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Abstract

We study a model with a durable good subject to abrupt, periodic obsolescence,
and characterize the optimal purchasing policy. Consumers optimally synchronize new
purchases with the arrival of new durable models. Hence, some agents use a "flexible"
optimal replacement rule that switches between two adjacent replacement frequencies
at irregular intervals. These agents react to wealth shocks by changing the timing of
future purchases.
The model has distinct comparative statics on obsolescence and durability and can

explain how durables with high depreciation rates may have more volatile expenditure.
The model also predicts how demand fluctuations respond to a change in product
variety. These predictions match the observed changes in volatility of the US auto
sales after the introduction of smaller foreign cars in the 1970s.

1 Introduction

Obsolescence is the major reason for depreciation of durables in markets with technologi-
cal innovation.1 Since much of this innovation is incorporated in new durables, modeling
obsolescence of durable goods is vital for our understanding of macroeconomic effects.
Depreciation is usually modeled as gradual wear and tear, but obsolescence is different

in two important respects. First, obsolescence affects all durables at the same time. For
example, all analog TVs, no matter how new, will depreciate at the same time when the
broadcasting switches to digital format (HDTV). Second, obsolescence does not happen at a
constant rate; rather, it is periodic and abrupt. One reason for this is costly development of
new products.2 For example, car bodies are redesigned every 4-5 years, and new generations
of Intel processors appear, on average, every 3 years. Another reason is that obsolescence is

∗This material is based upon work supported by the National Science Foundation under Grant No.
0241640. Any opinions, findings and conclusions or recomendations expressed in this material are those of
the authors and do not necessarily reflect the views of the National Science Foundation (NSF).

1One of the most dramatic examples of obsolescence is computers, whose quality-adjusted price has been
falling at an average rate of 23.5% a year during 1960-2000. The average annual obsolescence rate for
communication equipment is 8.7%, and for automobiles is 2.5% (Cummins and Violante, 2002, Table II).

2Fishman and Rob (2000) show that it is optimal for the durable goods producer to introduce new models
periodically.
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related to the periodic arrival of innovations shared by many goods, such as, for example,
the LCD display, the compact disc or the lithium-ion battery. This means that obsolescence
is a function of the good’s technological, rather than physical, age. Computers and many
other types of equipment have the same pattern of obsolescence. Since designs for durables
start aging immediately, consumers who purchase a certain model late in its life cycle will
enjoy a lower service flow. Hence, obsolescence gives consumers an incentive to coordinate
their replacement decisions with the introductions of new models. This coordination may
have important effects on demand fluctuations and propagation of shocks.
We consider an economy with infinitely lived agents who consume a durable and a non-

durable good. Agents differ in their permanent income level, and can borrow and lend at
an exogenously given interest rate. The durable is produced by a competitive industry with
CRS technology. There are no secondary markets for used durables; units that are replaced
are thrown away. Consequently, durables are purchased infrequently because the service
from a current unit acts as a fixed opportunity cost of adjustment.
We solve analytically for the optimal consumption paths of individuals. Consumers

optimally synchronize their new durable purchases with the design cycle. Although durables
can be replaced at any time, consumers only purchase them at dates when new models are
introduced. That is, agents only choose holding periods that are multiples of the design cycle
length.3 Since the relevant choices of holding periods are discrete, the consumers smooth
consumption by alternating between two holding periods from time to time.
Consumers endogenously partition themselves into classes according to their wealth and

the age of their durable goods, with each class following a different durable replacement rule.
Two types of rules are optimal. One type, which we term a “fixed” rule, is an (s, S) policy
with a constant replacement frequency. The other type is a “flexible” rule that alternates
between two adjacent fixed rules at irregular intervals.
A key difference between the two types of rules is how the agents react to unexpected

changes in wealth. Consumers that follow a fixed rule adjust only their non-durable con-
sumption in response to a marginal windfall. By contrast, consumers that follow flexible
rules adjust only the timing of the durable purchases. This dichotomy in response to shocks
gives our model the flexibility to match several empirical regularities in consumption.
Empirically, aggregate durable consumption is more volatile than non-durable consump-

tion (e.g. Attanasio (1999), p. 746). The usual explanation for this regularity is that
durables have more volatile consumption because they have a lower depreciation rate than
non-durables. But, this logic also predicts that consumption of durables with lower depre-
ciation rate should exhibit higher volatility. The empirical evidence seems to contradict this
prediction. We compare the consumption of furniture, computers and cars, and find that
consumption is more volatile for durables with higher rates of economic depreciation. Our
model can match both pieces of evidence because it predicts separate effects for obsolescence
and durability. We show that the total mass of consumers in flexible rule classes grows
with the length of the good’s life and with the rate of obsolescence. Accordingly, our model
predicts that consumption of longer-lived durables is more variable, and that consumption
of durables with higher obsolescence rate is also more variable. The former prediction agrees
with the evidence on aggregate consumption, and the latter one helps explain the data on
different durable markets.

3This strong form of synchronization is partly due to perfect competition which makes the relative price
of durables constant and uncorrelated with demand. If prices of new models were falling over time, some
consumers would have incentives to buy in the middle of the design cycle.
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According to Caballero (1990), aggregate durable purchases are slow to respond to aggre-
gate wealth shocks. This effect takes a very strong form in our model because no one buys
durables in the middle of the design cycle. All changes in durable expenditure are delayed
until the next model is introduced. The evidence on this delay comes from household pur-
chases of computers. In particular, computer expenditure exhibits sharp accelerations (and
subsequent fast fall-offs) around the dates when new Intel processors became available. This
feature of aggregate demand is consistent with households waiting to buy or replace their
computer until the new model arrives.
In our model, durable demand fluctuates because consumers accelerate or delay durable

purchases as a response to wealth shocks. Empirically, the number of automobiles purchased
is much more variable than expenditure per auto (Bar-Ilan and Blinder, 1992, p. 263), and
very little of this variation is due to the echo effects from past automobile sales (Adda and
Cooper, 2000). It is difficult for an (S, s) model with an unconstrained menu of durable sizes
to match this observation. In the (s, S) model all consumers choose the same replacement
frequency and vary the purchase size to smooth consumption.4 This means that all fluctua-
tions in the demand for cars must be a result of echo effects from past sales, and not because
of shifts in purchase timing. We show how this prediction can be reversed. We extend our
model to include the choice of purchase size from some feasible interval. In the optimum,
there is a group of consumers who are constrained by purchase size. These agents react to
wealth shocks as if there was only one size available and adjust either non-durable consump-
tion or purchase timing. In contrast, a consumer that is unconstrained by size does not
modify the timing of future purchases and adjusts the size. The total mass of unconstrained
consumers grows with the range of available sizes. Therefore, one should expect purchase
timing to respond to shocks less and purchase size to respond more in markets with more
variety of sizes. The history of the auto industry in the US offers a natural test. The rapid
penetration of smaller foreign autos on the US market in the 1970s can be viewed as an
increase in variety. In line with our predictions, we find that the number of new autos per
adult became less volatile and the purchase size became more volatile in the 1980s and 90s.
Our work is related to a large literature that studies models with infrequent replacement

of durable goods. Most of this literature considers optimal (s, S) replacement policies. There
are three broad categories of related (s, S) models. The first category includes representative
agent models with a budget constraint (e.g. Grossman and Laroque (1990), Eberly (1994)).
These models have only one good, the durable, and thus look at durable consumption sep-
arately. The second category includes replacement models with aggregate dynamics (e.g.
Caballero and Engel (1999), Caplin and Leahy (1999), Adda and Cooper (2000)). These pa-
pers consider a replacement problem without an inter-period budget constraint. The model
of Adda and Cooper (2000) includes durables and non-durables, but does not allow borrow-
ing and lending. The third body of literature (e.g. Caballero (1993), Attanasio (2000)) does
not consider the optimal replacement problem but assumes that the optimal replacement
policy for the durable is an (s, S) rule. Apart from having a different model, we develop a
solution methodology that can be used in other replacement problems with indivisibilities.
Our work also contributes to a broader macroeconomic literature that studies the inter-

action of durable and non-durable consumption and the propagation of income and wealth
shocks. In our model, periodic obsolescence determines the optimal timing of durable pur-
chases, and this, in turn, affects how shocks propagate. Leahy and Zeira (2000) derive a

4This result is general as long as the depreciation rate for the durable is not a function of the purchase
size. See Appendix 2 for details.
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closely related result in a framework where consumers buy the durable only once in their
lifetime. They find what they call an “insulation effect”: both non-durable consumption and
the size of the durable are unaffected by wealth shocks, but the timing of purchases is. Our
analysis offers a few caveats for the insulation effect. When the size is fixed, an aggregate
shock affects the timing of purchases selectively, depending on the type of replacement rule.
Only flexible-rule consumers adjust the timing of future purchases; fixed-rule consumers ad-
just their non-durable consumption instead. When the size is variable, the insulation effect
depends on whether or not there are binding constraints on sizes. If size is unconstrained
and the durable can be bought repeatedly, the insulation effect is reversed: the wealth shock
is fully absorbed by adjustments of size and non-durable consumption. Then aggregate unit
sales are completely insulated from wealth shocks.
Section 2 describes the model. Section 3 separately solves the durable consumption

problem. We construct optimal policies using a very simple geometric argument. Section 4
determines the optimal allocation of wealth between durable and non-durable consumption
and derives our key comparative statics. In Section 5 we match our results with observations
on aggregate consumption behavior. Section 6 extends the model to allow variable purchase
size and discusses its empirical implications. Section 7 concludes.

2 Model

We consider a dynamic economy with two goods, a durable and a non-durable good, and
a continuum of agents that differ in their permanent income y ∈ £y, ȳ¤. Incomes are given
exogenously, and they stay constant over time.

