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1 Introduction

Preservation of water resources is a critical aspect of the sustainable development

agenda. Intense economic and demographic growth often lead to the deterioration

of water resources in developing countries. In Brazil, specifically, several river basins

have reached a considerably compromised situation. In face of the substantial costs

associated with projects for recuperation and preservation of those river basins, pol-

icy makers and funding institutions often require detailed evaluation of the benefits

accruing from them.

The problem in evaluating these benefits is the public good nature of the preserva-

tion of water resources. There is no market where individuals reveal their preferences.

As a result, usual demand analysis is prevented and alternative approaches to elicit

preferences are required. One of these approaches is the so-called contingent valuation

method. Based on survey data, this method provides an estimate of the welfare change

due to public policy projects, and has been used to value a wide variety of public goods,

including water resources. One of the distinguishing characteristics of the contingent

valuation method is use referendum questions, whose responses are modelled using

binary response methods.

To date, most contingent valuation studies found in the literature use parametric

binary response models. In addition to assumptions regarding the functional form of

the conditional mean willingness-to-pay, these models also assume that the willingness-

to-pay distribution belongs to some known parametric family, the normal and logistic

distributions being the most popular choices. Even though imposing such a restric-

tive assumption is justifiable for computational easy, it is important to recognize that

misspecification of the underlying willingness-to-pay distribution may lead to biased

estimates, with clear effects on welfare analysis.

The misspecification of the underlying willingness-to-pay distribution is particularly

important in the context of the water resources projects in developing countries. In
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general, evaluation of such projects focus on a representative individual and assumes

that the associated tax price will be the same for all individuals. As a result, only

estimates of the mean benefit are necessary. However, as it often happens, the tax

price is either progressive or regressive and welfare analysis depends critically on the

whole conditional distribution of benefits, not only its central tendency. Therefore,

imposing a particular shape to the willingness-to-pay distribution may be particularly

restrictive in these circumstances.

In this context, semiparametric models, which impose less strident restrictions on

the underlying distribution, represent an interesting modeling alternative. Several

distribution-free models are available for estimating binary response models: Man-

ski (1975), Cosslett (1983), Klein & Spady (1993), Horowitz (1992), among others.

Nonetheless, applications of these methods to valuation models, are not numerous.

Apparently, only Creel & Loomis (1997), Chen & Randall (1997), and Li (1996) con-

sidered distribution-free methods for the estimation of valuation models.

The purpose of this article is to present a semiparametric modeling approach to

valuation models. This approach consists of the application of the Klein and Spady’s

(1993) estimator and related methods. Specifically, because the intercept is not iden-

tified, in order to recover the valuation function it was approximated assuming that

the random term has zero mean. Additionally, I show how welfare evaluations can be

computed from the estimated model.

The methods proposed are illustrated with the valuation of a project for manage-

ment and improvement of an important Brazilian river basin. The Doce river basin is

located in southeast Brazil, with a total area of 83400 Km2 spread over two states. As

a result of the intense economic development observed in this region, especially in the

so called steel valley with mining and steel metallurgy activities, the basin have been

suffering a steady process of deterioration.

The project being valued involve investments intended to preserve the areas that

still are in good condition and to recover those already compromised. It is closely
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related to federal legislation for the management of water resources in Brazil, which

requires the creation of an administrative agency for each river basin. These agencies

are responsible for determining and implementing investment plans and the cost share

for all consumers, domestic and industrial.

The results obtained suggest that the willingness-to-pay distribution is bimodal,

with important consequences to welfare evaluations. Specifically, it was found that net

benefits are significantly overestimated by the logit, leading to the undue acceptance

of the project according to the Kaldor-Hicks criterion.

2 Binary Response Valuation Model

In a typical contingent valuation study, each individual is presented with a single bid

value, t, through a referendum question like “would you be willing to pay $t for the

implementation of this project?” In general, the bid value is randomly drawn from a

pool of less than 10 values.

