
Non-Markovian Regime Switching with Endogenous States
and Time-Varying State Strengths

January 2004

Siddhartha Chib
Olin School of Business
Washington University

chib@olin.wustl.edu

Michael Dueker∗

Federal Reserve Bank of St. Louis
P.O. Box 442, St. Louis, MO 63166

mdueker@stls.frb.org; fax (314) 444-8731

∗ The content is the responsibility of the authors and does not represent official posi-
tions of the Federal Reserve Bank of St. Louis or the Federal Reserve System.

I



Non-Markovian Regime Switching with Endogenous States
and Time-Varying State Strengths

Abstract

This article presents a non-Markovian regime switching model in which the regime
states depend on the sign of an autoregressive latent variable. The magnitude of the
latent variable indexes the ‘strength’ of the state or how deeply the system is embedded
in the current regime. The autoregressive nature of this non-Markovian regime switching
implies time-varying state transition probabilities, even in the absence of an exogenous
covariate. Furthermore, with time-varying regime strengths, the expected duration of a
regime is time-varying. In this framework, it is natural to allow the autoregressive latent
variable to be endogenous so that regimes are determined jointly with the observed data.
We apply the model to GDP growth, as in Hamilton (1989), Albert and Chib (1993)
and Filardo and Gordon (1998) to illustrate the relation of the regimes to NBER-dated
recessions and the time-varying expected durations of regimes.
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Introduction

Autoregressive models are popular in economics because many economic variables ap-

pear to respond more to their own past values than they do to a distributed lag of any

other variable. The same is likely true of regimes. If the conditions gradually become

ripe for a regime change, it might not be possible to find an exogenous covariate whose

evolution matches this ripening process. For example, when modeling the Volcker mone-

tary policy regime change in 1979, a regime modeler might claim that the occurrence of

high inflation engendered a shift in probability toward a new regime. If this were true,

then a regime-switching model could include past inflation as an explanatory variable

in Filardo’s (1994) time-varying transition probability version of the Markow switching

model from Hamilton (1989). In fact, however, the history of monthly or quarterly infla-

tion rates (or almost any other extrinsic variable) does not presage a unique build-up of

pressure for a change of monetary policy regime in 1979. Similarly, if the regime studied

is the recession/expansion state of the business cycle, then a well-known problem is how

to identify a variable or set of variables that indicates a coming shift from an expansion

phase to a recession phase. In both of these cases, autoregressive dynamics might prove

more useful than a distributed lag of any exogenous covariate in modeling a gradual shift

in regime probabilties.

A related issue is the extent to which regimes are determined separately from the

observable data. A negative shock that moves the business cycle phase toward the ex-

pansion state from the recession state is possibly associated with a negative shock to

observed GDP growth. These two shocks do not have to be postively correlated, and they

might even be negatively correlated, but regime modelers should be hesitant to assume

that the regime is exogenous and uncorrelated with the innovations to the data affected

by the regime. With our latent variable approach, it is straightforward to allow for en-
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dogenous regimes that are correlated with the observable data. Kim, Piger and Startz

(2003) discuss classical maximum-likelihood estimation of a Markov switching model with

endogenous regimes. As shown below, the adjustments needed for regime endogeneity are

comparatively simple and straightforward in a Markov Chain Monte Carlo framework.

This article introduces a new non-Markovian regime switching model in which the

regime states depend on the sign of an autoregressive latent variable. The magnitude of

the latent variable indexes the ‘strength’ of the state or how deeply the system is embed-

ded in the current regime. This non-Markovian regime switching automatically implies

time-varying state transition probabilities. With autoregressive dynamics governing the

transition probabilities, we can readily demonstrate how the expected duration of the

current regime can vary across time. This model is readily contrasted with the typical

two-state Markov switching model if we write the transition probabilities of a two-state

Markov process as a function of a normally-distributed latent variable, S∗, that governs

the binary regime indicator S:

S∗t = λ + θSt−1 + et (1)

et ∼ N(0, 1)

St = 0 ⇐⇒ S∗t < 0

The constant transition probabilities for this Markov process are therefore parameterized

as

P (St = 0 | St−1 = 0) = Φ(−λ)

P (St = 1 | St−1 = 1) = 1− Φ(−λ− θ), (2)

where Φ(.) is the cumulative standard normal density function. With constant transtition

probabilities, the Markov switching model implies a constant expected duration of the
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current regime.