Goods, technology and preferences: The durable good is indivisible and is produced
by a constant returns to scale technology that uses p0 units of the non-durable good for each
unit of the durable good. New durables (new models) are introduced regularly into the
market at times τ ∈ N = {0, 1, . . .}. Without loss of generality, we have normalized to
1 the length of a design cycle. We refer to the durable introduced at time τ as “ model
τ”. The technological age of a durable good is the number of new models introduced since
it was produced. The consumers are infinitely-lived and have a (common) discount rate ρ
and a (common) separable flow utility function v(α, c) = xα + u(c), where α ∈ {0, 1, . . . , T}
denotes the technological age of the durable good, and c is the consumption flow for the
non-durable. Durable goods of any age less than T are perfect substitutes and each agent
consumes at most one unit (additional units provide no utility). We think of the non-durable
good as money for the consumption of other goods, and of u as an indirect utility function.
We assume that u0 > 0, u00 < 0, u0(0) =∞, and x0 ≥ x1 ≥ · · ·xT−1 > xT = 0.
Obsolescence is the only form of depreciation in our model. A durable becomes useless

when its technological age is T or more. A new model τ provides a flow service of x0 in the
period [τ, τ + 1). When a new model is introduced at time τ + 1, model τ ’s flow service
decreases to x1, and so on. The consumers can buy a new durable at any moment, but the
durable is depreciated as soon as the new model is introduced. Thus, if a consumer buys a
new durable at time t ∈ [τ , τ + 1), he gets the flow service x0 in the interval [t, τ + 1), and
then the flow service x1 in the interval [τ +1, τ +2), and so on, as long as he doesn’t replace
the durable.
Our model assumes that a durable good becomes less useful as soon as a new model

appears in the market. But, in Appendix 1 we show that in a model where the flow service
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of a durable remains constant for its lifetime, we can re-normalize utility and define xα as
the relative utility of a durable with respect to the latest model. In the example of Appendix
1, xα = g(T − α), where g is the average rate of technical progress in durables. In this case
x falls with α simply because better goods become available at the same price.
The consumers can borrow and lend, but there are no secondary markets for used

durables.

Prices: Since the production technology is CRS, the price ratio of the durable good to the
non-durable good is equal to p0 at all times. We will assume that the interest rate is fixed and
equal to the discount rate: r(t) = ρ for all t ≥ 0. We therefore perform a partial equilibrium
analysis. We think of the market for durables as being a small part of the aggregate economy
and hence ignore the effect of durable demand on the interest rate. Our choice of interest
rate is consistent with stationary equilibria. In a general equilibrium model where income
(resource) flow and production technology are constant over time, a stationary equilibrium
would imply a constant interest rate equal to the discount rate. If q(t) and p(t) denote,
respectively, the prices of the non-durable and durable goods at time t, our assumption of a
constant interest rate implies that q(t) = e−ρt and p(t) = p0q(t) for all t ≥ 0, where we have
normalized so that q(0) = 1. Define the total discount rate for one period β = e−ρ.

Consumer problem: Given his initial state (α,w), where α ∈ {1, . . . , T} is the age of
his endowed durable and w is his total wealth, a consumer chooses a sequence of durable
purchase dates and a non-durable consumption path to maximize his discounted lifetime
utility,

R∞
0

e−ρt[xαt + u(ct)]dt, subject to a lifetime budget constraint. An agent’s current
wealth is equal to the present discounted value of all his future earnings, y/ρ, minus the
present discounted value of his debts (past borrowing minus lending).
Since r(t) = ρ for all t and utility is additively separable, optimally, non-durable con-

sumption must be constant over time. Indeed, the (necessary and sufficient) first-order
condition for non-durable consumption is in this case e−ρtu0(c(t)) = λe−ρt for all t, where
λ > 0 is the Lagrange multiplier on the budget constraint. This implies that c(t) = c(0) for
all t > 0.
Let û(c) be the discounted non-durable consumption utility over one period (of length

1) in which a consumer spends (optimally) a budget c. This budget affords the constant
consumption flow cρ/(1− β). Hence

û(c) =

Z 1

0

e−ρtu
µ

ρc

1− β

¶
dt =

·
1− β

ρ

¸
u

µ
ρc

1− β

¶
.

Let the consumer spend a constant non-durable budget c per period. Then, his lifetime
non-durable discounted utility and total budget are respectively û(c)/(1− β) and c/(1− β),
and his residual budget for the consumption of durables is b = w − c/(1− β).
Let Vα(b) denote the optimal durable consumption utility of a consumer that is endowed

with a good of age α and spends a total budget b on durables. Then the problem of an agent
with initial state (α,w) is

Uα(w) = max
c∈[0,w]

û(c)

1− β
+ Vα

µ
w − c

1− β

¶
. (1)

In Section 3, we explicitly construct the functions Vα, α ∈ {1, . . . , T}, and in Section 4
we obtain the full solution for problem (1).
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3 Durable consumption problem

Discrete Time: As a preliminary step in analyzing the durable consumption problem, we
study a discrete time problem where the consumers are arbitrarily constrained to make new
purchases only at the beginning of every period, that is, at times t ∈ N. We subsequently
show that removing this restriction does not change the optimal durable purchasing policy.
A consumer must choose the periods when he purchases a (new) unit of the durable good.

A durable purchasing policy δ = {δt}t≥0 specifies the periods in which the agent buys a new
unit (δt = 1) or keeps the old unit he has (δt = 0). For any i, j ∈ N, let i⊕ j = min{i+ j, T}
and iª j = max{i− j, 0}. Given an initial unit of age α−1,5 a purchasing policy determines
the age of the unit consumed in every period t ≥ 0 recursively as follows: αt = 0 if δt = 1
and αt = αt−1 ⊕ 1 if δt = 0.
The optimization problem of an agent that initially has a good of age α and durable

budget b is

Vα(b) = max
X
t≥0

βtx̂αt

s.t. α−1 = α− 1, δt ∈ {0, 1} and αt = (1− δt)[αt−1 ⊕ 1], t ≥ 0
b = p0

X
t≥0

βtδt,

where x̂α = xα(1 − β)/ρ denotes the total discounted utility from the consumption of a
durable of age α over one period.
We solve the potentially difficult integer programming problem above using a direct

geometric argument focusing on a particularly simple class of policies.

Definition: For each R = 1, . . . , T , a policy δ that replaces the durable every time it
reaches age R is called an R-fixed rule. That is, δ is an R-fixed rule if for all t, δt = 1 if and
only if αt−1 = R− 1. A (T + 1)-fixed rule is to never replace the durable: δt = 0 for all t.
Let Xα,R denote the total discounted utility from holding a durable from age α until age

R:

Xα,R =

½ PR−1
t=α βt−αx̂t α < R

0 α ≥ R.

For R ≤ T , the value of following the R-fixed rule starting with a useless durable (α = T )
equals vT,R = X0,R/(1− βR), and its corresponding budget is bT,R = p0/(1− βR). The value
and budget of the (T + 1)-fixed rule are both zero.
Construct a piecewise linear function by joining the adjacent points (bT,R+1, vT,R+1) and

(bT,R, vT,R) (1 ≤ R ≤ T ) with straight lines. Theorem 1 below states that this piecewise
linear function is VT . Moreover, VT is concave (see the left frame of Figure 1 below).

Assume that α = T and for an arbitrary purchasing policy δ, group purchases by their
“replacement age”. That is, for each R = 1, . . . , T , let LR be the purchase dates of all
durable that are used for R periods and then replaced at age R. Compute the weight
λR = (1− βR)

P
t∈LR β

t and let λT+1 = 1−
PT

R=1 λR. Roughly, the weight λR corresponds
to the fraction of purchases that result in the replacement of a durable at age R. For example,
if the policy is an R-fixed rule with R < T + 1, then LR contains all the periods t where

5To deal with period 0 as with any other period, we specify the age that the endowed durable would have
been in the “previous period”.
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Figure 1: Optimal value function

δt = 1, so that λR = 1 and λk = 0 for all k 6= R. Let (b, v) denote the budget and value of
policy δ. It turns out that: ·

b
v

¸
=

T+1X
R=1

λR

·
bT,R
vT,R

¸
.

Since the weights λR are nonnegative and add up to 1, the right-hand side is a convex
combination of the points {(vT,R, bT,R)}T+1R=1. That is, the point (b, v) must be in the convex
hull of {(vT,R, bT,R)}T+1R=1, as depicted in Figure 1. Note that the upper frontier of this set
coincides with the graph of the posited optimal value function VT . Hence, v ≤ VT (b).
The upper bound VT (b) is attained by a particular type of policy. Suppose R is such that
b ∈ [bT,R+1, bT,R], and let δ∗ be a policy that replaces durables at age R or R + 1 only.
Such a policy is called an R-flexible rule. Its corresponding weights satisfy λ∗k = 0 for
all k /∈ {R,R + 1}. By appropriately choosing the periods when durables of age R or
age R + 1 are replaced, we can also ensure that b = λ∗RbT,R + λ∗R+1bT,R+1 (as we explain
later, this is always possible provided that β is sufficiently large). Then, the value of δ∗ is
λ∗RvT,R + λ∗R+1vT,R+1 = VT (b). That is, δ∗ is optimal for the budget b.
For an arbitrary α now, let bα,R and vα,R denote the cost and the value of following the

R-fixed rule when the endowed durable is of age α. Then·
bα,R
vα,R

¸
=

·
0

Xα,R

¸
+

βRªα

1− βR

·
p0
X0,R

¸
for all R ≤ T

and (bα,T+1, vα,T+1) = (0,Xα,T ). It is also convenient to define bT+1,T+1 = p0 and b0,1 =
βp0/(1 − β). Rules that replace goods more frequently require bigger budgets and have
higher values. Hence bα,R > bα,R+1 and vα,R > vα,R+1.
The piecewise linear function obtained by joining the adjacent points (bα,R+1, vα,R+1) and

(bα,R, vα,R) (1 ≤ R ≤ T ) with straight lines is the optimal value function Vα (see Theorem
1 below). Figure 1 (right frame) presents simultaneously the optimal value functions V1, V2
and V3 for the case when T = 3.