Given this general framework, suppose that individuals derive utility from the non-

market good whose provision is to be changed and from monetary income. Assume

further that individuals reveal their true preferences through the referendum ques-

tion1. Then we can express responses as the result of a process of utility maximization,

so that a “yes” answer implies that

∆v(m, t,A; θ) = v(1,m− t, A; θ)− v(0,m, A; θ) ≥ 0 (1)

where m stands for monetary income, A is a vector of individual’s characteristics, θ

is a vector of parameters, v(1,m) is the indirect utility function when the project is

implemented and v(0,m) when it is not. For future reference, the function ∆v( · ; θ)

will be called the utility difference function.

Alternatively, we can consider the dual problem of expenditure minimization. In
1 That means that all questions about incentive compatibility and biased answers discussed in the

contingent valuation literature are conveniently resolved.
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this case a “yes” answer implies that

s(m,A; θ) = e(0, v(0,m, A; θ))− e(1, v(0,m, A; θ)) ≥ t (2)

where e(i, ·) = v−1(i, ·), i = 0, 1, are the expenditure functions associated with each

state of the good’s provision. For future reference the function s(m, A; θ) will be called

the valuation function. Clearly, the deterministic versions of these approaches, i.e.,

without the introduction of random terms, give the same result by duality. However,

as was shown by McConnell (1990), when random terms are introduced results are the

same only in the case where certain conditions for the marginal utility of income are

satisfied.

The construction of the econometric models for these approaches is based on the fact

that the values assumed by the utility difference function and the valuation function

are not directly observable. Instead, only an indicator y, covariates x ≡ {m,A} and

the bid values t are observed. Specifically, introducing additive random terms to (1)

and (2) we have that

y =

 1 if z(x, t; θ) ≥ ε

0 otherwise
(3)

where z(x, t; θ) is equal to ∆v(x, t; θ) in the utility difference approach and equal to

s(x; θ)− t in the valuation function approach.

Note that for z(x, t; θ) = ∆v(x, t; θ), the model (3) is equivalent to the well-known

random utility model. This is the approach proposed by Hanemann (1984) for modeling

contingent valuation data. The case where z(x, t; θ) = s(x; θ) − t is the approach

proposed by Cameron (1988) and Cameron & James (1987).

Provided that there is sufficient information about the distribution of ε, denoted by

Fε, the expected gains conditional on a vector of individual characteristics x and cost

share c can be easily computed. Define gains as G(x, c) ≡ s(x; θ) − c. Then, noting
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that the probability of a “yes” answer can be written as2∫ ∞

−∞
1(G(x, c) ≥ 0) dFε,

the conditional expectation of positive gains (gains) is

G+(x, c) =
∫ ∞

−∞
G(x, c)1(G(x, c) ≥ 0) dFε, (4)

where 1(·) represents the indicator function, which assumes the value 1 if the condition

is satisfied and zero otherwise.

Substituting G(x, c) < 0 for the inequality in the indicator function (4) gives the

conditional expectation of negative gains (losses), denoted by G−(x, c). Note that (4)

can be used to obtain expected gains conditional on any vector of individual charac-

teristics x and cost c. In practice, however, specifying and reporting all individual

characteristics generally is not feasible. A better approach in the present case may be

grouping individuals according to a few income ranges. In some sense, this is equivalent

to focusing on a typical individual for each income range.

3 Estimation Methods

The estimation problem in the context of the valuation model presented in Section 2

is to use information on the indicator y and the observed covariates x to recover the

parameters of the valuation function or the utility difference function.3 The traditional

estimation approach is to assume that the random term ε has distribution function Fε,

so that the probability of a “yes” answer is

P (θ) = Pr{z(x, t; θ) ≥ ε} = Fε(z(x, t; θ)), (5)
2 See Manski (1986) and Horowitz (1993a).
3 This estimation problem is often referred to as structural discrete choice model. It contrasts with

reduced form models where only choice probabilities are estimated. The problem of recovering the
structural parameters is treated in the literature under the label of identification. See Manski (1988).
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reducing the estimation problem to the maximization of a log-likelihood function with

a general form given by

log L =
N∑

i=1

yi log [Pi(θ)] + (1− yi) log [1− Pi(θ)] . (6)

In this article, two estimation approaches based on (6) and (5) are considered. The

first is the usual parametric approach where Fε is assumed to belong to some parametric

family. The other corresponds to a distribution-free semiparametric approach where

the Pi(θ) is substituted by a nonparametric estimate. Each one of these approaches

are discussed in the remainder of this section.