The model we propose with autoregressive state strengths takes the form

S∗t = λ + θS∗t−1 + et (3)

et ∼ N(0, 1)

St = 0 ⇐⇒ S∗t < 0

This autoregressive latent variable generates a non-Markovian regime process because

the probability of the state this period depends not only on the state last period but a

continuous measure of the strength of the state last period. For these non-Markovian

regimes, the time-varying state transition probabilities are

P (St = 0 | S∗t−1) = Φ(−λ− θS∗t−1)

P (St = 1 | S∗t−1) = 1− Φ(−λ− θS∗t−1). (4)

In the model with autoregressive state strengths, the probability of a regime change would

rise if the latent index of regime strength, S∗, approached zero.

The Markov switching model time-varying transition probabilities introduced by Fi-

lardo (1994) would add lagged covariates, Z, such that

S∗t = λ + θSt−1 + κZt−1 + et (5)

et ∼ N(0, 1)

St = 0 ⇐⇒ S∗t < 0.

Our model with autoregressive state strengths suggests that one strong candidate to be

included in Zt−1 is S∗t−1, whereupon St−1 becomes unnecessary.

II. MCMC estimation of non-Markovian regime switching
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We estimate the model with a latent autoregressive variable via Markov Chain Monte

Carlo methods. MCMC methods for estimating the hidden Markov switching model of

Hamilton (1989) were put forth in Albert and Chib (1993), who showed that once one aug-

ments the data with draws of the latent regime states, then the conditional distributions

of the model parameters are often simple ordinary least squares distributions.

The specific model that we apply to GDP growth, denoted y, is

yt = α1 + (α0 − α1)I(S∗t < 0) + φyt−1 + ut (6)

S∗t = λ + θ1S
∗
t−1 + θ2yt−1 + et

where I(.) is the indicator function and the covariance matrix of the error terms is

Cov

(
ut

et

)
= Σ =

(
σ2

u ρ
ρ 1

)
. (7)

The parameter groupings for MCMC estimation of the model are

%1 = (λ, θ1, θ2)

%2 = (α0, α1, φ)

%3 = Σ

%4 = {S∗t }, t = 1, ..., T (8)

Conditional on {S∗t }, the conditional distribution of the coefficients in %1 is Normal with

the mean and variance implied by the Bayesian regression of S∗t on yt−1 and S∗t−1. With

an uninformative prior, the conditional mean of % is simply the ordinary least squares

estimator. To use regression techniques to derive a conditional mean and variance for %2,

it is necessary to control for the endogeneity of S∗. Fortunately, the data augmentation

makes this relatively simple. Conditional on (%1, %3, %4), we can write

ut = ρet + vt, (9)
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where vt is uncorrelated with et, and re-write equation (6) as

yt − ρet = α0I(S∗t < 0) + α1I(S∗t ≥ 0) + φyt−1 + vt (10)

In this form, we have a regression equation in which the error term is uncorrelated with

the regressor I(S∗t < 0). This data-augmentation approach to endogenous regimes is

considerably simpler than the classical approach outlined in Kim, Piger and Startz (2003).

The priors used for these Bayesian regressions are discussed in the next section.

Conditional on %1, %2, %4, the residual series {ut} and {et} are calculated and the

approach from Chib, Greenberg and Jeliazkov (2003) is used to sample the covariance

matrix Σ using inverted Wishart distributions, subject to the restriction that Σ2,2 = 1. A

detailed discussion of sampling the autoregressive latent variable follows.

