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Abstract

This paper analyzes a synchronization game. Agents take part in an

activity and benefit from the participation of others. Coordinated ac-

tions are fruit of correlated effects as well as endogenous interactions.

Standard tools applied in optimal stopping problems for continuous

parameter stochastic processes are used but the processes under study

are endogenized by making their distribution dependent on the par-

ticipation of the group. Under certain conditions, this setup allows for

identifiability and separation of correlated and endogenous influences.
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1 Introduction

Social interactions that are not mediated through markets and their con-

sequences to the economic arena have commanded increasing consideration

from researchers in the recent past. Whereas economists have naturally paid

much more attention to social relations that can be incorporated by market

institutions, the existence of non-market interactions is nevertheless funda-

mental for the study of many issues in various fields of economics and the

accurate identification and measurement of the types of interactions under-

lying these phenomena can be helpful in designing appropriate policies.

It is usually difficult to disentangle why agents behave similarly when

they do so. Manski [31] labeled this as the “reflection problem” and catego-

rized the forces that generate similarities in group behavior into three main

types: endogenous, contextual (or exogenous) and correlated effects. In order

to understand this taxonomy, Manski provides a concrete example. One can

enumerate many elements affecting a child’s achievement in school. Aside

from those that are inherent to the individual we could cite 1. the perfor-

mance of his or her classmates, as well as 2. their socio-economic background

and maybe 3. the teacher or the infra-structure provided by the school itself.

The first and second are inherently social effects whereas the third arises

only because individuals are subject to the same institutional environment

or are very similar in their individual characteristics. For this reason the last

effect is qualified by Manski as a “correlated effect”. Although the first two

factors are social effects, they are distinct in nature. The first effect, that of

the group’s achievement on a student’s achievement, will typically generate

a feedback phenomenon: a student will have higher achievement when their

classmates have higher achievement and these on the other hand will also fol-

low the same prescription, creating a virtuous circle. This “bootstrap” effect

will blow up the impact of other factors, generating a “social multiplier”,

and might even allow for multiple equilibria if strong enough (see, for in-

stance, Glaeser and Scheinkman [15]). In this case, parameter identifiability
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and estimation become even more problematic as pointed out in Bresnahan

and Reiss [5] but nonetheless feasible under certain circumstances as indi-

cated in Tamer [40] among others. Because of this feedback, the effect that

the group’s actions (achievement) have on one’s action is classified as an en-

dogenous effects. The remaining social effects are labeled as contextual, or

exogenous, effects.

It is important to distinguish these elements because they usually imply

very different policy prescriptions. If exogenous effects exist, for instance,

change of group membership is bound to have an impact in the outcomes.

On the other hand, the existence of endogenous influences would indicate

that application of the prescribed interventions only to a subset of the group

would likely be sufficient to affect all the members. Even though it is impor-

tant to properly identify the nature of the social influence channel, this might

not be an easy task. As explained in Manski [31] the empirical problems

faced in this area are akin to the fact that the observation of equilibrium

prices and quantities is not enough to separate the market interactions of

consumers and suppliers (demand and supply curves). A simultaneity prob-

lem is latent and might hamper any attempts to pin down the nature of the

social environment under consideration. As a reaction, many studies have

been recently produced to advance techniques and illuminate the empirical

work on the field. Areas in which statistical identification of these phenomena

has been shown to be possible include, for instance, non-linear econometric

models and the econometric analysis of games.

In light of the above discussion, imagine an individual faced with the

decision of whether to join a certain welfare program or not. It has been

documented that a significant portion of eligible candidates choose not to

take part in these programs. The participation rate in the Food Stamps

Program (FSP) among eligible individuals for example declined from 74% in

1994 to 59% in 1999 (The Decline in Food Stamps Participation: A Report to
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Congress, USA/FNS, 2001). Similar phenomena also take place in other pro-

grams such as the Temporary Assistance to Needy Families (TANF), which

replaced the Aid to Families with Dependent Children (AFDC) program.

This behavior is usually ascribed to the existence of a stigma attached to

the decision of participation. Under these circumstances an interesting feed-

back phenomenon may be latent: communities of high participation would

induce lower stigmatization, which would itself favor increased participation,

whereas a group that starts out with a low level of participation would imply

higher stigma, which would in turn favor low levels of participation. Since

the decision of whether to join a program is not a once-and-for-all choice, the

timing coordination is an important element in the analysis of this problem

and we can see basically as a synchronization problem. In this example, un-

doubtedly a relevant practical situation, as in other similar circumstances,

policy interventions that operate directly on this “bootstrap” channel may

be extremely efficient.

In the first part of this paper we develop a theoretical model captur-

ing this synchronization phenomenon while allowing for correlated as well as

endogenous effects. The model describes the issue through optimal stopping

decisions in the presence of interactions (externalities). In Economics, stan-

dard optimal stopping problems arise naturally in investment models and in

financial derivatives pricing (see for example Dixit and Pindyck [10]). The

general idea in these models is that a certain flow of benefits is described by

a stochastic process and the decision-maker is to devise a rule (i.e. stopping

time) in order to extract the maximum benefit (i.e. maximize a certain gains

function in expected terms). The usual model assumes that the underlying

stochastic process is unaffected by the decision of the agents in the pop-

ulation under consideration. The modification suggested incorporates the

possibility that the stopping decisions by a certain group of agents affect the

evolution of the benefit flow and ultimately the decision of other individu-

als in the population contemplated. In other words, a stopping rule would
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typically be thought of as a “set of instructions” telling the decision maker

to quit the activity as soon as the state variable reaches a certain threshold

level. The difficulty in the problem analyzed is that the decision by other

community members will affect the relevant state variable and affect one

individual’s stopping rule formulation and the other community members’

decision rules are themselves endogenous to the problem. Circumstances

that are likely to be described by such a model involve all those that require

coordination on the timing of acts, such as the welfare program participation

example cited above. Others may include stock market participation (Hong,

Kubik and Stein [19] and Ivković and Weibenner [21]), bank runs (Kelly

and Gráda [25]), South-North migration (Orrenius [32]), marriage decisions

(Goldin and Katz [17]) and even crime recidivism (see, for instance, the em-

pirical investigation by Sirakaya [39] where social interactions are found to

meaningfully affect recidivism among individuals on probation).

One particular application is the situation studied in a recent paper by

Costa and Kahn [8] (see also [9]). The purpose of the article is to investigate

the effect of group homogeneity on shirking. In order to do so, the authors

use a dataset comprising detailed individual records for soldiers of the Union

Army in the American Civil War. The dataset allows Costa and Kahn to

build proxies for group homogeneity as well as to control for a series of other

potential determinants of “loyalty”, which is captured by events such as de-

sertion, arrest, AWOL (absence without leave) or promotion. In connection

with the model alluded above, the stopping decision here is represented by

the timing of each of these events, especially desertion. Using a standard

statistical duration model, the researchers find that company homogeneity

indeed decreases shirking within groups. This might not seem very surprising

once one considers that a more homogeneous group facilitates communica-

tion and increases the chances of social sanction to those who shirk. On the

other hand, a more uniform environment might also facilitate coordination

among the agents involved and spark mass desertions, which seems to have
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been the case in other situations and especially among confederate soldiers

toward the end of the war (see, for instance, Bearman [4] and Lonn [27]).

Whereas standard statistical duration models could be employed to iden-

tify the existence of duration dependence among agents (as indeed is done in

Costa and Kahn [8] and Sikaraya [39] and suggested in Brock and Durlauf [6])

it is still unclear what is the source of such effects: endogenous influences

or correlated unobservables. In contrast, our model clearly separates both

channels and lays out the circumstances under which each of these sources

is separately identifiable, thus presenting a substantial contribution to this

increasing field. Furthermore, our model bears empirical consequences that

are not incorporated in the more standard econometric duration models such

as the positive probability of concomitant exits from the game and points to

the necessity of utilizing other methods in such estimation exercises.

The next section presents a review of the relevant literature. A general

model is outlined in the following two sections and a specialization explored

in the subsequent one. Section 6 deals with the empirical implications and

the final section concludes.

2 Literature Review

To be added. Cite Mamer [29] and Lakari, Solan and Vieille [26]. Fudenberg

and Tirole [13], Ch.13 (differential and stochastic games, MPE). Literature

on game estimation.

3 The Model

Consider a filtered probability space (Ω,F ,P, (Ft)t∈R+) (the filtration is as-
sumed to satisfy the usual conditions). Assume also that there are I agents

and that these agents take part in a certain activity (I will loosely use I
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to denote the set of agents and its cardinality). Each individual’s utility is

captured by a gain function (ui : R×R+ → R) evaluated at the value taken
by an individual state variable xit ∈ R+ and instant t ∈ R+ of a chosen stop-
ping point. An agent i ∈ I can choose to abandon the activity at any time
t ∈ R+ (where R+ = [0,∞]), so that the decision to stop can be represented
by τi, a (possibly infinite) stopping time with respect to the individual fil-

tration (F it )t∈R+1 representing agent i’s flow of information. Throughout the
paper we will focus on the filtration generated by his or her state variable

process and whether or not the other individuals have stopped. In other

words, F it = [∨j 6=iσ(t ∧ τ j)] ∨ σ({xis : 0 ≤ s ≤ t}) (with σA ∨ σB denoting

the σ-algebra generated by the union of the σ-algebras σA and σB). This

assures that each subject’s information relies only on each one’s individual

latent utility up to that particular point in time and the observation of the

others’ decisions instead of having knowledge of all the other agents’ state

variables evolution. I assume that the state variable evolves as a process

(adapted to the above filtration) which may depend on the participation of

the remaining individuals in the group (thus the reference to externalities).

