermodularity, it

suffices to show that αik ≥ αil. Since y∗[i,l](θ
′′
i , θ−i) = 1 and y∗[i,k](θ

′
i, θ−i) = 1, it follows that

Si(αil, θ
′′
i ) + Sl(αli, θl) ≥ Si(αik, θ

′′
i ) + Sk(αki, θk)

Si(αik, θ
′
i) + Sk(αki, θk) ≥ Si(αil, θ

′
i) + Sl(αli, θl).

These inequalities yield

Si(αik, θ
′′
i ) + Si(αil, θ

′
i) ≤ Si(αik, θ

′
i) + Si(αil, θ

′′
i ). (36)

If αik < αil, then (36) would violate the supermodularity of Si(αij , θi); thus, αik ≥ αil and the

proof is complete.
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