Sampling the latent variable

To reduce the degree of autocorrelation of the sampled values across MCMC iterations

and to speed convergence of the sampler to the posterior distribution, multi-state sampling

is preferable to single-state sampling of the latent variable. In single-state sampling, the

conditional distribution of the latent variable this iteration would depend on values drawn

for the previous iteration (with iteration number denoted as a superscript):

f(S
∗(i+1)
t | {S∗(i+1)

j }j<t, {S∗(i)k }k>t, {yt}). (11)

As suggested by Carter and Kohn (1994), Fruhwirth-Schnatter (1994) and de Jong and

Shephard (1995), multi-state sampling can be carried out based on the identity

f({S∗t } | {yt}) = f(S∗T | {yt})
T−1∏

t=1

f(S∗t | S∗t+1, {yj}j=1,..,t), (12)

using the Kalman filter to calculate the conditional distributions on the right side of eq.

(11).
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One complication is that the indicator function in eq. (6) makes it a nonlinear function

of the latent variable, so we need to employ the extended Kalman filter [Welch and Bishop

(2002)]. If we start with a canonical linear state-space model with observation variables

y and state variables X,

y = HXt + vt

Xt+1 = FXt + DZt + wt+1, (13)

then the well-known Kalman filtering equations are

Xt+1|t = FXt|t + DZt

Xt+1|t+1 = Xt+1|t + Kt+1[yt+1 −HXt+1|t]

Pt+1|t = FPt|tF
′ + Q

Pt+1|t+1 = Pt+1|t −Kt+1HPt+1|t

Kt+1 = Pt+1|tH
′(HPt+1|tH

′ + R)−1 (14)

The non-Markovian regime switching model has the following state-space form:

yt = α1 + (α0 − α1)I(S∗t < 0) + ρet + vt(
et+1

S∗t

)
=

(
0 0
1 θ1

) (
et

S∗t−1

)
+

(
0 0
λ θ2

) (
1

yt−1

)
+

(
et+1

0

)
(15)

The extended Kalman filter takes Jacobians of nonlinear functions to arrive at updat-

ing matrices for the Kalman filtering equations. Extended Kalman filtering consists of

taking a Taylor series linearization around the expected values of the arguments of the

nonlinear function. Here we define G(Xt) = I(Xt) − P (Xt | It−1). The Taylor series
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approximation around the expected value X0t = Xt|t−1 = (wt = 0, S∗t−1 = S∗t−1|t−1) leads

to

I(S∗(Xt) < 0) ≈ P (S∗(Xt) < 0 | It−1)+I(S∗(X0t) < 0)−P (S∗(X0t) < 0 | It−1)+Ht(Xt−X0t),

(16)

where Ht is the Jacobian of G(Xt) evaluated at X0t. At X0t, P (S∗(X0t) < 0 | It−1) takes

on either the value zero or one and is equal to I(S∗(X0t) < 0), so these two terms cancel.

In this example, the 1 × 2 Jacobian vector includes a finite-difference approximation

to differentiating the indicator function:

Ht =
∂G

∂X
≈ E∆I(S∗(Xt) < 0)

E[ξt | S∗t >
<0, S∗t−1

<
>0]

∂ξt

∂Xt

− ∂P (S∗(Xt) < 0 | It−1)

∂ξt

∂ξt

∂Xt

, (17)

where

ξt =
S∗t − λ− θ1S

∗
t−1|t−1 − θ2yt−1

(P
(1,1)
t|t−1 − 2θ1P

(1,2)
t|t−1 + θ2

1P
(2,2)
t|t−1)

0.5
(18)

and superscript (2,2) indicates the element of the matrix. Because ξt is a standard normal,

E[ξt | S∗t > 0] = φ(ξt | S∗t = 0)/[1− Φ(ξt | S∗t = 0)]

E[ξt | S∗t < 0] = −φ(ξt | S∗t = 0)/Φ(ξt | S∗t = 0)