Let θit be the process representing the fraction of the population (exclud-

ing agent i) that has abandoned the activity before time t. In other words,

θit =
PI

s=1,s6=i I{τs<t}/I (with I{A} as the indicator function for the event
A ⊂ Ω). This process will be determined endogenously as individuals choose

the stopping times in consonance with their preferences. Each individual

state variable xit is assumed Markovian and is characterized by a transition

function {P it }t∈R+ where P it : RI+ × [0, 1] × R+ × B(R+) → [0, 1] is a kernel

such that, for s ≤ t ∈ R+,Γ ∈ B(R+),xs ∈ R+,

P(xit ∈ Γ|Fs) = P it−s(xs, θis, s;Γ)
1A random variable τ : Ω→ R+ is a stopping time with respect to (Ft)t∈R+ if, for each

t ∈ R+, {ω : τ(ω) ≤ t} ∈ Ft. Some authors use the term Markov time for this definition

and refer to stopping times as finite Markov times. In this paper we use infinite and finite

stopping times respectively for these objects. Intuitively they represent stopping strategies

that rely solely on past information.
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The superscript i reminds the reader that the state variable process may

differ across individuals. The structure for the multi-person decision problem

is presented in the following definition.

Definition 1 (Stopping Game with Externalities) A Stopping Game

with Externalities is a tuple hI, (Ω,F ,P, (Ft)t∈R+), (ui)i∈I , (xi)i∈I , (Ti)i∈Ii
where I is the set of agents; (Ω,F ,P, (Ft)t∈R+), a filtered probability space;
ui : R×R+ → R, an individual gain (utility) function; xi, an individual pro-
cess adapted to the filtration (Ft)t∈R+ and having as state space R+; and Ti,
a set of stopping strategies τ : Ω→ R+ such that {ω ∈ Ω : τ(ω) ≤ t} ∈ F it ,∀t
where F it ⊂ Ft,∀i, t (i.e., τ is an (F it )t∈R+ stopping time).

Having defined the basic structure of the problem, the idea is that each

person i is confronted with a decision problem that is mathematically rep-

resented by the following (individual) optimal stopping problem (where τ

generically denotes a stopping time with respect to (F it )t∈Z):

⎧⎪⎨⎪⎩ Vi(xi) = supτ∈Ti Exi [ui(xτ , τ)]
{P it }t∈Z

s.t. θit =
PI

s=1,s6=i I{τs<t}/I
xi0 = xi

(1)

In the above definition, Exi [ui(xiτ , τ)] =
R
Ω
P(dω)ui(xiτ(ω)(ω), τ(ω)) with ini-

tial condition given by xi. We assume that ui(x∞(ω),∞) = lim supt∈Z ui(xt(ω), t).

In this paper, the state variable is assumed to obey a transition law given

by the following stochastic differential equation:

dxit = αi(xit, θ
i
t, t)dt+ σi(xit, θ

i
t, t)dW

i
t , xi0 ∼ F i0 (2)

where W i
t is a Wiener process defined in the particular probability space we

are considering and the drift and dispersion coefficients are assumed to be

positive Borel-measurable functions. The initial distribution F i0 is further-

more independent of the Brownian motion W i
t . In order to assure that this
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stochastic differential equation has a strong solution given a profile of stop-

ping times for each player, we impose the following assumptions on the drift

and dispersion coefficients:

Assumption 1 (Lipschitz and Growth Conditions) The coefficients

αi(x, θ, t) and σi(x, θ, t) satisfy the global Lipschitz and linear growth condi-

tions:

kαi(x, θ, t)− αi(y, θ, t)k+ kσi(x, θ, t)− σi(y, θ, t)k ≤ Kkx− yk (3)

kαi(x, θ, t)k2 + kσi(x, θ, t)k2 ≤ K2(1 + kxk2) (4)

for every t ∈ R+, x, y ∈ R, θ ∈ [0, 1] and i ∈ I, where K is a positive constant.

Notice that θit =
PI

s=1,s6=i I{τs<t}/I is adapted since θ is the aggregation of

indicator functions of events such as {τ < t}, where τ is a stopping time. By
Theorem I.1 in Protter [34], {τ < t} ∈ Ft. Given the Borel-measurability
conditions on the drift and dispersion coefficients, this guarantees that, for

fixed x, (t,ω) 7→ αi(x, θit(ω), t) and σi(x, θit(ω), t) are adapted. The above

assumptions guarantee the existence of a strong solution for the stochastic

differential equation (2). A sketch for the proof is presented in the Appendix.

The following section analyzes the existence of equilibria for this game.

4 Equilibrium: Existence

The solution concept we seek for this group situation is that of mutual best

responses, a standard Nash Equilibrium point: a collection of individual op-

timal stopping times indexed by the set I such that each individual stopping

time is optimal given the stopping rules adopted by the other agents. Denot-

ing by τ = (τi)i∈I a stopping time profile, let Ui(τ) = Exi [ui(xτi , τi)] subject to
the above transition laws and initial conditions and evaluated at the strategy

profile τ . We also adopt the convention of using τ−i as shorthand notation

for (τs)s∈I−{i}. A Nash Equilibrium
2 for the above game is then:

2Since the strategies depend on information generated by the state variables and these

are Markovian and since optimization follows Bellman’s principle of optimatility in dy-
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Definition 2 (Equilibrium) A Nash Equilibrium for the Stopping Game

with Externalities is a stopping time profile τ ∗ = (τ ∗i )i∈I such that:

Ui(τ
∗) ≥ Ui(τi, τ ∗−i),∀i, τi stopping time.

In order to proceed with the analysis of equilibrium, we make the following

assumptions:

Assumption 2 (Exponential Discounting) Let ui(x, t) = e
−γitgi(x), γi >

0, gi : R+ → R,∀i ∈ I We refer to gi(·) as the reward function.

Assumption 3 (Reward Function) The individual reward functions gi(·),
∀i ∈ I are assumed to satisfy:

• Monotonicity. gi(·) is increasing.

• Convexity. gi(·) is convex.

• E[supt∈Z |e−γitgi(xit)|] <∞.

• Twice differentiability. gi(·) is twice differentiable.

• Bounded derivative. The derivative g0(·) is bounded.

Assumption 4 (Bounded volatility) For each t <∞ and feasible profile

of stopping strategies the dispersion coefficient is assumed to satisfy:

E[
Z t

0

(e−ρsσ(xs, θs, s))
2ds] <∞.

Assumption 5 (Complementarity) The drift and the dispersion coeffi-

cients are assumed to be decreasing on their second argument.

namic programming – whatever the initial state and decisions are, the remaining decisions

must be optimal with regard to the state resulting from the first decision – these are also

Markov Perfect Equilibria. For a discussion of MPE, see Fundenberg and Tirole [13],

chapter 13.
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The Exponential Discounting Assumption (2) significantly simplifies the ma-

nipulation and is fairly standard in the field. The set of assumptions re-

garding the reward functions, (3), encompasses monotonicity and convexity,

which are not very controversial either; bounded range, which is employed

to assert the existence of a solution for the optimal stopping problem, and

technical assumptions that facilitate the application of existing results in the

comparison of solutions of stochastic differential equations. The Bounded

Volatility Assumption (4) will imply that changes in the profile of stopping

decisions will affect the objective function only through the drift of the dis-

counted gain function. Finally, the Complementarity Assumption (5) ex-

presses the idea that higher participation makes the activity more attractive

as well as increases the volatility of the returns. We are now ready to state

the following result 3:

Theorem 1 (Existence) Under Assumptions 1-5, the Stopping Game with

Externalities has a nonempty set of equilibrium points and this set possesses

a maximal element.

Proof. See Appendix.

Under such general conditions, very little can be said regarding unique-

ness and other properties of the model. In fact, unless more stringent condi-

tions are imposed on the information structure, the setup will admit multiple

equilibria, as will be delineated in the following section.

5 The Desertion Game

We will frame this particular specialization of the model in terms of the

strategic situation present in Costa and Kahn’s dataset (see [8] and [9]):

that of military desertion. Consider initially the hypothetical army where

3Mamer [29] obtains existence of equilibria in a similar (but more restrictive) game in

discrete time through similar techniques.
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soldiers contemplate the possibility of desertion. We use a state variable

x (which is assumed to evolve according to a certain stochastic process) to

represent the latent utility a soldier derives from remaining in the front. At

desertion, he or she pays a cost C. Such individual has to devise a timing

rule dictating his or her desertion decision. Given a discount rate γ, the

objective of the agent is then to maximize the following reward function:

Ex[e−γt(xt − C)]

One should expect that the stopping decision of a solder directly affects the

decision of the other one. If no one deserts, the social sanctions attached to

desertion tend to be high; whereas if there is mass desertion, such sanctions

tend to be minimized as well as the effectiveness of the military company.

Our strategy is to model such external effects through a change in the drift

of the latent utility process, x.

* * * * *

At an initial stage though consider the individual problem where the state

variable, x, changes according to the following law:

log xt =

( ¡
α− σ2

2

¢
t+ σWt + log x0 if t < ν

(α−∆α)(t− ν) + αν − σ2

2
t+ σWt + log x0 if t ≥ ν

where ∆α > 0 and ν is an Ft-stopping time (assume, as usual, a filtered
probability space (Ω,P,F , (Ft)t∈R+)). The initial condition is drawn from an
independent distribution F0 as in equation (2). Notice that the break point

for the drift here is exogenously given. At a later stage we will endogenize

this stopping time. For there to be a well-defined solution to this problem,

we assume that γ > α.

Let x be the process corresponding to ν(ω) = ∞,∀ω ∈ Ω (i.e. a ge-

ometric Brownian motion with drift and diffusion coefficients αx and σx)

and x be the process corresponding to ν(ω) = 0,∀ω ∈ Ω (i.e. a geometric
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Brownian motion with drift and diffusion coefficients (α − ∆α)x and σx).