Definition: Let 1 ≤ R ≤ T − 1 and b ≥ 0. A policy δ is an (R, b)-flexible rule if it
replaces durables only when they are of age R or age R+1 and spends the budget b exactly.
If δ is an (R, b)-flexible rule then for all t, δt = 1 implies that αt−1 ∈ {R− 1, R}.
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Since an (R, b)-flexible rule sometimes replaces goods at age R, and sometimes at age
R + 1, it costs more than an (R + 1)-fixed rule but less than an R-fixed rule. Hence, when
the endowed good is of age α, b must be in the interval [bα,R+1, bα,R]. As we will see, for
b ∈ (bα,R+1, bα,R), there are multiple (R, b)-flexible rules. The R-fixed and the (R + 1)-fixed
rules are both special cases of the (R, b)-flexible rule for b = bT,R and b = bT,R+1, respectively.
For 1 ≤ α,R ≤ T , let

AR =
vα,R − vα,R+1
bα,R − bα,R+1

=
1

p0

·
X0,R − x̂R

·
1− βR

1− β

¸¸
.

Note that AR is independent of α and equals the slope of Vα on [bα,R+1, bα,R]. It is easy to
check that AT > AT−1 > · · · > A1 > 0, and therefore Vα is indeed a concave function.

Theorem 1: Assume that
βT−1(1 + β) > 1. (2)

For each α = 1, . . . , T , the optimal value function Vα is

Vα(b) = vα,R+1 +AR(b− bα,R+1), b ∈ [bα,R+1, bα,R], R = T, . . . , 1,

and for any budget b ≥ 0, a corresponding optimal purchasing policy is an (R, b)-flexible rule,
where R is such that b ∈ [bα,R+1, bα,R] (when b = bα,R, this policy coincides with the R-fixed
rule). More precisely, the optimal purchasing policy is given by

δ∗α(b) =

 0 for b < bα+1,α+1
{0, 1} for bα+1,α+1 ≤ b ≤ bα−1,α
1 for b > bα−1,α.

(3)

Proof: See Appendix 1.

Assumption (2) is equivalent to β > β̄, where β̄ is the (unique) root of βT−1(1 + β) = 1.
This is the same as assuming that ρ < ρ̄, where ρ̄ = e−β̄. When β is relatively small, there
are budgets b that do not correspond to any durable purchasing policy. The intuition is
clear. Suppose β is close to 0. Then the durable budget is almost fully determined by the
timing of the first purchase. Let α < R, δ be an R-flexible rule, and b be its corresponding
budget. If the first purchase happens when the good is of age R, then b ∼ bα,R (even if all
subsequent purchases replace durables of age R + 1), and if it happens at age R + 1, then
b ∼ bα,R+1 (even if all subsequent purchases replace durables of age R). Hence, budgets
around the middle of the interval (bα,R+1, bα,R) are unattainable.
An agent that follows an R-flexible rule replaces goods of age R or R + 1, but he is not

always indifferent between these replacement ages. To follow an R-flexible rule requires that
in each period the agent maintain a budget that is compatible with this rule. Assume that
the durable has reached age R in the current period. Then, the current budget b must be
in the interval [bR,R+1, bR,R]. Suppose b is close to bR,R. If the agent keeps the good this
period, his budget next period would be b/β > bR+1,R, too large to follow the R-flexible
rule from that point onward. Therefore, the agent can keep the durable this period only
if b ∈ [bR,R+1, bR−1,R]; if b > bR−1,R, the agent must replace now at age R. Now assume
that b is close to bR,R+1. If the agent replaces the durable now, his budget next period
would be (b− p0)/β < b1,R+1, too small to follow the R-flexible rule from that point onward.
Therefore, the agent can replace his durable of age R this period only if b ∈ [bR+1,R+1, bR,R];
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if b < bR+1,R+1, the agent must keep the durable for one more period. Assumption (2) also
guarantees that bR+1,R+1 < bR−1,R, and for b ∈ [bR+1,R+1, bR−1,R] both keeping and replacing
the durable this period are consistent with the R-flexible rule. For this interval of budgets,
the agent is indifferent between replacing the durable now at age R and next period at age
R+ 1.

Continuous Time: We now allow consumers to purchase durables at times other than
t ∈ N and show that this does not change the optimal value function. For the continuous
time replacement problem, we need a more detailed representation of the durable purchasing
policy. Let τk denote the period (or, equivalently, the model number) and dk ∈ [0, 1) be the
“delay” of the k-th purchase, so the time of the k-th purchase is τk + dk. The following
theorem states that it is optimal to set dk = 0 for all k.

Theorem 2: For each α = 1, . . . , T , the optimal value function is

Vα(b) = vα,R+1 +AR(b− bα,R+1), b ∈ [bα,R+1, bα,R], R = T, . . . , 1.

For any budget b ≥ 0, the corresponding optimal purchasing policy {(τk, dk)}k≥1 has dk = 0
for all k and is an (R, b)-flexible rule, where R is such that b ∈ [bα,R+1, bα,R].
Proof: See Appendix 1.

The idea of the proof is as follows. When the consumer decides whether to delay by d
a durable purchase, he weights the loss of service flow against the financial gain of paying
for the durable later. When r = ρ, the financial gain is less than the corresponding loss of
service (in fact, the result holds as long as the interest rate is not too high relative to ρ). An
arbitrary policy with delays can be modified recursively by eliminating one delay at a time
while maintaining the same budget and improving its value

4 Optimal budget allocation

We now solve problem (1) for the optimal consumption of non-durables as a function of α
and w. An agent with wealth w that spends b on durables optimally spends c = (1−β)(w−b)
per period on non-durables. Optimally, the agent should pick c (or, equivalently, b) so as to
equate the marginal utility of consumption û0(c) and the marginal utility of wealth V 0

α(b).
Figure 2 depicts the marginal utility of wealth (the falling step-function because Vα is a
concave piecewise linear function) and the marginal utility of consumption as functions of b
(for given values of α and w). In the figure, û0 crosses V 0

α at a point of discontinuity. This
depicts the situation when the optimal durable budget equals bα,R and the corresponding
durable purchasing policy is the R-fixed rule. Now decrease w by a small amount. The
graph of û0((1 − β)(w − b)) will shift to the left, but it will still cross V 0

α at b = bα,R. In
other words, there is an interval of wealths w for which it is optimal to follow the R-fixed
rule in the state (α,w). If we further decrease w, û0 will eventually cross V 0

α at a point
where V 0

α is flat and equal to AR. This is the case when it is optimal to choose a budget
corresponding to an R-flexible rule and pick the non-durable budget cR, where û0(cR) = AR.
Hence, there is also an interval of wealths w for which it is optimal to follow the R-flexible
rule and spend cR in non-durables every period. For that range of wealths, the optimal non-
durable budget remains constant and variations of wealth affect the durable consumption
path only (higher wealths afford replacing durables at age R more frequently, while lower

9
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Figure 2: Marginal utilities of consumption and wealth as functions of durable budget.

wealths require replacing durables at age R + 1 more often). In contrast, when a fixed rule
is optimal, a higher wealth leads to a higher level of non-durable consumption.
For a fixed α, if w varies continuously from infinity to zero, the intersection of û0 with V 0

α

in Figure 2 moves monotonically to the left and maps out the optimal durable replacement
rule (as a function of w). The wealthiest consumers use a 1-fixed rule. Next comes a group
of consumers that follow 1-flexible rule, and then a group that follows the 2-fixed rule, and so
on. The intervals of wealth where agents follow fixed rules are interlaced with the intervals
of wealth where they follow flexible rules. The bounds of these intervals can be computed
explicitly. Fix α and let

wα,R(c) =
c

1− β
+ bα,R

be the wealth required to follow the R-fixed rule and spend a constant non-durable budget
c per period when the initial durable is of age α. The wealthiest person that follows the
R-flexible rule replaces his durable every R periods and consumes cR. Hence his wealth is
wα,R(cR). The poorest person that follows the (R− 1)-flexible rule also replaces his durable
every R periods but consumes cR−1 > cR, so that his wealth is wα,R(cR−1) > wα,R(cR). In
between, there are consumers with wealth w ∈ [wα,R(cR), wα,R(cR−1)] that follow the R-fixed
rule. Each one spends the same durable budget bα,R and the non-durable budget per period

cα,R(w) = (1− β)(w − bα,R).

A consumer with more wealth than w1,1(c1) = (c1 + p0)/(1− β) will replace his durable
every period and spend more than c1 per period in non-durables. We will assume that
ȳ/ρ ≥ w1,1(c1), and define w̄ = ȳ/ρ and c0 = (1 − β)w̄ − p0. Similarly, a consumer with
less wealth than cT/(1− β) will spend all his wealth in non-durable consumption. We will
assume that y/ρ ≤ cT/(1− β), and define w = y/ρ and cT+1 = (1− β)w.
We can also express the optimal purchasing policy (3), stated in Theorem 1, as a function

of wealth (and with abuse of notation denote this function by the same symbol δ∗α). The
following theorem states these results formally.

10



Theorem 3: Let c0 = (1−β)w̄− p0, cT+1 = (1−β)w, and for each R = 1, . . . , T , let cR
be such that û0(cR) = AR. Denote by c∗α(w) the optimal solution of problem (1). Then, for
α = 1, . . . , T ,

c∗α(w) =
½

cα,R(w) for w ∈ [wα,R(cR), wα,R(cR−1)], R = T + 1, . . . , 1
cR for w ∈ [wα,R+1(cR), wα,R(cR)], R = T, . . . , 1,

and

δ∗α(w) =

 0 for w < wα+1,α+1(cα)
{0, 1} for wα+1,α+1(cα) ≤ w ≤ wα−1,α(cα)
1 for w > wα−1,α(cα).

(4)

Proof: See Appendix 1.

Over time, a consumer that follows an R-fixed rule has a constant holding time R and
revisits the same points in the state space (α,w) every R periods. His wealth trajectory is
cyclical. While the consumer keeps the current good, both α and w increase, as the consumer
“saves” for the next purchase. When the new durable is purchased, both α and w go down,
and the holding cycle starts again.
The time path for wealth of a consumer that follows an R-flexible rule is more erratic.