3.1 Censored Logit

Clearly, for the utility difference model, the maximization of (6) leads to standard logit

and probit when Fε is assumed to be logistic or normal, respectively (Hanemann 1984).

For the valuation function model the presence of the threshold value t leads to an analog

of the censored regression model where the scale of the model can be identified. For

logistic Fε and s(x, θ) = x′β, for instance, Cameron (1988) shows that the log-likelihood

(6) can be written as

log L =
∑

i

(1− yi)
[
ti − x′iβ

σ

]
− log

[
1 + exp

(
ti − x′iβ

σ

)]
, (7)

where σ is a scale parameter.

The expected gains conditional on x, given by equation (4) can be easily computed

for logistic Fε and the estimated β and σ. It is important to note, however, that if Fε

is misspecified and/or the iid error assumption is violated, the results obtained in this

parametric setting are likely to be poor. In fact, as the results presented in Section 4

suggest, logit estimates may lead to the undue acceptance of a project.

3.2 Klein & Spady Estimator

The basic idea of Klein and Spady’s (1993) estimator is to replace Pi(θ) in (6) with a

nonparametric estimate obtained through kernel density estimation. The key develop-
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ment for defining their estimator is to write the Pi(θ) in terms of estimable densities.

Specifically, for any real z, the true probability of a “yes” answer can be written as

P (θ) =
P g(z | y = 1)

P g(z | y = 1) + (1− P ) g(z | y = 0)
. (8)

where P is the unconditional probability of y = 1, and g(z | y) is the conditional density

of the index z given y. Because P g(z | y) ≡ g(y, z), only estimates of gzy = g(y, z) are

needed.

Klein & Spady (1993) propose getting these estimates using the following kernel

estimator:

ĝzy(zi; θ, λ̂y;hN ) =
1

N − 1

N∑
j 6=i

1(yj = y)

hN λ̂yj

K

[
zi − zj

hN λ̂yj

]
. (9)

The the kernel function K(ν) is symmetric, integrate to one, have bounded second

moment, and must satisfy a some conditions regarding its derivatives. The argument

hN is a nonstochastic sequence of bandwidths satisfying Nh6
N → ∞ and Nh8

N → 0 as

N → ∞. Finally, λ̂yj control the bandwidth and define the type of kernel smoothing

used. For bias reducing kernels λ = 1 and the bandwidth is fixed across observations.

For locally smoothed kernels λ is a function of a preliminary density estimate, and

the bandwidth varies across sample points according to the mass on each of them.4

For future reference, the estimator defined by the maximization of the quasi-likelihood

function obtained by substituting (8) and (9) into (6) will be called Klein and Spady

Estimator (KSE).

For technical reasons, Klein & Spady (1993) consider a trimmed version of the

estimator. Trimming is necessary to guard against “too” small densities affecting con-

vergence rates. These factors are crucial for the derivation of the asymptotic properties

of the estimator. However, as noted by Klein and Spady, the trimming seems to have

little effect on estimates. As a result, because of the considerable extra amount of com-

putations required, the trimming factors are often ignored in applied studies (Horowitz

1993b). In the application presented in Section 4, it was found that trimming has very
4 See Klein & Spady (1993) and Silverman (1986, pp. 66-70).
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little effect, corroborating this conjecture. For this reason, only the untrimmed version

is presented here.

The trimmed estimator is shown to have all the desired properties: consistency,

root-N normality and attains the efficiency bound of Cosslett (1987). Monte-Carlo

evidence presented by Klein & Spady (1993) indicates that the small sample behavior

of the estimator is good, with modest efficiency losses relative to maximum likelihood

with known disturbances’ distribution. Moreover the KSE is perfectly analogous to the

standard maximum likelihood methods. Thus, the information matrix may be taken

as the asymptotic covariance matrix and we can also perform likelihood-ratio tests.

Another important feature of the KSE is that it can accommodate heteroscedasticity

just by redefining the assumed data generation scheme given in (3) as

y =

 1 if z(x, t; θ) ≥ h (x, t; θ) ε

0 otherwise
(10)

In this case, provided that h is a known function, bounded away from zero and satisfying

some conditions related to model identification and to an index restriction, one can

redefine the left-hand side of the inequality in (10) as z/h and proceed just as in the

standard specification.

