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Abstract

In this paper we characterize equilibria in a quantity game where
symmetric …rms face a local demand together with an export-constrained
demand. Firms have unlimited access to a local demand but a re-
stricted access to a second market, like in the electricity network where
generators compete to satisfy demand but competition is restricted by
transmission capacity. We show the existence of an e¤ective demand
that is continuous but not di¤erentiable due to the transmission con-
straint. Three types of equilibria emerge in this context, parametrized
by capacity. First, a symmetric equilibrium (unique) when the access
to the second market is constrained. Second, a set of continuous and
asymmetric equilibria with a fully used link but not constrained; and
…nally, a symmetric and unique equilibrium in which the link is not
fully used. We also show how multiplicity of equilibria tends to dis-
appear as the number of competitors increase.
JEL code numbers: C72, L13, L94.
Keywords: electricity markets, Cournot games, capacity constraints

1 Introduction

Introducing e¤ective competition in electricity markets presents some chal-
lenges that are characteristic of the nature and the usage of electricity. This
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issue is recognized by Joskow and Schmalensee (1983) when they mention
that applying mechanisms coming from other industries will not achieve a
satisfactory solution. The electricity industry is characterized by a highly
variable and inelastic short term demand that leads to a great loss of welfare
in case of blackout. At each moment, supply must meet demand and in ad-
dition, both are a¤ected by signi…cant transmission constraints. The market
equilibrium is also a¤ected by the fact that it is not feasible (economically
and technically) to store production. Therefore, inventories cannot be used
to mitigate the lack of generation capacity in periods of peak demand; hence
it leads to high price. Furthermore, the lack of capacity may also appear in
transmission. In e¤ect, most of the transmission lines have not been designed
to support the increase in trade when the industry is liberalized. In addition
to the lack of capacity, the transmission of electricity creates some network
externalities that add complexity to the implementation of a competitive
market.
All these reasons can help to explain why many governments pay spe-

cial attention to the organization of a new industry design with competition
(Joskow 1996 and 2001 and Hogan 2000). Basically there are two polar
approaches.
In the …rst one, a central planner collects bids from all participants (gen-

erators, consumers -represented by distributors-, large consumers) and it or-
ganizes a mandatory dispatch that internalizes the network constraints while
maximizing the net consumers’ surplus. In case of deviation (i.e. not being
available when required), the failing agents are punished.
In the second approach, any agent (generator or distributor) is allowed

to trade bilaterally. Since transmission constraints must be satis…ed, these
agents must bid in a secondary market their willingness to pay for an increase
(or decrease) in their trade. Using this information the central planner ad-
justs trade if necessary.
It is important to remark the lack of a general consensus on the optimal

design. In e¤ect, many countries where reforms took place are still redesign-
ing the industry (Wilson, 2002). Understanding how competition takes place
was the origin of a large literature in industrial organization.
Schweppe et al. (1981) were the …rst to describe a mechanism that can

be used to price production and consumption, that is, a nodal price system.
Hogan (1992) applied this mechanism to decentralize a vertically integrated
monopoly under the supervision of a central planner. This central coordina-
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tor collects bids for production and consumption and sets the dispatch that
maximizes the net consumers’ surplus. This dispatch is technically feasible
in the sense that it does not overcome the transmission constraint in any
line. Hogan also describes a mechanism of …nancial rights issued with the
purpose of protecting users of the transmission system from the volatility of
nodal prices but also of determining and remunerating new investment in
transmission.
Four years later, Chao and Peck (1996) showed that more decentralization

is possible. There is no need to coordinate the market because a system of
capacity rights together with bilateral trade is enough to implement the same
Pareto optimal allocation as in the Hogan dispatch.
We should remark that an empirical comparison of both organizations

is missing up to date (Bower and Bunn, 2000) but as Nasser (1997) points
out, examples from …nance show that the convergence of both organization
types is not complete. In practice, the industry is structured with a mix
of centralization and bilateral trade like in England and Argentina, or more
recently, in the new PJM and California electricity systems.
There exists now an important literature about the e¤ect of imperfect

competition and in some cases, on how the di¤erent types of rights a¤ect the
dispatch. Oren (1997), Stoft (1997), Nasser (1997), Bushnell (1999), Joskow
and Tirole (2000), Willems (2002), Borenstein et al. (2000), Gilbert et al.
(2002) are good examples. Most of them will be referred in the next section.
The main objective of this paper is to characterize equilibria in a quantity

game where symmetric …rms face a local demand together with an export-
constrained demand. Firms have unlimited access to a local demand but a
restricted access to a second market. We show the existence of an e¤ective
demand that is continuous but not di¤erentiable due to the transmission
constraint. Three types of equilibria emerge in this context as a function
of capacity. First, a symmetric equilibrium (unique) when the access to the
second market is constrained. Second, a set of continuous and asymmetric
equilibria with a fully used link but not constrained; and …nally, a symmetric
and unique equilibrium in which the link is not fully used. A similar result
was obtained although in a di¤erent setting by Stoft (1997) and Borenstein
et al. (2000). However, in contrast to the …rst paper, we fully characterize
equilibria and we make explicit the role of the system operator. In addition,
we avoid the network externalities created by the e¤ect of counter‡ows like
in the second paper which leads to a simpler description of the strategic
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behavior of each player. We also show how multiplicity of equilibria tends to
disappear as the number of competitors increase.
As mentioned before, the motivation is the electricity industry where

each demand represents a region or a country, …rms are generators and the
technology of transmission is the network. We assume the existence of a
central dispatcher, which is in practice the most common way to organize
the industry under competition. This dispatcher also …xes the equilibrium
prices as a function of the bids made by the Cournot competitors and the
capacity of transmission. Generators are not allowed to sale energy directly
to consumers, instead, they sale energy into a pool and it is the central
planner the agent that allocates the energy among nodes internalizing the
network constraint. Therefore, …rms do not care about how much of their
production is sold in each market, and what matters is the total of energy
sold in each market.
The remainder of the paper is organized as follows. Section 2 reviews the

literature on price and quantity competition under transmission constraint
and Section 3 describes the basic model. Section 4 analyzes two polar cases,
that is, perfect competition and monopoly while in section 5 we explore quan-
tity competition. Section 6 brie‡y describes price competition and section 7
concludes. The Appendix contains most of the proofs.