By standard dynamic programming calculations, the optimal stopping times

for these two processes are characterized by threshold levels z = z(α,σ, C, γ)

and z = z(α−∆α,σ, C, γ), where

z(α,σ, C, γ) =
β(α,σ, γ)

β(α,σ, γ)− 1C

and

β(α,σ, γ) = 1/2− α/σ2 +

rh
α/σ2 − 1/2

i2
+ 2γ/σ2 > 1

(see Dixit and Pindyck [10], p.140-144). For notational convenience, we omit

the parameter dependence in the remainder of the section. Given an arbitrary

ν we propose the stopping rule characterized by the following continuation

region:

{x ≤ z} if t < ν

{x ≤ z} if t ≥ ν
(5)

If we let τ ≡ inft{t : xt ≥ z} and τ ≡ inft{t : xt ≥ z}, the stopping time
associated with this region is

τ = τIτ≤ν + inf{t > ν : xt > z}Iτ>ν

where IA is the indicator function for the event A. 4 We are then ready to
state the following proposition.

Proposition 1 The continuation region (5) defines an optimal stopping time

for the stated problem.

4To see that τ is indeed an Ft-stopping time, notice that τ , ν being stopping times
implies that τ ∧ ν is also a stopping time (see Karatzas and Shreve [23], Lemma I.2.9).

This in turn implies that {ν ∧ τ ≤ t} ∈ Ft ⇔ ({τ ≤ ν} ∩ {τ ≤ t}) ∪ ({ν < τ} ∩ {ν ≤
t}) ∈ Ft,∀t. On the other hand, Fν ⊂ Fν+τ by Lemma I.2.15 in Karatzas and Shreve
[23]. This means that (A ∩ {ν ≤ t} ∈ Ft ⇒ A ∩ {ν + τ ≤ t} ∈ Ft). Then, from above,

({τ ≤ ν}∩{τ ≤ t})∪({ν < τ}∩{ν+τ ≤ t}) ∈ Ft,∀t. This is equivalent to {τ ≤ t} ∈ Ft,∀t
which establishes that τ is a stopping time.
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Proof. See Appendix.

The optimal stopping time is thus given by

τ = τIτ≤ν + inf{t > ν : xt > z}Iτ>ν

and the value of this decision rule can be deduced to be

V 0(x) = Ex[e−γτ(xτ − I)Iτ≤ν + e−γinf{t>ν:xt>z}(xinf{t>ν:xt>z} − I)Iτ>ν]

The above proposition can easily be extended to processes with multiple

breaks at increasing stopping times (as we do later on) and delivers a stopping

rule where the agent switches progressively to lower threshold levels as the

drift breaks take place.

* * * * *

Now consider a hypothetical army with two soldiers indexed by i = 1, 2.

They both contemplate a desertion decision that will cost them Ii, i = 1, 2 in

return for a value xi, i = 1, 2, just as in the previous setup. The difference is

that the latent utility process for one soldier is negatively affected once the

other soldier decides to leave the front.

In particular, consider all the above parameters indexed by i and the

latent utility process, given by:

log xit =

( ¡
αi − σi2

2

¢
t+ σiW i

t + log x
i
0 if t < τ j

(αi −∆αi)(t− τ j) + αiτ j − σi2

2
t+ σiW i

t + log x
i
0 if t ≥ τ j

where i, j = 1, 2, i 6= j and τ j is the stopping time adopted by the other sol-

dier in the game. Notice that the dependence between the Brownian motions

is left unconstrained and that ∆αi measures the external effect of the other

agent’s decision on i. This reveals the two major aspects of group behavior

under consideration in this study: correlated and endogenous social effects.

Individuals might behave similarly in response to associated (unobservable)
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shocks, which are reflected in the possibly non-null cross-variation of the

Brownian motions driving individual latent utilities. These are correlated

effects. On the other hand, agents may directly affected by other agents’

actions as well and this would appear as a decrease in the implicit utility

of a soldier for remaining in the front after another soldier leaves the army.

This is the endogenous effect. We assume that each player only knows the

evolution of his or her own latent utility process and the timing of previous

desertions. In other words, F it = [∨j 6=iσ(t ∧ τ j)] ∨ σ({xis : 0 ≤ s ≤ t}),∀t, i.

The previous analysis establishes that each soldier will use the “high

drift” optimal stopping rule characterized by the threshold zi until the stop-

ping time τ j, at which she switches to the “low drift” stopping rule, char-

acterized by the threshold zi. In this case though we need to handle the

fact that τ j is not exogenously given, but determined within the strategic

situation at hand. It is illustrative to portray this interaction graphically.

Consider the X1×X2 space where the evolution of the vector-valued pro-
cess (x1, x2) is represented. Since ∆αi > 0, we should have zi > zi, i = 1, 2.

As in the previous analysis, soldiers start out under threshold zi. If the

other soldier stops, the threshold level drops to zi. For instance, in Figure 1

the process fluctuates in rectangle (0, z1)× (0, z2) and reaches the barrier z1
causing soldier 1 to stop. Once this happens, soldier 2’s threshold drops to

z2, which, once reached, provokes soldier 2 to stop. A symmetric situation

occurs if we interchange the soldiers roles.

A more interesting situation is depicted in Figure 2. Here, the vector

process sample path attains the upper threshold for soldier 1 at a point

where x2 ≥ z2. The second soldier’s threshold moves down immediately and
both stop simultaneously. So, if a soldier’s latent utility process is above the

subsequently lower threshold when the other one drops out, there will be

clustering and they move out concomitantly.
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If agents are allowed to base their rules on “enough” data, much leverage

is gained and multiple equilibria are possible. For the sake of illustration,

assume that F it = Ft,∀i and t. In this case, it is licit for soldier 1 to follow a
stopping rule that dictates stopping once the process reaches the diagonal line

joining (z1, z2) and (z1, z2) (both soldier observe the two latent processes).

As shown in Figure 3, as soon as the process reaches this barrier soldier 2’s

threshold moves and leaves him or her in the stopping region, causing this

soldier to stop as well. If we use the same barrier though to characterize sol-

dier 2’s stopping rule and observe soldier 1’s response to it, we also get the

same result. This curve then characterizes an equilibrium for this game. But

there is indeed nothing special about this curve and we could have used any

other shape in the square (z1, z1)× (z2, z2) connecting the NW and SE cor-

ners. This rectangle supports multiple equilibria. The following proposition

states the equilibrium for this situation:

Proposition 2 Assume F it = Ft,∀i, t. Let

S =

⎧⎪⎨⎪⎩
∃i such that xi ≥ zi; or

(x1, x2) : x2 ≥ f(x1) where x1 ∈ (z1, z1), f(·) is continuous,
f(z1) = z2, f(z1) = z2 and f((z1, z1)) ⊂ (z2, z2)

⎫⎪⎬⎪⎭
and let τS = inf{t > 0 : (x1t , x

2
t ) ∈ S} denote the hitting time for this set.

The equilibrium strategies for the desertion game are given by

τ ∗i = τSIxiτS=zi + inf{t > τS : x
i
t > zi}IxiτS 6=zi , i = 1, 2.

Proof. See Appendix.

The area of the rectangle with vertices in {(x1, x2) : xi = zi or xi = zi, i =
1, 2} could be seen as a “measure of multiplicity” in the model. Notic-

ing that ∂(zi − zi)/∂· =
R
(∂2zi/∂α∂·)dα, it can be seen that the area

of this rectangle varies positively with the intensity of the external effects

∆αi = αi − αi, i = 1, 2, and the uncertainty in the latent utility process
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σi, i = 1, 2. So, as long as there are external effects (∆αi > 0, i = 1, 2), there

will be multiple equilibria in this game.

Is multiplicity a reasonable outcome? The achievement of multiple equi-

libria seems to require a (very fragile) omniscience by the players involved.

If one restricts the information set accessible by each soldier to his or her

own state variable, the result breaks down and uniqueness is achieved. Since

at each moment an individual is unable to pinpoint the exact location of the

other player’s state variable and this will, with positive probability, lie below

the lower stopping threshold, an “early” stopping decision may not elicit de-

sertion by the other player and risk sacrificing potentially profitable expected

rewards by staying put in the game. In the proposition below we restrict each

agents information set to his or her own state variable and whether or not

the other agent has stopped5.

Proposition 3 Assume F it = [∨j 6=iσ(t∧ τ j)]∨ σ({xis : 0 ≤ s ≤ t}),∀t, i. Let

S = {(x1, x2) : ∃i such that xi ≥ zi}

and let τS = inf{t > 0 : (x1t , x2t ) ∈ S} denote the hitting time for this set. The
equilibrium for the desertion game is unique and the equilibrium strategies are

given by

τ ∗i = τSIxiτS=zi + inf{t > τS : x
i
t > zi}IxiτS 6=zi , i = 1, 2.

Proof. See Appendix.

Even if access to more data is allowed, epistemological frictions may

be seen to render uniqueness. If for instance one reasonably assumes that

the other agent’s desertion and state variable are perceived with delay by

a soldier, dropping out may not elicit the other player’s desertion as in the

5Notice that the filtration is itself endogenously generated since the stopping times are

decision variables.
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previous situation. This “synchronization risk” is inherent in many similar

situations as the following quote in one of the earliest discussions of this

problem asserts:

It is usually the essence of mob formation that the potential mem-

bers have to know not only where and when to meet but just when

to act so that they act in concert. (. . . ) In this case the mob’s

problem is to act in unison without overt leadership, to find some

common signal that makes everyone confident that, if he acts on

it, he’ll not be acting alone. (Schelling [37])

For this reason we restrict our attention to the above equilibrium which is

robust to such perturbations.

