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Abstract

In this paper we characterize the optimal allocation mechanism for N ob-
jects, (permits), to I potential buyers, (firms). Firms’ payoffs depend on their
costs, the costs of competitors and on the final allocation of the permits, al-
lowing for externalities, substitutabilities and complementarities. Firms’ cost
parameter is private information and is independently distributed across firms.
Externalities are type dependent. This has two consequences: first, even though
the private information of each firm is one dimensional (its cost), an allocation’s
virtual valuation (the natural generalization of the virtual valuation introduced
in (Myerson (1981), [12] depends on the cost parameters of all firms. Second,
the “critical”type of each buyer, (the type for which participation constraint
binds) is not exogenously given but depends on the particular mechanism se-
lected. This is not as in the papers by Jehiel, Moldovanu and Stacchetti 1996,
2001 [6], [7], and makes the characterization of the optimum intricate, since
the objective function is altered. However, the feasibility constraints remain
tractable, which makes the use of variational methods possible. A further con-
sequence of having type-dependent externalities, which does not arise in the
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previous work, is that not only payments, but also the revenue maximizing
allocation is different from the optimum derived without taking into account
the existence of externalities. Our model captures key features of many impor-
tant multi-object allocation problems like the allocation of time slots for TV
commercials, landing slots in airports, privatization and firm takeovers. Key-
words: Optimal Auctions, Multiple Objects, Externalities, Mechanism Desigǹ.
JEL D44, C7, C72.

1 Introduction

In this paper we characterize the optimal allocation mechanism for N objects (per-

mits), to I potential buyers (firms). Firms’ payoffs depend on their costs, the costs

of competitors and on the final allocation of the permits, allowing for externalities,

substitutabilities and complementarities. A firm cares not only whether it obtains a

particular set of permits, but also cases about who obtained which licence. Firms’

cost parameter is private information and is independently distributed across firms.

Externalities are type dependent.

In a large variety of multi-object allocation problems the presence of externalities

is of central role. Our model with small modifications can help address the following

problems.

• Firm Take-overs: Externalities are of huge importance in firm take-overs:

Recently (February 2004), Cingular bought AT&T wireless for $41 billion after a

bidding war with Vodafone. Some perceive that the big winner of this sale will be

Verizon even though it was not a participant in the auction (NY Times February 17,

2004 “Verizon Wireless May Benefit From Results of Auction”).

• Allocation of Airport Take-Off and Landing Slots. Airport take-off and

landing slots are a scarce resource yet not priced! There are important externalities

since for instance if two airlines are fierce competitors in a big airport say United

and American at O’Hare, then if United obtains critical landing slots in LAX, (Los

Angeles International Airport), this may well affect its market position in O’Hare

vis-a-vis American.

• Auctioning of time slots for advertisements on TV, radio. In reality
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airtime for advertisements is priced using conventional mechanisms, whereas if net-

works take-into account the presence of externalities and auction off the time slots,

we might end up with less (even zero) airtime of advertisement yet higher revenue.

How much would a firm pay so that its fiercest competitor does not advertise in the

intermission of Super-ball? One can imagine a network asking this question to Miller,

Budweiser, Bud etc. Taking this to an extreme there may be a potential for a lot of

revenue with actually no one airing a spot. In other words strongly opposed interest

may permit the seller to extract payments just for doing nothing 1!

• Privatization - Mechanism Design with Endogenous Market Struc-

ture. The model of this paper can be thought as follows: There is revenue-maximizing

seller 2(the government) trying to sell permits for operating in a certain market to

some potential buyers. These permits represent a right to participate in the market,

and the profits a given firm can make out of it depend on three things: their own

marginal cost, which is private information, the market structure and the marginal

costs of the competitors that also participate in the market. After the permits have

been allocated, the firms that got one or more of them face a perfectly anticipated

demand and engage in some sort of oligopolistic competition. We also allow for the

possibility that these firms are already competing in different markets, so even if

they do not get permits assigned, who gets the permits will affect their profits. The

presence of such externalities allows the seller can to extract extra payments from

any given firm, just by threatening to setup a very damaging market structure in

case it does not participate in the process. Our model captures such scenarios and

generalizes previous work by [2], who examine whether the government should sell a

firm in one piece or cut it into two. (for a discussion on this, see [11]).3 In the work of

[2] the outcome of the mechanism depends heavily on the weight that the government

assigns to revenue versus efficiency and on the type of competition that prevails in

1This is similar to the common agency problem, as identified for example in [3]
2The objective function can be modified to take into account the possibility that the governement

cares also for consumer surplus.
3Gale([4]) also considers a variation of this problem but because he imposes a very strong super-

additivity condition to the profit function, he shows that an optimal mechanism always gives all the
“permits” to at most one buyer, so the market structure is always the one of a monopoly.
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the market after privatization.