2 Literature Review on Competition Under
Transmission Constraints

Like in the analysis of other industries, electricity competition was largely
described by price competition, quantity competition or, in between, the
supply function approach.1 Introducing transmission constraints reduces the
set of references but it is still a large number. As mentioned above, Hogan
(1992) and Chao and Peck (1996), analyze price competition when …rms
behave competitively in the context of transmission constraints.
Price competition and transmission constraints were analyzed by Nasser

(1997) through auction theory. In his PhD thesis, Nasser was the …rst to deal
with mechanism design theory and transmission constraint. In e¤ect, using
the optimal auction mechanism to analyze the unconstrained case and the
multi-units auction for the constrained one, Nasser analyses in a three-node

1A good survey about electricity competition can be found in Fabra and Harbord (2001)
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example how transmission constraints a¤ect the predicted outcome. The
network setting consist of two generators and an inelastic demand; each of
them is located at di¤erent nodes.
When transmission constraints are active, Nasser shows that price cap can

be the solution to prevent excessively high prices (but this solution comes
at some cost, as the author points out) when implementing the optimal
auction. Another source of ine¢ciency in the allocation process is described
but related to the existence of asymmetric information.
The supply function approach under transmission constraint with endoge-

nous transmission charge is not developed yet (to our knowledge).
When the decision variables in competition are quantities, Hogan (1997)

and Oren (1997) analyze the case where the transmission is modeled as a
constraint in the optimization program of each agent. This means that each
agent reduces and coordinates its strategy space with the rival’s strategy
space. This game is not a standard one de…ned in Fudenberg and Tirole
(1991) but it is a ”generalized Nash equilibrium (GNE) game,” a ”social
equilibrium game,” or a ”pseudo-Nash equilibrium game.” Stoft (1997) crit-
icizes this approach:
”This de…nition of a game allows one player’s set of legal moves to depend

on the other player’s choice of move, even though they both move simulta-
neously. This allows the de…nition of a game in which the players’ moves
automatically satisfy the feasibility constraints. Unlike a standard game, this
speci…cation does not model some well-de…ned procedure but instead is meant
to mimic an unexplained negotiation that takes place between the two play-
ers”.
It is precisely in Stoft (1997), Borenstein et al. (2000) and in this paper

where the traditional de…nition of a static game is applied. That is, the game
includes the set of players, a strategy space and the payo¤s associated to the
strategy space. When transmission constraints become binding, the payo¤
function recognizes this e¤ect but players are not constrained in their strategy
space to the rival’s choice. Stoft (1997 and 1998) analyzes a two-node network
where generation and consumption do not share the same node. Multiplicity
of equilibria is found for a linear demand and constant marginal cost with
symmetric generators. Borenstein et al. (2000) modify the network setting
by allocating at each node a demand together with a monopoly generator.
This case adds a new complexity since it creates some externalities due to the
net ‡ow property of electricity. That is, opposite ‡ows in the same link are
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netted o¤. In such a case, each agent decides over three regimes of demand.
First, she can face its local demand minus the rival exports. Second the
opposite case, that is, the local demand plus her exports. Finally she can
face an integrated market where there is only one large demand. By o¤ering
a certain quantity, conditional on the rival’s bid and the link capacity, a
generator can enjoy some local market power. The authors also show the
competitive e¤ect of a capacity expansion.
Smeers and Wei (1997) split the problem of quantity competition de…ning

two markets: energy and transportation. Di¤erent equilibrium concepts are
used for each market. In the …rst one, Nash equilibrium while in the second
one, a market-clearing equilibrium are applied. The interaction of both mar-
kets results in the aggregate equilibrium of the game. Willems (2002) -using
the same setting of Oren (1997), Stoft (1997) and Smeers and Wei (1997)-
compares their results using a di¤erent game where generators face an ex-
ogenous transmission charge. This charge is used to control the trade with
respect to the link capacity. Willems also allows for asymmetric generators
with constant marginal cost.
Gilbert et al. (2002) analyze the case of import and export market power

using a linear demand and constant marginal cost. However, they just con-
sider a situation where the link is constrained since they are also concerned
about the value of some congestion and capacity rights.
The equilibrium concept used in this paper is Nash equilibrium where the

payo¤ function has a non-di¤erentiability due to existence of a transmission
constraint. In some sense it is similar to the game analyzed by Borenstein
et al. (2000) without the externality mentioned above and it makes the
description of the agent behavior simpler.2

3 The model

Consider a network made of two nodes connected by a capacity of transmis-
sion denoted by !" Nodes are labeled # = $% & and at each one, there is a
symmetric demand '!(() = '(() with '0(¢) ) 0 and '00(¢) · 0" Suppose
demand is bounded in price and quantity, that is, it exists ( )1 such that
'(() = 0 and '(0) )1" In node $ there are two identical generators labeled
* = 1% 2 with convex cost +"(,") = +(,").

2The network setting is di¤erent in that case.

6



a b
K

1 1 2 2( ),  ( ),  ( )aC q C q D p ( )bD p
a b

K
1 1 2 2( ),  ( ),  ( )aC q C q D p ( )bD p

Figure 1: One-line-two-nodes network

In the short term, electricity demand is characterized by a low (or zero)
price elasticity. This property can be explained by the absence of substitutes
but also by the own characteristics of electricity. On the contrary, in the long
term, some consumers can decide to build their own facility with the purpose
of obtaining energy or they can choose another technology. Therefore, it is
natural to consider some price elasticity. As regards to technology, in the
short term, generators face a constant marginal cost up to capacity. However,
strictly convex marginal cost can be justi…ed in the long term when generators
decide how much capacity they will install. The motivation of this analysis is
more related to the e¤ects of long term competition over two regions that are
asymmetric from a demand perspective.3 Even though at node & there is not
generation, our model can give some insights in networks like north-south
link in UK and the cross-border link between France and UK.
We need more assumptions. Firms must sale their product to a central

authority called System Operator (-.). The -. allocates the aggregate
o¤ers / = ,1 + ,2 among both demands controlling over the transmission
constraint. Generators cannot determine how much of their o¤ers is sold
in each market and they are remunerated with a unique price. To be more
precise, generators compete a la Cournot bidding quantities to the -. and
the latter allocates / units to both regions through the mechanism described
below.
It is clear that consumers located in region & cannot consume more than

! units of energy. Therefore and using the fact that -. allocates all the
o¤ered units, we can establish a threshold in the aggregate o¤er e/ such that,
for / · e/ consumers in & are not rationed. In e¤ect, this threshold is de…ned
as the maximum aggregate o¤er such only one price is enough to implement
a large market e/ : e/ ¡ '#(0 ( e/)) = ! . Since 0 ( e/) is the same for both
market and demand are symmetric, then '#(0 ( e/)) = e/12 and e/ = 2!"
We de…ne '$(() = 2'(() for all / · e/ where the superscript 2 means

unconstrained demand. In term of prices, they should not be lower than

3The strategy space and the payo¤ function remain symmetric between generators.