Usually, his wealth trajectory is not cyclical: each time the durable is of age R, he has a
different wealth level. For example, suppose that the consumer starts with a durable of age
R and wealth level w0 ∈ (wR−1,R(cR), wR,R(cR)). Then, he must replace the durable now,
and the next time his good reaches age R, his wealth will be wR = [w0−p0]βR < w0. If wR >
wR−1,R, he will have to replace the durable again. But eventually, if he continues to replace
each time the durable reaches age R, he will reach a state (R,w), where w < wR+1,R+1(cR).
At this point, he is forced to wait one more period. Thus, the agent will switch replacement
frequencies erratically, as each time that his state is of the form (R,w), his wealth level w is
in a different region of the interval [wR+1,R(cR), wR,R(cR)].

4.1 Consumption classes

The optimal policies partition the state space (α,w) into disjoint classes, with each class
corresponding to a different durable replacement rule. All individuals in a class follow the
same rule and the trajectories of their states stay forever in the same class. For every
R ∈ {1, . . . , T + 1} and α ∈ {1, . . . , R}, let

Wα
R = [wα,R(cR), wα,R(cR−1)]

be the wealth levels of consumers that follow an R-fixed rule and currently have a durable
of age α. Similarly, for every R ∈ {1, . . . , T} and α ∈ {1, . . . ,min{R+ 1, T}} let

Wα
R,R+1 = (wα,R+1(cR), wα,R(cR))

be the wealth levels of consumers that follow an R-flexible rule and currently have a durable
of age α. Note that for each α, {Wα

R}T+1R=1 ∪ {Wα
R,R+1}TR=1 forms a partition of [w, w̄]. At the

beginning of every period, agents with a state in CR =
SR

α=1{α}×Wα
R follow the R-fixed rule,

and with a state in CR,R+1 =
SR+1

α=1{α} ×Wα
R,R+1 follow the R-flexible rule. Note that after

the initial period, nobody visits the states {α} ×Wα
R , α > R, or the states {α} ×Wα

R,R+1,
α > R + 1. A consumer with one of these initial states has been endowed with a durable
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Figure 3: Consumption classes; optimal consumption function c∗1 (w).

that is “too old” for his initial wealth level. The classes CR and CR,R+1 are closed: if an
agent follows the R-fixed rule (R-flexible rule) and his initial state is in CR (CR,R+1), then
his state remains in CR (in CR,R+1) forever. Figure 3 illustrates consumption classes for the
case T = 3 and one of the corresponding optimal consumption function c∗1 (w) described in
Theorem 3. Three horizontal lines on the lower panel of figure 3 represent the state space
{1, 2, 3}× [w, w̄]. Double lines indicate wealth intervals that belong to fixed rule classes, and
single solid lines indicate flexible rule classes. Class boundaries are marked by dashed lines.
Dotted lines indicate the intervals in the state space that are empty in the long run.

4.2 Durability and obsolescence

Aggregate durable and non-durable consumption both respond to aggregate changes in
wealth. Consumers in class CR have a fixed durable budget and a positive marginal propen-
sity to consume non-durables (see figure 3). Therefore, if any such consumer receives windfall
income, he will spend it all on non-durable consumption. By contrast, consumers in a class
CR,R+1 have a zero marginal propensity to consume non-durables and a variable durable bud-
get. The magnitude of the overall response of durable consumption to a change in wealth
will depend on the mass of consumers in fixed and flexible rule classes. These masses, of
course, are functions of the wealth distribution. To isolate the effect of the model’s param-
eters on the sensitivity of durable consumption, we assume a uniform distribution over the
set of recurrent states (i.e. the states marked by solid lines on figure 3). Then the mass of

12



consumers in classes CR and CR,R+1 (R = 1, . . . , T ) are respectively

µ(CR) =
RX

α=1

[wα,R(cR−1)− wα,R(cR)]

µ(CR,R+1) =

min{R+1,T}X
α=1

[wα,R(cR)− wα,R+1(cR)].

Also, define µ(CT+1) = wT,T+1(cT )−w. Then, the fraction of consumers that follow flexible
rules is

θ =
ΣT
R=1µ(CR,R+1)

ΣT+1
R=1µ(CR) + ΣT

R=1µ(CR,R+1)
.

Given a small change in wealth, approximately6 θ consumers will adjust only their durable
consumption and 1−θ consumers will adjust only their non-durable consumption. The larger
is θ, the more sensitive is durable consumption to changes in wealth.
Assume that xα = g(T − α), α = 0, . . . , T . This is the obsolescence pattern that arises

in the detrended model of Appendix 1. In this case, g represents the obsolescence rate — the
speed at which service flow decays — and T represents the durability of the good — the length
of its useful life. The following proposition states that under some restrictions on preferences
faster obsolescence and higher durability both make durable consumption more sensitive to
changes in wealth.

Proposition 1 Let xα = g(T − α), α = 0, . . . , T . Then

(i) An increase in the rate of obsolescence increases (decreases) θ if u has decreasing (in-
creasing) absolute risk aversion.

(ii) Assume that βT (1+β) > 1 (so (2) is satisfied for T and T +1) and u(c) = 1
1−γ c

1−γ with
0 < γ ≤ γ∗ = 1.36. Then, θ increases with durability (for any g and p0).

Proof: See Appendix 1.

The critical value γ∗ = 1.36 has been computed numerically (and the proof explains
how γ∗ is defined). A typical assumption on preferences is decreasing absolute risk aversion,
which implies that θ increases with the rate of obsolescence.
Proposition 1 separates the effects of durability and obsolescence. Higher obsolescence

rate makes the service flow decline more steeply with age. As a result, the endpoints of all
consumption classes shift downward. In contrast, expanding the lifetime of durables does
not shift class boundaries but changes the optimal replacement rule for consumers at the
bottom of the wealth distribution (that used to follow the (T + 1)-fixed rule).

5 Empirical implications

5.1 Volatility of durable consumption

It is well-known that aggregate durable consumption is more volatile than aggregate non-
durable consumption. The standard PIH model (e.g. Mankiw, 1982, see also Appendix 2 for
details) can explain this. In the standard model, the short-run wealth elasticity of demand for

6A small mass of consumers will change their consumption class as a result of change in wealth.
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a durable is inversely proportional to its rate of economic depreciation. Therefore, demand
for durables (with depreciation rates less than 100%) should be more volatile than demand
for non-durables (with depreciation rate of 100%). However, the model also implies that
the smaller is the rate of depreciation of a good, the more volatile is its demand. The data
seems to contradict this. Figure 4 shows the year-on-year percentage change in investment
rate (i.e. the ratio of expenditure to stock) for three categories of durable goods: computers,
furniture and autos.7 Furniture has the lowest economic depreciation rate (0.1 annually) and
the least variable investment rate, computers have the highest economic depreciation (0.45)
and the most variable investment rate, and automobiles (depreciation rate 0.18) are in the
middle. The evidence on figure 4 suggests that durables with higher obsolescence rates have
a higher volatility of expenditure.
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Figure 4: Changes in investment rate for three categories of durables.

Our model can simultaneously match both pieces of evidence, because it separates the
effect of higher durability from that of slower obsolescence. In Proposition 1, we show that
consumption of longer-lived durables exhibit a stronger response to a wealth shock. This
makes our model consistent with the aggregate data. A higher rate of obsolescence also
makes durable consumption more volatile, which explains the pattern on figure 4.

5.2 Synchronization of purchases

Our model predicts that demand for durables is concentrated around the dates when the
new models come out, and we can look for such coordination using the data on household
purchases of computers. Figure 5 reproduces the plot for computers on the previous figure,

7Source: BEA. Consumption expenditures are taken from NIPA Table 2.6, lines 45 (new autos), 59
(furniture) and 73 (computers). The corresponding stocks of durable goods are from NIPA Table 8.1, lines
3, 7 and 12.
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Figure 5: Accelerations in computer investment rate with the introduction of new models.

but adds the dates when the new generations of personal computers came on the market.
The general pattern on the figure is one-year expenditure spikes (in 1982, 86, 91 and 95)
followed by several years of falling investment rates. Apparently, computer expenditure is
concentrated around certain dates. If computer purchases were simply driven by the business
cycle, one would expect to see a positive correlation between investment rates across durable
categories. The data for computers show exactly the opposite. While investment rates
for autos and furniture are positively correlated, both exhibit a negative correlation with
computer investments.

Durable categories Correlation of investment rates, 1978-2001
Autos and furniture 0.49
Computers and autos -0.27
Computers and furniture -0.40

One dramatic example of this is the 1990-1991 recession when final sales of autos plum-
meted 21% in real terms while final sales of computers have doubled over the same period.
The spikes in computer expenditure seem to closely follow the introduction of new models

of PCs. The 1982 spike corresponds to the introduction of the IBM PC in the summer of
1981. The 1986 spike probably corresponds to mass purchases of 286 PCs. The first one
of those was the IBM PC AT in late 1984, with most of the “AT compatibles” by Compaq
and other manufacturers becoming available in 1985. In the summer of 1986, Compaq also
introduced the first 386 PC, but it probably was not a mass market model at the time. PC
magazine (Nov 25, 1986, p. 157) wrote: “Compaq says it knows perfectly well that this
is not a machine that will sell in huge volumes this year, nor, probably next.” The next
generation 486 processor was formally announced in the spring of 1989, but the initial chip
had bugs and a slower clock speed than the existing 386. The 486 50-MHz chip that offered
significant performance advantage over the 386 was not produced until October of 1990 (PC
Magazine, September 11, 1990, p. 100). The 1991 spike is consistent with pent-up demand
as advanced users were waiting for the faster 486 PC. The next Intel processor, the Pentium,
came out in 1993, however the purchase spike did not follow until 1995 for two reasons. The
initial Pentium cost twice as much as a 486 with the same speed, and this price premium
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was “inconsistent with the additional performance” (PC magazine, July 1993, p. 126). More
importantly, users may have been postponing computer upgrades until the arrival of the new
Windows 95 operating system.
It is interesting that the pattern of computer investment seems to have changed after

1995. We think this is because in the 1990s innovations in software and hardware became
more staggered and less synchronized with innovation in processors. For example, early on
machine language changed from one generation of processor to the next (e. g. PC magazine,
November 25, 1986, p. 154), and software innovations had to happen simultaneously to take
full advantage of new processors.

