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1. Introduction 
 

Data Envelopment Analysis (DEA), originally introduced by Farell (1957), is a non-
parametric method for estimating technical efficiency of Decision Making Units (DMUs), by 
application of linear programming for comparative analysis of input and output variables. With 
the exponential advent of easily accessible computing power, over the past decades DEA has 
been steadily gaining momentum in different research areas, ranging from economics to social 
sciences (see e.g. Seiford (1996) and references therein). The DEA method is extremely 
attractive because of the fact that it does not require a priori knowledge of the functional relation 
between the input and output variables (technology), nor does it impose arbitrary statistical 
weights on variables. On the other hand, the method is based on the (extreme) concept of 
production frontier, so that a single error in the data set (or an exceptionally well performing unit 
– an outlier) may seriously compromise the analysis. Generally speaking, DEA yields successful 
results mainly in situations where the DMUs are “well behaved”, and the input and output 
variables have balanced, non-dispersed values. On the other hand, if the data set contains DMUs 
that perform extremely well (which may stem from some outstanding practice, or may simply be 
the result of an error in the data), the results for the remaining DMUs become shifted towards 
lower efficiency values, the efficiency frequency distribution becomes highly asymmetric, and 
the overall efficiency scale becomes non-linear. Several approaches have been proposed to deal 
with this effect (Seaver and Triantis 1989; Wilson 1993, 1995; Banker and Gifford 2000) but 
they largely depend on manual inspection of data, which becomes virtually impossible for large 
data sets. 

A new approach for robust DEA technical efficiency measurement is presented, based on a 

combination of Jackknife and Bootstrap resampling schemes. First, an algorithm 

implementing Jackknife is used to extract leverage of all data points, that is, the impact of 

removal of the observed point on DEA calculations performed on the rest of the data set. 

Next, Bootstrap stochastic resampling is implemented, taking into account leverage 

information. It is demonstrated that this approach proves robust to the presence of outliers 

and/or errors in the data set, and as it is completely automatic, it is suitable for 

implementation on very large data sets. 
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In this paper we present a new, computationally intensive approach for automatic 

detection of outliers, based on a combination of Bootstrap and Jackknife resampling schemes. 
The essence of this approach is to stochastically reduce the impact of the (usually few) most 
influential DMUs on the final efficiency scores, using the concept of leverage (Cribari and 
Zarkos 2003), that is, the effect produced on the outcome of DEA efficiencies of all the other 
DMUs, when the observed DMU is removed from the data set. This is achieved through a two-
phase process. First, the leverage of each DMU on the overall DEA analysis is evaluated, by 
examining a series of stochastic (bootstrapped) Jackknife replications. Then, Bootstrap 
resampling (Efron and Tibshirani 1993) is used, taking into account the observed leverage, to 
yield information on technical efficiency. For this combination of methods we propose the term 
“Jackstrap” (as it seems somewhat more appropriate then “bootknife”).  
 

The paper is organized as follows. In section 2 we first describe the adopted approach of 
calculating the leverage, and then the procedure of stochastic Bootstrap resampling which takes 
into consideration the leverage information to reduce de impact of outliers. Section 3 presents 
numerical results on two large test data sets, and conclusions are drawn in Section 4. 
 
 
2. DEA and the “Jackstrap” procedure 
 

The “Jackstrap” procedure combines Jackknife (deterministic) and Bootstrap (stochastic) 
resampling schemes, as follows. First, an algorithm implementing Jackknife is used to extract 
leverage of all data points, that is, the impact of removal of the observed point on DEA 
calculations performed on the rest of the data set. The underlying idea is that outliers are 
expected to show higher leverage then mean, and should be selected with lower probability than 
the other DMUs. Next, Bootstrap stochastic resampling is implemented, taking into account 
leverage information. In the rest of this section we describe this approach in some detail. 
 