7



e( = 0 ( e/) to implement the unconstrained demand. Generators receive for
their o¤ers 0 $(/) when / · e/"
Otherwise, if ( ) e( (or / 3 e/) demand in & is greater than the capacity of

transportation and then consumers in & receive ! units at price 0%(!) while
consumers in $ receive /¡! units at price 0#(/¡!)" Since consumers in &
are rationed it is consistent to consider that 0#(/¡!) · 0%(!) and it occurs
when / 3 2!" In this case, …rms receive 0#(/¡!) for the their sale and we
assume that any congestion rents go to consumers as a lump sum transfers
or they are used to cover the …xed cost of the transmission operator. We do
not consider the case of …nancial transmission rights. Putting it di¤erently, if
there are …nancial rights, they are owned by agents who are neither consumers
nor producers of electricity. The monopoly and perfect competitive case with
…nancial rights have been extensively analyzed by Joskow and Tirole (2000).
We de…ne '&(() = '#(()+! where the superscript 4 means constrained

demand and it is valid if ( ) e("
In e¤ect, the e¤ective demand faced by generators is a continuous function

of quantity with some non-di¤erentiability at / = e/" To summarize the
energy allocation and the payment rule, we de…ne the e¤ective ''(() as:

''(() :

(
'$(() = 2'(() if ( ¸ 0 ( e/)
'&(() = '(() +! otherwise

In some sense, the mechanism described below resembles a Nodal Price
System. However, the main di¤erence resides in the interpretation of quan-
tity bids instead of price bids. A Nodal Price System is a mechanism where
production and consumption are priced optimally per node using some ob-
jective function (maximization of net consumer’s welfare or minimization of
dispatch cost when demand is …xed). When generators bid price, the -.
uses this information as a proxy of generation cost when it sets the optimal
dispatch. Nevertheless, when generators bid quantities, we assume that -.
allocates the aggregate o¤er internalizing the network constraints. In Ap-
pendix A we show how this allocation is performed optimally through the
maximization of consumers’ surplus.
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Figure 2: Shape of e¤ective demand

4 Perfect Competition and Monopoly

We begin analyzing these two polar cases since they capture some insights
about the e¤ect of competition. Let’s assume in this section that +(/) rep-
resents the aggregate cost function. In our framework, a perfect competitive
equilibrium is a quantity /'() that solves: 0

'(/'()) = +
0(/'())" This is a gen-

eral characterization in the sense that /'() does not show when consumers
in region & are rationed. A more detailed characterization expresses that
/'() = /

$
() if 0

$(/$()) = +
0(/$()) with /

$
() · e/ or on the contrary, /'() = /&()

if 0 &(/&()) = +
0(/&()) with /

&
() 3

e/" Note that both equilibria cannot occur
simultaneously with /$() 6= /&() since 0 '(¢) has negative slope and the mar-
ginal cost is a monotonic function. Therefore, we can distinguish two types
of equilibria: when the link is not constrained (it can be fully used or not)
and second, when the link is constrained, that is, when prices di¤ers between
regions.
Consider a monopoly and be /'* the equilibrium quantity obtained as:

/'* :5$6
+
f0 '(,),¡+(,)g" As before, this characterization is general. Using

the same argument, if /'* · e/ then /'* = /$* with /
$
* : 5$6

+
f0 $(,), ¡

+(,)g" That is, the monopoly outcome occurs in the unconstrained demand.
On the contrary, if /'* 3 e/ then /'* = /&* with /&* : 5$6

+
f0 &(,), ¡
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+(,)g" In this case the monopoly solution has a maximum on the constrained
demand.
Both equilibria cannot occur simultaneously. Note that we do not pre-

clude the possibility that /$* 3 e/ 3 /&* since it is certainly possible. It is
clear that/$* and/

&
* cannot be equilibria since they will not be implemented

on 0 $() and 0 &() respectively. The monopolist …nds optimal to set /'* = e/"
Suppose that she plays a quantity greater than e/" The e¤ective demand is
in the constrained region and the optimal quantity for the constrained de-
mand occurs for a quantity lower than e/% therefore, / 3 e/ cannot be an
optimal outcome. The same argument applies for quantities lower than e/"
The intuition of this result is explained by the fact that marginal income is
a decreasing function with a discontinuity at 0 '( e/).4,5

P

QQ!

( )eD pP

'( )C q ( )Mg I q

'( ) ( )P K K P K+

'( )2 ( )P K K P K+

P

QQ!

( )eD pP

'( )C q ( )Mg I q

'( ) ( )P K K P K+

'( )2 ( )P K K P K+

Figure 3: Monopolist Marginal Income (in dashed line)

This discontinuity shows that for any marginal cost that intersects the
vertical region of marginal income, the monopoly outcome does not change.
A second result is the fact that it is possible to de…ne a set of capacity

4It does not happen under perfect competition since agents cannot manipulate the
price.