• Selling licences for cellular networks, TV or radio broadcasting.

• Optimal Bundling: Since we allow for complementarities and substitutability

one can think of applications for cases of bundling of goods, (bundles like telecommu-

nication services - internet - cable TV, computers-printers-software-digital cameras

etc).

This paper is related to the optimal auction literature for multiple objects: [10]

analyze the case of single dimensional private information and continuously divisible

goods, [1] allows for multidimensional uncertainty but there are only two buyers

and two types. [6] study optimal auction design in the presence of externalities

in a single unit environment where externalities are type independent. Because of

the presence of externalities the seller can extract payment for the losers but the

revenue maximizing allocation of the object is the same as in the case of the revenue

maximizing auction without taking into account the presence of externalities. [7]

consider again the design of optimal auctions of a single object in the presence of

externalities. Here the externalities are type dependent: the type of each buyer is a

vector of numbers that determines his/her utility as a function of who gets the object.

The multi-dimensionality makes the solution of the general problem intractable: it is

almost impossible to verify that the set of conditions that are implied by incentive

compatibility are satisfied (the allocation rule has to be monotonic and conservative -

or path independent). Our innovation is to allow for multiple objects, general payoff

functions that allow for complementarities and substitutabilities and type dependent

externalities among buyers, but because private information is single-dimensional we

can solve the problem. The first consequence of approach is that even though the

private information of each firm is one dimensional (its cost), an allocation’s virtual

valuation depend on the cost parameters of all other firms. This captures nicely the

existence of externalities among buyers: how much money the seller can extract from

firm A depends on the technology of firm B, which captures together with other

parameters how strong of a competitor firm B is. As in [6] and [7] the critical type of

the buyer is not exogenously given but depends on the range of the externalities. But

in our approach, since we allow for more general payoff functions, the critical type
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(where the participation constraint binds) also depends on the actual mechanism.

This critical type of each agent determines how much money the seller can extract

from the players. Hence the characterization of the optimum becomes intricate: given

a mechanism there is a vector of critical types and a amount of payments that the

seller can extract from the buyers: the mechanism depends not only on the virtual

valuations, but also on which is the critical type. Moreover the vector of critical types

is mechanism specific. A consequence of this interrelationship between the critical

types and the mechanism is that the optimal allocation of the object in the presence

of externalities is different from the one we would obtain with no externalities. In

contrast, the presence of externalities in [6] affect only the payment that the seller

can extract from the buyers and not the allocation of the object. General models

allowing for type dependent externalities like those ([5], [9]) are concerned with the

design of efficient mechanisms.

2 The model

There are I risk-neutral firms trying to buy N permits. Each firm has a marginal

cost ci ∈ [ci, ci] ≡ Ci that is drawn independently from a distribution with density fi

(with cumulative distribution Fi). We assume fi(ci) > 0 for all ci ∈ [ci, ci]. This cost

is private information of each firm. Let C =
I∏

i=1

[ci, ci] and C−i =
∏
j 6=i

[cj, cj]. The set

of possible allocations is given by Z = {(z1, ..., zI) ∈ NI |
I∑

i=1

zi ≤ N} (notice that Z

is finite). For any given firm i, its profits are represented by a function πi(z, ci, c−i)

with the following characteristics:4

• πi is decreasing and convex in ci

4Gale’s (1990) condition on profit function, would in our notation read as follows:

(∀z ∈ ∂Z)(∀z′ ∈ Z/∂Z)(∀c ∈ [ci, ci])
I∑

i=1

πi(z, ci, c−i) ≥
I∑

i=1

πi(z′, ci, c−i)

where ∂Z = {z ∈ Z|(∃i ∈ {1, ..., I})zi = N}.
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• πi(z, ·, c−i) is differentiable for all z and c−i

This specification makes clear that we are in the context of an auction with

externalities, since each buyer cares not only for the permits that are assigned to

him, but also for the distribution of the remaining ones. Notice also that we allow

πi(z, ci, c−i) 6= 0 even when the allocation z does not include any rights for firm i,

so we can include the cases when the bidders are already competing in a different

market, and whatever happens in this one will affect their profits in those.

As a matter of notational convenience, let’s define

f−i(c−i) = f1(c1)f2(c2)...fci−1
(ci−1)fci+1

(ci+1)...fI(cI)

and

f(c) = f1(c1)...fI(cI).

