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Abstract

Can active Taylor rules (i.e. monetary rules where the nominal interest rate responds more than
proportionally to inflation) deliver global equilibrium uniqueness in small open economies? By studying
the local and global dynamics of a standard small open economy we point out the misleading results and
policy advices that one would derive from a standard local analysis. We show that rules that guarantee
a local unique equilibrium may actually lead the economy into liquidty traps, cycles and chaos. More
importantly we find that there is an interesting interaction between the relative risk aversion coefficient
and the degree of openness that determines the nature of the global dynamics of the aforementioned
economy. In particular, given the relative risk aversion coefficient, we show that the more open the
economy is, the more likely is that a contemporaneous rule will drive the economy into a liquidity trap.
On the other hand, the more closed the economy is, the more likely is that the same rule will lead to
cycles and chaotic dynamics around the inflation target. In contrast for forward-looking rules we find
that given the relative risk aversion coefficient, it is more likely that these rules will lead the economy
into cycles and chaos, the higher the degree of openness of the economy is.

Although the perils of Taylor rules are evident, the monetary authority can still play a role by at
least eliminating cyclical equilibria without giving up its local stability properties. This can be achieved
by targeting a high enough inflation level and by being “not too aggressive” with respect to this target,
with such relative levels being functions of the “cash dependency” of the economy.

Through a simple calibration exercise, we provide a quantitative evaluation of how feasible and
relevant our analytically derived results are for the design of monetary policy. In this sense the theoretical
results of this paper might provide some warning for small open economies moving to inflation targeting
regimes through interest rates feedback rules and Ricardian fiscal rules.
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1 Introduction

In recent years there has been a revival of theoretical and empirical literature aimed at understanding the

macroeconomic consequences of implementing diverse monetary rules in the small open economy. Some

examples of this literature are the works by Ball (1999), Svensson (2000), Clarida, Gali and Gertler (1998,

2001), Gali and Monacelli (2002), and Kollmann (2002).1

In this literature the study of interest rate rules whose interest rate response coefficient to inflation is

greater than one has received particular attention. These rules also known as Taylor rules or active rules,

imply that in response to a one percent in inflation, the government raises the nominal interest rate by more

than one percent leading to an increase in the real interest rate.2 To some extent the importance given to

these rules in the small open economy literature is just a consequence of some of the benefits that the closed

economy literature has claimed for these rules. For instance, Leeper (1991), Bernanke and Woodford (1997)

and Clarida, Gali and Gertler (2000) have argued that active interest rate rules guarantee a unique rational

expectations equilibrium whereas rules whose interest rate response coefficient to inflation is less than one,

also referred as passive rules, induce aggregate instability in the economy by generating multiple equilibria.

Although this is an important argument that supports the implementation of active interest rate rules in

closed economies, it is not exempt from some drawbacks. In particular Benhabib, Schmitt-Grohé and Uribe

(2001a) have pointed out that this argument relies on a local determinacy of equilibrium analysis, that is,

on small fluctuations around the inflation target and depends on how money is introduced in the model

and on the interaction between fiscal and monetary policy. In addition Benhabib, Schmitt-Grohé and Uribe

(2001b, 2002) have also noticed that previous analyses of interest rate rules in closed economies have not

taken into account the fact that nominal interest rates are bounded below by zero. Once this zero bound

is considered and a non-linear analysis is pursued, they have shown that active interest rate rules may also

induce aggregate instability in closed economies by generating cycles, chaotic dynamics or liquidity traps

(deflationary paths).

Taking into consideration these results of the literature for active interest rate rules in closed economies,

it is possible to argue that its counterpart for open economies has been overlooking two important elements

of the analysis. First, it has disregarded the fact that active rules may also lead to aggregate instability in the

open economy by generating local multiple equilibria under conditions that are not a simple extension of the

conditions in the closed economy literature. In other words this literature has paid little attention to the fact

that depending on some particular features of the open economy, active rules may embark the open economy

on fluctuations that are determined not only by fundamentals but also by self-fulfilling expectations. Second,

the observation emphasized by Benhabib et al. for the closed economy literature of active Taylor rules also

applies to the open economy literature. In other words, the studies for open economies have restricted their

analysis to local dynamics and not to global dynamics, and some of the works have not considered the zero

bound on the nominal interest rate.