Klein & Spady (1993) have shown that the more general case where h is unknown,

but depends on {x, t} only through the index z(x, t; θ) and ε is independent of x and t,

can also be accommodated. These are certainly restrictive assumptions, as it limits the

forms of unspecified heteroscedasticity in the model. However, there are some instances

where it seems to be a reasonable assumption. One such instance is a preference

uncertainty context where bid values close to the underlying valuation are assumed to

be associated with larger variances due to some sort of ambivalence, as discussed by

Ready, Whitehead & Blomquist (1995) among others. For this reason, in this article

the KSE results are interpreted as incorporating any sort of unobserved heterogeneity.

To adapt the KSE to valuation models, it is necessary to discuss the model speci-

fication and identification. Consider a linear valuation function, with the index given
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by α + x′iβ − ti. As Klein & Spady (1993) have shown, the intercept α is not identified

and β is identified only up to a scale parameter. Normalizing the index by multiplying

it through by κ ≡ 1/σ, where σ is a scale factor, the probability of a “yes” answer can

be written as

Pr(x′iγ − κ ti ≥ η) ≡ Fη(x′iγ − κ ti) = Fε(α + x′iβ − ti) (11)

where η = κ(ε+α) and γ = κ β. Clearly, the parameters γ and κ are identified and thus

can be readily estimated through the KSE. Once the estimates γ̂ and κ̂ are obtained,

the valuation function parameters β can be estimated by β̂ = −γ̂/κ̂. To estimate the

valuation function, it remains to determine α which is assimilated into the random

error.

The problem of estimating α in this context is analog to the case of Cosslett’s

(1983) estimator considered by Li (1996). In particular, one can substitute κ̂ and γ̂

into equations (8) and (9) to estimate Fη. Then, E(η|x) can be approximated by

numerically integrating the resulting F̂η curve. That is, for a sequence of bid values

t = {t1, . . . , tM} we have that

E(η |x) =
∫

η dFη '
M−1∑
i=1

(x′γ − κ ti)∆F̂η(x′γ − κ ti), (12)

where ∆F̂η = F̂η(zi+1)−F̂η(zi). Finally, using the fact that E(η|x) = κ α, and provided

that E(ε|x) = 0, the intercept α can be estimated by α̂ = E(η|x̄)/κ, where x̄ is the

sample mean of x.

Obviously, the approximation suggested in (12) depends crucially on the bid se-

quence limits. Ideally, we should have F̂η ' 0 for t1 and F̂η ' 1 for tM . If t1 and/or

tM are far way from observed bid values, the estimation of Fη through equations (8)

and (9) is likely to be poor. Therefore, some truncation of Fη might be required when

the bid values in the sample are not large and/or small enough.5 Nonetheless, it is

important to note that the need for some truncation is due to the bid design and not
5 For more details on the truncation in nonparametric valuation studies see Kriström (1990).
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a limitation inherent to the semiparametric method. Estimation of the tails of the dis-

tribution is possible as far as there are bid values carrying relevant information about

these portions of the distribution.

Given an estimate of asymptotic covariance matrix of γ and κ, the covariance ma-

trix of β̂ can be easily estimated using the δ-method. For the variance of α̂, however,

a better alternative seems to be parametric bootstrap procedure: Given the asymp-

totic normality of the parameter estimates, γ̂ and κ̂, generate parameter vectors from

a multivariate normal distribution with location and scale given by the estimated pa-

rameter vector and the corresponding covariance matrix. Then, for each parameter

vector, compute the corresponding intercept estimate. The resulting set of estimates

correspond to the empirical distribution, which can be used to compute standard errors

and confidence intervals.

Unlike in the logit case, the expected gain conditional on x and c can not be com-

puted directly from (4) in the KSE model. Nonetheless, the integral in (4) can be

approximated using a grid of bids. In particular, given equation (11), estimates of the

expected gains can be obtained by

Ĝ+(x, c) =
M−1∑
i=1

(c− ti)1(c ≥ ti) ∆F̂η(x′γ̂ − κ̂ti), (13)

where ti is an increasing sequence of costs, preferably not far from the observed bid

values. Likewise, x and c defining the evaluation point zi of equation (9) should not be

far away from the sample observed values. The expected losses, denoted by Ĝ−(x, c),

can be estimated by substituting c < ti for the inequality in the indicator function (13).