Let us consider a set of K Decision Making Units, where k’th DMU (k=1,…,K) uses N 
nonnegative inputs xk = ( xk1, ..., xkN ) ∈ ℜ+

N  to produce M nonnegative outputs  yk = ( yk1,..., 
ykM) ∈∈∈∈ ℜ+

M.  As is well known, the DEA method (Charles, Cooper, and Rhodes 1978) 
implements linear programming to estimate technical efficiency θθθθk of k’th DMU as the minimum 
positive value that satisfies inequalities 
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where �kj are adjustable positive coefficients. In fact, this is only one version of DEA (input 
oriented, with constant returns to scale), as here we are mainly concerned with dealing with the 
effect of outliers and errors on the overall calculations, the reader is referred to the abundant 
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literature (see e.g. Charles, Cooper, and Rhodes 1978, Banker, Charnes, and Cooper 1984, and 
Färe, Grosskpof and Lovell 1985) for more details on this and other DEA variants. 
 

Leverage of a single observed DMU may be understood as the quantity that measures the 
impact of removal of the DMU from the data set, on the efficiency scores of all the other DMUs. 
Formally, it may be defined as the standard deviation of the efficiency measures before and after 
the removal. The most straightforward possibility is to perform Jackknife resampling technique 
as follows.  One first applies DEA for each of the DMUs using the unaltered original data set, to 
obtain the set of efficiencies { }Kkk ,,1| �=θ . Then, one by one DMU is successively removed, 

and each time the set of efficiencies { }jkKkkj ≠= ;,,1|*
�θ  is recalculated, where index 

Kj ,,1 �=  represents the removed DMU. The leverage of j-th DMU may then be defined as 
standard deviation 
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While rather straightforward, this direct approach is extremely computationally intensive, and 
may turn unfeasible for very large data sets with the available computer resources. More 
precisely, removing each of the K DMUs from the data set and then performing (K-1) DEA 
calculations requires solving K(K-1) linear programs, and may become prohibitively 
computationally expensive for large K. We therefore propose a more efficient stochastic 
procedure, which combines Boostrap resampling with the above Jackknife scheme as follows:  
 
1. Select randomly a subset of L DMUs (typically 10% of K) and perform the above procedure 

to obtain subset leverages 1
~

k�  , where index k  takes on L (randomly selected) values from 
the set { }K,,1� . 

2. Repeat the above step B times, accumulating the subset leverage information kb�
~

 for all 
randomly selected DMUs (for B large enough, each DMU should be selected roughly 

KBLnk /≈  times). 
3. Calculate mean leverage for each DMU as  
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This completes the first phase of the proposed approach. In the second phase, one can 

either use the leverage information to detect and simply eliminate outliers from the data set, or 
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one can implement Bootstrap method (Simar and Wilson 1997) to produce confidence intervals 
and bias information, using leverage information to reduce the probability of selecting the 
outliers in the stochastic resampling process. In either case, some probability function favoring 
the low leverage DMUs needs to be adopted, and here we test linear, inverse, exponential and the 
Heaviside step function. The linear probability distribution is given by 
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where max�  and min�  are the maximum and the minimum leverage of the set { }Kkk ,,1;

~
�� = , 

respectively. The probability of retaining/choosing a DMU with leverage min�  is therefore unity, 
while probability of retaining DMUs with leverage max�  is zero. The inverse probability 
distribution may be represented by 
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where 00 >�  is now the lower bound for k�

~
 , that is, an independent parameter (leverage 

threshold) below which DMU’s are retained with probability one. The lower bound 0�  is 

introduced here primarily to deal with the case of zero leverage values 0
~ =k� , and may be 

arbitrarily small. The exponential distribution is given by 
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and finally, the Heaviside step function is given by 
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Here the threshold level Klog~

�  was chosen in order to take into account the sample size, so that 
for e.g. K=1000 a DMU with leverage greater than three times the global mean is rejected. 
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The probability functions (3), (4), (5) and (6) are shown schematically on Figure 1, where 
the scaled leverage variable ( ) ( )minmaxmax /

~
���� −−k  has been used for the abscissa. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Numerical Results 
 
 We have tested the above procedure on two datasets with 1000 DMUs each, with three 
input and seven output variables. The variables for the first set were generated uniformly in the 
interval ( )1,0 , and the variables for the second set were generated using the normal distribution 
with mean 5.1=µ  and standard deviation 6/1=σ , truncated at points 1.0 and 2.0. Applying 
DEA on the two datasets we obtain efficiency distributions as shown in Fig.2.  
 