5Be the marginal income equal to ! !0(")" + ! !(")# but ! !(¢) = f!"(¢) or ! #(¢)g
depending on "$ If " = e%# then both demands coincide. In addition, we can use the fact
that !"(%) = ! (%&2) and ! #(%) = ! (%¡')$ Therefore, the marginal income evaluated
at " = e% is equal to ! 0(')' + ! (') when it is in the unconstrained demand and it is
equal to ! 0(')2' + ! (') in the constrained demand. It is clear than in the …rst case,
marginal income is greater. Then, a discontinuity exists in marginal income at " = e%$
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(!%!) with ! ) ! such that /$* 3 e/ 3 /&*" That is, for any value
of capacity in such interval, there is not enough capacity to implement an
unconstrained equilibrium. On the contrary, there is enough capacity to
implement the constrained equilibrium quantity in the unconstrained demand
(but in such a case, it is not an equilibrium). Therefore, the equilibrium
remains in /'* = e/" It has some consequence in term of congestion rents
since there is not di¤erent in nodal prices. Therefore, the price di¤erential
fails to capture the social valuation for capacity (Nasser 1997, Stoft 1997,
Oren 1997, Joskow-Tirole 2000). There is a large set of capacity that …xes
the nodal prices di¤erent equal to zero while it is socially desirable to expand
capacity since it moves the equilibrium to a (still) monopoly unconstrained
equilibrium. If expansion is accomplished with some price regulation, the
potential bene…ts are enhanced.
To sum up, when there is perfect competition, the equilibrium can belong

to the unconstrained or constrained region. On the contrary, the disconti-
nuity in the monopolist’ marginal cost adds the possibility of a new type of
equilibrium just at the kink of demand. This third possibility occurs when
the link is fully used but not constrained, that is, prices are equal among
regions.
We will show in the next section how it a¤ects quantity competition.

5 Quantity Competition

In a short term period, many economists argue that the best way to repre-
sent the contest in electricity market is by price competition (Nasser 1997,
Klemperer 2000, Fabra et al. 2004). In e¤ect, demand is certainly inelastic
and many market architectures allow …rms to submit price bids. However
in the long term, demand has some elasticity and …rms can decide through
the installed capacity, how much energy they submit to the market. In this
setting of quantity competition we de…ne the pro…t function of …rm * as:

¦"(,"% ,-) = 0
'(," + ,-)," ¡ +(,")

Note that pro…t function is a continuous function on ,"% ,- but it is not
smooth when demand changes from the unconstrained to the constrained
case. It occurs at ," + ,- = e/"
Also, be ¦"(,"% ,-) a concave function with j72¦17,2" j 3 j72¦17,"7,-j
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for * 6= 8 on the relevant range. This assumption guarantees existence of
equilibrium6. Even that best respond function has slope lower than one in
absolute value, the usual uniqueness condition is not su¢cient due to the
non-di¤erentiability. It has some consequences in terms of equilibria as we
show in this paper.
We de…ne three types of quantity games.

De…nition 1 The e¤ective game (9') is de…ned by the set of two players,
…rm 1 and 2, with strategy space in the non-negative real numbers and payo¤
functions:

¦'" (,"% ,-) = 0
'(/)," ¡ +(,")

:*;<

0 '(/) :

(
0 $(/) *= / · e/
0 &(/) >;<?@:*A?

Also be the unconstrained game (9$) de…ned for 0 '(/) = 0 $(/) for all
/ ¸ 0" The constrained game (9&) is de…ned for 0 '(/) = 0 &(/) for all
/ ¸ 0

The intuition behind the unconstrained and constrained games is the fact
that they allow us to better understand the behavior of each player in the
e¤ective game despite the existence of transmission constraints and their
impact in the payo¤ function.
Also, be @'(,)% @$(,) and @&(,) the e¤ective, unconstrained and con-

strained best respond function respectively.
Note that in 9$ and 9&, the threshold e/ does not play any role since

demand is de…ned on the non-negative real numbers. In e¤ect, it can be the
case where @$(,) + , 3 e/ (or @&(,) + , ) e/) and the market is constrained
(unconstrained). However we will show that it cannot be the case under
@'(,)"

With the purpose of characterizing the shape of the @'(,)% we need the
following condition.

Condition 1 : If it exists b, ¸ 0 such that @$(b,)+b, ¸ e/% then @$(b,) ¸ @&(b,)"
Proof. See Appendix B.
6Together with " 2 <+0 $ See Tirole (1988) page 224.
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Lemma 1 :The E¤ective Best respond Function (BCDE ) becomes in:

@'(,) :

8><>:
@$(,) if 9 , ¸ 0 such that @$(,) · e/¡ ,e/¡ , if 9 , ¸ 0 such that @$(,) 3 e/¡ , 3 @&(,)
@&(,) if 9 , ¸ 0 such that @$(,) 3 @&(,) ¸ e/¡ ,

Proof. See Appendix C.
When the pro…t function is di¤erentiable, the best respond function is

easier of characterizing, however, it is precisely the non-di¤erentiability that
introduces some complexities in the characterization. In particular, we use
a sort of revealed preference to prove this lemma. In addition, note that the
BCDE has non-positive slope and it is continuous function of ,"
With the purpose of characterizing the equilibria of the e¤ective game, it

will be useful to de…ne the next two thresholds.

De…nition 2 Be e,$ :5*F
+¸0

f@$(,) + , ¸ e/g and e,& :5*F
+¸0

f@&(,) + , ¸ e/g"
When e,$ or e,& are positive but lower than e/ it means that @$(e,$) or

@&(e,&) intersects the 45± degree line of e/ ¡ ," Figure 4 shows the shape of
the BCDE of …rm 2. Observe that the line e/ = ,1 + ,2 divides the space
in two regions (unconstrained and constrained). In (a), the transmission
capacity is su¢ciently small and consequently @$(,) belongs entirely to the
constrained region. Therefore, it cannot be part of the BCDE" In (b), the ca-
pacity of transmission is greater than the previous case and it allows to some
non-di¤erentiabilities in the BCDE . In that case, we can appreciate three
possible segments that shape the BCDE" For any , · e,$ or , ¸ e,&(played by
…rm 1), @$(,) or @&(,) are part of the relevant function respectively. And for
any , 2 (e,$% e,&)% the relevant BCDE is e/ ¡ ," Finally in (c), @$(,) belongs
entirely to the unconstrained region and it shapes the BCDE .
In the following example we illustrate how the di¤erent possibilities emerge

as a function of !.