6 Variable sizes

In our model, wealth shocks affect the timing of future durable purchases. Evidence of this
can be found in the data on auto sales, as the next subsection details. However, so far
we assumed that there is only one “size” for the durable. We now explore a model where
consumers can purchase durables of any size. We assume that a new durable of size S costs
p0S, and a durable of age α and size S provides a utility flow Sηxα, where η ∈ (0, 1).
Since a consumer can now adjust durable expenditure by changing the durable sizes, he

will only use fixed rules. Moreover, Proposition 2 below shows that the same fixed rule is
optimal for all the consumers. That is, when durables are replaced is no longer a function
of a consumer’s wealth.

Proposition 2: For all consumers, the optimal purchasing policy is the R∗-fixed rule,
where

R∗ = argmax
R
[vT,R/b

η
T,R],

and the optimal purchase size for a consumer with a durable of age R∗ and a budget b is
S∗(b) = b/bT,R∗.

Proof: See Appendix 1.

In this model, wealth shocks are absorbed by changes in non-durable consumption and
durable size. The same result holds for a broader class of models, if we continue to assume
that depreciation rate of the durable does not depend on the purchase size. An (s, S)
replacement model with variable purchase size also predicts that the replacement frequency
is independent of wealth (see Appendix 2). Leahy and Zeira (2000) do find that the dates
of durable purchases are a function of wealth, but their model assumes that consumers buy
durables at most once in their lifetime, an assumption that is inappropriate for cars.
We now introduce feasibility constraints. Specifically, assume that there is a maximum

size S̄. That is, consumers can choose durable sizes S ∈ [0, S̄]. Consumers with budgets
b ≤ S̄bT,R∗ (at the moment they replace the durable) will follow the R∗-fixed rule, because for
them the constraint S ≤ S̄ does not bind. Consumers with budgets b > S̄bT,R∗ will partition
into fixed-rule and flexible-rule classes in much the same way as with fixed purchase size. As
we will show below, for a range of values of η close to 1, a consumer with budget b > S̄bT,R∗
and a useless durable will choose every future durable purchase to be of maximum size.
Therefore, his total durable consumption utility is S̄ηVT (b/S̄), where VT is the function
defined earlier (for the case where durables are of size 1). More precisely, such a consumer
faces the same optimization problem as in Section 3, but where the durable costs p0S̄ and
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provides utility flow S̄ηxα for α = 0, . . . , T . Thus, for such a consumer, his optimal policy is
a flexible rule. Proposition 3 states this result formally.

Proposition 3: Assume that vT,R/b
η
T,R is single-peaked in R and that η ∈ [η, 1) where

η = max
1≤R≤T−1

ARbT,R
vT,R

< 1.

Assume a consumer’s current state is (T, b) where b ∈ [bT,R+1S̄, bT,RS̄] for some 1 ≤ R < R∗.
Then, his optimal policy is an R-flexible rule with every durable purchase of size S̄.

Proof: See Appendix 1.8

Thus, consumers with relatively high budgets buy durables of size S̄ only. These con-
sumers react to wealth shocks as if there is only one size available — those following a fixed
rule, for example, will adjust their non-durable consumption only. In contrast, consumers
with relatively small budgets all follow an R∗-fixed rule with variable purchase size. They
respond to a wealth shock by changing the sizes of their durables and their non-durable
consumption. Relaxing the size constraint by increasing S̄ will make the latter group larger,
so that fewer people will adjust the dates of future durable purchases. Hence, the model pre-
dicts that for durables with a broad range of sizes, aggregate unit sales follow a deterministic
path (that depends on initial condition) as wealth shocks are absorbed by size variations.
To be clear, the time path for unit sales may not be stationary, but is not affected by wealth
shocks either.
A minimum purchase size produces similar results. Relatively wealthy consumers are not

constrained by size and follow the R∗-fixed rule. Those consumers that cannot even afford
the R∗-fixed rule with the minimum size follow R-flexible rules with R > R∗.

Empirical Evidence: Figure 6 presents the year-by-year growth rates for the number
of new autos and the average real expenditure per auto between 1950 and 2001.9 Over
that period, the number of cars sold is much more variable than the expenditure per car
(which is a good proxy for “size”). In theory, the number of autos sold can vary because
the distribution of auto stocks evolves over time, and each year there is a different number
of cars that need to be replaced. Adda and Cooper (2000, section 4.3.2) estimated an (s, S)
model with auto sales data and simulated the time path for the distribution of auto stocks.
They found that the variations in this distribution are not a major source of fluctuations in
sales. Then the shifts in purchase timing must the main reason why auto sales fluctuate.
As explained above, constraints on sizes determine the relative importance of purchase

size and timing in the transmission of shocks. The history of the automobile market in the
US allows us to test this hypothesis. The market share of foreign cars has skyrocketed from
14% in 1972 to 35% in 1980, and has stabilized afterwards. Foreign cars initially cost about

8The solution can be more complex if η < η. For η in this range there may exist R < R∗ and B∗R ∈
(bT,R+1S̄, bT,R+1S̄) such that for b ∈

£
bT,R+1S̄, B

∗
R

¤
the optimal policy is to follow a modified R-flexible rule

that switches between buying a durable of size S̄ and holding it for R + 1 periods and buying a durable of
size B∗R/bT,R < S̄ and holding it for R periods. For b ∈ £B∗R, bT,RS̄¤ the optimal policy is the R-fixed rule
with variable purchase size SR (b) = b/bT,R.

9Final sales of new autos are taken from NIPA table 8.8A line 2 (1949-1966) and table 8.8U line 4 (1967-
2002). The price index for new autos is from NIPA table 7.5 line 4. Auto sales for 1949-1966 are taken from
Ward’s Automotive Yearbook (1958 and 1967) and from NIPA table 8.8M, line 1, for 1967-2002. The time
series for the civilian non-institutional population over age 16 is from the FRED database (series CNP16OV).
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Figure 6: Changes in number and real purchase size for autos, 1950-2001.

20% less, on average10, than domestic models (for comparison, a foreign car in 2002 cost
45% more, on average). Therefore, the mass introduction of foreign cars in the US market
must have expanded the range of available sizes. According to our model, we should expect
that in the 1980s and 1990s the number of autos sold became less variable and, at the same
time, the purchase size became more variable. To see if this is the case, we split the sample
into two intervals, before and after the introduction of foreign cars, and allow the cutoff
year to vary from 1972 to 1980. Let σ1 and σ2 be the standard deviations of the time series
ln(Nt/Nt−1) for the periods 1950-1979 and 1980-2001, respectively, where Nt denotes the
unit auto sales per adult. For the same periods, let σ3 and σ4 be, respectively, the standard
deviations of ln(Et/Et−1), where Et denotes the average real expenditure per car. Then

σ1 = 16.0%, σ2 = 7.7%, σ3 = 4.0%, and σ4 = 5.5%.

The difference between σ1 and σ2 is highly significant (P -value of the F -test is 0.0005), as
is the difference between σ3 and σ4 (P -value 0.053).11 These values do not change much
as we move the cutoff from 1980 back to 1972.12 In the 1980s and 90s there is a volatility

10The average is taken over 1967-1980.
11The time series for ln(Nt/Nt−1) and ln(Et/Et−1) do not show significant autocorrelation. The first series

has the AR(1) coefficient of -0.18 (P-value 0.203) and the AR(2) coefficient of -0.14 (P-value 0.308). For
the ln(Et/Et−1) series, the AR(1) coefficient is -0.21 (P-value 0.160) and AR(2) coefficient is -0.01 (P-value
0.941).
12σ1 changes monotonically from 16.0 to 17.2 and σ2 varies almost monotonically in the range [7.5, 9.2].

The P -value for the F -test is in [0.0001, 0.0024]. Similarly, σ3 stays in the interval [3.7, 4.1] while σ4 stays
in the interval [5.2, 5.3]. The corresponding P -value for the F -test is in [0.042, 0.117].
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moderation in the number of cars per adult, and a somewhat weaker increase in the volatility
of purchase size.
It is interesting that the volatility moderation in the number of autos is stronger than the

accompanying increase in the volatility of purchase size, and there may be an explanation for
it. There is a literature (e. g. Stock and Watson, 2002 and references therein) that presents
evidence of a general decline in the cyclical volatility of the economic activity in the US since
the early 1980s. Such a general decline would magnify the any volatility moderation and
counteract any volatility increase.

7 Conclusions

We have presented a model of durable goods that highlights the difference between obsoles-
cence and physical wear and tear. The model is simple and it can be solved analytically.
It also has the flexibility to simultaneously match empirical regularities on consumption be-
havior that other models cannot. We identify periodic obsolescence as a distinct source of
aggregate fluctuations, and explain why purchase timing is a major channel for the trans-
mission of wealth shocks.
Our model offers a building block for a general equilibrium analysis of an investment

problem with capital obsolescence. Periodic obsolescence makes investment spiky even at
the aggregate level, although interest rate adjustments will partially smooth out these spikes.
Our framework can generate cyclical investment patterns and suggests a relationship between
technological innovations in capital goods and the business cycle.
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8 Appendix 1: Proofs

Detrending: Our model can be viewed as the detrended version of a fully dynamic model
with a constant rate of technical progress. Suppose that a model τ provides a constant
service flow zτ for the duration of its useful life, in the interval [τ , τ + T ), and that zτ = egτ ,
where g is the rate of technical progress, or, equivalently, the rate of decrease of the quality-
adjusted price for the durable. Now assume that the consumers’ utility function is v̂(z, c) =
ln(z) + u(c), where z is the service flow of the durable good and c is the flow of non-durable
consumption. This dynamic model corresponds to the stationary model we propose when

xα = g(T − α) for α = 0, . . . , T.