E∆I(S∗(Xt) < 0)

E[ξt | S∗t >
<0, S∗t−1

<
>0]

= −1[1− Φ(ξt | S∗t = 0)]I(S∗t−1 < 0)/E[ξt | S∗t > 0]

+Φ(ξt | S∗t = 0)I(S∗t−1 > 0)/E[ξt | S∗t < 0]

∂ξt

∂Xt

=

(
1
θ1

)′
/(P

(1,1)
t|t−1 − 2θ1P

(1,2)
t|t−1 + θ2

1P
(2,2)
t|t−1)

0.5 (19)

where φ(.) is the standard normal density function and Φ(.) is the cumulative standard

normal density. The ratio of finite differences in Ht represents the probability that a shock

to the latent variable will cause a change in the indicator function times the sign of the

change in the indicator function divided by the expected value of the shock conditional

on it being large enough to induce a regime change.
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The extended Kalman filtering equations are altered from the canonical form of eq.

(14) to

Xt+1|t = FXt|t

Xt+1|t+1 = Xt+1|t + Kt+1[yt+1 − φyt−1 − α1 − (α0 − α1)P (S∗(Xt+1) < 0 | It)]

Pt+1|t = FPt|tF
′ + Q

Pt+1|t+1 = Pt+1|t −Kt+1Ht+1Pt+1|t

Kt+1 = Pt+1|tH
′
t+1(Ht+1Pt+1|tH

′
t+1 + R)−1 (20)

where

P (S∗(Xt+1) < 0 | It) = Φ(ξt+1 | S∗t+1 = 0). (21)

We also need to apply one smoothing step following the sampling of Xt+1:

Xt|t+1 = Xt|t + Pt|tF
′P−1

t+1|t(Xt+1 −Xt+1|t)

Pt|t+1 = Pt|t + Pt|tF
′P−1

t+1|t(Pt+1|t+1 − Pt+1|t)(Pt|tF
′P−1

t+1|t)
′ (22)

In this way, the latent variable is sampled in reverse order, starting with XT .

Because the extended Kalman filter only provides approximately Gausian errors, the

values of the latent variable drawn this way are only considered candidate values. Without

an exact conditiional distribution, we subject these candidate values to a Metropolis-

Hastings step where a candidate draw can be rejected.

III. Application to business cycle phases

In applying this regime switching model to GDP growth, we found that an informative

prior is necessary to slow down the fluctuations in the latent variable. With an uninforma-

tive prior, the inferred latent S∗ series closely mimics the data y with a different variance.

8



The estimated values of growth states, α0 and α1, are also closer together than one would

associate with two distinct business cycle regimes in the absence of an informative prior.

In the Bayesian regression, as shown in Chib and Greenberg (1996), the coefficients are

normally distributed such that

β ∼ N(β̂, B−1
n ) (23)

Bn = B0 + X ′X/σ2

β̂ = B−1
n (B0β0 + X ′y/σ2),

where X is set of regressors, y is the regressand, σ2 is the variance and, most importantly,

B0 is a diagonal matrix that determines the strength of the prior placed on the set of

coefficient values β0. For the GDP growth regression of eq. (10), where the coefficients

are (α0, α1, φ), the diagonal elements of B0 were set to (300,300,0) and β0 was set to

(0.10,0,80,0.10), so that no prior was placed on the lagged dependent variable. For the

latent state from eq. (6), where the coefficients are (λ, θ1, θ2), the diagonal elements

of B0 were set to (0,100,0) and β0 was set to (0.10,0.80,0.10), so that the prior only

served to lift the autoregressive coefficient, θ1. Experimentation showed that these priors

were strong enough to prevent the regime from changing in more than one-third of the

observations; when the regime changes more often than this, the model is trying to fit

high-frequency fluctuations between two expansionary growth states, as opposed to lower-

frequency business cycle fluctuations.