Example 1 : Be '(() = 1 ¡ (% constant marginal cost normalized to zero
and ! 2 (0% 1]" In that case @$(,) = 1¡ ,12 and @&(,) = (1 +! ¡ ,)12"
If ! · 113 then @'(,) = @&(,)"When ! 2 (1

3
; 1
2
]% @'(,) = e/¡, for any , · e,&

with e,& = 3! ¡ 1 and @'(,) = @&(,) otherwise. Finally when ! 2 (1
2
; 1]%

@'(,) = @$(,) for any , 2 [0% e,$]% @'(,) = e/ ¡ , for any , 2 (e,$% e,&) withe,$ = 4! ¡ 2 and @'(,) = @&(,) otherwise.
13
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Figure 4: Shape of e¤ective best respond function

The previous example illustrates the e¤ect of transmission capacity in the
shape of the e¤ective best respond function. The intuition is the following
one: in general, a Cournot duopolist maximizes her own pro…ts over the
residual demand. When demand is di¤erentiable, the problem is simpler.
It is just to …nd the optimal trade-o¤ between an increase in the price and
a reduction in the o¤ered quantity respect to the marginal cost. However,
in our problem, there is a new degree of freedom since the duopolist can
chooses on which demand the trade-o¤ is optimal. That is, the …rm can bid
aggressively by o¤ering a large quantity and since the -. must allocate all
o¤ers, the …rm gets an extra reduction on the demand elasticity. On the
contrary, by bidding not so aggressively, the …rm allows for an integration
of the two demands in a large market. Moreover, depending on the value of
!% it can be the case where the optimal quantity it is located on a region
of 0 $() (or 0 &()) that is constrained (unconstrained). In such a case, the
optimal (restricted) decision is just to respond e/¡ ,% that is, the maximum
(or minimum) quantity without changing the regime. Note in this example
how the BCDE changes as a function of !. When capacity is relative small,
it is necessary a large reduction in the o¤ered quantity with the purpose of
obtaining a large increase in price to unconstrained the market. However it
can be non-pro…table. As ! increases, the possibility to choose between the
two types of demand arises depending on the rival decision. Finally, when
! is large enough to implement @$(2!) = 0% the problem becomes totally
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unconstrained.
Before characterizing the equilibria we de…ne the equilibrium concept

used in this game

Lemma 2 A Nash Equilibrium (NE) of the game 9' is a pair (,'1¤% ,
'
2¤) such

that:

¦'1(,
'
1¤% ,

'
2¤) ¸ ¦'1(,1% ,'2¤) for all ,1 ¸ 0

¦'2(,
'
1¤% ,

'
2¤) ¸ ¦'2(,'1¤% ,2) for all ,2 ¸ 0

Proof. See Fudenberg and Tirole (1991).
In addition, using the same equilibrium concept we can de…ne the pairs

(,$1¤% ,
$
2¤) and (,

&
1¤% ,

&
2¤) as the GB of the game 9$ and 9& respectively. No-

tice by the assumption made in the derivatives of ¦(), in each game, the
equilibrium is unique and it is symmetric.

Lemma 3 The GBA in the game 9' is a pair (,'1¤% ,'2¤) characterized by:

(,'1¤% ,
'
2¤) :

8><>:
,'"¤ = ,

$
¤ if 2,$¤ · e/

,'"¤ = e/¡ , for , 2 (,% ,) if 2,$¤ 3 e/ 3 2,&¤
,'"¤ = ,

&
¤ if 2,&¤ ¸ e/

where , = maxfe,$; @&(e,&)g and , = minfe,&; @$(e,$)g"
Proof. See Appendix D
When capacity of transmission is large enough, it can be possible to im-

plement a GB over the unconstrained demand. The market is formed by
the addition of the two demands. On the contrary, when capacity is relative
small, generators …nd pro…table to constraint the market in the local de-
mand plus exports to node &. This local demand also gives the opportunity
to increase more the price without a large reduction in the o¤ered quantity
respect to the unconstrained demand.
Moreover, when capacity is in between, nor a GB unconstrained can be

implemented in 0 $() nor a GB constrained can be implemented on 0 &()
by the -." The point that balances the incentive to increase the o¤ered
quantity in the unconstrained demand or to decrease the o¤ered quantity in
the constrained demand is on the 45± degree line of e/¡ ," For any , 2 (,% ,)
chosen by the rival, the best respond is to produce e/ ¡ , that leads a price
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equal to 0 ( e/)" It is precisely at the kink of the e¤ective demand where the
usual condition of uniqueness in Cournot equilibrium is violated. Therefore,
as consequence of multiplicity, even that generators are symmetric, equilibria
can be asymmetric.
We introduce a last characterization of GBA as a function of the capacity

of transmission.

Lemma 4 : A characterization of the GBA through the capacity of trans-
mission yields in: (,'1¤% ,

'
2¤) :

(,'1¤% ,
'
2¤) :

8><>:
,'"¤ = ,

$
¤ if ! ¸ !

,'"¤ = e/¡ , for , 2 (,% ,) if ! 2 (!%!)
,'"¤ = ,

&
¤ if ! 2 (0%!]

with b! : minf! : @$(2!) = 0g% ! : maxf! : 2,&¤ ¸ e/g and ! : minf! :

2,$¤ · e/g"
Proof. The proof follows the same argument as in the previous lemma.b! is the minimum quantity of transmission such that all @$(,) belong to the

unconstrained region. ! is the maximum capacity of transmission such that
the constrained symmetric equilibrium is in the unconstrained region while
! is just the opposite, that is, the minimum capacity of transmission such
that the unconstrained symmetric equilibrium is in the constrained region.
Observe that b! ¸ ! ¸ ! since ,&¤ cannot be greater than ,

$
¤ when

2,$¤ ¸ e/ due to Condition 1.
We can compute the GBA of the last example.

Example 2 For capacity ! ¸ 2
3
% ,'¤ = ,

$
¤ =

2
3
"When ! 2 (1

2
% 2
3
)% ,'"¤ = e/¡,

for , 2 (maxf4!¡2% 1¡!g%minf3!¡1% 2¡2!g) and …nally, for ! 2 (0% 1
2
)%

,'¤ = ,
&
¤ =

1+.
3
"

The existence of multiple equilibria and the validity of Nash Equilibrium
concept deserves some comments. In e¤ect, as Mas Collel et al. (1997) point
out, ”Nash equilibrium as a necessary condition if there is a unique predicted
outcome of the game”. When there are several equilibria this concept may
fail to explain how coordination among all the possibilities will be. Pareto
optimality, focal points, reputation or some dynamics concept can be used
sometimes to better explain equilibrium. A good analysis of the validity of
GB can be found in Mailath (1998).
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No focal points or Pareto optimal equilibria exist in this game and the
multiplicity survives even if agents are allowed to play making some mistake
(Trembling-Hand Perfection). However, among the set of multiple equilibria,
there is a unique symmetric equilibrium ,1 = ,2 = ! that can survive in a
dynamic game if we assume the existence of some adjustment cost of quanti-
ties per period7. That is, …rms prefer to coordinate ”collude” on certain level
of production. On the contrary, if there is not such a cost, another strategy
is to bid in period ;% ," = e/¡ , and ,¡" = , while in period ;+1% ," = e/¡ ,
and ,¡" = ," That is, a bid rotating strategy.
Despite all the critics about the existence of multiplicity of equilibria, it is

possible to show that the set of capacity that support this type of equilibrium
tends to be empty as the number of competitors increases. Therefore, only
an unique symmetric equilibrium exists and it belongs to the unconstrained
or constrained region.