Indeed, let α : R+ → {0, . . . , T} and c : R+ → R+ be two measurable functions representing
the consumption trajectory of a consumer (where α(t) is the technological age of the durable
being consumed at time t). For any r ∈ R, let brc denote the largest integer less than
or equal to r. Note that along that trajectory, the model being consumed at time t is
τ(t) = btc− α(t). Thus, the total discounted utility for the trajectory (α, c) is

U(α, c) =

Z ∞

0

e−ρt[ln(zτ(t)) + u(c(t))]dt =

Z ∞

0

e−ρt[g(btc− T + T − α(t)) + u(c(t))]dt

= K +

Z ∞

0

e−ρt[xα(t) + u(c(t))]dt,

where

K =

Z ∞

0

e−ρtg(btc− T )dt =
∞X
k=0

gk

Z 1

0

e−ρ(k+t)dt− gT

ρ
=

g

ρ

·
e−ρ

1− e−ρ
− T

¸
.

Arbitrarily, we can re-normalize utility to set K = 0 without changing the consumer’s
preferences over consumption paths. Then, the total discounted utility coincides with that
of a consumer with utility function v(α, c) = xα + u(c).

Proof of Theorem 1: Suppose the agent is endowed with a durable of age α and follows
an arbitrary purchasing policy τ = {τk}∞k=1. We first show that the total cost and value (b, v)
of policy τ can be represented as a convex combination of the points {(bT,R, vT,R)}T+1R=1. Let
τ 0 = −α and rk = min {τk+1 − τk, T} for all k ≥ 0. Then

b = p0
X
k≥1

βτk and v = Xα,r0 +
X
k≥1

βτkX0,rk .

Define KR = {k ≥ 1 | rk = R} for R = 1, . . . , T. Then

βτ1 = [βτ1 − βτ2 ] + [βτ2 − βτ3] + · · · ≥
TX

R=1

X
k∈KR

βτk(1− βR),

where the inequality is strict if for some k ∈ KT , τk+1− τk > T . Let λR =
P

KR
βτk(1−βR)

for R = 1, . . . , T , and let λT+1 = 1−
PT

R=1 λR. Thus λR ≥ 0 for all R,
PT+1

R=1 λR = 1, and
since bT,T+1 = vT,T+1 = 0,
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b = p0

TX
R=1

X
k∈KR

βτk =
TX

R=1

X
k∈KR

βτk(1− βR)bT,R =
T+1X
R=1

λRbT,R

v −Xα,r0 =
TX

R=1

X0,R

X
k∈KR

βτk =
TX

R=1

X0,R

1− βR

X
k∈KR

βτk(1− βR) =
T+1X
R=1

λRvT,R.

Put differently, (b, v − Xα,r0) =
P

R λR(bT,R, vT,R) is a convex combination of the two-
dimensional vectors (bT,R, vT,R). Note that when α = T , Xα,r0 = 0 for all r0.

13

We next deduce an optimal policy for the case where α = T (i.e., when the agent is
endowed with a useless durable). If b ≥ bT,1, the agent can afford to replace the durable
every period and VT (b) = vT,1 (moreover, if b > bT,1, it is not possible for the agent to spend
the budget b in durables). For what follows assume that b < bT,1. Let R and λ∗R ∈ [0, 1] be
such that b = λ∗RbR+(1−λ∗R)bR+1. Since (b, VT (b)) =

P
λR(bT,R, vT,R) for some nonnegative

weights λR adding to 1, we have that VT (b) ≤ λ∗RvT,R + (1 − λ∗R)vT,R+1. To conclude, we
only need to show that this bound is attained. For this we need to show that there exists
a policy τ such that

P
k∈KR

βτk(1 − βR) = λ∗R and
P

k∈KR+1
βτk(1 − βR+1) = 1 − λ∗R. Put

differently, we need to show that there exists an R-flexible rule with budget b.
Assume that R < T and let B∗R denote the set of budgets b(τ) corresponding to policies

τ that are R-flexible rules and satisfy τ 1 = 0 (that is, τ makes a purchase in the first
period). Let τ be such a policy and τ 0 be its continuation policy from the period of the
second purchase onward: τ 0t = τ t+1 − τ 1 for all t ≥ 1. Then, τ 0 is also an R-flexible rule
and τ 01 = 0 and its corresponding budget b(τ

0) ∈ B∗R. Now, either b(τ) = p0 + βRb(τ 0) (if
τ 2 = R) or b(τ) = p0+βR+1b(τ 0) (if τ 2 = R+1). Therefore, B∗R is the largest set B such that
B = [p0+β

RB]∪[p0+βR+1B]. Observe that p0+βR+1bT,R+1 = bT,R+1 and p0+βRbT,R = bT,R,
and that p0 + βRbT,R+1 < p0 + βR+1bT,R when βT−1(1 + β) > 1. Therefore B = [bT,R+1, bT,R]
is a fixed point of the above equation. Since p0+βRd < d for all d > bT,R and p0+βR+1d > d
for all d < bT,R+1, B is also the largest such fixed point, and thus B∗R = B. That is, for each
budget b ∈ B∗R = [bT,R+1, bT,R] there exists a (R, b)-flexible rule (that spends the budget b
exactly). The proof for R = T is similar (here bT,T+1 = 0 and we must consider policies τ
where τk+1 − τk > T + 1 for some k).
Finally, observe that if (T, b) is the initial state and τ and τ̂ are two (R, b)-flexible rules

(they spend the same budget b), then their corresponding λR (and 1 − λR) must coincide,
and therefore they must have the same value as well. In particular, if b ∈ [bT,R+1, bT,R], then
any R-flexible rule that spends the budget b exactly is an optimal policy.
By construction, the value of following an (R, b)-flexible rule starting from a durable of

age T is given by

VT (b) = vT,R+1 +AR (b− bT,R+1) , b ∈ [bT,R+1, bT,R] , R = T, . . . , 1.

When the endowed durable is of age α < T , the corresponding optimal value function
Vα (b) can be deduced from VT (b) from the observation that the continuation of an optimal
policy is an optimal policy for the subproblem that arises in the second period after following
the policy in the first period.

13For each R = 1, . . . , R, we could define instead LR = {τk | k ∈ N and rk = R}, as we did in Section 3.
Then, λR =

P
t∈LR βt. While KR contains the purchase numbers, LR contains the purchase periods of

durables that are disposed at age R. However, for other purposes, the set KR is more convenient.
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If starting with a budget b ∈ [p0, bT,1] = [bT+1,T+1, bT,1], a consumer buys a durable in the
first period and then keeps it for the next α−1 periods, his budget at the beginning of period
α ≥ 1 is θα(b) = (b − p0)/β

α. Moreover, for any 1 ≤ R ≤ T + 1 and 1 ≤ α ≤ min {R, T},
θα(bT,R) = bα,R.
Assume that the initial state is (α, b), where 1 ≤ α < T and b ∈ [bα,R+1, bα,R] for

some α ≤ R ≤ T . Let b̃ = p0 + βαb. Then b = θα(b̃). Since b ∈ [bα,R+1, bα,R], it
must be that b̃ ∈ [bT,R+1, bT,R]. Therefore, starting at state (T, b̃), it is optimal to fol-
low an R-flexible rule. Assume he does so. Then, after α periods his state becomes
(α, b), and from state (α, b) he must be following an R-flexible rule as well. Hence, the
agent must keep the durable for another R − α periods (at least). At that point, he
arrives at state (R, b/βR−α). Note that (1/βR−α)[bα,R+1, bα,R] = [bR,R+1, bR,R] and that
βR−αbR+1,R+1 = bα+1,R+1 ∈ (bα,R+1, bα,R). Hence, if b/βR−α ∈ [bR,R+1, bR+1,R+1) he must
keep the durable this period and buy a new durable next period, so his continuation value
is x̂R + VT (b/β

R+1−α). If b/βR−α ∈ [bR+1,R+1, bR,R] he can optimally buy a new durable this
period, and his continuation value is VT (b/βR−α). Therefore

Vα(b) =

½
Xα,R+1 + βR+1−αVT (b/βR+1−α) for b ∈ [bα,R+1, bα+1,R+1)
Xα,R + βR−αVT (b/βR−α) for b ∈ [bα+1,R+1, bα,R].

Suppose that b ∈ [bα,R+1, bα+1,R+1). Then b/βR+1−α ∈ [bR+1,R+1, bR+1,R+1/β) ⊂ [bT,R+1, bT,R].
Therefore, VT (b/β

R+1−α) = vT,R+1 +AR(b/β
R+1−α − bT,R+1), and

Xα,R+1 + βR+1−αVT (b/βR+1−α) = vα,R+1 +AR(b− bα,R+1).

Now suppose that b ∈ [bα+1,R+1, bα,R]. Then b/βR−α ∈ [bR,R+1, bR,R/β) ⊂ [bT,R+1, bT,R].
Therefore, VT (b/β

R−α) = vT,R+1 + AR

¡
b/βR−α − bT,R+1

¢
, and tedious algebra shows again

that
Xα,R + βR−αVT (b/βR−α) = vα,R+1 +AR(b− bα,R+1).

Therefore, for all α ≤ R ≤ T and b ∈ [bα,R+1, bα,R], Vα(b) = vα,R+1 + AR(b − bα,R+1).
It remains to find Vα(b) for b > bα,α. We claim that Vα(b) = VT (b) for all b > bα,α. Since
bα,R = bT,R for all R ≤ α, we have that VT (b) = vα,R+1+AR(b−bα,R+1) for all b ∈ [bα,R+1, bα,R]
and 1 ≤ R < α, and the claim would complete the proof. To prove our claim, we show that

VT (b) > Xα,s+α + βsVT (b/β
s) for all s > 0 and b > bα,α.

That is, when b > bα,α, the consumer strictly prefers to replace the durable immediately
than to replace it at any later time. One can check that the above inequality holds when
b = bα,α. Also, since VT is concave, the function VT (b) has a higher slope than the function
on the right hand side for any b > 0. Hence, the inequality holds for every b > bα,α.