* * * * *

We now generalize the analysis for a military company comprising I soldiers.

As in the previous case, we begin by extending the analysis for a situation

with multiple (random) breaks in the drift coefficient.

Proposition 4 Let log xt = αt −∆α
Pn

k=1(t − νk)It≥νk − σ2

2
t + σWt where

∆α,α,σ > 0, t ∈ R+, n ∈ I,W is a standard Brownian motion and {νk}k=1,...,n
is an increasing sequence of stopping times. The optimal continuation region

for the stopping problem is given by

{x ≤ zk−1} if t < νk, k = 1, . . . , n

{x ≤ zn} if t ≥ νn

where zk is the threshold level associated to the problem with log xt = (α −
k∆α)t+ σWt.

Proof. See Appendix.

* * * * *
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As before, a desertion decision is assumed to cost a soldier Ci, i ∈ I in
return for a payoff xi, i ∈ I. The latent utility process is now given by:

log xit = αit−∆αi
X
j:j 6=i

(t− τ j)It≥τj/(I − 1)−
σi2

2
t+ σiW i

t , i ∈ I

where τ j is the stopping time adopted by the soldier j. Notice that the ex-

ternal effect of other soldiers on i is given by ∆αi > 0 and is considered to be

homogeneous across soldiers, i.e. the amount by which the drift αi decreases

with each stopping decision is the same regardless of who deserts.

In order to generalize Proposition 2, a few definitions are convenient.

zim : z(αi −∆αi(m−1
I−1 ),σ

i, Ci, γi) where i,m ∈ I
Sm : {(x1, x2, . . . , xI) ∈ RI+ : ∃i such that xi ≥ zim}where m ∈ I
τ0 : 0 (meaning τ0(ω) = 0,∀ω)
A0 : II (identity matrix of order I)

τm : inf{t > τm−1 : Am−1xt ∈ Am−1SI+1−10Am−11} where Am−1SI+1−10Am−11
denotes the set formed by operating the matrix Am−1 on each

element of SI+1−10Am−11,1 is an I × 1 vector of ones and m ∈ I
Am : [a

m
kl]I×I where a

m
kl = Ixiτm<zim if k = l = i and a

m
kl = 0 otherwise and

m ∈ I

An inequality sign relating two vectors is understood as a relation that holds

component by component. The stopping times defined above are essentially

hitting times.

The idea is that the military company starts out with no defection and

desertions occur at the random times τ1 ≤ τ2 ≤ τ3 . . . . Our interest at first

is on the hitting time for the set S1, which is a generalization for the two

dimensional S in Proposition 2. As the vector process reaches this set, one

or more agents will quit. This will shift the stopping threshold S·. In order

to do so, we need to take into account the soldiers that have defected. This

is done by use of the matrices A·. Defections will occur at stopping times
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τ· and 1
0A·1 basically records the number of agents that have not stopped

after that stage. This goes on until all agents have stopped. The following

proposition summarizes this intuition:

Proposition 5 The equilibrium strategies for the desertion game with I sol-

diers are given by:

τ ∗i =
IX
k=1

(Πk−1j=1Ixiτj<zij)Ixiτk≥zikτk

Proof. See Appendix.

In the next section, we initiate the discussion on the econometrics of this

model.

6 Empirical Implications

This section analyzes the empirical content of the model. We remind the

reader that by endogenous effects we mean the effect of other agents’ par-

ticipation (represented in the model by θt) on the transition law for the

individual state variables. More specifically we say that there are endoge-

nous effects when the drift and dispersion coefficients in equation (2) are

affected by θt. Correlated effects refer to the possible association among the

Brownian motions that drive each individual’s latent utility process.

It is agreed that each agent’s latent utility is given by the following

stochastic process:

log xit = αit−∆α
X
j:j 6=i

(t− τ j)
It≥τj
I − 1 −

σ2

2
t+ σW i

t + log x
i
0, i ∈ I

where τ j is the stopping time adopted by the soldier j. The cross-variation

process for the Brownian motions is given by hW i,W jit = ρt, i 6= j and the
initial condition x0 = (xi0)i∈I follows a probability law F

i
0. The individual
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initial drift coefficient is potentially a function of an l-dimensional vector of

individual covariates wi(1×l) which is independent of the Brownian motion.

Let Fw denote the distribution of w = (wi)i∈I . For simplicity, assume that

αi = α(wi) = exp(β
0wi).

In benefit of readability we suppress the argument and denote the drift by

αi. In what follows all the statements are conditional on w = (wi)i∈I . The

parameter ∆α measures the external effect of the other agents decision on

i and introduces endogenous social effects and ρ represents correlated social

effects. In addition to the above parameters, each agent pays a cost C to

leave and discounts the future at the exponential rate γ. Let’s denote by

zi = z(αi,σ, γ, C), i ∈ I the upper threshold for each agent.

If there are no social interactions or correlated effects (∆α = 0 and

ρ = 0), the individual Brownian motions are independent and each agent’s

latent utility evolves as a geometric Brownian motion with drift αi, diffusion

coefficient σ and initial position xi. As a consequence the desertion times τ
∗
i

are independent inverse Gaussian random variables 6. Below are some of the

features of this distribution with the parameters of our model:

PDF : q(t;xi, z,α
i,σ) = log(zi/xi)

σ
√
2πt3

exp
h
− (log(zi/xi)−(αi−σ2/2)t)2

2σ2t

i
It>0

CDF : IG(t;xi, z,α
i,σ) = N

³
log(zi/xi)−(αi−σ2/2)t

σ
√
t

´
−

−e
2(αi−σ2/2)(log(zi/xi))

σ2 N
³
− log(zi/xi)−(αi−σ2/2)t

σ
√
t

´
Moments : E[t] = log(zi/xi)

(αi−σ2/2) and E[t
−1] = E[t]−1 + σ2/(log(zi/xi))

2

where

z = z(αi,σ, C, γ) =
β(αi,σ, γ)

β(αi,σ, γ)− 1C

6The Inverse Gaussian is the distribution of the hitting time of a Brownian motion

on a given barrier log z. In our case, the initial position is log xi; the drift coefficient,

αi − σ2/2 and the diffusion coefficient, σ. For an economic application of the Inverse

Gaussian distribution, see Lancaster [28]. Chhikara and Folks [7] provide an extensive

characterization of this distribution.
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with

β(αi,σ, γ) = 1/2− αi/σ2 +

rh
αi/σ2 − 1/2

i2
+ 2γ/σ2 > 1.

All the moments of this distribution are functions of E[t] and E[t−1] (see
Chhikara and Folks [7]). Furthermore, the sample mean and harmonic mean

are sufficient statistics and MLE estimators for the distributional parameters

above.

We are now in shape to start looking at the outcomes in the presence

of interactions and correlated effects. The next proposition states that si-

multaneous desertions only occurs in the presence of endogenous effects.

Proposition 6 P[τ i = τ j, i 6= j, i, j ∈ I] > 0 if and only if there are endoge-
nous effects.

Proof. See Appendix.

This is a desirable feature of the model since it seems to hold in the Union

Army data, whereas traditional econometric models in duration analysis typ-

ically do not generate clustering in timing – the probability of simultaneous

exit is zero. The result relies basically on the continuity of the sample paths

for the stipulated process. If discontinuities are allowed, this would not hold

any longer7. What events could possibly provoke discontinuities in the latent

utility process? In the military example that motivates this exercise, one

could think of the advent of battles, for instance. But the problem would be

diluted if one knows the timing of such shocks. If one observes clustering in

other moments, this is evidence in favor of endogenous effects. As a matter

of fact the timing of the battles fought by each individual in the Civil War

data is known and could be controlled for.

7One way to introduce such discontinuities is to insert an exogenous jump component

dQi in equation (2).
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Another implication of the model is that the game size, or the military

company size, in our case, does affect outcomes. This is stated in the next

proposition.

Proposition 7 The size of the game I affects the equilibrium if and only if

there are endogenous effects.

Proof. In preparation.

We present below a first characterization for the probability distribu-

tion of observable outcomes. If we represent by G(t,x) the probability that

the players will abandon the activity after time t when the vector of initial

conditions is given by x, the following result then holds:

Proposition 8 Let G(t,x) = P[τ ∗i > t, i ∈ I|x0 = x]. Then G is the unique
solution to

∂G/∂t = A((αi)i∈I , ρ,σ)G in Sc, t > 0
G(0,x) = 1,x ∈ Sc

G(t,x) = 0,x ∈ ∂S and t ≥ 0

where S = S((αi)i∈I ,σ, γ, C) = {x ∈ RI+ : ∃i such that xi ≥ z(αi,σ, γ, C)}
and

A((αi)i∈I , ρ,σ)f =
X
i∈I

αixi
∂f

∂xi
+
1

2
σ2
X
i∈I
x2i

∂2f

∂x2i
+ ρσ2

X
i,j∈I
i6=j

xixj
∂2f

∂xi∂xj

is the infinitesimal generator for the I-dimensional diffusion representing the

latent utility vector process with killing time at τS : {xt : t ≤ τS}.

Proof. See Appendix.