4 Valuation of the Doce River Basin

4.1 Survey Design and Data Collection

As noted in the Introduction, the project to be valued refers to the management and

improvement of the Doce River Basin, according with federal legislation. It is worth to
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note that this close relation with actual legislation have the effect of reducing consider-

ably the hypothetical nature of the scenario being presented to the interviewees. This

scenario included a brief description of of the current condition of the river basin, the

role of the administrative agency to be created, the investment plan and its benefits,

and the cost share.

The investment plan considered was elaborated taking into account the specific

needs of the Doce river basin. In general the descriptions of these investments are

very technical, and their relation to concrete benefits are not direct in most cases. For

this reason, the scenarios were designed to focus on benefits rather than description

of investments.6 The technicians responsible for the elaboration of the investment

plans identified three basic benefits: maintenance/improvement of domestic tap water

supply and sewage collection, reduction in pollution levels of the basin’s rivers, and

improvement of outdoor activities in the areas surrounding the basin’s rivers including

some parks.

All components of the survey instrument were pretested in preliminary surveys.

As a result, the questionnaire underwent several changes before the final format was

reached. The major enhancements in this process were in the scenario reliability and

its assimilation by interviewees. In this stage a total of 279 interviews were carried.

In each of these interviews, an open-ended elicitation question were presented to each

respondent. The answers to these open-ended questions were used later as a reference

for the bid range choices and for verification of the sample sizes computed before.

Final sample sizes for both applications were determined statistically using the

formula proposed by Mitchell & Carson (1989, p.225), with census data on income

as a proxy for willingness to pay. The resulting sample sizes were increased by 30%,

reflecting the expected proportion of protest bidders, leading to final sample size of

1802 households.7

6 Investments were grouped in classes and had their technical descriptions substituted by a more
general characterization, intended to be understandable to an average citizen

7 It is important to note that the coefficients of variation obtained in the pretest survey are lower
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Subjects, the family head in most cases, were interviewed in person by trained per-

sonnel from a major Brazilian polling company. In addition to demographic information

about the household, the questionnaire collected attitudinal and behavioral information

on topics related with the projects, such as pollution, outdoor activities and shortage

in water supply. The elicitation question was formulated in the referendum format, as

described before. The bid value presented to each individual was randomly drawn from

a pool of 10 bid values. After the elicitation question, a screening question for those

who answered no was presented. Those individuals who gave answers like “I do not

believe the money will be used in the projects” to this screening question were labeled

as protest bidders (25.7%) and dropped from the sample.

4.2 Estimation Results

The estimation of the KSE model and the censored logit were implemented in S-PLUS,

using the standard normal density as the kernel function and locally smoothed kernels

in the former.8 The same set of covariates were included in both models: the monthly

income of the household in thousands of Reais, income, the age and years of shooling

of the head of the family in years, age and schooling, respectively. In order to facilitate

interpretation, covariates were centered at the sample means at the estimation stage.

As a result, the intercept estimates correspond to the estimated willingness to pay

conditional on the sample mean of the covariates. Table 1 shows the results obtained.

For each method, Table 1 lists the coefficient estimates and the corresponding stan-

dard errors. The first two columns show the results obtained with the censored logit

model, while the KSE results are shown in the last two columns. Except for the inter-

cept estimate in the KSE, reported standard errors are estimates based on the expected

Hessian evaluated at the coefficient estimates, using the δ-method approximation for

the KSE estimates. The standard error of intercept of the KSE model was obtained

than those for income. Therefore, the sample sizes are likely to be larger than required.
8 The code is available on request. Nonetheless, it is worth to note that Klein and Spady’s (1993)

estimator is packaged in LIMDEP, facilitating its application by other researchers.
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Table 1: Coefficient Estimates

Logit KSE

Coef s.e. Coef s.e.

Intercept 8.17 0.40 7.87 2.38
Income 5.42 0.86 4.17 0.65
Age -0.04∗ 0.03 -0.02∗ 0.02
Schooling 0.28† 0.12 0.14‡ 0.08
Scale 6.48 0.07 9.58 2.95

∗ not significant; † significant at the 2% level;
‡ significant at the 7% level. All other coef-
ficients are significant at less than the 1%
level.

through the parametric bootstrap procedure described before.