A mechanism will be then M = ({Si}I
i=1, p, x, {ρi}I

i=1), where Si stands for the set

of messages available to firm i, p :
I∏

i=1

Si −→ ∆(Z) specifies the probability of each

allocation for a given message, x :
I∏

i=1

Si −→ RI
+ is the specification of the payments

for each message and ρi :
I∏

i=1

Si −→ ∆(Z) specifies the probability of each allocation

when firm i decides not to participate in the auction. This is the threat allocation

rule: because there externalities the seller can threat i that in the event that i fails to

participate, he will face a very unfavorable allocation. In our model this unfavorable

allocation is not only buyer and type-specific but depends also on the allocation p that

the seller desires to implement. We denote by pz(s) the probability that allocation z

is implemented when the message tuple is s. It’s easy to check that in this context the

revelation principle holds, so without loss of generality we can consider Si = [ci, ci]

and restrict our attention to mechanisms where each agent truthfully reveals its type.

With this in mind, we drop the strategy spaces from the definition of a mechanism

and consider M = (p, x, {ρi}).
For a fixed mechanism M = (p, x, {ρi}I

i=1),the ex-ante utility of a firm of type ci when
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it participates and declares c′i is:

Ui(ci, c
′
i; p, x) =

∫
C−i

∑
z∈Z

(pz(c′i, c−i)πi(z, ci, c−i)− x(c′i, c−i))f−i(c−i)dc−i

The utility of the same firm if it decides not to participate in the auction is:∫
C−i

∑
z∈Z

ρz
i (c

′
i, c−i)π(z, ci, c−i)f−i(c−i)dc−i

Since, as we said before, the revelation principle holds and we assume firms satisfy

the constraint of individual rationality, we introduce the following definition:

Definition 1. We say that a mechanism (p, x) is feasible iff

Ui(ci, ci; (p, x)) ≥ Ui(ci, c
′
i; (p, x)) for all ci, c

′
i ∈ Ci and c−i ∈ C−i

Ui(ci, ci; (p, x)) ≥
∫

C−i

∑
z∈Z

ρi(c
′
i, c−i)π(z, ci, c−i)f−i(c−i)dc−i for all ci ∈ Ci∑

z∈Z

pz(c) ≤ 1, pz(c) ≥ 0 for all c ∈ C

The first set of constraints are the incentive compatibility constraints, the second

set of constraints are the voluntary participation constraints and the third set of

constraints impose the requirements that probabilities sum up to one and are non-

negative numbers. Then the problem of a revenue maximizing seller can be written

as:

max
p,x

∫
C

I∑
i=1

xi(c)f(c)dc

s.t. (p, x) feasible.

We will solve this problem in steps. Before examining the complete model where

threats will play a crucial role in the optimum, we first look at the case that the

worst punishment that the seller can impose on a firm is to leave it out of the market

which leaves this firm a payoff of zero. We call this case the single market case.

7



3 The single market case

We consider first the case when the outcome of the process under question does not

have any effect on the profits of the firms outside of the current market. This is

summarized in the following assumption:

Assumption 1. The worst punishment that the seller can impose on a buyer guar-

antees that buyer a payoff of zero.5

Under this assumption {ρi}I
i=1 becomes completely irrelevant, since the maximal

punishment that can be imposed to a firm is to be left outside of the market. The

problem for the seller then becomes:

max
p,x

∫
C

I∑
i=1

xi(c)f(c)dc

s.t.

Ui(ci, ci; (p, x)) ≥ Ui(ci, c
′
i; (p, x)) for all ci ∈ Ci and c−i ∈ C−i

Ui(ci, ci; (p, x)) ≥ 0 for all ci ∈ Ci∑
z∈Z

pz(c) ≤ 1, pz(c) ≥ 0 for all c ∈ C

Now we will completely characterize the structure of the revenue maximizing mech-

anism for this case. Let’s define6

P (ci) =

∫
C−i

∑
z∈Z

pz(ci, c−i)
∂πi(z, ci, c−i)

∂ci

f−i(c−i)dc−i

and

Vi(ci) = max
c′i

∫
C−i

(
∑
z∈Z

pz(c′i, c−i)πi(z, ci, c−i)− x(c′i, c−i))f−i(c−i)dc−i

5A sufficient condition for this is π(z, ci, c−i) ≥ 0 and πi(z, ci, c−i) = 0 for all z /∈ Zi, where
Zi = {z ∈ Z|zi 6= 0} is the set of allocations where agent i receives some participation in the market.

