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In the past decade, econometricians have focused a great deal of attention on
the development of estimation and testing procedures in autoregressive time
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Abstract

This paper proposes unit root tests based on partially adaptive es-
timation. The proposed tests provide an intermediate class of inference
procedures that are more efficient than the traditional OLS-based methods
and simpler than unit root tests based on fully adaptive estimation using
nonparametric methods. The limiting distribution of the proposed test is
a combination of standard normal and the traditional Dickey-Fuller (DF)
distribution, including the traditional ADF test as a special case when
using Gaussian density.

Taking into account the well documented characteristic of heavy-tail
behavior in economic and financial data, we consider unit root tests cou-
pled with a class of partially adaptive M-estimators based on the student-¢
distributions, which includes the normal distribution as a limiting case.
Monte Carlo Experiments indicate that, in the presence of heavy tail dis-
tributions or innovations that are contaminated by outliers, the proposed
test is more powerful than the traditional ADF test.

We apply the proposed test to several macroeconomic time series that
have heavy-tailed distributions. The unit root hypothesis is rejected in
U.S. real GNP, supporting the literature of transitory shocks in output.
However, evidence against unit root is not found in real exchange rate and
nominal interest rate even when haevy-tail is taken into account.
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series models where the largest root is unity. Most of these procedures are
based on least square methods and have likelihood interpretations when the
data are Gaussian. In the absence of Gaussianity, these methods are less efficient
than methods that exploit the distributional information. Indeed, Monte Carlo
evidence indicates that the least square estimator can be very sensitive to certain
type of outliers and that inference procedures based on least squares estimation
may have poor performance.

Many applications in nonstationary economic time series involve data that
are affected by infrequent but important events such as oil shocks, wars, natural
disasters, and changes in policy regimes, indicating the presence of nonGaussian
behavior in macroeconomic time series (see Balke and Fomby, 1994). It is well-
documented that financial time series such as interest rate and exchange rate
have heavy-tailed distributions. In such cases, it is important to consider esti-
mation and inference procedures that are robust to departures from Gaussianity
and can be applied to nonstationary time series.

For this reason, in the recent 10 years, researchers have devoted a lot of effort
in the development of more efficient and robust inference procedures in nonsta-
tionary time series. One way to achieve asymptotic efficiency and robustness is
the use of adaptive estimation based on nonparametric technique, see, e.g. Seo
(1996) and Beelders (1998). Under appropriate regularity assumptions, tests
based on adaptive estimation using nonparametric kernel methods can be con-
structed, although these procedures may be complicated and thus practically
difficult to use.

An alternative approach is the use of M estimation. A partial list along this
direction includes: Cox and Llatas (1991), Knight (1991), Phillips (1995), Lucas
(1995), Rothenberg and Stock (1997), Juhl (1999), Xiao (2001), and Koenker
and Xiao (2003) among others. In particular, Phillips (1995) studies robust
cointegration regressions. Cox and Liatas (1991), Lucas (1995), Rothenberg
and Stock (1997), and Xiao (2001) studied M-estimation and likelihood-based
inference for various models of unit root (or local unit root) time series. The
criterion functions in M-estimation are assumed to be known and the associated
inferences are generally efficient when the true likelihood functions are used. In
practice, the error distributions are unknown. Thus, it is important to use a
criterion function (or a density function) that has similar characteristic to the
data distribution.

The present paper try to provide an intermediate class of unit root testing
procedures that are more efficient than the traditional OLS-based methods in
the presence of heavy-tailed distributions and, on the other hand, simpler than
unit root tests based on fully adaptive estimation using nonparametric meth-
ods. In particular, we consider unit root tests coupled with partially adaptive
estimation. Although fully adaptive estimator has the theoretically attractive
property of asymptotic efficiency, as suggested by Bickel (1982, p.664), partially
adaptive estimation is a more practical gool because it avoids the difficulty
of nonparametric estimation of score functions (also see similar arguments in
Potscher and Prucha (1986), Hogg and Lenth (1984), McDonald and Newey
(1988), and Phillips (1994)).



The proposed test is based on partially adaptive estimation of the augmented
Dickey-Fuller (ADF) model. A data-dependent procedure is used to select an
appropriate criterion function for the estimation. We show that the limiting
distribution of the corresponding t-statistic ¢; is a mixture of the well-known
Dickey-Fuller (DF) distribution and a standard normal distribution that is in-
dependent with the DF distribution. We recover the classical result that ¢
converges to the DF limiting distribution in the special case when Gaussian
density is used. We tabulate the critical values of the test and, therefore, the
proposed test is ready to be used by the practitioner.

Giving the well documented characteristic of heavy-tail behavior in economic
and financial data, we consider a partially adaptive estimator based on the fam-
ily of student-t¢ distributions (Postcher and Prucha 1986), although other classes
of distributions can be analyzed similarly. The family of student-¢ represents
an important dimension of the space of distributions, including the normal dis-
tribution as a limiting case and the Cauchy distribution as a special case. Its
adaptation parameter will depend on the scale and thickness parameters, which
can be easily estimated from the data using the approach proposed by Potscher
and Prucha (1986).

Monte-Carlo experiments are conducted to investigate the finite-sample per-
formance of the partially adaptive test. Comparing to the conventional ADF
test, the Monte Carlo results indicate that there is little loss in using the pro-
posed unit root test when the innovations are Gaussian, and the power gains
from using our partially adaptive test is substantial when there are outliers or
non-Gaussian innovations.

We apply the proposed test to several important macroeconomic time series
that have non-Gaussian features. In particular, we re-examined the unit root
property of nominal interest rate, real exchange rate, and real GDP. Traditional
OLS-based tests, such as the ADF test, cannot reject the unit root hypothesis
in these series. On the other hand, non-Gaussian behavior in interest rate,
real exchange rate, and real GNP has been largely reported in the literature as
being caused by asymmetric innovations or presence of outliers (e.g., Falk and
Wang, 2003; Blanchard and Watson, 1986; Bidarkota, 2000; Balke and Fomby,
1994; and Scheinkman and LeBaron, 1989). A descriptive analysis of our data
also confirms that U.S. nominal interest rate, real GNP, and real exchange rate
are featured with nonGaussian characteristics. When we apply the partially
adaptive test to these series, we rejected the unit root hypothesis in real GNP,
supporting the literature of transitory fluctuations about trend. We were unable
to reject the null of unit root in real exchange rates, implying that, as reported in
Falk and Wang (2003), the purchasing power parity hypothesis may not hold in
the long run even if tail heaviness are accounted for. We also found no evidence
against unit root in nominal interest rate, which supports the findings in Rose
(1988) and raises doubt about economic results predicted by the CCAPM and
optimal monetary policy models.