In the same fashion, one can obtain an expression for the probability

that the agents will abandon the game after time t and there is simul-

taneous exit given an initial condition x. We denote this probability by
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H(t,x) = P[τ ∗i > t, i ∈ I and τS ∈ ∂S1|x0 = x] (where ∂S1 is defined below).
The following characterization follows:

Proposition 9 Let H(t,x) = P[τ ∗i > t, i ∈ I and τS ∈ ∂SH |x0 = x]. Then
H is the unique solution to

∂H/∂t = A((αi)i∈I , ρ,σ)H in Sc, t > 0

H(0,x) = u(x),x ∈ Sc

H(t,x) = 0,x ∈ ∂S and t ≥ 0

with
A((αi)i∈I , ρ,σ)u = 0 in Sc

u(x) = 1,x ∈ ∂SH

u(x) = 0,x ∈ ∂S\∂SH
where S = S((αi)i∈I ,σ, γ, C) = {x ∈ RI+ : ∃i such that xi ≥ z(αi,σ, γ, C)},
∂SH = ∂SH((α

i)i∈I ,σ, γ, C,∆α) = {x ∈ ∂S|xi ≥ z(αi −∆α/(I − 1),σ, γ, C)
and

A((αi)i∈I , ρ,σ)f =
X
i∈I

αixi
∂f

∂xi
+
1

2
σ2
X
i∈I
x2i

∂2f

∂x2i
+ ρσ2

X
i,j∈I
i6=j

xixj
∂2f

∂xi∂xj

is the infinitesimal generator for the I-dimensional diffusion representing the

latent utility vector process with killing time at τS : {xt : t ≤ τS}.

Proof. See Appendix.

One question that arises naturally is the possibility of disentangling cor-

related and endogenous effects in the data. The econometrician presumably

observes the equilibrium exit strategies (τ∗1 , . . . , τ
∗
I ) for a certain number of re-

alizations of the game and would be interested in knowing what parameters of

the model can be retrieved given data on the situation under analysis. Could

two different parameter vectors generate the same distribution for the data?

This is the typical problem of statistical identification of a parameter vector.

Similar problems arise in natural sciences, where a researcher is confronted
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with a distribution of exit times and is interested in reconstructing aspects

of an unobserved stochastic process (see, for instance, Bal and Chou [3] for

related problems in chemical and neurological studies). Following Hsiao [20]

(see also Manski [30]), we define the parameters in a model to be identified

if two different parametric specifications are not observationally equivalent.

Letting τ denote some outcome variables observed by the researcher, w some

observable covariates and ψ a parameter (of arbitrary finite dimension) lying

in a certain set Ψ and governing the probability distribution P (·|w;ψ) of the
outcome variables, the following defines identification.

Definition 3 (Identification) The parameter ψ ∈ Ψ is identified relative

to ψ̂ if (ψ̂ /∈ Ψ) or (P (·|w;ψ) = P (·|w; ψ̂), Fw-a.e. ⇒ ψ = ψ̂).

We say that ψ is globally identified if it is identified relative to any pa-

rameter vector in the parameter space and that it is locally identified if it is

identified relative to any parameter vector in a neighborhood of ψ. In what

follows we analyze the identification for the desertion model. Let g(t;ψ,w)

denote the probability density function for the first desertion time under

the parameters ψ = (x, β,σ, ρ, γ, C) and conditioned on the observable co-

variates w. The following statement establishes sufficient conditions for the

identification of ψ.

Theorem 2 Let w be a set of continuous random covariates and, for some

i and some covariate l,

∂wil

Z
log
hg(t;ψ,w)
g(t; ψ̂,w)

i
g(t;ψ,w)dt 6= 0 (6)

then ψ is identified relative to ψ̂.

Proof. See Appendix.

In order to check condition (6) one should obtain g from the solution to
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the partial differential equation in Proposition 8 8. In certain special cases

this solution may be available analytically. This is so for instance if I = 2,

in which case Theorem 3.5.2 in Rebholz [35] delivers (see alternatively He,

Keierstead and Rebholz [18], Remark 2.2(ii)):

P(τ ∗1 ∧ τ ∗2 ≥ t) = ea1 log(z
1/x1)+a2 log(z2/x2)+btf(r0, θ0, t) (7)

where

f(r0, θ0, t) =
2

λ0t

∞X
n=1

sin(
nπθ0

λ0
)e−

r02
2t

Z λ0

0

sin(
nπθ

λ0
)gn(θ)dθ

with

gn(θ) =

Z ∞

0

re−
r2

2t e−b1r cos(θ−λ)−b2r sin(θ−λ)Inπ
λ
(
rr0

t
)dr

and

tanλ0 = −
√
1−ρ2
ρ

λ = λ0 − π
2

r0 = 1√
1−ρ2

( log(z
1/x1)2−2ρ log(z1/x1) log(z2/x2)+log(z2/x2)2

σ2
)
1
2

θ0 = log(z1/x1)
σr0

a1 = (α1−σ2/2)−ρ(α2−σ2/2)
(1−ρ2)σ2

a2 = (α2−σ2/2)−ρ(α1−σ2/2)
(1−ρ2)σ2

b = σ2

2
(a21 + 2ρa1a2 + a

2
2)− (α1 − σ2/2)a1 − (α2 − σ2/2)a2

b1 = (a1 + a2ρ)σ

b2 = a2σ
p
1− ρ2

with zi ≡ z(αi,σ, C, γ). Iyengar [22], which also derives an expression for the
above function, hints that the above is also generalizable for higher dimen-

sions in our specific situation.

The following statement provides an alternative identification result for

the main parameters in our model under the assumption that the initial

condition is observed and can be controlled for.
8This PDF can be obtained as −dG(·)/dt where G(·) is the solution to the PDE in

Proposition 8.
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Theorem 3 Assume that the initial condition is observed, its probability dis-

tribution F0 has support with non-empty interior and I > 2. The parameter

vector ((αi)i∈I ,∆α, ρ,σ, γ, C) is then identified.

Proof. See Appendix.

The key to this result is to notice that, whereas the existence of endoge-

nous effects has no impact before the exit of the first player, the correlation

coefficient ρ and drift level αi do affect the timing of the first dropout. Given

the nonlinear character of the model, these two parameters can be identified

by the exit distribution of the first deserter. The impact of the endogenous

effect parameter on the probability of clustering of agents on the other hand

helps identify ∆α.

The statement rests on the assumption that observer can condition on x0,

the initial latent utility level. One could imagine the stock market partici-

pation application mentioned in the introduction with the latent utility level

representing some measure of relative portfolio performance among the play-

ers in a certain reference group. In this case one could conceive of datasets

recording initial stock allocations and entry and exit decisions but not interim

portfolios and apply the above result. In other applications though, where

the state variables xi stand for some subjective measure of satisfaction, this

assumption loses much of its appeal.

Notwithstanding the difficulties attached to the solution of the partial

differential equation in Proposition 8, a few cases allow some investigation.

We finish the section with a few remarks about the case of two agents.

1. The cumulative distribution function (CDF) for the time of first deser-

tion is given by Theorem 3.5.2 in Rebholz [35] – expression (7).

Remark 1: If there are no endogenous effects (∆α = 0) each desertion

time follows a univariate inverse gaussian which is (potentially) corre-

lated across soldiers in a given company. Expression (7) then gives the
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following probability: P(τ1 ≥ t, τ2 ≥ t).

Remark 2: If there are no correlated effects, the expression (7) re-

duces to (1 − IG(t;x1, z1,α1,σ))(1 − IG(t;x2, z2,α2,σ)) where IG is

the CDF for the Inverse Gaussian distribution given in the opening

paragraphs of this section.

2. From Theorem 2.2(iii) in He, Keierstead and Rebholz [18] one obtains

an expression for P(x1(t) ∈ dx1, x2(t) ∈ dx2, τS ≥ t) = P(x1, x2, t).
Since (x1(t), x2(t)) ∈ ∂S1 ⇒ τS ≤ t, one obtains that the probability
density function (PDF) for joint exit at t is:Z

(x1,x2)∈∂S1
P(x1, x2, t)d(x1, x2).

3. Accordingly, one can deduce that the PDF for agent 2’s exit at s and

agent 1’s exit at t (s < t) is:Z z(α1−∆α,σ,γ,C)

0

q(t;x1, other parameters)P(x1, z(α2,σ, γ, C), s)dx1

where t > s and q is the PDF for the Inverse Gaussian given previously.

7 Discussion

This paper analyzes a synchronization game which allows for endogenous and

correlated effects among players. Agents participate in an activity and ben-

efit from the participation of others. If the group leaves en masse, an agent

will be more likely to depart; whereas if the agents stay, an individual will be

inclined to stay. Standard tools of optimal stopping problems for continuous

parameter stochastic processes are used but the processes are endogenized

by making their distribution dependent on the participation of the group.

This is a problem of great importance in many settings. Social welfare
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program participation, bank runs, South-North migration, marriage and di-

vorce decisions are only a few of the possibilities. Disentangling endogenous

and correlated effects is thus fundamental not only to illuminate economic

research but also to enlighten policy. The setup delineated in this paper

allows us to separately identify the endogenous and correlated effects asso-

ciated with each individual’s decision. Whereas this problem is unfeasible

in simpler settings (see Manski [31]), the separation is not clear in other

approaches that deal with similar situations (as in Brock and Durlauf [6]).

Empirical consequences that are not present in conventional methods of es-

timation are also obtained and point to the application of richer estimation

schemes in the analysis of these phenomena.

29



Appendix

Sketch of Proof for Existence of a Strong Solution

The proof that there exists a strong solution for equation 2 follows from a

slight modification of the proof provided in Karatzas and Shreve [23], p.289.

The key is to note that the iterative construction of a solution follows through

if we replace b(s, x) and σ(s, x) by b(s, x,ω) and σ(s, x,ω) in the definition

of X(k). If, for fixed x, (s,ω) 7→ b(s, x,ω) and (s,ω) 7→ σ(s, x,ω) are adapted

processes, the resulting process is still adapted. The remainder of the proof

is identical. (See also Protter [34], Theorem V.7)

Proof of Theorem 1

Consider a player i ∈ I. Let the stopping strategies for I − {i} be given by
the following profile of stopping times τ−i = (τs)s∈I−{i}. Given Assumption

3, according to Theorem 4 in Fakeev [12], there exists a solution for the

optimal stopping time. Let the individual i’s best response function bi(·)
map a stopping time profile τ−i onto one such optimal stopping solution.