For the Uniform sample, there are 141 efficient DMUs, and the inefficient DMU’s are 
distributed with mean 0.8289 and standard deviation 0.1053, while for the Normal sample there 
are 69 efficient DMUs, the inefficient having mean 0.8638 with standard deviation 0.0681. The 
Normal sample displays a more symmetric distribution of efficiencies, and may be considered 
somewhat more realistic. 
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Next, we have calculated the leverage for the datasets using the procedure described 

above, with B=1000 “Jackstrap” passes on subsets of L=100 DMUs (which represents 
100/ =≈ KBLnk  leverage tests per DMU), and the resulting leverage distributions are shown in 

Fig.3. 
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Figure 2.  Frequency distributions of efficiency obtained applying DEA, for the two test 
samples generated using Uniform and Normal distributions, respectively. 
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Figure 3.  Frequency distributions of leverage obtained through Jackstrap procedure, for 
the Uniform and Normal test sample, respectively. 
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From the observed curvature on the semi-logarithmic plot, it follows that DMU frequency 
decays with leverage faster than exponential, with only two of the generated DMUs (in each 
dataset) demonstrating leverage of the order 0.03. The mean leverage values are found to be 
0.001055 and 0.000777 for the two sets, respectively. 
 
 In order to check the effect of the subset size L used in the Jackstrap procedure, we have 
also performed additional runs for the Uniform sample, for L from 25 to 250, with 

LB /100000=   (in order to retain constant ratio 100/ =KBL  among the individual runs). As 
may be expected, the absolute leverage values decrease with increasing L, however, the 
successive sets of mean leverage results { }Kkk ,,1;

~
�� =  are highly correlated, as may be seen 

from Table 1. 
 

L 25 50 75 100 125 150 175 200 225 250 
25 1,0000          
50 0,9883 1,0000         
75 0,9756 0,9940 1,0000        
100 0,9636 0,9896 0,9962 1,0000       
125 0,9520 0,9816 0,9929 0,9966 1,0000      
150 0,9406 0,9738 0,9889 0,9939 0,9967 1,0000     
175 0,9305 0,9662 0,9836 0,9902 0,9952 0,9975 1,0000    
200 0,9229 0,9611 0,9790 0,9878 0,9928 0,9964 0,9979 1,0000   
225 0,9094 0,9490 0,9710 0,9782 0,9871 0,9922 0,9949 0,9950 1,0000  
250 0,9037 0,9462 0,9669 0,9774 0,9858 0,9902 0,9936 0,9955 0,9956 1,0000 

 
 
 
 

 
The dependence of mean leverage on L is shown in Figure 4 for the first 30 DMUs with 

highest mean leverage. Keeping in mind that this is a stochastic procedure, it is seen that the 
leverage ranking is generally preserved across the spectrum of different values of L. 

 
Another test was performed in order to check the effect of the number of Jackstrap passes  

for the Uniform sample, using L=100 and ranging B from 100 to 5000. From the results shown 
in Figure 5, it is seen that after initial fluctuations the mean leverage attains a stable value that 
does not change with further increase of B. We now introduce outliers (or “errors”) in the 
samples, by adding 10 new DMUs, where the first outlier ERR1 has all the outputs higher and all 
the inputs lower than the DMUs in the original samples, outlier ERR2 has a single output one 
order of magnitude higher then the samples average, and outlier ERR3 has a single input one 
order of magnitude lower then average. The rest of the outliers have varying degrees of deviation 
from average, as can be seen from Table.2. 

 
 
 

Table 1.  Correlation coefficients for successive sets of mean leverage results for the Uniform 
sample, for subsample size L ranging from 25 to 250. 
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Figure 4.  Mean leverage dependence on subsample size L, for the 30 DMUs with 
highest leverage values in the Uniform sample. 
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DMU OUT1 OUT2 OUT 3 OUT 4 OUT 5 OUT 6 OUT 7 INP1 INP2 INP3 
ERR1 3,00 3,00 3,00 3,00 3,00 3,00 3,00 0,50 0,50 0,50 
ERR2 15,00 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 
ERR3 1,50 1,50 1,50 1,50 1,50 1,50 1,50 0,15 1,50 1,50 
ERR4 3,00 3,00 3,00 3,00 3,00 3,00 3,00 1,50 1,50 1,50 
ERR5 1,50 1,50 1,50 1,50 1,50 1,50 1,50 0,50 0,50 0,50 
ERR6 3,00 1,50 3,00 1,50 3,00 3,00 3,00 1,50 0,50 0,50 
ERR7 3,00 3,00 3,00 1,50 1,50 1,50 3,00 0,50 1,50 0,50 
ERR8 3,00 3,00 1,50 3,00 1,50 3,00 1,50 1,50 0,50 1,50 
ERR9 1,50 1,50 1,50 1,50 1,50 3,00 3,00 0,50 0,50 1,50 
ERR10 3,00 1,50 1,50 1,50 1,50 1,50 1,50 0,50 1,50 1,50 
 