The outline of the paper is as follows. Section 2 gives some important pre-
liminaries. In particular, we study an ADF-type test for a unit root based on
M estimation. Limiting distributions of the estimator and it ¢-statistic are de-



rived. The partially adaptive unit root test is introduced in Section 3. Section
4 presents the results of our Monte Carlo simulations. In section 5, we discuss
the relevance of the test and conduct an empirical study. Section 6 concludes.
Proofs are provided in the Appendix. For notation, we use = to signify weak
convergence, L for lag operator, = for equality in distribution, := for definitional
equality, and [nr] to signify the integer part of nr.

2 The Model, Assumptions, and Preliminary Limit
Theory

The subject of this paper is a time series y;, whose largest autoregressive root,
«, is close to unity:

Yr = QY1 + Uy (1)

The residual term u; is serially correlated. In the above model, the autoregres-
sive coeflicient a plays an important role in measuring persistency in economic
and financial time series. Under regularity conditions, if a = 1, y; contains a
unit root and is persistent; and if |« | < 1, y; is stationary. The high persistency
in many economic and financial time series suggests that the coefficient « is near
unity.
Following Dickey and Fuller (1979), we parameterize u; as a stationary
AR(k) processs
A(L)’U,t = &, (2)

where A(L) = Zf:o a;L" is a k-th order polynomial of the lag operator L,
ap = 1, and &; is an iid sequence. Combining (1) and (2), we obtain the well-
known Augmented Dickey-Fuller (ADF) regression model

k
Ayt = pyr—1 + Z%—Ayt—j + &t (3)

j=1

In the presence of a unit root (a« = 1), p =0 in the ADF regression (3).
More generally, we may include a deterministic trend component in the ADF
regression, and study the estimation in the following regression

k

Aye =i+ py1+ YAy +er (4)
j=1

where x; is a deterministic component of known form and ~ is a vector of
unknown parameters. The leading cases of the deterministic component are (i)
a constant term x; = 1, and (ii) a linear time trend x; = (1,t)’.

We want to test the unit root hypothesis (p = 0, or @« = 1 ) based on esti-
mators of p (or a). In the simple case where ¢; is normally distributed, given

observations on y;, the maximum likelihood estimators of p (or «) and {1/) j }le
are simply the least squares estimators obtained by minimizing the residual sum



of squares. In the absence of Gaussianity in &, it is possible to follow the idea
of Huber (1964) for the location problem in order to obtain more robust esti-
mators. In this direction, Relles (1968), Huber (1973) introduced a class of M
estimators which generally have good properties over a wide range of distrib-
utions. The M-estimators are obtained from solving the extreme problem by
replacing the quadratic criterion function in OLS estimation with some general
criterion function ¢. In the case that ¢ is the true log density function of the
residuals, the M-estimator is the maximum likelihood estimator.

To introduce the proposed unit root test based on partially adaptive esti-
mation, we first consider M estimation of the ADF model in this section. In
section 3, we study the problem of selecting the criterion function adaptively.
The M-estimator for (v, p, {wj }521) is defined as the solution of the following

extreme problem:

o~

G55} ) =mgmax Qe {0} o)

where

n k
Q(Y, p, {I/Jj}jzl) = Z o | Ay — 'z — pyr—1 — Z%Ayt—j

t=k+1 j=1

for some criterion function ¢. When ¢ is the true log density function of ¢,
K
Qly, o, {1 }521) is the log likelihood function and the estimator (7, p, {wj }j:1)

given by (5) is the maximum likelihood estimator.

Similar (but different in the way of treating the serial correlation in u;) re-
gression models, have been studied by Lucas (1995) and Xiao (2001). Since those
models do not include the lags of Ay, in the regression and thus have slightlykdif—
ferent limiting distributions, we give the limiting distribution of (7, p, {wj }j:1)
in this section for completeness.

For convenience of asymptotic analysis, we assume that there is a standard-
izing matrix F,, such that F, ap,,) — X(r) as n — oo, uniformly in r € [0,1],
where X (r) is a vector of limiting trend functions. In the case of a linear trend,
F,, = diag[l,n] and X (r) = (1,7)". If 2, is a general p-th order polynomial trend
(ie. ¢ = (1,¢,- -, tP)), F, = diag[l,n,....,nP] and X(r) = (1,r,...,7P).

Following the previous literature in M estimation, we make the following
assumptions on ¢; and the criterion function ¢. These conditions are assumed
for the convenience of asymptotic analysis. In practice, even if these conditions
do not hold, as long as the data has similar distributional properties as the
function ¢ described, Monte Carlo evidence indicates that the M estimation
still have good sampling properties.

Assumption A1 The roots of A(L) all lie outside the unit circle, and {e;} are
i.i.d. random variables with mean zero and variance 0% < co.



Assumption A2 ¢(-) possesses derivatives ¢’ and ¢”. [, ¢'(¢)] has k-th mo-
ments for some k > 2, E[yp(e)] =0, 0 < E[¢" (e¢)] = p1y, < 00, and ¢ is
Lipschitz continuous.

Assumption A3 €; — ¢, = 0p(1) uniformly for all ¢.

Assumptions Al - A3 are standard conditions in asymptotic analysis of M
estimators. These assumptions are needed to establish the weak convergence
results. We may also replace the moment condition on ¢'(¢) by boundness
conditions of the derivatives of ¢, because the latter and the moment condition
on u imply the corresponding condition on ¢’. Assumption A3 is a consistency
requirement as in Knight (1989,1991) and it is not needed if ¢’ is the derivative
of a convex function with a unique minimum. Assumptions similar to A3 are
also standard in the development of M estimator asymptotics. It is related to
Assumption (b) in Theorem 5.1 of Phillips (1995), Assumption C in Xiao (2001),
and the same as the assumption on &, — ; in Theorem 1 of Lucas (1995).