Given this, consider b(·) defined as the following mapping τ = (τs)s∈I 7→
b(τ) = (bi(τ−i))i∈I . A Nash Equilibrium is then simply a fixed point for the

mapping b(·). In order to establish the existence of such a result we use the
Knaster-Tarski Fixed Point Theorem, reproduced below from Aliprantis and

Border [1], p.6:

Knaster-Tarski Fixed Point Theorem: Let (X,≥) be a par-
tially ordered set with the property that every chain in X has a

supremum. Let f : X → X be increasing, and assume that there

exists some a in X such that a ≤ f(a). Then the set of fixed

points of f is nonempty and has a maximal fixed point.

In the following discussion we consider the set of stopping time profiles

and identify two stopping times that are P-almost everywhere identical. We
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proceed by steps:

Step 1: (Partial order) The set of stopping times endowed with the re-

lation ≥ defined as: τ ≥ υ if and only if P(τ(ω) ≥ γ(ω)) = 1 is partially

ordered. In other words, ≥ is reflexive, transitive and anti-symmetric.

Step 2: (Every chain has a supremum) Given a set of stopping times T ,

we should be able to find a stopping time τ such that 1. τ ≥ τ,∀τ ∈ T,P-a.s.
and 2. if υ ≥ τ,P-a.s., τ ∈ T then υ ≥ τ ,P-a.s.. If T is countable supτ∈T τ
is a stopping time and satisfies conditions 1 and 2 (see Karatzas and Shreve,

Lemma 1.2.11). If not, first notice that, since the only structure that mat-

ters for this property is the ordering in R+, we can always assume that the
stopping times take values on [0, 1] (otherwise, pick an increasing mapping

from R+ onto [0, 1]). Let C be the collection of all countable subsets C ⊂ T .
For each such C, define:

lC = sup
τ∈C

τ and v = sup
C∈C

E(lC) <∞

By the previous reasoning, lC is a stopping time. Then, there is a sequence

{Cn}n ⊂ C such that v = limn→∞ E(lCn). Now define C = ∪∞n=1Cn ∈ C. To
show that lC satisfies condition 1., first notice that C ∈ C, v ≥ E(lC). On
the other hand, since Cn ⊂ C, E(lC) ≥ E(lCn) →n v. These two imply that

v = E(lC).

For an arbitrary τ ∈ T , set Cτ = {τ} ∪ C ∈ C. Now, lCτ
≥ lC . This

renders v ≥ E(lCτ
) ≥ E(lC) = v ⇒ E(lCτ

− lC) = 0 ⇒ lCτ
= lC ,P-a.s. This

and lCτ
≥ τ,P-a.s. in turn imply that lC ≥ τ,P-a.s.

To see that 2. is satisfied, notice that, if υ ≥ τ,∀τ ∈ T , in particular,
υ ≥ τ,∀τ ∈ C. This implies that υ ≥ supτ∈C τ = lC .

Step 3: (∃a such that a ≤ f(a)) Pick a as the profile of stopping times
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that are identically zero.

Step 4: (b(·) is increasing) This is the case if each individual best response
function bi(·) is increasing. By the version of Itô’s Lemma for twice differen-
tiable functions (see Revuz and Yor [36], p.224, remark 3), and the fact that

ui(x, t) = e
−γitgi(x) is twice differentiable (since gi(·) is twice differentiable),

e−γitgi(x) obeys the following stochastic differential equation (given a profile

of stopping times τ−i):

d[e−γisgi(x
i
s)] = e−γit[g0i(x

i
t)α

i(xit, θt, t) +
1

2
σi2(xit, θt, t)g

00
i (x

i
t)− γigi(x

i
t)]| {z }

≡αi(xi,θit,t)

dt+

+ e−γitg0i(x
i
t)σ

i(xit, θt, t)| {z }
≡βi(xit,θit,t)

dW i
t

where the α(·, ·, ·) and β(·, ·, ·) denote the drift and dispersion coefficients of
e−γitgi(x

i
t). If gi(·) is increasing and convex and if αi(·, ·, ·) and σi(·, ·, ·) are

decreasing in θ, the above drift is decreasing in θ.

Now consider a profile of stopping times τ−i and υ−i such that τ−i domi-

nates υ−i,P- a.s. Moving from one profile to another will impact θ and this

will have effects on both the drift and the dispersion coefficients of e−γitgi(x
i
t).

The effect on the dispersion coefficient does not affect the objective func-

tion of an individual agent. This obtains from the fact that g0(·) is bounded
and the Bounded Volatility Assumption. These assumptions deliver that, for

each t <∞:

E[
Z t

0

(e−γsg0(xs)σ(xs, θs, s))
2ds] < KE[

Z t

0

(e−γsσ(xs, θs, s))
2ds] <∞

for some K ∈ R. This in turn implies that zt =
R t
0
(e−γsg0(xs)σ(xs, θs, s))dW

i
s

is a martingale (see Karatzas and Shreve [23], p.139) and by the Optional
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Sampling Theorem, E[
R τ

0
(e−γsg0(xs)σ(xs, θs, s))dW

i
s ] = 0,∀τ where τ is an

(Ft)-stopping time (see Karatzas and Shreve [23], p.19).

Given τ−i and υ−i, we know that θ
i,τ
t ≤ θi,υt ,P-almost surely, ∀t (where θi,τt

and θi,υt aggregate the stopping decisions for the profiles τ−i and υ−i) we

will have α(x, θi,υt , t) ≤ α(x, θi,τt , t),P-almost surely, ∀x, t. Letting yi,τt be the

process given by

dyi,τt = αi(xit, θ
i,τ
t , t)dt+ β(xit, θ

i,τ
t , t)dW

i
t

and yi,υt be the process given by

dyi,υt = αi(xit, θ
i,υ
t , t)dt+ β(xit, θ

i,τ
t , t)dW

i
t

using a slight variation of Proposition 5.2.18 in Karatzas and Shreve [23], we

get:

P[yi,τt ≥ yi,υt ,∀0 ≤ t <∞] = 1

Again, a slight variation of the proof of this proposition can be repeated

using this fact and focusing on yi,τt − yi,τs − (yi,υt − yi,υs ), t ≥ s instead of

simply yi,τt − yi,υt . This is enough to achieve the following result:

P[(yi,τt − yi,τs )− (yi,υt − yi,υs ) ≥ 0,∀0 ≤ s ≤ t <∞] = 1

This suffices to show that it is not profitable for agent i to stop earlier when

the profile is τ−i than when the profile is υ−i. Suppose not. Then, let A =

{bi(τ−i) < bi(υ−i)}. According to Lemma 1.2.16 in Karatzas and Shreve [23],
A ∈ Fbi(τ−i)∩Fbi(υ−i). By the above result we can then see that E{IA[y

i,τ
bi(υ−i)

−
yi,τbi(τ−i)]} ≥ E{IA[y

i,υ
bi(υ−i)

− yi,υbi(τ−i)]}. The RHS expression in this inequality is
positive because A ∈ Fbi(τ−i)∩Fbi(υ−i) = Fbi(τ−i)∧bi(υ−i) which implies that the
agent would do better by picking bi(τ−i) ∧ bi(υ−i) if the RHS were negative.
But this would contradict the fact that bi(υ−i) is a best response. So, if
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A 6= Ø, delaying the response by choosing bi(υ−i)∨bi(τ−i) would improve the
agent’s payoff given that the remaining agents are playing τ−i.

¥

Proof of Proposition 1

A comparison result such as the one in Karatzas and Shreve [23], Proposition

V.2.18, or Protter [34], Theorem V.54, may be established to show that:

e−γt(xt − I) ≤ e−γt(xt − I),∀t P-a.s.

This in turn implies that

e−γτ(ω)(x(ω)τ(ω) − I) ≤ e−γτ(ω)(x(ω)τ(ω) − I), P-a.s.

The same comparison result can also be used to show that, on {ω ∈ Ω :

τ(ω) ≤ ν(ω)}, we indeed have

e−γτ(ω)(x(ω)τ(ω) − I) = e−γτ(ω)(x(ω)τ(ω) − I), P-a.s.

So, we can do no better than to use τ on the set {τ ≤ ν}.

On the complementary set, {τ ≥ ν}, think of the process log yt = log xν+t, t ∈
R+. Using the fact that the process satisfies the Strong Markov Property,
this process is given by

log yt = (α−∆α)t+ σW̃t + log y0

where W̃t = Wt+ν and y0 = xν. In other words, the process starts “afresh”

at ν with initial value given by xν and obeying the stochastic process with

low drift. As ascertained before, the optimal stopping time for this process is

inf{t > ν : xit > zi}. So, on {ω ∈ Ω : τ(ω) ≥ ν(ω)} we might as well choose
inf{t > ν : xit > zi}.

¥
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Proof of Proposition 2

Set ν = τ ∗j in Proposition 1. In this case, i should use τ i on {τ ≤ τ ∗j } and
inf{t > τ ∗j : x

i
t > zi} on the complementary set.

Now notice that:

xiτS = zi ⇒ τ i = τS

When the vector process hits S on the subset where xi = zi, the hitting

times for the vector process to reach S and for the component process to hit

zi coincide. Since τ
∗
j ≥ τS by construction, we should also conclude that:

{xiτS = zi} ⊂ {τ i ≤ τ ∗j }

Agent i should then use τ i (which coincides with τS on this set).

On the other hand,

xiτS 6= zi ⇒
(

τ i > τS

(xjτS > zj ⇒ τ ∗j = τS)
⇒ τ i > τ ∗j

So, we are in the complementary set, in which is sensible to use inf{t > τ ∗j :

xit > zi} = inf{t > τS : x
i
t > zi}.