 
 
 
 
 
 

Applying DEA on the two datasets with outliers, we obtain efficiency distributions as 
shown in Fig.6, where it is seen that presence of outliers drastically affects the efficiency 
distributions, shifting the mean for both samples close to 0.2. 
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Figure 6.  DEA efficiency frequency distributions after adding outliers, for the Uniform 
and Normal sample, respectively. 
 

Table 2.  Outliers added to the test samples, with varying degrees of high output and 
low input variable values. 
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The efficiencies obtained for the outliers are the same for both samples as shown in Table 3, 
showing that the rest of the dataset does not affect these values, while two outliers lie outside of 
the frontier. 
 

DMU ERR1 ERR2 ERR3 ERR4 ERR5 ERR6 ERR7 ERR8 ERR9 ERR10 
Efficiency 1.0000 1.0000 1.0000 0.3333 1.0000 1.0000 1.0000 1.0000 1.0000 0.6774 

 
 
 

We have next calculated the leverage for the two datasets with outliers included, using 
subsample size L=100 with B=1000 Jackstrap passes, the data for the thirty DMUs with highest 
leverage are shown in Table 4 for both samples. 

 
The second column for each sample in Table 4 lists the obtained leverage values, while 

columns “Leverage hits” and “Total hits” correspond to the number of times that the removal of 
the given DMU produced nonzero leverage, and the total number of times that the given DMU 
was chosen within the Jackstrap procedure, respectively. While all the DMUs have the same 
chance to be chosen for leverage testing (values in column 4 are similar for all the DMUs), the 
additionally introduced outliers typically present high number of leverage hits. In comparison 
with the leverage distribution of the original samples shown in Figure 4, the maximum leverage 
has risen from 0.03 to 0.5 for both samples, the mean leverage has risen from 0.001055 to 
0.002033 while the leverage of the original DMUs has fallen to 0.000687 for the Uniform 
sample, and for the Normal sample mean leverage has risen from 0.000777 to 0.002004 while 
mean leverage of the original DMUs has fallen to 0.000491. 
 

 
Uniform sample Normal sample 

DMU Leverage Leverage  
hits 

Total  
Hits 

DMU leverage Leverage 
hits 

Total  
Hits 

ERR1 0,531081 82 88 ERR1 0,553371 82 88 
ERR5 0,299649 81 99 ERR5 0,376291 81 99 
ERR6 0,114094 76 99 ERR4 0,210663 71 96 
ERR4 0,108820 71 96 ERR6 0,112622 76 99 
ERR7 0,106558 97 111 ERR7 0,096731 97 111 
ERR9 0,073234 95 106 ERR9 0,068987 95 106 
ERR8 0,059825 83 95 ERR8 0,059602 83 95 
ERR3 0,032835 95 100 ERR3 0,024172 95 100 
ERR10 0,022309 63 91 DMU641 0,023936 67 104 
DMU846 0,021295 69 102 DMU685 0,023528 77 110 
ERR2 0,017747 101 105 ERR10 0,018656 65 91 
DMU381 0,016687 83 113 DMU940 0,013378 61 89 
DMU52 0,016150 65 92 DMU914 0,012295 57 92 
DMU155 0,016110 61 100 ERR2 0,012068 99 105 
DMU743 0,013850 86 121 DMU676 0,010943 77 122 
DMU333 0,011994 63 91 DMU437 0,010549 55 96 
DMU45 0,011726 62 101 DMU966 0,010132 64 102 