We denote [-] as the greatest lesser integer function. Then under Assump-
tions A1-A3, as n goes to oo, n~1/2 Z[lm] uy converges weakly to a Brownian
motion B, (r) = w,Wi(r) = BM(w?), where w? = 02/A(1)? is the long run vari-

Nk

ance of u¢, denoted as lrvar(u). The limiting distributions of (7, p, {w]} 1)
will also be dependent on the weak limit of the partial sums of ¢'(g). DG;IO'C—
ing w2 =var(¢/(e;)], and § = E[¢"(;)], then n~1/? Z[IW] ¢'(er) = By(r) =
weWy(r) = BM(w?). In fact, under Assumption Al, the partial sums of
the vector process (ug, ¢’ (g4)) follow a bivariate invariance principle (see, e.g.,
Phillips and Durlauf (1986, Theorem 2.1, 474-476, and 486-489); Wooldridge
and White (1988, Corollary 4.2); and Hansen 1992):

[nr]

23 (u, ¢ (20) T = (Bulr), Bo(r))T = BM(E)

where )
3= Wy Oup
Tl oo w?
up ©
is the (long-run) covariance matrix of the bivariate Brownian motion.

Denote (’Ya p), = 07 (’Ya P wla ) I/Jk:)l = H) and (1’47 Yt—1, Aytflﬁ T Ayt*k)l =
Zy, then we can write the regression as

Ayt = HIZt =+ Et,
and the M estimator II maximizes

QU =S¢ (Ay ~11'Zy).

Finally we introduce the standardization matrix: D,, = diag{\/nF,,n}, and
G, = diag{D,,,~/nl}}, where I, is a k-dimensional identity matrix, the limit-

o~

k
ing distributions of the M estimators (7, p, {dzj }j:1)/ are given in the following



theorem.

Theorem 1 Given model (1), (2), under Assumptions A1-A3 and the unit
root assumption, the limiting distribution of nonlinear regression estimator 11 =
(:y\v/p\,wb t '7wk)/ 18 gi’U@’fL by

(i - 1) = 5( [Bu(r)Bu(r)'dr  Ogui )‘1< fﬁu(r()dew(r) )

0k><2 r

where , B, (r) = (X(r), By(r)), ® = [®1,---,®]" is a k-dimensional normal
vamate that is independent with [ B, (r)dBy(r), and

'Yu(o) e ’Yu(k; - 1)
r= : :

'Yu(k - 1) ’Yu(o)
where v, (h) is the autocovariance function of us.

The unit root hypothesis corresponds to Hy : p = 0. We consider testing Hy
based on the ¢-statistic of p, and estimate the covariance matrix by

n - n
= lz " (8r) ZeZ, > @) 27,
t=1 t=1

This is a heteroskedasticity consistent type covariance matrix estimator as in
White (1980). If we consider the ¢-ratio statistic of p :

n -1

Z Et Zt

=1

(6)

then t; is simply the M regression counterpart of the well-known ADF (t-ratio)
test for the unit root hypothesis. The limiting distribution of #; is given in the
following theorem.

Theorem 2 Under the assumptions of Theorem 1, the limiting distribution of
the t-ratio statistic t; is given by

(¢ [ [Wimacoyar] o) "y [

where W1(r) = (X(r),Wi(r)), e is a collecting vector, that is, there is one
coordinate equal to one that picks the element corresponding to the asymptotic
distribution of t;, and all the other coordinates equal zero. The above limiting
distribution can also be rewritten as

(fcre) " oo



-1
W, (r) =W, (r)—fol Wi(s)X'(s)ds <f01 X(s)X(s)’ds) X(r) is the Hilbert pro-
jection in L3[0,1] of Wi (r) onto the space orthogonal to X.

Notice that W, and W, are correlated Brownian motions, the limiting dis-
tribution of ¢; is not standard and depend on nuisance parameters. However,
we can decompose [ B, (r)dB,(r) (see, e.g. Hansen and Phillips (1990) and
Phillips (1995)) as

/ BudBo + Mo / BudB,,

where Ay, = 04y /w% and B, is a Brownian motion with variance

Ui.u = wi - Uigo/wi
and is independent with B,,. Using the above decomposition, the limiting dis-
tribution of the ¢-statistic ¢; can be decomposed as a simple combination of two
independent well-known distributions. In addition, related critical values are
tabulated in the literature and thus are ready for us to use in applications. We
summarize this result in the following corollary.

Corollary 3 Under the assumptions of Theorem 1, the limiting distribution of
the t-ratio statistic t; can be decomposed into a mizture of the Dickey-Fuller
(DF) distribution and a standard normal distribution that is independent with
the DF distribution, i.e.

t; = V1= XNN(0,1) + A </m(r)2dr)l/2 /mdwl, (7)

where the weights is determined by A :
2
up

2.2
wws

2_0’

The standard normal distribution comes from

</E1(T)2d7")1/2/w1(7")dW¢.1(r)7

since W1 (r) and Wo,1(r) (0%, By.u(r)) are standard Brownian motions and are
independent with each other. Notice that w? is the long-run (zero frequency)
variance of {u;}, w2 is the long-run variance of {¢(¢;)}, and 0,,(7) is the long-
run covariance of {u;} and {¢'(e;)}, thus X is simply the long-run correlation
coefficient between {u;} and {¢'(¢;)}.

Remark 4 One interesting case is obtained when A2 = 1, which implies that
¢ (uy) = €. In this simple case, the criterion function is quadratic in €; and
t; converges to the Dickey-Fuller limiting distribution. Recall that a quadratic
criterion function corresponds to the Gaussian log-likelihood. Notice that when
N2 increases from 0 to 1, the corresponding, say, 5% quantile of the limiting
variate (7) shifts to the left, indicating that the traditional Dickey-Fuller test
will be less powerful than the proposed test in the absence of Gaussianity.



Given a consistent estimate of A, the limiting distribution of ¢; can be ap-
proximated by a direct simulation. The limiting distribution is the same as
that of the covariate-augmented Dickey-Fuller (CADF) test of Hansen (1995).
Tables of 1%, 5% and 10% critical values for the statistic ¢, (7) are provided by
Hansen (1995, page 1155) and reproduced below for convenience. Note that the
critical values are tabulated for values of A? in steps of 0.1. For intermediate
values of A%, Hansen suggest using critical values obtained by interpolation.