Inspection of Table 1 reveals that the censored logit and the KSE coefficient es-

timates have the same sign: positive for income and schooling and negative, but not

significant, for age. The estimated mean willingness to pay, conditional on the sample

mean of the covariates, are very similar according to the logit and the KSE models.9

The effect of income is slightly higher according to the logit model, while the effects of

age and schooling according to the KSE are approximately half the effect in the logit

model.

More significant differences are found in the estimated standard errors, which tend

to be much larger in the KSE. Nonetheless, the significance of the coefficients is not

changed from one method to the other. Obviously, increased variance is the price to

be paid for the less strident assumptions of semiparametric methods. However, the

increased variance might also be related to heterogeneity structure that can not be

captured by the parametric model. This conjecture is corroborated by the shape of

the willingness-to-pay distribution implied by each estimation method, as illustrated in

Figure 1 with all covariates fixed at the sample means.

The most striking aspect of Figure 1 is the clear indication of bimodality of the

willingness-to-pay distribution according to the KSE model. Because there is a signif-
9 Recall that since covariates were centered at sample means, the estimated willingness to pay

conditional on sample means correspond to the intercept estimates.
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Figure 1: Willingness-to-pay Function
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icant difference in the lower tail, we can conclude that the KSE moves mass from the

center of the distribution to the lower tail while the logit insists on placing it symmet-

rically. This pattern of mass allocation have important consequences for the estimated

expected gains and losses. Specifically, moving mass from the center to the lower tail

is equivalent to decrease, relative to the logistic distribution, the willingness to pay of

some individuals. Thus, one can expect that the logit model will tend to overestimate

gains and underestimate losses associated with higher costs, resulting in an overesti-

mate of the net benefits of the project. This overestimation may have important effects

on project evaluation, as shown in Table 2.

Table 2 gives estimates of the aggregate gains and losses according to the logit

and KSE models. Each column of Table 2 correspond to a hypothetical cost share.

All figures, except for 8.17, which corresponds to the overall mean willingness to pay

according to the logit model, were arbitrarily chosen. To facilitate a policy oriented

discussion, income range specific estimates are provided. For each income range, there

are two lines corresponding to the logit (L) and the KSE estimates (K). The bottom

lines show unconditional benefit estimates, corresponding to the sum of the benefits

over income ranges. Estimates of aggregate gains (losses) correspond to the estimate
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Table 2: Aggregate Gains and Losses Estimates

(1000 R$ per month)

Income Range Individual Cost Share – R$ per month

R$ per month 3.00 7.00 8.17 10.00 15.00

Less than 224 K 1333 -198 590 -895 487 -1092 273 -1608 25 -3341
L 1576 -233 731 -894 566 -1179 369 -1710 99 -3634

224 to 560 K 573 -51 228 -284 190 -357 125 -485 10 -1099
L 722 -62 356 -252 281 -338 188 -502 54 -1133

560 to 1120 K 408 -12 161 -90 118 -134 81 -197 7 -461
L 552 -17 304 -77 248 -106 175 -166 57 -423

1120 to 2240 K 397 -2 188 -16 140 -27 83 -55 10 -162
L 587 -3 381 -16 328 -23 253 -40 105 -127

More than 2240 K 150 0 100 -1 83 -1 59 -1 6 -10
L 285 0 224 0 206 -1 178 -1 109 -5

Unconditional K 2860 -263 1267 -1286 1019 -1610 621 -2346 58 -5074
L 3723 -316 1996 -1239 1628 -1647 1164 -2419 425 -5322

Notes: Gains are presented with positive sign and losses with negative sign. At the time of the
survey, R$ 1.15 ' US$ 1. L = Censored logit, K = Klein and Spady Estimator.

of individual gains (losses) times the number of gainers (losers) in each income range.10

Logit estimates of individual gains and losses were computed directly from equation

(4), with Fε defined by the coefficient estimates β̂ and σ̂ presented in Table 1. KSE

individual estimates were obtained from equation (13), using the estimates γ̂ and κ̂

presented in Table 1 and grid ti with 1000 points equally spaced between 0.5 and 15.