One obvious question is why the Markov switching regimes of Hamilton (1989) do not

require any prior restrictions in order to match business cycle fluctuations, whereas the

present non-Markovian regime switching model does. Consider first the Markov switching

model. Suppose that it tried to fit high-frequency fluctuations between two expansionary

growth states of 2.5 and 4 percent annualized growth. With fixed transition probabilities
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the model would need to have states that were not very persistent to have relatively fre-

quent transitions. As a consequence though, the one-step-ahead forecast of output growth

would not vary much across time, so little would be gained in terms of the likelihood func-

tion value. Consider, in contrast, the non-Markovian regime switching from eq. (3), in

which transition probabilities automatically are time-varying. In this model one can have

both frequent regime transitions and one-step-ahead forecasts of output growth that vary

considerably across time. All it takes in eq. (3) is for the unconditional mean of the latent

variable, S∗, to be near zero and for the autoregressive coefficient, θ, to be greater than

zero. Then, the conditional mean of S∗ can differ from zero, causing the one-step-ahead

forecasts of output growth to differ from the unconditional mean.

For the model with the informative priors discussed above, the MCMC sampler was

run through 6500 iterations with the first 1500 iterations discarded to allow the sampler to

converge on the posterior distribution. Quarterly GDP growth from 1960Q1 to 2003Q4

was used to estimate the non-Markovian regime switching model. Table 1 shows the

posterior means and 90 percent probability intervals for the coefficients.
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Table 1: Coefficient posterior distributions
Posterior dist. Prior

Observation equation
α0 0.136 0.10

(0.041,0.231)
α1 0.860 0.80

(0.769,0.949)
φ 0.207 Flat

(0.098,0.307)
Latent regime equation

λ 0.255 Flat
(0.018,0.497)

θ1 0.640 0.80
(0.502,0.769)

θ2 0.031 Flat
(-0.210,0.277)

Covariance matrix
σ2

1 0.591 Flat
(0.469,0.732)

ρ 0.162 Flat
(-0.028,0.355)

90% prob. interval in parentheses

The posterior means of the α intercepts in the observation equation move less from

the prior values than does the autoregressive coefficient, θ1, in the latent regime equation.

The fact that the model finds that the autoregressive coefficient, θ1, is centered far from

zero in the latent regime equation supports the idea that the index of regime strength,

S∗, responds more closely to its own past value than to other variables, such as yt−1.

Matching NBER business cycle turning points

The most interesting output from the non-Markovian regime switching model of GDP

growth is the posterior mean of the latent, strength-of-regime indicator, S∗. Figure 1
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shows this posterior mean and how well its crossings of zero match the NBER business

cycle turning points. The biggest discrepancy between the sign of the posterior mean

of the latent variable and the NBER recession dates occurs at the March 1991 NBER

trough date. The posterior mean of the latent variable remained below zero through the

fourth quarter of 1991. In all, the regime-switching model had a posterior mean below

zero for six quarters in 1990-91, whereas the NBER recession lasted only three quarters.

In 2001, in contrast, the posterior mean was below zero for four quarters, starting in the

first quarter of 2001, whereas the NBER recession lasted three quarters, starting with the

second quarter of 2001. Overall, however, the regime switching model implies switching

dates that are very close to NBER turning points throughout the sample. The posterior

mean of the latent variable can also serve as a business cycle index, given that it measures

the strength of growth rate regimes. For example, 1972, 1978 and 1984 are periods of

pronounced cyclical strength. Similarly, the milder recessions are reflected in the posterior

mean of the latent variable as recessions where the the latent variable did not dip as far

below zero, such as in 1970 and 2001. We also calculate posterior means of the regime

probabilities, calculated as the percentage of the 5000 draws that the latent variable, S∗t ,

was above zero. For this measure, a posterior mean probability of 0.5 corresponds closely

with NBER turning points, as shown in Figure 2. To reiterate, the priors needed to induce

the latent variable to change signs at the business cycle frequency included a prior to keep

the two growth rate parameters, α0 and α1, sufficiently far apart so as not to reflect fast

and moderate growth within economic expansions; the other prior was to ensure a degree

of persistence on the latent variable by way of the autoregressive coefficient, θ1.