Table 1. Asymptotic critical values for P-ADF t-statistic
Standard Demeaned Detrended
»Xoo1% 5% 10% 1% 5%  10% 1% 5%  10%
1.0 -257 -1.94 -1.62 -343 -2.86 -2.57 -3.96 -3.41 -3.13
09 -257 -194 -1.61 -339 -281 -250 -3.88 -3.33 -3.04
0.8 -257 -194 -1.60 -3.36 -2.75 -246 -3.83 -3.27 -2.97
0.7 -255 -1.93 -1.59 -3.30 -2.72 -241 -3.76 -3.18 -2.87
0.6 -255 -1.90 -1.56 -3.24 -2.64 -2.32 -3.68 -3.10 -2.78
0.5 -255 -1.89 -1.54 -3.19 -2.58 -2.25 -3.60 -2.99 -2.67
0.4 -255 -1.89 -1.53 -3.14 -2.51 -217 -3.49 -2.87 -2.53
0.3 -2.52 -1.85 -1.51 -3.06 -240 -2.06 -3.37 -2.73 -2.38
0.2 -249 -1.82 -1.46 -291 -228 -192 -3.19 -2.55 -2.20
0.1 -246 -1.78 -1.42 -2.78 -2.12 -1.75 -297 -2.31 -1.95

Remark 5 An alternative approach that facilitates the unit root testing based
on M estimation is to develop a monparametric modification over the original
statistic t; in the spirit of Phillips (1987) and Phillips and Hansen (1991). Thus
we transform t; to remove the nuisance parameter in its limiting variate. As we
have seen, the limiting distribution of t; can be decomposed into a combination
of two independent component, where the first component is a mizture of normal
distribution, and the second component is a “unit root 7 distribution. The basic
idea of the modification is to construct an estimate for the second component
and remove (subtract) it from t; so that we obtain a statistic whose limiting
distribution is standard normal after appropriate standardization. Monte Carlo
evidence indicate that, although more efficient than the OLS based procedures
in the presence of non-Gaussian distributions, the semiparametrically modified
test may perform poorly in the presence of Gaussian errors. For this reason, we
adopt the first approach that uses the original statistic t; and the critical values
in Table 1.

3 A Unit Root Test Based on Partially Adaptive
Estimation

The M estimator is asymptotically efficient when it is the maximum likelihood
estimator. In practice, even if the exact distribution of the innovations is un-
known, if the data has similar tail behavior as the density function used in the



estimation, then inference based on these method still have good sampling per-
formance. Thus, it is important to select a criterion function that has similar
characteristic as the data distribution. In this section, we consider a data-
dependent approach to select an appropriate criterion function and propose a
unit root test based on partially adaptive estimation.

The partially adaptive M estimation considers a parametric family of distri-
butions. Each member of this family is indexed by some adaptation parameters.
Giving the observed sample, it is possible to estimate the adaptation parame-
ters so that the density function that best approximates the data distribution
(within the parametric family) is selected. In the literature, different classes
of distributions has been studied for the purpose of partially adaptive estima-
tion (see, inter alia, Postcher and Prucha (1986), McDonald and Newey (1988),
and Phillips (1994)). Taking into account of the well documented characteristic
of heavy-tails in economic and financial data, we consider a partially adaptive
estimator based on the student-¢ distributions (Postcher and Prucha 1986), al-
though other classes of distributions may be analyzed similarly. The student-¢
distribution is an important class of distributions (see more discussion in, say,
Hall and Joiner 1982) that contains the Cauchy distribution as a special case
and the normal distribution as a limit case, and has wide applications in eco-
nomic analysis. Its adaptation parameter depends on the scale and thickness
parameters, which can be easily estimated from the data using the approach
proposed by Potscher and Prucha (1986). Partially adaptive estimator based
on this class of distribution is reasonably robust.

Giving the ADF model (4), in the presence of ¢-distributed innovations, the
log-likelihood is given by

L = constant + g In®
. 2
v+1 2 C)
- > 2ln 1+ " Ays —~'we — pyr—1 — Z%’Aytﬂ'
t=j+ j=1

where the parameter © measures the spread of the disturbance distribution
and v is the degree of freedom that measures the tail thickness. Large values
of v corresponds to thin tails in distribution. For given parameters v and ©,

denoting ©/v as 0, the MLE of (v, p, {1/1j }521) is the solution of the following

optimization problem

k

mind In¢1+60 | Ay, — 2y — pyr—1 — Zl/}jAyt_j
? :
j=1

Following Potscher and Prucha (1986), let IT be the least squares estimator

of IT and 0 = % be the adaptation parameter of the t-distribution, we have the
following one-step partially adaptive M estimator for the ADF model:

10



—1

~ ~ 1 " 1 ~
I = I+|-3 Zl(w; — 20w2E}) Z, - ZiwE (8)
t t
where
wy = (]. + 9%}/2)71 and gt = Ayt - Ztﬁ

In practical analysis, the parameters v and © are not known and has to be es-
timated. We consider a two-step partially adaptive estimator of (v, p, {I/Jj}le)
in which the first step involves a preliminary estimation of the parameters v and
© (and thus #). We then replace 6 in (8) by its estimator and perform a sec-
ond step estimation for (v, p, {I/Jj }5:1). In the presence of general disturbance
distributions, v and © lose their original meaning. However, in the cases where
v >0and © > 0, 7 and O still can be interpreted as estimators of measures of
the tailthickness and the spread of the disturbance distribution, and partially
adaptive estimator (8) still have good sampling properties.

Potscher and Prucha (1986) discussed the estimation of the adaptation pa-
rameters v and ©. In particular, if we denote E(|u;|*) as o, then for v > 2, we

have
o2 T Clv/2 _
o7~ v—arw - Y ®)

and

_ 1ol =1/

© m  oil(v/2)2

= q(Va 0—1)~

Potscher and Prucha show that p(.) is analytic and monotonically decreasing
on (2,00) with p(24) = oo and p(cc) = /2. Thus, given estimator of o1 and
02, v can be estimated by inverting p(v) in 9 and thus an estimator of 6 can be
obtained from

g(,61) _ 1D[(0—1)/2)?
v T §i0ir/2)?

For the estimation of o1 and o4, we may use the sample moments

é:

. 1 -k
o= Sl

Notice that p(.) is monotonically decreasing, v and thus 6 can be estimated
numerically.

We incorporate the partially adaptive estimation into the testing procedure
in Section 2 and propose the following unit root test based on partially adaptive
estimation:

11



1. We estimate the residuals €; from a preliminary ADF regression:

k

Ay =7 + pyr—1 + Z"ZjAyt—j +%
j=1

2. Estimating the adaptation parameters. We consider the class of student-¢
distributions and estimate the parameters v and © as described above using the
residuals obtained from step 1. Denote the estimators as i and é, we obtain
0=0/b.