Lemma 5 The set of multiple equilibria is reduced as the number of com-
petitors increase.

Proof. Consider in Lemma 3 when the equilibrium is ,'"¤ = e/ ¡ , for
, 2 (,% ,)" The condition for such a type of equilibrium is 2,$¤ 3 e/ 3 2,&¤ or
/$¤ 3 e/ 3 /&¤" A well known result in the standard Cournot game is when the
number of competitors increase the aggregate output becomes more close to
the perfect competitive outcome. In our case /$¤(F)! /$() and /

&
¤(F)! /&()

when F (number of competitors) tends to in…nity. Therefore, if there is a
continuum of equilibria it means that /$() 3 e/ 3 /&()" Indeed, we know that
under perfect competition, the equilibrium is unique. Assume /'() = /$()
but then, it implies /$() · e/ and it is certainly not possible when there is a
continuum of equilibria. The same argument applies when /'() = /

&
()"

To sum up, the set of multiple equilibria is reduced as the number of
competitors increase.
Increasing competition has two e¤ects. It reduces the oligopolistic rents

together with a reduction in the set of multiple equilibria.

7That is, a subgame perfect equilibrium in an in…nitely repetead game. Note in such a
case that the interpretation of long-term competition is less clear when the game becomes
dynamic.
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6 Price Competition

The results obtained under quantity competition does not remain valid when
competition is by price. Suppose that …rms have enough capacity of produc-
tion to satisfy both demands and they bid the minimum price that they are
willing to receive up to their capacity. In e¤ect, the consequence of the "win-
ner take all" gives not active role to transmission capacity in the strategy
played by …rms. For simplicity, suppose constant marginal cost equal to H"
If H ¸ 0 $

³ e/´ there is a unique GB with both …rms bidding at marginal
cost with a not constrained link. Otherwise the equilibrium still remains in
price equal to marginal cost but the link is constrained. It is not pro…table
for any …rm to increase its bid beyond the marginal cost since the rival, by
undercutting this bid by epsilon, it gets the entire demand with a positive
pro…t.
Consider the case where …rms know that they are technologically di¤erent

in marginal cost H1 ) H2" Suppose that H2 3 0 $
³ e/´ 3 H1" In such a case

…rm one may have some degree of freedom choosing the best strategy (the
market can be constrained or unconstrained).

7 Conclusion and Extensions

Competition in the electricity market was broadly studied in the economic
literature. Price competition thought auction theory, the supply function
equilibrium and quantity competition are the most common approach used in
the analysis. The study becomes more di¢cult when transmission constraints
have to be satis…ed. In addition, network externalities become the problem
more complex.
The economic literature provides some models under auction theory and

quantity competition. Several equilibrium concepts are implemented. How-
ever, most of this literature is related to a certain network setting and it does
not give a complete characterization of the problem. In addition, assump-
tions like the role of the SO are not enough clear. Nasser (1997), Borenstein
et al. (2000) and Willems (2004) are few exceptions.
In this paper we characterize equilibria in a quantity game where symmet-

ric …rms face a local demand together with an export-constrained demand.
Firms have unlimited access to a local demand but a restricted access to
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a second market. We show the existence of an e¤ective demand that is
continuous but not di¤erentiable due to the transmission constraint. Three
types of equilibria emerge in this context parametrized by capacity. First,
a symmetric equilibrium (unique) when the access to the second market is
constrained. Second, a set of continuous and asymmetric equilibria with
a fully used link but not constrained; and …nally, a symmetric and unique
equilibrium in which the link is not fully used. A similar result was obtained
although in di¤erent setting by Stoft (1997) and Borenstein et al. (2000).
We also show how multiplicity of equilibria tends to disappear as the number
of competitors increase.
We are also analyzed as an extension of this paper, how competition is

a¤ected when the congestion rents are used to pay …nancial rights in hands
of generators or consumers. The monopoly and perfect competitive case with
…nancial rights have been extensively analyzed by Joskow and Tirole (2000)
but quantity competition with endogenous transmission charge was not study
yet.
Removing symmetry (in generation and demand) will be another exten-

sion of this paper. In addition, we will analyze the e¤ect of network exter-
nalities in a three-nodes network.

Appendix

A. Justifying Cournot Behavior and Nodal Price Dis-
patch

We adapt Nodal Price Dispatch when generators bid quantity. The -. in the
role of Transmission Operator receives the quantity bids ,1% ,2" Let’s denote
the consumers’ surplus at nodes $ and & as -!(I!) where I! represents the
quantities consumed.
We assume that the -. maximizes welfare, that is, it maximizes the con-
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sumers’ surplus allocating the o¤ered bids subject to the network constraint.

5$6
/!,/"

-#(I#) + -%(I%)

A;"

,1 + ,2 ¡ I# · ! (J)

,1 + ,2 ¸ I# + I% (K)

and using the fact that - 0() = 0 ()% the FOCs become:

0#(I#) = K¡ J% 0%(I%) = K

,1 + ,2 ¡ I# · !% J (,1 + ,2 ¡ I# ¡!) = 0% J ¸ 0
,1 + ,2 · I# + I%% K ¸ 0

Consider the case where ,1 + ,2 ¡ I# ) ! (and it implies J = 0)" Then
0#(I#) = 0%(I%) and I# = I% = (,1 + ,2) 12" That is, the line is not congested
and the -. allocates the o¤ered quantity on equal basis. Only one price
for both regions is required to implement this optimal dispatch. Therefore
only one price is enough to integrate both regions in a large unconstrained
market. Suppliers face a total demand equal to '$(() = 2'(() if the line
is not congested. As a consequence of the Pool mechanism and since both
o¤ers are perfect substitutes, generators do not care if their energy is sale in
region $ or &.
Suppose now J 3 0 (,1 + ,2 ¡ I# = !). The …rst consequence is that

region & is constrained in the quantity imported up to ! units (and region $%
I# = ,1+ ,2¡!)" Then, a rationing using di¤erent prices it is optimal when
the line is congested. The price in market & will be 0%(!) while in region $%
0#(I#) = 0%(!)¡J or 0#(I#) = 0#(/¡!)" This price is used to remunerate
generators for their bids. In such a case, the constrained demand faced by
generators can be written as '&(() = '#(() +! .
Therefore, if the aggregate o¤er is greater than certain threshold de…ned

below, the line is congested and it changes the shape of e¤ective demand.