Time-varying expected regime durations
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With positive serial dependence, the farther the autoregressive latent variable is from

zero (the greater the strength of the current regime), the higher is the expected time

before a sign (regime) change. Here we illustrate this feature of the non-Markovian

regime switching model with calculations of time-varying expected durations. Starting

with the posterior mean value of the latent variable, S∗t , and posterior mean values of

the parameters, we simulated shock processes for eq. (6) until the sign changed at S∗t+k,

where k is the duration of the regime from time t. Note that if we started from the value

of S
∗(i)
t from each iteration i of the MCMC sampler, we would be mixing cases where

S
∗(i)
t was positive and negative. For this reason, we use the posterior mean values as a

common starting point. The mean value of k from 5000 simulations was calculated as the

expected duration. Figure 3 plots these expected durations. Given the positive intercept,

λ, the expected durations are longer on average when S∗t is above zero (for expansions)

than when it is below zero (for recessions). On average, the expected duration in the

expansion regime is about three times as long as in the recession regime. This ratio

suggests that about 25 percent of the observations will pertain to the recession regime

and this figure is not much different from the 21 percent of quarters that the NBER

has declared to be recessions. Of course, the expected durations presented here are only

in-sample estimates for the purpose of illustrating this feature of the model.

A Monte Carlo investigation

of the estimation procedure

To investigate how well the extended Kalman filter uncovers the parameters of the

data-generating process for the latent variable, we performed a Monte Carlo simulation.

We generated 800 samples of artificial data, each with 200 observations, based on eqs.
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(6) and (7). The parameter values used were close to those estimated from the GDP

growth data in Table 1. For each sample, we ran the MCMC estimation procedure with

6500 iterations and we saved the posterior means of the parameter draws from the last

5000 iterations. We then calculated the mean of the ensemble of 800 sets of posterior

means to see how closely it conformed with the true values used to generate the data.

Table 2 shows this result from the Monte Carlo investigation. As one might expect,

the MCMC estimation procedure does quite well in recovering the parameter values for

the observation equation. In the latent regime equation, there is some downward bias

on the autoregressive parameter, θ1, probably in the form of an errors-in-variable bias.

Additionally, the estimated correlation between the error terms in the observation and

latent regime equations is biased downward somewhat. Overall, however, the MCMC

estimation procedure with data augmentation recovers the salient features of the artificial

data.

Table 2: Monte Carlo Simulation of Estimation Procedure
Mean of ensemble of 800 posterior means True value

Observation equation
α0 0.123 0.10
α1 0.870 0.80
φ 0.334 0.30

Latent regime equation
λ 0.235 0.10
θ1 0.652 0.80
θ2 0.222 0.10

Covariance matrix
σ2

1 0.870 0.80
ρ 0.167 0.30

Conclusions
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In this article, we present a non-Markovian regime switching model in which the mag-

nitude of the latent variable indexes the strength of the state. In our application to regime

switching at the business cycle frequency in the growth rate of GDP, we find that the

posterior mean of the latent variable looks much like a business cycle index that indicates

the degree of cyclical strength or weakness in the economy. Another useful feature of the

non-Markovian model is the time-varying nature of its transition probabilities. Within

this framework, it is straightforward to calculate the expected duration of the current

regime for each observation.

We also demonstrate the straightforward adjustment one can make within the MCMC

estimation procedure to allow for the regime process to be correlated with the observ-

able data. Our estimates of GDP growth indicate that the regimes are not determined

independently from the observed data. Instead, our monte carlo simulation suggests that

our estimates of the correlation might be downwardly biased and might understate, if

anything, the true magnitude of this correlation and the endgoeneity of the regimes.
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