In both cases, the vectors of covariates were fixed at the sample means within each

income range.

The results given in Table 2 support the claim that the logit model tend to overesti-

mate the net benefits in this application. Interestingly, the extent of the overestimation

increases with income. For the lower income ranges, logit net benefit estimates are rel-

atively close to the KSE estimates. As we move to higher ranges, we observe that the

difference between them tend to increase. The overall consequence of these findings is
10 The number of gainers and losers were obtained by multiplying the number of households in

the population by the proportions implied by the logistic distribution and equation (8). In order to
facilitate using census data, income ranges for the counting of households were defined according to
the income of the head of the family, instead of the household income.

15



Table 3: Example of Project Financing

Income Range Tax Price Gains Losses Net Benefit

Less than 224 3.00 1333 198 1135
224 to 560 3.00 573 51 522
560 to 1120 7.00 161 90 71
1120 to 2240 10.00 83 55 28
More than 2240 15.00 6 10 -4

Total 2156 404 1752

Notes: At the time of the survey, R$ 1.15 ' US$ 1.00.
All figures in R$ per month.

that, even though the logit tends to underestimate the burden for both the richer and

poorer, it does more heavily for the former.

Certainly, the most important result presented in Table 2 is the apparent leniency of

the logit (relative to the KSE estimates) regarding the project evaluation. As expected,

the unconditional estimates indicate that charging the mean willingness to pay estimate

(R$ 8.17) produce net benefit close to zero according to the logit.11 Thus, any project

with average cost smaller than R$ 8.17 would pass the Kaldor-Hicks criterion. However,

according to the KSE estimates, the net benefit at this cost is significantly negative.

In fact, it is close to zero only at a cost of R$ 7.00 per month. Thus, any project

with average cost between 7.00 and 8.17 Reais would be unduly accepted were the

logit estimates used in the project analysis. This finding illustrates the importance of

allowing a more general distribution of benefits when formulating financing policies.

To conclude this section, it is interesting to evaluate the project considering alterna-

tive financing plans. The case of a flat tax price analyzed above is certainly very helpful

for the project analysis. However, it is often the case that policy makers are interested

in progressive tax prices. Table 3 gives a hypothetical financing scheme for the Doce

River Basin project, with tax prices differentiated by income ranges. The first column

shows the tax price for each income range. For instance, there is a monthly charge of

R$ 3.00 for households with income less than R$ 336, of R$ 5.00 for households with

income between R$ 336 and R$ 760, and so on. The second and third columns show
11 The small difference observed is due to approximation error.

16



the aggregate gains and losses, according to Table 2. The fourth column shows the

aggregate net benefit. Thus, any project with a total cost smaller than R$ 1.8 million

per month would be justifiable given this financing scheme.

5 Conclusion

This article considered the valuation of a project for the improvement of water resources

in Brazil and proposed the application of Klein and Spady’s (1993) semiparametric es-

timator and related methods to contingent valuation models. Results obtained indicate

that the usual censored logit approach produces good estimates of the conditional mean

willingness to pay, but it fails to capture a rich heterogeneity structure. Specifically, the

proposed semiparametric approach suggests that the willingness-to-pay distribution is

bimodal, while the logit insists to place mass symmetrically about the mean.

In this application, the bimodality on the welfare analysis of the project has an

important effect when the Kaldor-Hicks criterion is used. Even though the estimates

of the overall conditional mean willingness to pay are similar, the logit insistency in

allocating mass symmetrically lead to a significant overestimation (relative to the semi-

parametric method) of net benefits. As a result of this overestimation, the logit might

lead to the undue acceptance of projects.

Even though the results obtained can not be generalized, the evidence of bimodality

suggests that the usual logit approach can be usefully complemented with semipara-

metric methods. If the shape of the distribution implied by the semiparametric model

is in line with the logistic assumption, confidence about the results obtained through

parametric methods is strengthened. However, if the semiparametric model suggests

severe deviation from the logistic distribution, parametric methods should be viewed

with care, specially when the main interest is not the overall conditional mean bene-

fits. In such a case, the semiparametric approach seems to provide a more accurate

representation of the heterogeneity structure, enriching welfare analysis.
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