3. Selecting the criterion function. Giving the estimated adaptation para-
meter, we choose the following criterion function

o(e) =m{1+9[e},

and calculate the corresponding M-estimator for (v, p, {1/Jj }521) in model (4)
based on

n k
maxng Ay — ' — pyr—1 — ijAytfj

t=2 j=1

Denote the corresponding t-statistic as ;.
4. Calculate estimate of \?. First we estimate the variance estimator of &
and ¢'(e¢) by

1 1 .
~2 -2 ~2 1a N2
0t = ——— E, 6t,andw<p—n_k_lt}kﬂgp(at)

respectively, and let

—

1 SR
cov(es, ' (1)) T h—k—1 Z et (8r),
t=k+1

—

we thenAestimate w2 a/r\ld os, by &2 =5%/A(1)2, and Tup = cov(ey, o' (1)) A1),
where A(1) =1—73 1, A? can then be estimated by

2 o
32 = ue
=32
L,y

Using the estimate of A2, we select the appropriate row from the Table 1 as
critical values to test the unit root hypothesis.

4 Monte Carlo Experiments

We conduct a Monte Carlo experiment to examine the finite sample performance
of the partially adaptive estimation based ADF (denoted as PADF) unit root

12



test. From the construction of the tests, it is apparent that its finite sample per-
formance will be affected by the sample size, the distribution of the innovations
&¢, the autoregressive coefficient «, and the I(0) dependence of u;. Thus, special
attention is paid here to the effects of these elements on the performance of the
PADF test. Results for the traditional ADF test are reported and compared to
the results from the PADF test.

The data generating process (DGP) in our Monte Carlo is given by the
following model

Yo = QY1+ uy (10)
u = Pug-1+e (11)

where {e;} is a sequence of i.i.d. observations drawn from a distribution F.
We use two distributions: Gaussian N(0,1), and student-t with three degrees
of freedom, ¢(3). The power of the test was evaluated by considering o =
0.85;0.90; 0.95; 0.975; and 0.99. The size of the test is obtained by setting o = 1.
Critical values are coming from Table 1. The simulations were carried out for
n = 100, 200 and 500, but we only report the results for n = 200 because they
are qualitatively similar in the cases n = 100 and n = 500 . We considered 2000
replications. As for the values for 8, we considered two possibilities: (i) 8 = 0;
(ii) B = 0.7. The asymptotic size of each test is 5%.

We use the Schwartz criterion to choose the number of lags k. In order
to calculate the PADF t-test, we estimated the ADF regression using partially
adaptive one-step M-estimator, which has the closed-form expression given in
(8). Next, we construct the PADF ¢-test based on the one-step M-estimation.
For the PADF t-test, we use covariance matrix (6) and the corresponding el-
ement in constructing the t-ratio. For the ADF t-test, we estimate the ADF
regression by OLS and use the traditional covariance matrix Q = & (z2}) !
where 52 =2%/(n — k —1).

4.1 Results

Table 2 shows the results for the case where u; = ;. The results for the case
of t(3) innovations are presented in the third and forth rows in Table 2, and
the results for the case of N(0,1) innovations are presented in the last two rows.
When the innovations are drawn from a heavy-tailed distribution, results in
Table 2 suggest that: (i) the PADF test is more powerful than the ADF test;
(ii) the PADF test has better size than ADF test. For the case in which the
innovations are drawn from a Gaussian distribution, Table 2 shows that both
ADF and PADF tests have similar power.
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Table 2. Power and size of 5% test ( 5 =0)
Empirical Power Size
N Test a=0.85] =090 | =095 | a=0.975 | =099 | =1
t(3) ADF 0.982 0.825 0.284 0.110 0.058 | 0.047
t(3) | PADF | 0.997 0.968 0.678 0.318 0.126 | 0.049
N(0,1) | ADF 0.985 0.827 0.317 0.126 0.066 | 0.052
N(0,1) | PADF | 0.951 0.763 0.311 0.135 0.071 | 0.055

Table 3 reports Monte Carlo results for the second case. In other words, the
data are now generated with § = 0.7. The superiority of the PADF test over
the ADF is maintained when the innovations are drawn from a heavy-tailed
distribution. Moreover, ADF and P-ADF tests still have similar power when
innovations are Gaussian. In sum, Table 3 tells us that the good results obtained
for the simple case u; = &; are preserved when we consider autocorrelated
innovations, that is, u; = 0.7Tu;_1 + &4

Table 3. Power and size of 5% test ( 3 = 0.7)

Empirical Power Size
Test | =085 | =090 | & =0.95 | a =0.975 | « =0.99 | a =1
) ADF 0.881 0.642 0.233 0.105 0.061 | 0.055
) | PADF | 0.980 0.907 | 0.0.612 0.301 0.122 | 0.049
N(0,1) | ADF 0.888 0.650 0.257 0.114 0.064 | 0.055
N(0,1) | PADF | 0.810 0.590 0.258 0.130 0.072 | 0.056

4.2 QOutliers

We next investigate the performance of the ADF and P-ADF tests when inno-
vations are contaminated by outliers. The simulation experiment is set up as
follows. First, n normal iid variables €; are generated with mean zero and unit
variance. The next step is to construct a new series €; using random numbers
vy uniformly distributed over the interval [0,1]. The variable g; equals &; except
when vy < 0.05, in which case ; = e; + w;. Here, w; is a contaminating random
variable that is being drawn from a N(0,30).

The results are displayed in Table 4 and they confirm what is predicted
theoretically. In particular, we notice that the ADF test has lower power and
higher size distortion than the P-ADF test. There seems to be no doubt that
the P-ADF test performs much better than the ADF test in cases where the
innovations are contaminated by outliers.