¥

Proof of Proposition 3

Step 1: ((τ ∗i )i∈I is an equilibrium) The proof basically reproduces the pre-

vious proposition.

Step 2: (Uniqueness) Suppose there is another equilibrium profile (ν∗i )i∈I .

Let θ(ω) ≡ ν∗1(ω)∧ν∗2(ω). Uniqueness is proved if we establish that (x1θ, x2θ) ∈
z1 × [0, z2] ∪ [0, z1] ∪ z2.
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First one should notice that optimality requires xiν∗i ≥ zi. This in turn

means that xiθ < zi ⇒ ν∗i > θ = ν∗j and consequently x
j
θ = zj. Otherwise,

agent j would be stopping early and would do better by delaying this decision.

Can both agents stop simultaneously when xi ∈ (zi, zi) and xj ∈ (zj, zj)?
It is optimal for an agent i to stop when xi ∈ (zi, zi) if by stopping he or
she elicits a similar decision by the other player. This happens only when

xj > zj. Although in equilibrium such information is endogenously gener-

ated, for an arbitrary stopping time ν, there is not enough information at ν

for i to tell whether j is below or above the lower threshold. In other words,

σ(xjν) * F iν (unless ρ = 1). This in turn implies that σ(xiν, xjν) * F iν (unless
ρ = 1). But such information (about the opposing agent’s latent utility lo-

cation) is necessary to avoid stopping when the other agent’s state variable

is below the lower threshold. Thus they cannot stop simultaneously at this

region and this should be enough to complete the proof.

¥

Proof of Proposition 4

The proof is by induction. For n = 1, Proposition 1 establishes the result.

For a generic n, assume that the statement holds for n − 1. The same

comparison argument used in Proposition 1 delivers that

e−γτ(ω)(x(ω)τ(ω) − I) = e−γτ(ω)(x(ω)τ(ω) − I),P-a.s.

where log xt = αt+σWt and τ denotes the optimal stopping time associated

with this process. So, we can do no better than to use τ on the set {τ ≤ ν1}.

On the complementary set, {τ ≥ ν1}, think of the process log yt = log xν+t, t ∈
R+. Using the Strong Markov Property, it is seen that the process starts
“afresh” at ν with initial value given by xν and obeying the stochastic pro-

cess with n − 1 drift breaks. The induction argument takes care of this
situation and we achieve the result desired.
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¥

Proof of Proposition 5

We divide the proof in three steps:

Step 1: (Stopping times are an increasing sequence) Notice that, by def-

inition, τ0 ≤ τ1 ≤ · · · ≤ τI and consequently form an increasing sequence of

stopping times.

Step 2: (At each stage at least one agent stops) ∀k ∈ I,∃j : τ ∗j = τk.

Take a stopping time τk. There are two possibilities, represented by two

disjoint subsets of Ω, say Ω1 and Ω2:

1. Ω1. The vector process Ak−1xt hits Ak−1ΨI+1−10Ak−11 where (∃i ∈ I :
xi ≥ zim and ∀j 6= i, xj ≤ zjm−1). In this case, τ ∗i (ω) = τk(ω) (provided

i hasn’t stopped yet), ∀ω ∈ Ω1.

2. Ω2. The above does not happen. In this case, ∃j : zjm+1 ≤ xjτk (provided
j hasn’t stopped yet). Also in this case it can be seen that τk+1 = τk.

But then, xjτk = x
j
τk+1
≥ zk+1 and this implies that τ ∗j (ω) = τk+1(ω) =

τk(ω),∀ω ∈ Ω2.

This means that, at each stopping time τk, the drift of x
i drops by ∆αi.

Step 3: Apply Proposition 3.

¥

Proof of Proposition 6

Let S = {x ∈ RI+ : ∃i such that xi ≥ zi1 = z(αi,σi, Ci, γi)} and τS = inf{t >
0 : xt ∈ S} 9. Since the sample paths are continuous P-almost surely, by

9S would correspond to S1 in the I-agent setup of the desertion game.
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Theorem 2.6.5 in Port and Stone [33] the distribution of xτS will be concen-

trated on ∂S. Also,, it is easily seen that P(τS <∞) = 1.

(Sufficiency) If there are endogenous effects, zi1 = z(αi,σi, Ci, γi) > zi2 =

z(αi − ∆αi,σi, Ci, γi), i ∈ I. There will be simultaneous exit whenever

zi1 ≥ xiτS ≥ zi2, i ∈ I. This has positive probability as long as zi1 > zi2, i ∈ I.
In order to see this, first notice that the latent utilities process can be repre-

sented as the following diffusion process with killing time at τS:

dxit = αixitdt+
X
j∈I

σijdB
j
t , i = 1, . . . , I

where Bt is an I-dimensional Brownian motion (with independent compo-

nents) and σI×I = [σij]. Let ∂S1 = {x ∈ ∂S : zi1 ≥ xi ≥ zi2}. By

Corollary II.2.11.2 in Gihman and Skorohod [16] (p.308), one gets that

P(xτS ∈ ∂S1) = u(x) is an A-harmonic function in Sc. In other words,

Au(x) = 0 in Sc

u(x) = 1 if x ∈ ∂S1

u(x) = 0 if x ∈ ∂S\∂S1

where

Af =
X
i∈I

αixi
∂f

∂xi
+
1

2

X
i,j∈I
i6=j

(σσ0)ijxixj
∂2f

∂xi∂xj
.

is the infinitesimal generator associated with the above diffusion. By the

Minimum Principle for elliptic operators (see Proposition 4.1.3 in Port and

Stone [33] or Section 6.4 in Evans [11]), if u attains a minimum (which in

this case would be zero) on Sc, it is constant on Sc. This would in turn imply

that ∀x ∈ Sc, u(x) = P[xτS ∈ ∂S1|x0 = x] = 0. But by Proposition 2.3.6 in
Port and Stone [33], one can deduce that u(x) = P[xτS ∈ ∂S1|x0 = x] 6= 0.

(Necessity) If there are no endogenous effects, one agent’s drift is never

affected by the exit of other agents. Each agent’s decision is given by

τ ∗i = inf{t ∈ R+ : xit > zi = z(αi,σi, Ci, γi)}. There will be clustering
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only if τ ∗i = τ ∗j , i 6= j. The state-variable vector can be represented as above
until the killing time τS. Then, there will be clustering only if xt hits S at the

point (zi)i∈I . But in I ≥ 2 dimensions any one-point set A is polar with re-
spect to a Brownian motion, i.e., P[τA <∞] = 0 where τA is the hitting time
for A (Proposition 2.2.5 in Port and Stone [33]). So, P[τ ∗i = τ ∗j , i 6= j] = 0.

¥

Proof of Proposition 7

In preparation.

¥

Proof of Proposition 8

Notice that (for t ∈ [0, τS]) the vector process with the latent utilities can be
represented as the following diffusion process with killing at time τS:

dxit = αixitdt+ σxitdW
i
t , i ∈ I

Denote by A((αi)i∈I , ρ,σ) the infinitesimal generator associated with the
above diffusion (where the argument reminds the reader of the dependence

of the operator on the parameters). In other words, A((αi)i∈I , ρ,σ) is the
following differential operator:

A((αi)i∈I , ρ,σ)f =
X
i∈I

αixi
∂f

∂xi
+
1

2
σ2
X
i∈I
x2i

∂2f

∂x2i
+ ρσ2

X
i,j∈I
i6=j

xixj
∂2f

∂xi∂xj

for f in the appropriate domain (see Karatzas and Shreve [23], p.281).

Let G(t,x) be the probability that the diffusion will reach S(α) after t. In

other words, G(t,x) = P[τS > t|x0 = x] and represents the survival function
for the exit time distribution of the first deserter. Following Gardiner [14],
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Subsection 5.4.2, this probability can be conveniently written as the solu-

tion to the following (parabolic) partial differential equation (Kolmogorov

backward equation):

Gt = A((αi)i∈I , ρ,σ)G in Sc((αi)i∈I ,σ, γ, C), t > 0
G(0,x) = 1,x ∈ Sc((αi)i∈I ,σ, γ, C)
G(t,x) = 0,x ∈ S((αi)i∈I ,σ, γ, C) and t ≥ 0

where the initial value condition holds since G(0,x) = P[τS < ∞|x0 =
x] = 1,∀x ∈ Sc((αi)i∈I ,σ, γ, C) and the boundary condition follows since
∂S((αi)i∈I ,σ, γ, C) ⊂ S((αi)i∈I ,σ, γ, C) and because 0 is an absorbing bound-
ary for xi, i ∈ I.

Uniqueness is obtained in Theorem 4, Section 7.1.2 in Evans [11].

¥

Proof of Proposition 9

The proof follows the same techniques as above (see Gardiner [14], Section

5.4.2). The (parabolic) partial differential equation is now subject to the

following initial value condition:

H(0,x) = P[xτS ∈ ∂S1|x0 = x] = u(x)

and u follows the following (elliptic) differential equation by Corollary II.2.11.2

in Gihman and Skorohod [16] (p.308):

A((αi)i∈I , ρ,σ)u = 0 in Sc((αi)i∈I ,σ, γ, C)
u(x) = 1,x ∈ ∂S1

u(x) = 0,x ∈ ∂S\∂S1.

¥

For the next theorem we will make use of the following result (Theorem 1 in

Araújo and Mas-Colell [2]), which we cite as a lemma.
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Lemma 1 Let Ψ be a topological space, E ⊂ Rn, 1 ≤ n ≤ ∞ and ν denote a

Borel probability measure on Rn. Assume the following:

1. (Ψ × Ψ)\∆ is a Lindelöf space (i.e. any open cover has a countable

subcover), where ∆ = {(x, y) ∈ Ψ×Ψ : x = y}.