Proof of Theorem 2: Consider an arbitrary purchasing policy {(τk, dk)}∞k=1, where
τk + dk denotes the time of the k-th purchase and τk ∈ N its corresponding period (so
dk ∈ [0, 1) denotes its “delay”). Let τ 0 = −α and rk = min {τk+1− τk, T} for all k ≥ 0. The
budget and value of such a policy are respectively

b = p0
X
k≥1

βτke−ρdk = p0
X
k≥1

βτk − p0
X
k≥1

βτk(1− e−ρdk)

v = Xα,r0 +
X
k≥1

βτkX0,rk −
X
k≥1

βτk(x0 − xrk−1)(1− e−ρdk)/ρ.
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For 1 ≤ R ≤ T , let KR = {k ≥ 1 | rk = R},

λR =
X
k∈KR

βτk(1− βR), γ̄R =
X

k−1∈KR

βτk and γR =
X

k−1∈KR

βτk
·
1− e−ρdk

1− β

¸
, (5)

so that ·
b
v

¸
=

·
b̂
v̂

¸
−

TX
R=1

γR

·
p0(1− β)
x̂0 − x̂R

¸
, where

·
b̂
v̂

¸
=

·
0

Xα,r0

¸
+

TX
R=1

λR

·
bT,R
vT,R

¸
.

Observe that for 1 ≤ R ≤ T − 1, k− 1 ∈ KR implies that τk = τk−1+R (if k− 1 ∈ RT then
τk ≥ τk−1 + T , where strict inequality holds when a useless good is not replaced for one or
more periods). Therefore

γ̄R =

·
βR

1− βR

¸
λR for all 1 ≤ R ≤ T − 1, and

TX
R=1

λR

1− βR
=
X
k≥1

βτk =
TX

R=1

γ̄R =
T−1X
R=1

βR

1− βR
λR + γ̄T .

Thus, γ̄T =
PT−1

R=1 λR + λT/(1 − βT ). Let µ = (1 − e−ρS)/(1 − β) (note that µ < 1),
Λ = {λ ∈ RT

+ |
PT

R=1 λR ≤ 1}, and Γ be the set of all (λ, γ) ∈ Λ×RT
+ such that

γR ≤ µλR

·
βR

1− βR

¸
for 1 ≤ R ≤ T − 1, and γT ≤ µ

h T−1X
R=1

λR +
λT

1− βT

i
.

CLAIM 1: Let {(τk, dk)} be an arbitrary purchasing policy and (λ, γ) be the weights
defined by (5). Then (λ, γ) ∈ Γ. Conversely, for any (λ, γ) ∈ Γ, there exists a purchasing
policy {(τk, dk)} that satisfies (5). Though this policy is usually not unique, all such policies
have the same budget and value. Thus, with abuse of notation we will also refer to a
(λ, γ) ∈ Γ as a purchasing policy.

CLAIM 2: Suppose that the policy corresponds to an R-flexible rule where τ 1 = 0 and
the replacement of durables of age R+1 is never delayed but the replacement of durables of
age R is sometimes delayed. Then, the policy is suboptimal: there exists another R-flexible
rule without delays that costs the same and has a strictly higher value.

Proof: For such a policy, λR + λR+1 = 1, γR > 0, γR+1 = 0, and λk = γk = 0 for all
k /∈ {R,R+1}. Moreover, since γR < λRβ

R/(1−βR), we also have λR > 0. In this case, (b̂, v̂)
is on the “Pareto frontier” (i.e., v̂ = Vα(b̂)). The vector (b̂, v̂)− (b, v) = (p0(1− β), x̂0 − x̂R)
has “slope” σ = [x̂0 − x̂R]/[p0(1− β)], and

AR =
1

p0

·
X0,R − x̂R

1− βR

1− β

¸
≤ (1− βR)

x̂0 − x̂R
p0(1− β)

< σ.

So, as the delays increase (γR increases), (b, v)moves away of (b̂, v̂), below the Pareto frontier.
But, if σ < AR+1, the delays may eventually take (b, v) back above the Pareto frontier. This
could happen only if b < bT,R+1. But even if every durable of age R is replaced with delay,
the cost of the policy is more than replacing the durables at age R+1 all the time. That is,
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b ≥ bT,R+1. Therefore bT,R+1 ≤ b ≤ bT,R and v < VT (b), and there exists another R-flexible
rule with no delays that costs b and has value VT (b).

CLAIM 3: Suppose that the policy {(τk, dk)} is such that γk > 0 for some k. Then the
policy is suboptimal: there exists another policy without delays that uses the same budget
but has strictly higher value.

Assume that the policy has delays. We now recursively modify the policy by eliminating
delays while maintaining the same budget and improving its value in every step. Let h =
λ1 + λ2, λ̂k = λk/h for k = 1, 2, and γ̂1 = γ1/h. Then·

b
v

¸
= h

·
λ̂1

·
bT,1
vT,1

¸
+ λ̂2

·
bT,2
vT,2

¸
− γ̂1

·
p0(1− β)
x̂0 − x̂1

¸¸
+

TX
R=2

·
λR

·
bT,R
vT,R

¸
− γR

·
p0(1− β)
x̂0 − x̂R

¸¸
.

The weights (λ̂1, λ̂2, γ̂1) represent a 1-flexible rule with delays (and λ̂1 + λ̂2 = 1). If γ1 > 0
(so γ̂1 > 0), then by Claim 3 there exists another 1-flexible rule with weights (λ̃1, λ̃2, 0) that
is better. Let λ0k = hλ̃k for k = 1, 2, γ01 = 0, λ

0
k = λk for k ≥ 3, and γ0k = γk for k ≥ 2. The

policy (λ0, γ0) is better than the policy (λ, γ) and has γ01 = 0. Now, let h = λ02+λ
0
3, λ̂k = λ0k/h

for k = 2, 3, and γ̂2 = γ02/h. The weights (λ̂2, λ̂3, γ̂2) represent a 2-flexible rule with delays.
Again, if γ̂2 > 0, Claim 3 implies that there exists a better 2-flexible rule without delays
that can be used to modify (λ0, γ0) and construct a new policy (λ00, γ00) that is better, uses
the same budget, and has γ001 = γ002 = 0. Continuing this way, after T steps, we will have
constructed a policy (λ∗, γ∗) with γ∗ = 0, that uses the same budget and has a better value
than (λ, γ).
Finally, by Claim 2 (or Theorem 1), for any weights λ∗, there exist R and an R-flexible

rule that uses the same budget b =
P

k λkbT,k and delivers a (weakly) better value. Therefore,
the optimal value function VT for the continuous-time economy coincides with that for the
discrete-time economy (as defined in Theorem 1).

Proof of Theorem 3: Recall that we defined c0 = w̄(1− β)− p0 and cT+1 = w(1− β),
so that w1,1(c0) = w̄ and wT,T+1(cT+1) = w.
Let B(w, c) = w − c/(1− β) be the budget left for durables when the total wealth is w

and the agent consumes a constant per period budget c on non-durables. For fixed α and
w, the function ϕ(c) = û(c)/ (1− β) + Vα(B(w, c)) is concave. Thus ĉ maximizes ϕ(c) if
and only if 0 ∈ ∂ϕ(ĉ) (that is, 0 is a subdifferntial of ϕ at ĉ) or equivalently, if and only if
û0(ĉ) ∈ ∂Vα(B(w, ĉ)). There are two cases corresponding to the situations where (1) Vα is
differentiable at B(w, ĉ); and (2) Vα has a kink at B(w, ĉ).
Case 1: Observe thatB(w, cR) ∈ (bα,R+1, bα,R) if and only if w ∈ (wα,R+1(cR), wα,R(cR)).

Now, if B(w, cR) ∈ (bα,R+1, bα,R) for some R, then û0(cR) = AR = V 0
α(B(w, cR)), and cR

is the optimal solution of problem (1). That is, when w ∈ (wα,R+1(cR), wα,R(cR)), it is
optimal to consume a constant flow cR of non-durables and follow an R-flexible purchasing
rule for the durable good. One can check that B(w, cα) = bα+1,α+1 ⇔ w = wα+1,α+1(cα)
and B(w, cα) = bα−1,α ⇔ w = wα−1,α(cα), and wα,α+1(cα) < wα+1,α+1(cα) < wα−1,α(cα) <
wα,α(cα). Therefore, δ

∗(w) is given by (4).
Case 2: Observe that AR−1 ≤ û0(cα,R(w)) ≤ AR if and only if cR ≤ cα,R(w) ≤ cR−1,

or alternatively, if and only if w ∈ [wα,R(cR), wα,R(cR−1)]. Since B(w, cα,R(w)) = bα,R and
∂Vα(bα,R) = [AR−1, AR], if û0(cα,R(w)) ∈ [AR−1, AR] for some R, then cα,R(w) is the optimal
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solution of problem (1). That is, it is optimal to consume a constant flow cα,R(w) of non-
durables and follow theR-fixed purchasing rule for the durable good. In particular, δ∗(w) = 1
if R ≤ α (or equivalently, if w ≥ wα,α(cα)) and δ∗(w) = 0 if R > α, as stated in (4).
For a fixed α, the intervals corresponding to case 1 alternate with those corresponding

to case 2. Moreover, collectively, they are mutually exclusive and cover the whole wealth
range.

Proof of Proposition 1:
(i) Since wα,R(cR−1) − wα,R(cR) = (cR−1 − cR)/(1 − β), the total size of the fixed-rule

classes is

ϕT =
1

1− β

TX
R=1

R[cR−1 − cR] +
cT
1− β

− w =
1

1− β

T−1X
R=1

[cR − cT ] + w̄ − w − p0
1− β

.

(Recall that c0 = (1−β)w̄−p0 and cT+1 = (1−β)w.) Similarly, since wα,R(cR)−wα,R+1(cR) =
bα,R − bα,R+1, we have that µ(CR,R+1) = p0/(1 − βR) for 1 ≤ R ≤ T − 1, and µ(CT,T+1) =
p0/(1− β). Therefore, the total size of the flexible-rule classes is

ψT =
T−1X
R=1

p0

1− βR
+

p0
1− β

.