Table 4. Power and Size of 5% test.
o 0.85 0.90 0.95 0.975 | 0.99 1

ADF | 0.987 | 0.827 | 0.295 | 0.113 | 0.064 | 0.057
PADF | 0.996 | 0.971 | 0.746 | 0.389 | 0.159 | 0.052
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5 Empirical Analysis

5.1 The uncertain unit root in real GNP.

Existence of heavy-tailed distributions in real GNP has been largely documented
in economics and econometrics. In effect, Blanchard and Watson (1986) con-
cluded that fluctuations in economic activity are characterized by a mixture of
large and small shocks. Other references includes Bidarkota (2000), Balke and
Fomby (1994) and Scheinkman and LeBaron (1989) who advocates that real
GNP is mostly contaminated by outliers. In parallel, since the seminal work of
Nelson and Plosser (1982), there has been an intense debate about the presence
of stochastic trend in real GNP . Whether trend is better described as determin-
istic or stochastic is an important issue for point forecasting, because the two
models imply very different long-run dynamics and hence different long-run fore-
casts. Cochrance (1988) finds little evidence of stochastic trend in GNP whereas
Campbell and Mankiw (1987) claims that output fluctuations are permanent.
There also be the "we don’t know” literature (Rudeebush, 1993, Christiano
and Eichenbaum, 1990,) which correctly concludes that traditional ADF unit
root test is unlikely to be capable of discriminating between deterministic and
stochastic trend because its well known low power against distant alternatives.
In this section, we explain how mixture of large and small shocks and the pres-
ence of outliers may generate departures from Gaussianity. We will also show
that, if deviations from Gaussianity in real GNP are considered, it is possible to
turn the "we don 't know” literature into a ”we do know” literature by applying
the robust P-ADF test to U.S. GNP series.

5.1.1 Asymmetric Shocks

Blanchard and Watson (1986) concluded that fluctuations in economic activity
are characterized by a mixture of large and small shocks. In this section, we show
that asymmetry in shocks generates nonGaussian innovations. As an simple
illustration, assume that the real GDP process is represented by the following
first-order autoregressive model

Yi = pyi—1+ (12)

in which the innovation &; has been drawn from a N(¢,,w?). The regime
(r) is described as the outcome of an unobserved Markov Chain. If there are
only two regimes ( recession and prosperity, say) then, we could expect that
shocks affecting real GDP would be asymmetric in the sense that they would
exhibit different mean and variance. As an practical example, we could cite the
effect of an oil crisis on real GDP. If the economy were booming, then we would
expect that the impact on inflation and real GDP would be larger than if the
economy were in recession.

In general, the density of €, conditional on the random variable r; taking on
the value s is
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— _ 2
Jledre=s0)= ﬁ@{p{%} (13)

for s = 1,2,...R, and 6 being a vector of population parameters that in-
cludes ¢y,...,¢x and w?,..w%. Note, however, that the unobserved regime is
presumed to have been generated by some probability distribution, for which
the unconditional probability that r; takes on the value s is denoted by 7 :

Pr{r, =350} =m, (14)
for s = 1,2,..., R. Therefore, we also include the probabilities 71, ..., 7 in 6,
that is, 0 = (¢1, ..., Py W, oWk, Ty ooy TR).
Using 13 and 14, one can easily derive the following joint densinty-distribution
function of ¢; and r;

e b2
Pr(at,rt:s;e):\/;r_;w exp{%}. (15)

Finally, we obtain the unconditional density of €; by summing 15 over all
possible values for s.

f(et;0)

R
> Pr(eg,re = s;0) (16)
s=1

_ T exp{_(f‘?t—¢1)2}
V2Twq 2W%
T2 _(Et —¢2)2}
+ ex + ...
V2mTws p{ 2w3

(e 2
+ e exp { (& 2¢R) } .
V2rwgr 2w
Functions of the form of 16 is used to represent a broad class of contaminated
densities, which includes those with fat tails.

5.1.2 Outliers

Balke and Fomby (1994) show that outliers in US real GNP are associated
with business cycles, particularly recessions. A useful model used to generate
such outliers is the so-called replacement model proposed by Martin and Yohai
(1986). We consider innovative outliers (I0), which for an autoregressive moving
average process with (ARMA) with innovative outliers reads

¢(L)ys = O(L)py, py = €+ wy (17)

where L is the lag operator, Ly; = y;—1, ¢(L) and 6(L) are polynomials in
L, {e} is a sequence of iid Gaussian innovations, and w; is a contaminating
random variable. If w; = 0, then the process 17 will be outlier free. Typically
wy is equal to zero for most values of ¢, but its remaining observations are going
to be drawn from a contaminating distribution.
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5.1.3 Empirical Results Based on the PADF test

We used two series of real GNP (RGN)!. The first one (RGNP yp) was collected
from the Nelson and Plosser database and it has 81 annual observations (1909-
1980). The second database (RGNP2) were collected from the U.S. Department
of Commerce, Bureau of Economic Analysis. RGNP5 are measured in billions
of fixed 1996 Dollars and are seasonally adjusted annual values and quarterly
observed. Its first observation corresponds to the first quarter of 1967, totalizing
141 observations. The table below presents some descriptive information about
our dataset.

Table 5. Descriptive Statistics

Series sample size | thickness parameter | Kurtosist | Jarque-Beral
RGNPyp | 81 5.31 5.00 24.75%*
RGNP;, 141 6.91 4.10 11.40%*

TThe symbol (**) represents rejection of the null hypothesis at 1% level of
significance
The data were pre-whitened using a linear trend and the number of lags shown in
table 6.

Table 5 shows two measures of tails. The standard one is the kurtosis.
It is well known that whenever this quantity exceeds 3, we say that the data
feature excess kurtosis, or that their distribution is leptokurtic, that is, it has
heavy tails. One can see that, after a prewhitening process, both RGNP yp and
RGNP; have excess kurtosis. Another measure of heavy tails is the thickness
parameter of the student-t distribution, v. Small v corresponds to heavy tails
and the limiting case, v — 00, corresponds to the normal distribution. Again,
we notice that RGNPyp and RGNP; have very small thickness parameters,
suggesting the existence of heavy-tailed distribution for those series. Thus, our
data suggest that post-war US real GNP behavior is inconsistent with linear
Gaussian models.

We now turn to the unit root analysis. We employed the non-robust ADF
test and the robust P-ADF test. The number of lags was chosen according to

the Schwartz criterion and XQ , as usual, was estimated parametrically. We also
included a linear trend in the ADF regression. The results are displayed in Table
6. If one conducts unit root inference by using the non-robust ADF test, then
the null of unit root could not be rejected at 5% level of significance, suggesting
the presence of a stochastic trend in real GNP. This results support the literature
of permanent shocks in output. As showed by our Monte Carlo simulations, the
ADF test do not perform well (it has low power) when innovations are drawn
from fat-tailed distributions. Results in Table 6 reveal the presence of heavy-
tailed distributions and, therefore, we had better conduct unit root inference
using the robust version of the ADF test, that is, the P-ADF test. In doing
so, we reject the null of unit root for both RGNP yp and RGNP5.This finding
gives support to the literature of transitory shocks in output and suggest that

1Both series are expressed in logarithmic terms.
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the failure of rejecting the null of unit root in U.S real GNP series may be due
to the use of estimation and hypothesis testing procedures that do not consider
the presence of fat-tail distributions in the data. We believe that this result
may be useful to investigate convergence of international (or regional) output,
among other hypotheses involving real GNP.