Condition 2 Given ! 2 (0% '(0)), exists e/ = 2! such that if ( ¸ 0 ( e/)
the relevant demand faced by generators in region $ is '$((). Otherwise
'&(() is the relevant one.

Proof. We restrict the set of capacity. In e¤ect, if capacity is greater
than '(0)% then, for any / · '(0) the line is not congested.
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Let’s de…ne / = e/ as the maximum aggregated o¤ers such that the net
supply in node $ is equal to !" That is e/ ¡ '#(0 $( e/)) = !" Note when
/ = e/% 0 $( e/) = 0 &( e/) and then, if we use the fact that 0 $(/) = 0 (/12)
and 0 &( e/) = 0 (/¡!) we obtain 0 ( e/12) = 0 ( e/¡!) or e/ = 2!"
By construction, we know when / · e/ the line should be uncongested.

We need to show if / 3 e/ then, '$(() cannot be part of the e¤ective
demand faced by the generators. Assume the contrary, that is / 3 e/ and
'$(() is part of the e¤ective demand. If both demands are integrated into
a large market I# = /12 and the transmission constraint is not binding:
/¡ I# · !. Replacing ! = e/12 and I# we …nd / · e/% a contradiction.
To sum up, if the aggregate bid lead in a price ( not lower than 0 ( e/)%

the e¤ective demand is '$(()% on the contrary it will be '&(()"

B. Proof of Condition 1

The idea of the proof is the following one. We determine …rst the minimum
quantity of transmission ( b!) such that all @$(,) belong to the unconstrained
region. For such a value we show in that case @&(2 b!) · 0. Second, for
any amount of capacity lower than b!, we prove that @$(e,$) must be not
lower than @&(e,&) if e,$% e,& ) 2 b!. Finally, in a third step, we show that it
does not exist intersection in the constrained region between @$(,) and @&(,)"
Therefore, it is not possible to …nd @&(,) 3 @$(,) for some ,.
Suppose that b! = minf! : @$(2!) = 0g. That is, for any , · 2 b!%

@$(,) ¸ 0" Then, @&(2 b!) cannot be positive. To prove this statement, con-
sider the E.+ when demand is 0 $() evaluated at 6 = @$(2 b!):

6
h
0 $

0
(6+ 2 b!)6+ 0 $(6+ 2 b!)¡ + 0(6)i = 0

and we can use the fact that 0 $(/) = 0 (/12) to replace in the previous
equations

6
h
0

0
³6
2
+ b!´6+ 0 ³6

2
+ b!´¡ + 0(6)i = 0

and the optimal 6 is equal to zero by construction of b!"
Consider the E.+ when demand is 0 &() evaluated at L = @&(2 b!):

L
h
0 &

0
(L + 2 b!)L + 0 &(L + 2 b!)¡ + 0(L)i = 0
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and using the fact that 0 &(/) = 0 (/¡!) to replace in the previous equa-
tions we get:

L
h
0

0
(L + b!), + 0 (L + b!)¡ + 0(L)i = 0

Since marginal income is a decreased function of quantities then: 0
0
³
0
2
+ b!´6+

0
³
0
2
+ b!´ ¸ 0 0

(L + b!), + 0 (L + b!) give that 0
2
+ b! · L + b!" Therefore,

if 6 = 0% it implies L = @&(2 b!) = 0"
Now, suppose that ! 2 (0% b!]" Be e,$% e,& the minimum quantities char-

acterized in De…nition 2. Then, @$(e,$) ¸ @&(e,&)" To prove this statement,
consider the opposite. We can write the E.+A for both cases evaluated ate,$% e,& :

0 $
0
(@$(e,$) + e,$)@$(e,$) + 0 $(@$(e,$) + e,$)¡ + 0(@$(e,$)) = 0

0 &
0
(@&(e,&) + e,&)@&(e,&) + 0 &(@&(e,&) + e,&)¡ + 0(@&(e,&)) = 0

We can use again the fact that 0 $(/) = 0 (/12) and 0 &(/) = 0 (/ ¡ !)
to simplify both conditions. But since we are evaluating both demands at
/ = e/ = 2!% then 0 (/12) = 0 (/ ¡ !) and after some manipulation of
both E.+A we get:

0
0
(!)

·
@&(e,&)¡ @$(e,)

2

¸
= + 0(@&(e,&))¡ + 0(@$(e,$))

Certainly, the left hand side is negative while the right hand side is positive
if @&(e,&) 3 @$(e,$)% a contradiction.
Finally, we have shown that for , 2 fe,$; 2 b!g, @$(,) ¸ @&(,)" Consider

any b, 2 [e,$; 2!] with ! 2 (0% b!) and suppose that exists @$(b,) = @&(b,) =
@(b,) 3 0% that is, both functions have an intersection. Again we use both
E.+A evaluated at @(b,) :

0 $
0
(@(b,) + b,)@(b,) + 0 $(@(b,) + b,)¡ + 0(@(b,)) = 0

0 &
0
(@(b,) + b,)@(b,) + 0 &(@(b,) + b,)¡ + 0(@(b,)) = 0

and replacing 0 $(/) = 0 (/12) and 0 &(/) = 0 (/¡!) after some manip-
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ulation we obtain:

0

µ
@(b,) + b,
2

¶
¡ 0 (@(b,) + b, ¡!) =

240 0
(@(b,) + b, ¡!)¡ 0 0

³
1(b+)+b+
2

´
2

35 @(b,)
Note that left hand side is positive if @(b,) + b, ¸ 2! = e/ and this is

valid by assumption. However, the right hand side is negative. It simple
to show that when 0 00() = 0" Consider just the term into the brackets with

the following modi…cation: 0
0
(@(b,) + b, ¡!) ¡ 0 0

³
1(b+)+b+
2

´
" It is negative

if @(b,) + b, ¸ 2!" Since 0 0
³
1(b+)+b+
2

´
) 0% then 0 0

³
1(b+)+b+
2

´
) 0 0

³
1(b+)+b+
2

´
12"

Finally, it shows that the left hand side is negative, therefore, a contradiction
about the existence of a positive intersection.