6In the case with one object, no externalities and a valuation of the object equal to the type this
reduces to the familiar expression R(ci) = −

∫
C−i

pi(ci, c−i)dc−i
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Lemma 1. A mechanism (p, x) is feasible iff

Pi(c
′
i) ≥ Pi(ci) where c′i > ci (1)

Vi(ci) = Vi(c)−
ci∫

ci

P (s)ds for all ci ∈ Ci (2)

Vi(ci) ≥ 0 (3)

pz(c) ≥ 0
∑
z∈Z

pz(c) ≤ 1 (4)

Proof. By the convexity of πi(z, ·, c−i) we have V is a maximum of convex functions,

so it is convex, and therefore differentiable a.e. It’s also easy to check that the fol-

lowing are equivalent:

(a) (p, x) is incentive compatible

(b) R(ci) ∈ ∂V (ci)

(c) U(ci, ci; (p, x)) = V (ci)

(=⇒) Since the mechanism is incentive compatible, from the previous characterization

we get that a feasible mechanism must satisfy (b). A result in [8] then implies (2).

By the convexity of V , we know ∂V is monotone, so:

(R(ci)−R(c′i))(ci − c′i) ≥ 0

This immediately implies (1). Finally, using (2) and individual rationality we get (3).

(⇐=)Individual rationality is immediately implied by (2) and (3). To prove incentive

compatibility it’s enough to show that R(c) ∈ ∂V (c). By (1) and (2),

V (c′)− V (c) =

c′∫
c

R(s)ds

≥ R(c)(c′ − c)

which shows R(c) ∈ ∂V (c).
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Lemma 2. The expected payment of an agent can be written as

Yi =

∫
C−i

∑
z∈Z

pz(ci, c−i)[πi(z, ci, c−i) +
Fi(ci)

fi(ci)

∂πi(z, ci, c−i)

∂ci

]f(c)dc

Proof.

Yi =

∫
C−i

xi(c)f(c)dc

=

∫
C−i

[
∑
z∈Z

pz(ci, c−i)πi(z, ci, c−i)]f(c)dc−
∫
Ci

V (ci)dci

But because of (5), and using changing the order of integration we get:∫
Ci

V (ci)dci =

∫
Ci

[V (ci)−
ci∫

ci

R(s)ds]fi(ci)dci

= V (ci)−
∫
Ci

R(s)[

s∫
ci

fi(ci)dci]ds

= V (ci)−
∫
Ci

R(c)Fi(c)dc

= V (ci)−
∫
Ci

(

∫
C−i

∑
z∈Z

pz(ci, c−i)
∂πi(z, ci, c−i)

∂ci

f−i(c−i)dc−i)Fi(ci)dci

= V (ci)−
∫

C−i

∑
z∈Z

pz(ci, c−i)
∂πi(z, ci, c−i)

∂ci

Fi(ci)

fi(ci)
f(c)dc

and since in an optimal mechanism V (ci) = 0, the result follows.

The two previous lemmas allow us to fully characterize the problem in terms of

the assignment function p:

Proposition 1. If in a mechanism (p̂, x̂) the assignment function p̂ solves:

max
p

∫
C

∑
z∈Z

pz(c)
I∑

i=1

[
πi(z, ci, c−i) + Fi(ci)

fi(ci)
∂πi(z,ci,c−i)

∂ci

]
f(c)dc

s.t.(4), (7)
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and the payment function x̂ satisfies:

x̂i(c) =
∑
z∈Z

p̂z(c)πi(z, ci, c−i) +

ci∫
ci

∑
z∈Z

∂πi(z, s, c−i)

∂s
p̂z(s, c−i)fi(s)ds

then the mechanism is optimal

Proof. Just apply lemmas 1-2, and notice that with this definition of xi(c), conditions

(5) and (6) are immediately satisfied.

Assumption 2. 7 Let z1,z2 ∈ Z be any two allocations. For a given cost realization

(ci, c−i), define Jz(c) =
I∑

i=1

[πi(z, ci, c−i) + Fi(ci)
fi(ci)

∂πj(z,ci,c−i)

∂ci
].

If z1 ∈ aPg max
z∈Z

Jz(c
−
i , c−i) and z2 ∈ aPg max

z∈Z
Jz(c

+
i , c−i) , then

∂πi(z2, ci, c−i)

∂ci

≥ ∂πi(z1, ci, c−i)

∂ci

In the case of no externalities, this condition is implied by Jz(ci) decreasing in ci,

which is the equivalent to the regularity condition in [12].

Based on the previous proposition we can characterize the optimal auction for the

regular case:

Proposition 2. Suppose that assumption 2 is satisfied. Then the optimal allocation

p̂ is given by:

p̂z∗(c) =

 1 if z∗ ∈ aPg max
z

I∑
i=1

[πi(z, ci, c−i) + Fi(ci)
fi(ci)

∂πi(z,ci,c−i)
∂ci

]

0 if not

when max
z

I∑
i=1

[πi(z, ci, c−i) + Fi(ci)
fi(ci)

∂πj(z,ci,c−i)

∂ci
] ≥ 0 and pz(c) ≡ 0 in other case.