Table 6. Unit Root Analysis

Series Lags | Deterministic Component | ADF | P-ADF
RGNPuyp | 1 linear trend -3.44 | -4.62**
RGNP, 2 linear trend -2.81 | -3.47*

The symbol (**) represents rejection of the null hypothesis at 1% level of significance
The symbol (*) represents rejection of the null hypothesis at 5% level of significance

5.2 Nominal interest rate and real exchange rate

In this section, we investigate the presence of unit root in other financial time
series. In particular, we consider nominal interest rate and real exchange rate.
We used nominal interest rate with 12-month and 3-month maturity?, with first
observation corresponding to April of 1953 and ending observation to May of
2000. As for the data on real exchange rate (RER), we used monthly data
of US-dollar and UK-pound sterling based bilateral real exchange rates, that
is : United kingdom-USA (UK-US), Japan-USA (JPN-US), France-US (FRA-
US), Germany-US (GER-US), Japan-UK (JPN-UK), France-UK (FRA-UK),
and Germany-UK (GER-UK). To construct the real exchange rate, the data
on the nominal exchange rate and the price level (Consumer Price Index) are
collected from the International Financial Statistics CD-Rom, which is made by
the International Monetary Fund (IMF). The sample covers the Post-Bretton
Woods period that runs from April 1973 to March 2001.

Table 7 presents the descriptive statistics. All series seems to show evidence
of deviations from Gaussianity, with the series of nominal interest rate presenting
high excess kurtosis as compared to real exchange rate time series. Despite the
presence of nonnormal innovations, the unit root analysis in Table 8, carried
out by using the robust P-ADF test, does not suggest that the null hypothesis
of unit root is rejected. This result brings out very practical consequences. For
example, the presence of unit root in RER implies that PPP hypothesis does not
hold in the long run even if we account for heavy tails in real exchange rates. In a
recent paper, Falk and Wang (2003) reached the same conclusion by considering
the effects of fat tails on critical values of cointegrating tests. In particular, they
find that the Johansen s likelihood-ratio based test are less supportive of PPP
when Gaussian-based critical values are replaced by heavy-tailed-based critical
values. Using a different approach, our results provide additional support to the
findings of Falk and Wang.

2

Three-month and twelve-month Treasury Bill Rate: Board of Governors of the Federal
Reserve System, http://www.stls.frb.org/fred/
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The presence of unit root in the US nominal interest rate has puzzling the
economic theory for long. In effect, Rose (1988) showed that the presence of
unit root in nominal interest rate is inconsistent with the results predicted by
the consumption-based capital asset pricing model (CCAPM ). Furthermore,
unit root in nominal interest rate is incompatible with the results predicted by
optimal monetary policy models, as in Friedman (1969). These models suggest
the existence of stable (constant) nominal interest rate in the long run as the
result of a monetary authority that maximizes steady-state welfare. Our results
indicate the presence of unit root in US nominal interest rate even when heavy
tails are accounted for. Hence, we provide support for the findings in Rose
(1988), which contradict the theoretical results predicted by the CCAPM and

optimal monetary policy models.

Table 7. Descriptive Statistics

Series sample size | thickness parameter | kurtosis | Jarque-Beral
nominal interest rate (12M) | 566 3.31 9.40 950.40**
nominal interest rate (3M) | 566 2.71 15.10 3429.94%**
RER (UK-US) 336 6.31 6.13 145.13%*
RER (JPN-US) 336 6.91 5.09 80.64**
RER (GER-US) 336 9.11 3.90 13.07**
RER (FRA-US) 336 6.51 4.64 37.68%*
RER (FRA-UK) 336 6.51 4.35 25.71°F*
RER (GER-UK) 336 5.91 5.94 147.02%*
RER (JPN-UK) 336 7.51 4.43 28.78%**

fThe symbol (¥*) represents rejection of the null hypothesis at 1% level
of significance.

TThe data were pre-whitened using the deterministic specification and
number of lags shown in table 8.

Table 8. Unit root Analysis

Series Lags | Deterministic Component | ADF | P-ADF
nominal interest rate (12M) | 6 constant -2.05 | -1.16
nominal interest rate (3M) | 6 constant -2.07 | -0.11
RER (UK-US) 1 constant -2.59 | -1.01
RER (JPN-US)* 1 linear trend -2.09 | -1.27
RER (GER-US) 1 constant -1.66 | -0.65
RER (FRA-US) 1 constant -1.52 | -0.21
RER (FRA-UK) 1 constant -1.79 | -1.20
RER (GER-UK) 1 constant -1.88 | -2.15
RER (JPN-UK)* 1 linear trend -2.48 | -1.69

*In order to control the possible forces that move the real exchange rate
to a direction in the long run (such as Balassa-Samuleson effect), and to
be consistent with past studies such as Cheung and Lai (2001), we decided
to include a deterministic trend in the specification of Japanese-yen based
real exchange rates.
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6 Conclusion

This paper proposes a unit root test based on partially adaptive estimation.
ADF type of regression is considered without assuming Gaussian innovations.
Under general distributional assumption about the innovations, the ¢-statistic
is shown to converge to a convex combination of a normal variate and a Dickey-
Fuller component. Convergence to the DF distribution is obtained when a
quadratic criterion function is used, thus including the ADF test as special case
of the proposed test. Monte Carlo results indicate that the partially adaptive
test has relatively pretty good finite-sample performance: there is little loss in
using the proposed test when the innovations are Gaussian, and the power gains
from using our partially adaptive test is substantial when there are outliers or
non-Gaussian innovations.

As an empirical example, we apply the proposed test to some macroeconomic
time series with heavy-tailed distributions. It is shown that US real GNP are
featured with heavy-tailed distribution and that the traditional ADF test does
not reject the null of unit root. However, this hypothesis is rejected when we
use the PADF test, supporting the literature of transitory shocks in output. We
also reported evidence for unit root in real exchange rate and nominal interest
rate even when tail heaviness is accounted for.