2. F : Ψ×E → R is a continuous function.

3. ∀i,ψ ∈ Ψ and a ∈ E, ∂aiF (ψ, a) exists and depends continuously on x
and a.

4. ν is a product probability measure, each factor being absolutely contin-

uous with respect to the Lebesgue measure.

5. (Sondermann Condition) If F (ψ, a) = F (ψ̂, a),ψ 6= ψ̂, then ∂ai(F (ψ, a)−
F (ψ̂, a)) 6= 0 for some i.

Then, for ν-a.e. a ∈ E, the function F (·, a) : Ψ → R has at most one

maximizer.

Proof of Theorem 2

Step 1: Consider the expected log-likelihood function conditioned on w:Z
log[g(t; ψ̂,w)]g(t;ψ,w)dt

From the properties of the Kullback-Leibler divergence or relative entropy for

two probability distributions, it is obtained that ψ̂ is maximizes the expected

log-likelihood if and only if g(t; ψ̂,w) = g(t;ψ,w). In particular, ψ̂ = ψ is

one such maximizer.

Step 2: Take Ψ = {ψ, ψ̂}. By Lemma 1, there is at most one maximizer
for the expected log-likelihood function Fw-a.e. and we know that ψ is max-

imizes it.

¥
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Proof of Theorem 3

Take two (potentially different) parameter vectors ψ = ((αi)i∈I ,∆α, ρ,σ, γ, C)

and ψ̂ = ((α̂i)i∈I ,d∆α, ρ̂, σ̂, γ̂, Ĉ). Consider x ∈ int[supp(F0)]. We are inter-
ested in showing that

P[(τ ∗i )i∈I ∈ A|x0 = x;ψ]

(where A ∈ B(RI+)) differs for any such x unless these two parameter vectors
are identical. A few things are noteworthy before we proceed. First, the

threshold zi = z(ψ) = z(αi,σ, γ, C), i ∈ I depends on α,σ, γ and C, but not

on (∆α, ρ). Also, at least one player will quit at τS1 = inf{t > 0 : xt ∈ S1}
(i.e., τS1 = ∧i∈Iτ ∗i ). Remark also that the event “at least one player leaves”,
which occurs at the hitting time τS1 , is not affected by ∆α, but is neverthe-

less influenced by ρ.

We sequentially identify the parameters and thus break the proof into three

steps:

Step 1: ((αi)i∈I , ρ,σ). As in previous propositions, the vector process with

the latent utilities can be represented as the following diffusion process with

killing at time τS1:

dxit = αixitdt+ σxitdW
i
t , i ∈ I.

The infinitesimal generator associated with the above diffusion process is

given by:

A((αi)i∈I , ρ,σ)f =
X
i∈I

αixi
∂f

∂xi
+
1

2
σ2
X
i∈I
x2i

∂2f

∂x2i
+ ρσ2

X
i,j∈I
i6=j

xixj
∂2f

∂xi∂xj

for f in the appropriate domain (see Karatzas and Shreve [23], p.281).

Letting G(t;x,ψ) = P[τS1 > t|x0 = x,ψ], one obtains that for x ∈ bS1 ∩
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S1 ∩ int[supp(F0)] (where hatted elements are those defined for ψ̂ instead of
ψ),

∂G(t;x,ψ)

∂t
= A((αi)i∈I , ρ,σ)G(t;x,ψ)

and
∂G(t;x, ψ̂)

∂t
= A((α̂i)i∈I , ρ̂, σ̂)G(t;x, ψ̂).

Let h(t;x,ψ, ψ̂) = G(t;x,ψ) − G(t;x, ψ̂). Using the equations above, one
gets that

∂h(t;x,ψ, ψ̂)

∂t
= A((αi)i∈I , ρ,σ)h(t;x,ψ, ψ̂) + g(t;x,ψ, ψ̂)

where g(t;x,ψ, ψ̂) = [A((αi)i∈I , ρ,σ)−A((α̂i)i∈I , ρ̂, σ̂)]G(t;x, ψ̂).

If we assume that, for x ∈ bS1 ∩ S1 ∩ int[supp(F0)],
G(t;x,ψ) = G(t;x, ψ̂), ∀t > 0.

we shall have that

∂h(t;x,ψ, ψ̂)

∂t
=

∂G(t;x,ψ)

∂t
− G(t;x, ψ̂)

∂t
= 0

and

A((αi)i∈I , ρ,σ)h(t;x,ψ, ψ̂) = A((αi)i∈I , ρ,σ)[G(t;x,ψ)−G(t;x, ψ̂)] = 0,

∀t > 0. This in turn implies that g(t;x,ψ, ψ̂) = 0 or, in other words,

[A((αi)i∈I , ρ,σ)−A((α̂i)i∈I , ρ̂, σ̂)]G(t;x, ψ̂) = 0.

Since (having fixed t) G(t; ·, ψ̂) is not constant, one must have

A((αi)i∈I , ρ,σ)−A((α̂i)i∈I , ρ̂, σ̂) = 0.

This means that ((αi)i∈I , ρ,σ) = ((α̂
i)i∈I , ρ̂, σ̂).
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Step 2: (∆α). Assume then that (αi)i∈I = (α̂i)i∈I , ρ = ρ̂ and σ = σ̂ and

suppose C 6= Ĉ, γ 6= γ̂ or ∆α 6=d∆α. Remember that

z(α,σ, C, γ) =
β(α,σ, γ)

β(α,σ, γ)− 1C

where

β(α,σ, γ) = 1/2− α/σ2 +

rh
α/σ2 − 1/2

i2
+ 2γ/σ2 > 1.

Since (αi)i∈I = (α̂
i)i∈I , ρ = ρ̂ and σ = σ̂, we must have that

z(αi,σ, C, γ) = z(αi,σ, Ĉ, γ̂), i ∈ I.

If this were not the case, one would have either

z(αi,σ, C, γ) > z(αi,σ, Ĉ, γ̂), i ∈ I.

or

z(αi,σ, C, γ) < z(αi,σ, Ĉ, γ̂), i ∈ I.

and, consequently, either

S1((α
i)i∈I ,σ, γ, C) ≡ S1 ⊂ Ŝ1 ≡ S1((α̂i)i∈I , σ̂, γ̂, Ĉ)

or

S1((α
i)i∈I ,σ, γ, C) ≡ S1 ⊃ Ŝ1 ≡ S1((α̂i)i∈I , σ̂, γ̂, Ĉ).

Considering that the infinitesimal generators for the latent utility process co-

incide (being given by A((αi)i∈I , ρ,σ)) we would have G(·,x;ψ) 6= G(·,x; (ψ̂)
(since then either τS1 < τŜ1 or τS1 > τŜ1,P-a.s.).

Taking then into account that S1 = Ŝ1 (and τS1 = τŜ1 ,P-a.s.), it should
be also the case that

z(αi − ∆α

I − 1 ,σ, C, γ) = z(α
i −

d∆α

I − 1 ,σ, Ĉ, γ̂), i ∈ I.
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If this were not true, one could show similarly that either

∂SH((α
i)i∈I ,σ, γ, C,∆α) ≡ ∂SH ⊂ d∂SH ≡ ∂SH((α̂

i)i∈I , σ̂, γ̂, Ĉ,d∆α)

or

∂SH((α
i)i∈I ,σ, γ, C,∆α) ≡ ∂SH ⊃ d∂SH ≡ ∂SH((α̂

i)i∈I , σ̂, γ̂, Ĉ,d∆α)

where ∂SH((α
i)i∈I ,σ, γ, C,∆α) is defined in Proposition 9. This will then

imply that the probability of simultaneous exits will be larger in one para-

metric configuration than in other.

Define yit = x̃iτS1+t
= log xiτS1+t

and W̃ i
t = W i

τS1+t
. It is easy to observe

that

dyit = (α
i −∆α/(I − 1))dt+ σdW̃ i

t yi0 = log x
i
τS1
, ∀i ∈ I

provided xτS1 /∈ ∂SH (i.e., there are no simultaneous exits in the first deser-

tion round). But then one can apply the results in Step 1 for the identifiability

of the drift and diffusion coefficients to obtain that, unless ∆α = d∆α, the

probability distribution for the timing of the second round of desertions given

that there was no clustering in the first round of desertions will differ for the

two parameters.

Step 3: (C, γ). Notice that, as opposed to the previous set of parameters,

C and γ only affect the thresholds z(α,σ, C, γ) but do not interfere with the

probability law governing the latent utilities process. With more than two

agents it is then easy to see that for a given pair C, γ, the parameters Ĉ, γ̂

would have to satisfy the set of equations

z(αi − k∆α/(I − 1),σ, C, γ) = z(αi − k∆α/(I − 1),σ, Ĉ, γ̂)

for k = 0, . . . , I − 1 and ∀i ∈ I, where

z(α,σ, C, γ) =
β(α,σ, γ)

β(α,σ, γ)− 1C
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and

β(α,σ, γ) = 1/2− α/σ2 +

rh
α/σ2 − 1/2

i2
+ 2γ/σ2 > 1.

If the above system of equations hold we have that

h(α, k∆α,σ, γ, γ̂) ≡ β(α− k∆α/(I − 1),σ, γ)
β(α− k∆α/(I − 1),σ, γ)− 1 ×

×β(α− k∆α/(I − 1),σ, γ̂)− 1
β(α− k∆α/(I − 1),σ, γ̂) =

C

Ĉ
, k = 0, . . . , I − 1 ∀i ∈ I.

Given that I > 2 this relation is impossible since h can be checked not to

be homogeneous of degree zero with respect to the argument ∆α. This in

turn implies that not all the thresholds can coincide, which means that the

probability distribution over exit times will change if one modifies C or γ.

¥
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