7In the case of no externalities, this condition is implied by Jz(ci) decreasing in ci, which is the
equivalent to the regularity condition in [12]
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Proof. The solution proposed corresponds to pointwise maximization, so the only

possibility that is not optimal is that is not feasible. To check that feasibility is

satisfied notice that

R(ci) =

∫
C−i

∑
z∈Z

pz(ci, c−i)
∂πi(z, ci, c−i)

∂ci

f−i(c−i)dc−i

and consider a fixed c−i. In a region [c, c] where z ∈ arg max
z∈Z

Jz(c) p(ci, c−i) does not

change (pz = 1) and R(ci) is nondecreasing by the convexity of πi(z, ·, c−i). For a

given c∗ where z1 ∈ arg max
z∈Z

Jz(c
−
i , c−i) and z2 ∈ arg max

z∈Z
Jzc

+
i , c−i), pz1(c∗i

−, c−i) = 1

and pz2(c∗i
+, c−i) = 1, so R(ci) is nondecreasing because of Assumption 2.

Now we consider the complete model.

4 The multiple markets case

The problem of the seller then becomes:

max
p,x,ρ

∫
C

I∑
i=1

xi(c)f(c)dc

s.t.

Ui(ci, ci; (p, x)) ≥ Ui(ci, c
′
i; (p, x)), for all ci, c

′
i ∈ Ci (IC)

Ui(ci, ci; (p, x)) ≥
∫

C−i

∑
z∈Z

ρi(c
′
i, c−i)π(z, ci, c−i)f−i(c−i)dc−i (PC)∑

z∈Z

pz(c) ≤ 1, pz(c) ≥ 0

Before we proceed with our solution a few remarks are in place. In the standard

problem without externalities the worst that the seller can do to a buyer is not to

assign him the object, hence the worse that the seller can do is to enforce a payoff of

zero: the payment function is then

xi(c) =
∑
z∈Z

[
(pz(c′i, c−i)π(z, ci, c−i)−

∫ c̄i

ci

[∑
z∈Z

pz(s, c−i)
∂π(z, s, c−i)

∂ci

]
ds

]
− Ui(c̄i),

where Ui(c̄i) is determined by the fact that the buyer always has the option not to

participate which implies that

Ui(c̄i) = 0.
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In [6], where the externalities are type independent, the seller can threaten buyer i

that she will assign the object to the buyer that imposes the “worst” externality on

buyer i in the event he does not participate. Suppose that this buyer is j, then the

seller chooses (for buyer i), the buyer who imposes the worst externality on him

j∗(i) ∈ aPg max
j∈I

−αj(i).

Now using as a threat that the object will be assigned to j∗(i) in the event that i

does not participate, the seller not only gets i to participate but also extracts higher

payments from him: in this case we have that

xi(c) =
∑
z∈Z

(pz(c′i, c−i)π(z, ci, c−i)−
∫ c̄i

ci

[∑
z∈Z

pz(s, c−i)
∂π(z, s, c−i)

∂ci

]
ds− Vi(c̄i),

where

Vi(c̄i) = −αj(i).

Hence compared to the no-externality the seller can extract higher payments. The

difference in the payments is −αj(i). Notice that the threat is independent of the

mechanism.

Now, in our environment where there are many objects to be allocated and many

ways that the seller can bundle the objects, there are many potential allocations that

can be used for punishments. An optimal punishment depends on the mechanism

that the seller wants to implement, on the identity of the buyer that the seller wants

to “punish” and on his type. Let us examine what is going on step-by-step: A given

allocation rule p determines up to a constant the expected payoff for each type of a

buyer, which is given by the familiar expression

Vi(ci) = Vi(c̄i)−
∫ c̄i

ci

∫
C−i

[∑
z∈Z

pz(s, c−i)
∂π(z, s, c−i)

∂ci

]
f−i(c−i)dc−ids,

the constant Vi(c̄i) is determined by the optimal threat that the seller can design. Let

us call V̂ (ci) the payoff of type ci of buyer i net of the constant that is

V̂i(ci) = −
∫ c̄i

ci

∫
C−i

[∑
z∈Z

pz(s, c−i)
∂π(z, s, c−i)

∂ci

]
f−i(c−i)dc−ids,
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which is, as we have shown, a decreasing and convex function of ci. Now for each such

expression there exists a “worst punishment”. The worst punishment is identified in

two steps. First given an allocation rule p which determines V̂ (ci) and given an

allocation zwe determine the critical type. Define πi(z, ci) =
∫

C−i

]π(z, ci, c−i)dc−i, the

expected payoff given an allocation z for agent i if his type is ci. Suppose that the

seller is contemplating what would be the largest constant that he could reduce i′s

payoff by given a proposed allocation p and a threat z : this constant is going to be

determined by the type where V̂i would hit πi first if we were to shift it down, we call

this type c
∗
i (z). Now the constant by which the seller can reduce i’s payoff is given by

the difference

V̂i(c
∗
i (z))− πi(c

∗
i (z), z)

Formally c∗i (z) solves the following program:

c∗(z) ∈ arg min
ci

[
V̂i(ci)− πi(z, ci)

]
Given the convexity of V (·) and πi(·, z), the problem can be written as:

c∗(z) ∈ arg min
ci

[
V̂i(ci)− πi(z, ci)

]
s.t.π′i(ci, z) ∈ ∂V (ci).