7 APPENDIX

Proof of Theorems 1 and 2. We consider regressions of the following

form:
k

Ay =~z + pyr—1 + Z%—Ayt—j + &,
j=1

where ¢; is an iid sequence. We may consider an M estimator of (v, «, {wj}fz 1)
or (v, p, {wj}le) that maximizes

n k

Q(v, a, {wj }5:1) = Zw Ay — 'z — pyr—1 — Z%Ayt—j

t=2 j=1

for some criterion function . A similar regression, but without lags, has been
studied by Lucas (1995).
Denote

k li
(’Yapa {w]’}jzl) — H
@)yt Ay, Agyy) = 7
then we can write the regression as

Ayt = H/Zt + Et,
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and the M estimator II maximizes

n

QU =) oAy —1I'Z).
t=2

For asymptotic analysis of the deterministic trend, we assume that there is
a standardizing matrix F,, such that F,; 133[,”] — X(r) as n — oo, uniformly
in 7 € [0, 1], where X (r) is a vector of limiting trend functions. In the case of
a linear trend, F,, = diag[l,n] and X(r) = (1,7)". If 2 is a general p-th order
polynomial trend, F,, = diag[l,n,....,n?] and X (r) = (1,r,...,rP).

The estimators solve the following equation system:

Q(aa s {% }5:1)
k

= Z ¢ | Aye —v'w — pyr—1 — Z%Ayt—j
t=k+1 =1

Q) =Y ¢ (Ay —1'Z).

FOC: ng’ (Ayt — f['Zt) Z; =0
t
or let ¥ = ¢/,
Sv(au-02)2-0
t=1

Taking a Taylor expansion with respect to & = Ay, — 1I'Z; around &, = Ay; —
I’ Z; we have

n

STw(e) 2= W (1) ZiZ{ (T —T) + Ry =0
t=1

t=1

. We introduce the standardization matrix:

D’n, = diag{ﬁFn,’l’L, \/’Ea Y \/ﬁ}

under our regularity conditions, (Under the assumptions of Theorem 1)

n -1 n
Dn(M—10) = | ¢ (e4) D, 2 Z{Dy  +0,(1) | () D, 2y
t=1 t=1

the following asymptotics hold:
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n

> W (e0) DL 22Dy

nl2F g,

n nl_lyt—l 1 1
= ;w/ (50 'T”_I"Ayt_l < _1/2$2F 1 n_lyt_l,%Ayt—la' . "ﬁAyt_l)
\/LﬁAytfk
—F le:vtF L
= S| Howedn Ao @)
t=1 .
%Ayt—kiU;F{l #Ayt—kyt—l %Ayt—kAyt—l % (Ayt—k)Q
fﬁy(r)gy(r)’dr 0
= 6( 0 T,
where
7,(0)
r, = , By(r) = (X(r), By(r))'
and
n~Y2FE g
1
n n "Y1
-1 L By (r)dBy(r)
;1/’ L L= Zd} £¢) \/ﬁAyt—l :>< f P i
\/%—lAyt k
Thus,

In particular,

{ <”_1/2F;; =7 ] = < / Ey(r)ﬁy(r)/dr)l / B, (r)dB(r)

To construct a t-statistic, we estimate the covariance matrix by

Zw 51 Zf 21/1 51 Z1Zy

—1

S v @) 22,
t=1

22



This is a heteroskedasticity consistent type covariance matrix estimator as in
White (1980). If we consider the t-ratio statistic of p

P
K
n -1 n
V' (&) D' 2,2,D;" [ZU’(@V
=1 =1
_ w_i[ [ Bu(r)Bu(r)'dr  0axy }1
1) 0k><2 r
Q71/2Dn(§_ 9) = i |: f?u(r)ﬁu('f“)’dr
wy | Okx2
< J Bu(r)dBy(r) >
[}
B i[ [ Bu(r)By(r) dr
n Wy 0k><2

a1/ [ (nV2EN (3 =)

np
Thus the t-ratio
D

th = —=

P T )

D, 'Z,Z/D;!

lz Y (8,) D' 2,2, D;!

t=1

1/2
O2xk / 1
r 0

= Z—i <e’/W1(T)W1(T)/dT€> o el/Wl(r)dWw(r)

- (/Wx(r)Zdr> 1/2/WX(T)dW<p(T)

where W (1) = W, (r)—fol Wi(s)X'(s)ds (fol X

-1
(s)X(s)'ds) X (r) is the Hilbert

projection in Lo[0, 1] of W1 (r) onto the space orthogonal to X.
Notice that ¢; is simply the M regression counterpart of the well-known ADF

t-ratio test for a unit root.

The limiting distribution of ¢; is not standard and depend on nuisance pa-
rameters since W; and W, are correlated Brownian motions. However, the
limiting distribution of the t-statistic ¢; can be decomposed as a simple com-
bination of two (independent) well-known distributions. In addition, related
critical values are tabulated in the literature and thus are ready for us to use in

applications. Notice that we can decompose

[ Butrian. o)
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(see, e.g. Hansen and Phillips (1990) and Phillips (1995)) as

/ BudB + My / B.dB,,

where Ay = oy Jw? and B, is a Brownian motion with variance

2 .2 2 2
Opu =Wy — ngo/wu

and is independent with B,,.

r)E(r)’dr} o [ Buyis. )

~1/2
_ 1 { / Fu(r)ﬁu(r)/dr} < / BudBou + Auy / BudBu,>
We

—-1/2
= M |: Wl(T)Wl ’I“)/ :| /WldW(p 1

QD M-1) =

GE|’_‘
—
:Udl

—~

AW — -1/
+ upu |: Wl(’I“)Wl :| /Wldwl
We
- - ~1/2
= p-u |;/W1(7")W1(T)/ :| /Wldwwl
We
. . ~1/2
—|—i |:/W1(7‘) :| /Wldwl
WpWy
Notice that
Op.u ? _ wi - Ui@/wi _ wiwi - 0—12L<p _1_ O—igo
We w?o wiw% wiw%

The limiting distribution of ¢; can then be decomposed into

ty = Sjﬁ) =11- )\ </ Wx(T)QdT)_l/Z/WX(T)dWso.l(T)

A </ Wx(r)2dr)_l/2/deW1

V1 A2N(0,1) + A </ Wx(T)QdT> 1/2/WXdW1
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