Note that θ = ψT/[ψT + ϕT ] and that ψT does not depend on g. Therefore,

∂θ

∂g
=

−ψT

(ψT + ϕT )
2

∂ϕT

∂g
and

∂ϕT

∂g
=

1

1− β

T−1X
R=1

µ
∂cR
∂g
− ∂cT

∂g

¶
.

A simple computation shows that

AR =
1

p0

R−1X
α=0

βα(x̂α − x̂R) = g

·
1− β

ρp0

¸R−1X
α=0

βα(R− α).

Since û0(cR) = AR,
∂cR
∂g

=
1

û00(cR)
∂AR

∂g
=

1

û00(cR)
AR

g
=
1

g

û0(cR)
û00(cR)

.

If u has decreasing (increasing) absolute risk aversion then so does û, and since c1 > c2 >
· · · > cT , for every R = 1, . . . , T − 1,

∂cR
∂g
− ∂cT

∂g
=
1

g

·
û0(cR)
û00(cR)

− û0(cT )
û00(cT )

¸
< 0 (> 0).

(ii) Let xα = g(T − α) for α = 1, . . . , T and x0α = g(T 0 − α) for α = 1, . . . , T 0, where
T < T 0. Then, for all R = 1, . . . , T ,

AR =
1

p0

R−1X
α=0

βα(x̂α − x̂R) =
1

p0

R−1X
α=0

βα(x̂0α − x̂0R) = A0R.

This implies that the economy where durables last T periods and the economy where durables
last T 0 > T periods have identical consumption levels c1, . . . , cT .
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Clearly, θ is increasing in T if and only if

ϕT+1

ϕT

<
ψT+1

ψT

. (6)

For all consumption classes to be non-empty, the interval [w, w̄]must be such that w̄(1−β) >
c1 + p0 and w(1 − β) < cT . We now set w = 0, in order to guarantee that class CT+1 is
non-empty for all T . Inequality (6) is harder to satisfy for smaller values of w̄. Therefore,
we set w̄ = (c1+p0)/(1−β). If inequality (6) is satisfied for this w̄ then it must also hold for
any larger w̄. Since û(c) = [(1− β)/ρ]γ[c1−γ/(1− γ)], cR = (1− β)A

−1/γ
R /ρ. The left hand

side of (6) is then

ϕT+1

ϕT

=
A
−1/γ
1 +

PT
R=1

³
A
−1/γ
R −A

−1/γ
T

´
A
−1/γ
1 +

PT−1
R=1

³
A
−1/γ
R −A

−1/γ
T−1

´ .
Noticed that since AR is proportional to g, the above expression does not depend on g,
and is only a function of β and γ. Similarly, ψT+1/ψT depends only on β. Numerical
computations shows that there exists γ̂(β) > 0 such that (6) holds for all γ ∈ (0, γ̂(β)]. If
we let γ∗ = minβ γ̂(β) = 1.36, then, independent of β, θ is increasing in T .

Proof of Proposition 2: Let Sk denote the size of the k-th purchased durable. When
the endowed durable is of size S0 and age α, the value and the cost of a durable purchasing
policy (τ , S) are respectively

v = Sη
0Xα,r0 +

X
k≥1

βτkSη
kX0,rk and b = p0

X
k≥1

βτkSk.

Given a budget b, the consumer wants to maximize the value v. The first-order condition for
Sk is ηS

η−1
k X0,rk = µp0, where µ > 0 is a Lagrange multiplier. This condition implies that

the optimal sizes depend on the holding time only. That is, for each R for which KR 6= ∅,
there exists a common size SR such that Sk = SR for all k ∈ KR. Then, following the
notation in the proof of Theorem 1, the policy (τ , S) can alternatively be represented as a
policy (λ, Ŝ), and its corresponding value and budget can be expressed as

v =
T+1X
R=1

λRŜ
η
RvT,R =

T+1X
R=1

λR

"
vT,R
bηT,R

#
Bη
R and b =

T+1X
R=1

λRŜRbT,R =
T+1X
R=1

λRBR,

where BR = bT,RŜR for 1 ≤ R ≤ T and BT+1 = 0. In this format, the consumer chooses
the weights λR so as to maximize v while satisfying the budget constraint. By definition,
[vT,R∗/b

η
T,R∗] > [vT,R/b

η
T,R] for all R 6= R∗. Therefore, it is optimal to set λR∗ = 1 and

λR = 0 for all R 6= R∗. That is, for any budget b, the optimal policy is an R∗-fixed
rule with a constant size, where the size S∗(b) is adjusted to spend the budget b exactly:
S∗(b) = b/bT,R∗ .

Proof of Proposition 3: As argued in the proof of Proposition 2, in an optimal policy,
for each R there exists an optimal size ŜR such that whenever a durable of age R is replaced,
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Figure 7: Functions ΦR(B) for T = 4 and R∗ = 3.

the new durable is of size ŜR. Let ΦR(B) = [vT,R/b
η
T,R]B

η for B ∈ [0, S̄bT,R]. Then, the
optimal durable value function is

J(b) = max
TX

R=1

λRΦR(BR)

s.t.
TX

R=1

λRBR = b,
TX

R=1

λR = 1

BR ∈ [0, S̄bT,R], λR ≥ 0, 1 ≤ R ≤ T.

That is, J(b) is the convex envelope of the functions ΦR on [0, S̄bT,R], 1 ≤ R ≤ T . Since
vT,R/b

η
T,R is single-peaked in R and S̄bT,R is monotonically decreasing in R, the graphs of the

functions ΦR are ordered in the following fashion. For each R < R∗, the graph of ΦR+1 lies
above (or “dominates”) the graph of ΦR on the interval [0, S̄bT,R+1], but while the graph of
ΦR+1 stops at S̄bT,R+1, the graph of ΦR extends to the right until S̄bT,R > S̄bT,R+1. In the
other direction, for each R > R∗, the graph of ΦR∗ dominates the graph of every ΦR and
the domain of the former [0, S̄bT,R∗] includes the domain of the latter [0, S̄bT,R]. Therefore,
J(b) = ΦR∗(b) for all b ∈ [0, S̄bT,R∗ ]. To the right of S̄bT,R∗, we show that the assumption
on η implies that J is the piecewise linear function obtained by joining for each R < R∗ the
vertices (S̄bT,R+1,ΦR+1(S̄bT,R+1)) and (S̄bT,R,ΦR(S̄bT,R)). Note that ΦR(S̄bT,R) = S̄ηvT,R, so
that the piecewise linear function coincides with S̄ηVT (b/S̄) for b ∈ [S̄bT,R∗, S̄bT,1].
To verify our last claim, all we need to do is to check that for each R < R∗, the straight

line segment from (S̄bT,R+1,ΦR+1(S̄bT,R+1)) to (S̄bT,R,ΦR(S̄bT,R)) lies above the graph of ΦR

in the interval [S̄bT,R+1, S̄bT,R]. Since ΦR is concave and the slope of the line segment is
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S̄η−1AR, this is the case if and only if

Φ0R(S̄bT,R) = η

"
vT,R
bηT,R

#
[S̄bT,R]

η−1 ≥ S̄η−1AR.

That is, if and only if η ≥ ARbT,R/vT,R for all R < R∗. Our assumption on η guarantees the
last inequality independent of the value of R∗.

9 Appendix 2: Alternative models of durables

The frictionless PIH model: The stock of durable good, Kt, evolves according to

Kt+1 = (1− δ)Kt +Et,

where δ < 1 is the rate of economic depreciation and Et is the current expenditure on durable
goods. Service flow from the durable is proportional to Kt. Assume the interest rate r is
constant and satisfies β = 1/(1 + r), where β is the discount factor. A consumer’s problem
is14

max
(ct,Kt)

X
t≥0

βt [ln ct + lnKt] subject to
X
t≥0

1

(1 + r)t
(ct +Kt+1 − (1− δ)Kt) = w.

The optimal solution is Kt = Aw and ct = Bw for all t, where A = (1 − β)/[r + 2δ] and
B = (r+δ)A. Therefore, the optimal durable expenditure every period is E = δAw. Suppose
that a shock changes the wealth from w to (1 + �)w. Then, the non-durable consumption
level changes from Bw to (1+�)Bw and desired durable stock changes from Aw to (1+�)Aw.
Therefore, the current period durable expenditure is (1+ �)Aw− (1− δ)Aw = (1+ �/δ)δAw.
That is, the short-run wealth elasticity of demand is 1 for the non-durable good and 1/δ for
the durable good.

The (s, S) replacement model: Consider a model in continuous time with continuous
technological obsolescence, where a durable good of age t ≥ 0 and size S provides a service
flow Sηx(t). Assume that η ∈ (0, 1), and that x(t) > 0 and x0(t) < 0 for all t ≥ 0. The
discount factor is ρ, the interest rate is r = ρ, and the price of a durable of size S is p0S. A
consumer with wealth w chooses non-durable consumption flow c, durable purchase size S
and holding time R to maximize lifetime utility subject to a wealth constraint. That is, his
problem is

max
c,S,R

u(c)

ρ
+ Sη

R R
0
x(t)e−ρtdt
1− e−ρR

subject to
c

ρ
+

p0S

1− e−ρR
= w.

The first order conditions for this problem are

u0(c) = λ, ηSη−1
Z R

0

x(t)e−ρtdt = λp0, and

Sη

"R R
0
x(t)e−ρtdt

(1− e−ρR)2
ρe−ρR − x(R)e−ρR

1− e−ρR

#
=

λp0S

(1− e−ρR)2
ρe−ρR.

14The results are similar for a more general class of preferences and other values of r. See, for example,
Carroll and Dunn (1997).
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The last condition can be rewritten as

Sη

Z R

0

[x(t)− x(R)]e−ρtdt = λp0S.

Substituting the FOC for S into FOC for R, we getZ R

0

[x(t)− x(R)]e−ρtdt = η

Z R

0

x(t)e−ρtdt.

Therefore, the optimal holding time does not depend on wealth. Given that every consumer
replaces durables with the same frequency, c and S are strictly increasing in w. Therefore,
R will not respond to an aggregate wealth shock, but both c and S will.
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