This characterization, even if it looks more difficult, is extremely useful when the

“threat” functions πi(·, z) are linear, since the set of types where π′i(ci, z) ∈ ∂V (ci) is

a singleton. Suppose for example that πi(·, z) = azci + bz. Then

c∗(z) =


c ifP (c) ≥ az

c ifP (c) ≤ az

P−1(az) otherwise

After finding the critical type for a particular “threat” z, we can compute the value

of V (c), since from the characterization of incentive compatible mechanisms we have

that V (c) = V (c∗(z)) +
c∫

c∗(z)

P (s)ds, so we can write V (c) = π(c∗(z), z) +
c∫

c∗(z)

P (s)ds.
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The next step for the seller is to find the worst threat, which solves the following

program

z∗(p) ∈ min
z

πi(c
∗(z), z) +

∫ c̄

c∗(z)

P (s)ds

and the optimal threat is thus

ρz(s) = 1 for z = z∗(p).

The objective function of the seller can now be written as:∫
C

∑
z∈Z

pz(ci, c−i)
∑
i∈I

[πi(z, ci, c−i) +
Fi(ci)

fi(ci)

∂πi(z, ci, c−i)

∂ci

]f(c)dc−
I∑

i=1

Vi(c̄i)

where Vi(ci) explicitly shows that the payments that can be extracted from the firms

depend on the assignment function, by

Vi(ci) = πi(c
∗(z)) +

∫ c

c∗(z)

P (s)ds

The two previous lemmas allow us to fully characterize the problem in terms of

the assignment function p:

Proposition 3. If in a mechanism (p̂, x̂) the assignment function p̂ solves:

max
p

∫
C

∑
z∈Z

pz(c)
I∑

i=1

[
πi(z, ci, c−i) + Fi(ci)

fi(ci)
∂πi(z,ci,c−i)

∂ci

]
f(c)dc−

I∑
i=1

Vi(ci)

s.t. Pi increasing,
∑
z∈Z

pz(c) ≤ 1 and p(c) ≥ 0

and the payment function x̂ satisfies:

x̂i(c) =
∑
z∈Z

p̂z(c)πi(z, ci, c−i) +

ci∫
ci

∑
z∈Z

∂πi(z, s, c−i)

∂s
p̂z(s, c−i)g(s)ds− Vi(c̄i),

where

Vi(c̄i) =

∫
C−i

[
πi(c

∗(z∗)) +

∫ c̄

c∗(z8)

P (s)ds

]
f−i(v−i)dv−i,
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and where in turn c∗i (z
∗) solves the following program: For any given z we find the

“critical type” which depends on p via Vi(ci)

c∗(z) ∈ arg min
ci

[
V̂i(ci)− πi(z, ci)

]
and then we find the optimal z

z∗(p) ∈ min
z

πi(c
∗(z)) +

∫ c̄

c∗(z)

P (s)ds,

and the optimal threat is given by:

ρz(s) = 1 for z = z∗(p),

then the mechanism is optimal.

This program is not anymore linear in p, and as we demonstrate below via an

example, the usual approach of maximizing the objective function pointwise ignor-

ing the constraint set will in our case lead to infeasible mechanisms. Fortunately

the problem has enough structure8to allow the use of variational methods without

imposing any restrictions, such as differentiability on the mechanism.

8In particular enough differentiability on π will guarantee enough regularity on c∗(z) as a function
of the mechanism.
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5 Example

As an illustration of our pervious analysis we present an example. Consider 2 firms

fighting for a single slot to advertise their products. The value of actually airing a

spot depends on the actual cost ci of the firm, which is private information. The

cost is uniformly and independently distributed in [0, 1]. We denote by z = 0 the

allocation when the object is not sold and z = i the allocation when the object is

given to agent i.

5.1 No externalities

Suppose that firms care only about getting the object. This case is one that can be

just solved as in [12]. For example, profit functions for agent 1 are given by:

π1(0, c1, c2) = 0

π1(1, c1, c2) = 1− c1

π1(2, c1, c2) = 0

and for agent 2 are given by:

π2(0, c1, c2) = 0

π2(1, c1, c2) = 0

π2(2, c1, c2) = 1− c2

In this case the virtual valuations are

J1(c1, c2) =
2∑

i=1

[πi(1, ci, c−i) +
Fi(ci)

fi(ci)

∂πi(1, ci, c−i)

∂ci

]

= 1− 2c1

Analogously we get J2(c1, c2) = 1− 2c2 and J0(c1, c2) = 0.