Table 3.  Outlier efficiencies. 
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DMU518 0,011503 65 95 DMU737 0,009635 74 115 
DMU868 0,010283 93 132 DMU799 0,007268 67 112 
DMU295 0,010198 77 112 DMU663 0,006874 73 112 
DMU792 0,009716 63 101 DMU351 0,006847 73 115 
DMU10 0,008371 69 99 DMU839 0,006831 63 89 
DMU653 0,007816 66 100 DMU837 0,006584 61 100 
DMU413 0,007272 60 101 DMU40 0,006251 49 82 
DMU789 0,006952 56 93 DMU950 0,005907 61 92 
DMU33 0,006675 66 99 DMU135 0,005054 58 110 
DMU186 0,006628 62 100 DMU588 0,004730 70 110 
DMU318 0,006588 68 105 DMU689 0,004699 54 100 
DMU349 0,006526 61 99 DMU279 0,004309 61 99 
DMU201 0,006201 62 98 DMU61 0,004293 57 93 

 
 
 
 
 
 

Table 4 shows that the introduced outliers generally have higher leverage than the 
original DMUs, with the exception of ERR2 which has lower leverage then some of the original 
DMUs in both cases, and DMU10 in the case of the Uniform sample. From Table 2 it is seen that 
ERR2 has a single output value one order of magnitude larger than average, while ERR10 has 
one output three times the average, and one input equal to a third of the average. While they both 
remain on the top of the leverage list, these deviations are not sufficient to dominate (in terms of 
leverage) all of the well performing units from the original sets. In contrast to ERR2, it is 
interesting to note that ERR3, which has a single input one order of magnitude lower than 
average, maintains higher leverage than all of the original DMUs (although barely). This may be 
explained by the fact that there are altogether seven output and only three input variables, leading 
to the conclusion that a single error becomes more influential if a smaller number of variables of 
the same kind (input or output) is used.   

 
Finally, we have performed Bootstrap on both the datasets with outliers, using leverage 

information to reduce the probability of selecting the outliers in the stochastic resampling 
process, according to probability functions (3), (4), (5) and (6). Results for the Uniform and 
Normal test samples are shown in Figure 7 and 8, respectively. 

 
Comparing the results on Figure 7 and 8 with the original distribution shown on Figure 2 

and the distribution after adding the outliers shown on Figure 6, it is seen that in all cases there 
has been considerable improvement in recovering the original distributions. This is most 
pronounced in the case of Heaviside step function, where applying expression (6) to find the 
cutoff leverage values 0.006109 and 0.006022 for the two samples, it follows from Table 4 that 
the step function identifies (and eliminates) all of the introduced outliers for both samples with a 
large margin, together with roughly twenty outliers from the original sets. 

 

Table 4.  Thirty DMUs with highest leverage values for the two samples, 
after adding outliers. 
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Figure 7.  Frequency distributions of efficiency obtained applying Bootstrap with DEA, 
using probability functions (3), (4), (5) and (6) in the Bootstrap resampling process, for 
the Uniform test sample. 
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Figure 8.  Frequency distributions of efficiency obtained applying Bootstrap with  
DEA, using probability functions (3), (4), (5) and (6) in the Bootstrap resampling  
process, for the Normal test sample. 
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5. Conclusion 
 
 In this paper we introduce a new approach for application of DEA on large datasets, that 
reduces the effect of outliers and/or errors by using a combination of Jackknife and Bootstrap 
resampling schemes to determine leverage of the DMUs (the impact of removal of the observed 
point on DEA calculations performed on the rest of the data set). Extensive case study is 
presented on two random test samples, generated using uniform and normal distributions. The 
impact of the choice of subsample size and number of passes of the Jackstrap procedure on the 
leverage results is also investigated. It is also shown how leverage information may be used 
within Bootstrap resampling scheme to obtain robust results, insensitive to presence of outliers 
and/or errors. 
 

Moreover, this approach proves to be robust to the presence of outliers and/or errors in 
the data set, and it has the ability to detect those atypical observations even if they are not on the 
efficiency frontier. Finally, as it is completely automatic, this method does not require manual 
inspection of the data set, and is thus particularly suitable for implementation on very large data 
sets. Indeed, successful application of this method for estimating the DEA technical efficiency 
for close to five thousand Brazilian municipalities, with nine output and four input variables with 
huge diversity and a considerable number of errors in the data, is to be published elsewhere. 
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