C. Proof of Lemma 1

Basically, the intuition behind this proof is to construct the BCDE from
the best respond function of games 9$ and 9&. In e¤ect, we determine the
domain of @$(,) and @&(,) that make them part of @'(,)" However, as we show
below, in some cases, nor @$(,) nor @&(,) are part of @'(,).
Many cases are possible and they depend on the parametrization, in par-

ticular in the value of ! and consequently on e/.
In the …rst case, if we can …nd a set of non negative , such that @$(,) ·e/ ¡ , then @'(,) = @$(,)" We should prove that for the same set of ,% a

generator will not …nd pro…table a deviation to @&(,) if @&(,) + , 3 e/" Note
that it cannot be possible due to Condition 1. In e¤ect, for all b, such that
@$(b,) + b, ¸ e/% then @$(b,) ¸ @&(b,)% but note that for all , ) b, it implies
@&(,) ) e/ ¡ ," In such a case, it is clear that @&(,) cannot be part of the
BCDE when , ) b,"
Suppose that we are in the second case where @'(,) = e/ ¡ , if @$(,) 3e/¡, 3 @&(,) for some non negative ," If this case is possible, @$(,) and @&(,)

are not part of the BCDE . Suppose that we play e/¡ , ¡ M (M is a positive
small number). Since e/¡ ,¡ M ) @$(,) and pro…t function is concave we can
increase pro…t by increasing the quantity o¤ered. Then e/¡ , ¡ M cannot be
part of the BCDE . Suppose that we play e/¡,+M" Using the same argument
as before, e/¡ ,+ M 3 @&(,) and we can increase pro…t by a reduction of the
quantity. To conclude, @'(,) = e/¡ ,"

23



The last case is when @'(,) = @&(,) if we can …nd non negative , such
that @$(,) 3 @&(,) ¸ e/ ¡ ," It is probable when ! is not so large to obtain
a best respond function unconstrained (implemented over 0 $(/))" It is clear
that @$(,) is not part of the BCDE" But since @&(,) ¸ e/¡ , and due to the
concavity of the pro…t function, then e/¡ , cannot be part of the BCDE"
D. Proof of Lemma 3

It is not a surprise that in games 9$ or 9& there is a unique and symmetric
GB since by assumption, their best respond functions have slope lower than
one in absolute value and …rms are symmetric. And in 9' when demand is
0 ' = 0 $(¢)% ,$¤ is the GB if 2,$¤ · e/ (or ,$¤ · !) since it can be implemented
by the -. on 0 $(). In addition, since ,$¤ · ! and @$(,) has negative slope,
using Condition 1 we can establish that ,&¤ cannot satis…es 2,

&
¤ 3 e/ (or

,&¤ 3 !). To sum up, ,$¤ is the unique and symmetric
In the e¤ective game is clear than ,&¤ is the unique and symmetric GB

when 2,&¤ 3 e/" As consequence of Condition 1, it shows that necessarily
,$¤ 3 ,

&
¤ and therefore ,

$
¤ cannot be an equilibrium over 0 '(¢)"

The most interesting part of this lemma is when 2,$¤ 3 e/ 3 2,&¤ or ,$¤ 3
! 3 ,&¤ " Nor ,

$
¤ nor ,

&
¤ can be implemented over 0

$(¢) and 0 &(¢) respectively
in game 9'. Certainly, both BCDEA intercept over the 45± degree line ofe/¡, de…ned in Lemma 1. They cannot intercept in another region. Consider
the opposite case and suppose that it occurs on the unconstrained region.
Using the fact that …rms are symmetric, it means that exist a symmetric
equilibrium di¤erent than ,$¤ but it is not possible due to the uniqueness
of equilibrium of each demand. The same argument applies over a possible
equilibrium in the constrained region. We need to show that the intersection
of both BCDEA occurs in the interval (,% ,) of @'(,) with , ) ! ) ,.
First, we show that , ) ! ) ," Assume , = e,$ and suppose e,$ 3 !"

In such a case, there is not ,$¤ = @$(,) 3 e,$" Note that by construction
@$(e,$) ¡ ! = ! ¡ e,$ and the right hand side is negative (or @$(e,$) ) e,$
). Therefore, if we increase , from e,$ 3 ! since @$(,) has negative slope,
we cannot …nd ,$¤ = @$(,). However, for , ) e,$% it is possible to …nd , =
@$(,) = ,$¤ but it implies that ,

$
¤ ) !" Note that it is a contradiction with

the assumption 2,$¤ 3 e/"
Consider , = @&(e,&) and suppose @&(e,&) 3 !" In such a case, there is not

,&¤ = @
&(,) ) e,&" Consider by construction @&(e,&)¡! = !¡e,& and note that
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the left hand side is positive (or @&(e,&) 3 e,&) . Therefore, decreasing , frome,& ) ! since @&(,) has negative slope, we cannot …nd ,&¤ = @
&(,). However,

for , 3 e,&% it is possible to …nd , = @&(,) = ,&¤ but it implies that ,&¤ 3 !.
Note that it is a contradiction with the assumption 2,&¤ ) e/" To sum up, be
, equal to e,$ or @&(e,&)% it should be lower than !. The same argument can
be used to show , 3 !"
Finally suppose that agent * chooses a quantity to play ," ) ," If , = e,$

it is clear from Lemma 1 that @'-(,") = @
$
- (,") of agent 8 6= *% nervelessness,

it is not over the 45± degree line of e/ ¡ ," On the other side, note that
@&" (,) intersects the 45

± degree line of e/ ¡ , in @&" (e,&- )" We can use the fact
that agents are symmetric and then @&- (e,&" ) = @&" (e,&- ) = @&(e,&)" Therefore,
when , = @&(e,&) if agent * chooses a quantity to play ," ) , it means that
@'" (,) = @

&
" (,) but it is not over the 45

± degree line. In such a case, the lower
bound in the support of equilibrium is expressed by , = maxfe,$; @&(e,&)g"
The same argument can be used to prove the upper bound. To conclude,
there is a continuum of equilibria and they can be asymmetric.
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