The solution is then given by:

p1(c) = 1 if c1 ≤ c2 and c1 ≤ 1
2

p2(c) = 1 if c1 ≥ c2 and c2 ≤ 1
2

0 otherwise

This assignation is illustrated in figure 2.
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5.2 Type Independent Externalities

Now, let’s suppose that firms also care about the competitor not getting the ad-

vertisement slot. But suppose that the cost of a competitor winning the auction is

independent of their own cost. For example, profit functions for agent 1 are given by:

π1(0, c1, c2) = 0

π1(1, c1, c2) = 1− c1

π1(2, c1, c2) = −α

and for agent 2 are given by:

π2(0, c1, c2) = 0

π2(1, c1, c2) = −α

π2(2, c1, c2) = 1− c2

The optimal allocation is exactly the same as in the previous case, that is:

p1(c) = 1 if c1 ≤ c2 and c1 ≤ 1
2

p2(c) = 1 if c1 ≥ c2 and c2 ≤ 1
2

0 otherwise

The only difference is in the payments. Now the seller can extract an extra payment

of α from each bidder.

5.3 Type Dependent Externalities

Now, let’s suppose that firms also care about the competitor not getting the adver-

tisement slot. Even more, the cost of a competitor winning the auction is higher

when their own cost realization is higher. For example, profit functions for agent 1

are given by:

π1(0, c1, c2) = 0

π1(1, c1, c2) = 1− c1

π1(2, c1, c2) = −αc1
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and for agent 2 are given by:

π2(0, c1, c2) = 0

π2(1, c1, c2) = −αc2

π2(2, c1, c2) = 1− c2

With this we can write the virtual valuations associated to each allocation:

J1(c1, c2) =
2∑

i=1

[πi(1, ci, c−i) +
Fi(ci)

fi(ci)

∂πi(1, ci, c−i)

∂ci

]

= (1− c1 − c1) + (−αc2 − αc2)

= 1− 2c1 − 2αc2

Analogously we get:

J2(c1, c2) = 1− 2c2 − 2αc1

J0(c1, c2) = 0

The seller’s problem can be written as:

max
p

∫
[0,1]

∫
[0,1]

[p1(c)[1− 2c1 − 2αc2] + p2(c)[1− 2c2 − 2αc1]]dc1dc2 − V1(1)− V2(1)

s.t.
∫

[p1(c)[−1] + p2(c)[−α]]dc2 is nondecreasing∫
[p1(c)[−α] + p2(c)[−1]]dc1 is nondecreasing

p1(c) + p2(c) ≤ 1

5.4 A “Naive” Solution

If we do not consider the terms V1(1) and V2(1) at all, we can try pointwise maxi-

mization, which gives us a solution of the form:

p1(c) = 1 if 1− 2c1 − 2αc2 ≥ 1− 2c2 − 2αc1 and 1− 2c1 − 2αc2 ≥ 0

p2(c) = 1 if 1− 2c2 − 2αc1 ≥ 1− 2c1 − 2αc2 and 1− 2c2 − 2αc1 ≥ 0

0 otherwise

19



For the moment being, we concentrate on the case α < 1, and we rewrite the mecha-

nism as:

p1(c) = 1 if c1 ≤ c2 and 1− 2c1 − 2αc2 ≥ 0

p2(c) = 1 if c2 ≤ c1 and 1− 2c2 − 2αc1 ≥ 0

0 otherwise

This allocation can be seen in figures 3 and 4. Feasibility is satisfied since for a fixed

c2 the function c1 −→ −p1(c1, c2)−αp2(c1, c2) is nondecreasing. The same is true for

a fixed c1 and the function c2 −→ −αp1(c1, c2)− p2(c1, c2) (see figures 3 and 4).

What is the value of this solution? We will directly compute it for the case when

α < 1
2
:

P =

1∫
0

1∫
0

p∗1(c)J1(c) +

1∫
0

1∫
0

p∗2(c)J2(c)− V1(1)− V2(1)

Claim: the critical type satisfies c∗1 ∈
[

1−2α
2

, 1
2(1+α)

]
and is given by c∗1 = 1−2α2

2(1+α−α2)

Proof. Notice that in this interval P (c1) = (1 − α)c1 + 2c1−1
2α

, setting it equal to −α

the result follows. Now it is left to check that c∗1 ∈
[

1−2α
2

, 1
2(1+α)

]
. For that:

c∗1 ≥ 1− 2α

2
1− 2α2

2(1 + α− α2)
≥ 1− 2α

2

1− 2α2 ≥ 1− 2α + α− 2α2 − α2 + 2α3

2α2 − α− 1 ≤ 0

Which is always true since solving the quadratic equation we get that the critical

types are α = 1+
√

9
4

which implies α1 = −1
2

and α2 = 1.

Note: 1 + α − α2 is always positive in the interval, so the step between the second

and the third line is well justified.
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And:

c∗1 ≤ 1

2(1 + α)

1− 2α2

2(1 + α− α2)
≤ 1

2(1 + α)

1− 2α2 + α− 2α3 ≤ 1 + α− α2

−2− α ≤ −1

α ≥ −1

which is also always true.
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Now, noticing that V1(1) = −αc∗1 +
1∫

c∗1

P (c1)dc1 we can compute:

1∫
c∗1

P (c1)dc1 =

1
2(1+α)∫
c∗1

[
(1− α)c1 +

2c1 − 1

2α

]
dc1 +

1∫
1

2(1+α)

[
c1 −

1

2

]
dc1

=

1
2(1+α)∫
c∗1

[[
1− α +

1

α

]
c1 −

1

2α

]
dc1 +

1∫
1

2(1+α)

[
c1 −

1

2

]
dc1

=

[
1− α +

1

α

] [
1

8(1 + α2)
− c∗1

2

2

]
− 1

4α(1 + α)
+

c∗1
2α

+
1

2
− 1

8(1 + α)2
− 1

2
+

1

4(1 + α)

=

[
−α +

1

α

]
1

8(1 + α)2
−

[
1− α +

1

α

]
c∗1

2

2
+

α− 1

4α(1 + α)
+

c∗1
2α

=
1− α

8α(1 + α)
+

α− 1

4α(1 + α)
−

[
1− α +

1

α

]
c∗1

2

2
+

c∗1
2α

=
α− 1

8α(1 + α)

[
1− α +

1

α

]
c∗1

2

2
+

c∗1
2α

=
1

2α

[
α− 1

4(1 + α)
− (1 + α− α2)c∗1

2 + c∗1

]
=

1

2α

[
α− 1

4(1 + α)
+ c∗1

[
−(1 + α− α2)c∗1 + 1

]]
=

1

2α

[
α− 1

4(1 + α)
+ c∗1

[
1− 2α2

2
+ 1

]]
=

1

2α

[
α− 1

4(1 + α)
+

(2α2 − 1)(1 + 2α2)

4(1 + α− α2)

]
That gives us the expression:

V1(1) = −α
1− 2α2

2(1 + α− α2)
+

1

2α

[
α− 1

4(1 + α)
+

(2α2 − 1)(1 + 2α2)

4(1 + α− α2)

]
By symmetry we get that V1(1) = V2(1).
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Now for the rest of the expression:

S1 =

1∫
0

1∫
0

p1(c)[1− 2c1 − 2αc2]dc

=

1−2α
2∫

0

[

1∫
c1

[1− 2c1 − 2αc2]dc2]dc1 +

1
2(1+α)∫

1−2α
2

[

1−2c1
2α∫

c1

[1− 2c1 − 2αc2]dc2]dc1

=

1−2α
2∫

0

[(1− 2c1)(1− c1)− α + αc2
1]dc1 +

1−2c1
2α∫

c1

[(1− 2c1)(
1− 2c1

2α
− c1)− α

(1− 2c1)
2

4α2
+ αc2

1]dc1

=

1−2α
2∫

0

[(1− α)− 3c1 + (2 + α)c2
1]dc1 +

1−2c1
2α∫

c1

[
(1− 2c1)

2

2α
− c1 + (2 + α)c2

1]dc1

=
(1− α)(1− 2α)

2
− 3(1− 2α)2

8
+

(2 + α)(1− 2α)3

24

+

1−2c1
2α∫

c1

[
(1− 2c1)

2

2α
− c1 + (2 + α)c2

1]dc1

=
1− 2α

2

[
1

4
+

α

2
+

(2 + α)(1− 2α)2

12

]
+

1−2c1
2α∫

c1

[
1

2α
− (2 + α)c1

α
+

(2 + 2α + α2)c2
1

α
]dc1

=
1− 2α

2

[
1

4
+

α

2
+

(2 + α)(1− 2α)2

12

]
− 1 + 2α

4(1 + α)
+

2 + α

8α
[

1

(1 + α)2
− (1− 2α)2] +

2 + 2α + α2

24α
[

1

(1− α)3
− (1 + 2α)3]

By the symmetry of the problem we have that S2 =
1∫
0

1∫
0

p∗2(c)J2(c) = S1.

[To be continued.]
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Figure 3
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