With respect to the first element, Zanna (2003a) and Airaudo and Zanna (2003) have pursued local

equilibrium analyses for interest rate rules in small open economies. They have shown that conditions

under which active interest rate rules induce multiple equilibria in the small open economy depend not only

1See also Ghironi (2002), Ghironi and Rebucci (2001), Devereux and Lane (2003), and Lubik and Schorfheide (2003).
2 See Taylor (1993) and Henderson and Mckibbon (1993).
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on the interest rate response coefficient to inflation but also on some specific characteristics of the open

economy that are not present in the closed counterpart. In particular Zanna(2003a) finds that some of these

characteristics are the degree of openness of the economy and the degree of exchange rate pass-through.3

He argues that more open economies and economies with a higher degree of exchange rate pass-through are

prone to suffer of aggregate instability due to the presence of multiple equilibria generated by active interest

rate rules that respond to the CPI-inflation. On the other hand, Airaudo and Zanna (2003) have shown

that forward-looking interest rate rules may generate endogenous fluctuations in the small open economy

due to Hopf bifurcations. In their model the bifurcation parameter corresponds to the interest rate response

coefficient to the weighted average of expected future CPI-inflation. However they find that there exists an

interesting interaction between this coefficient, the weight that the monetary authority puts on expected

future inflation in the rule and the degree of openness of the economy. This interaction determines how

likely Hopf bifurcations are in their model.

The second missing element of the analysis of active interest rate rules in open economies is what mo-

tivates the present paper. In fact this paper is one of the first attempts of the open economy literature to

understand how interest rate rules may lead to global endogenous fluctuations. We pursue a global and non-

linear equilibrium analysis for a traditional small open economy model with traded and non-traded good,

whose government follows an active Taylor rule with respect to the CPI-inflation. We show that the global

equilibrium dynamics of the model induced by this rule varies with the level of some structural parameters

of the economy such as the degree of openness, measured as the share of traded goods, and the relative risk

aversion coefficient. In particular, we find that under both contemporaneous and forward looking Taylor

rules the economy might display monotonic deflationary paths, cycles and chaotic dynamics around both the

active and the passive steady state. These dynamics are possible, even for rules that under a local analysis

guarantee a unique equilibrium. With respect to the closed economy work of Benhabib et al. (2002) we

obtain a richer set of dynamics. For instance, given the coefficient of relative risk aversion, we show that the

more open the economy is, the more likely is that a contemporaneous active rule will drive the economy into

a liquidity trap. On the other hand, the more closed the economy is, the more likely is that the same rule

will lead to cycles and chaotic dynamics around the inflation target. In contrast for forward-looking rules we

find that given the relative risk aversion coefficient, it is more likely that these rules will lead the economy

into cycles and chaos, the more open the economy is.

Although the perils of Taylor rules are evident, the monetary authority can still play a role by at least

eliminating cyclical equilibria without giving up its local stability properties. This can be achieved by

targeting a high enough inflation level and by being “not too aggressive” with respect to this target, with

such relative levels being functions of the “cash dependency” of the economy. In this sense monetary policy

can be used as the only tool to completely eliminate endogenous fluctuations without resorting to specific

fiscal rules. The latter might instead be used to avoid the risk of deflationary paths.

In principle more “cash dependent” economies that follow the appropiate contemporaneous rule might

be able to completely eliminate endogenous fluctuations. However this contrasts with less “cash dependent”

economies that follow forward-looking rules in which the appearance of cycles and chaotics dynamics seems

to be pervasive.

3See also Linnemann and Schabert (2002) and De Fiore and Liu (2003) that also discuss the importance of the degree of

openness of the economy in the determinacy of equilibrium analysis.
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Through a simple calibration exercise, we provide a quantitative evaluation of how feasible and relevant

our analytically derived results are for the design of monetary policy. Furthermore we also discuss how

changing the target of inflation from the CPI-inflation to the non-traded goods inflation affects the previous

results.

We believe the results of our paper may be interesting for two reasons. First, as is well known there

exists an unanimous consensus about the benefits of the framework of inflation targeting through interest

rate feedback rules. In this sense the theoretical results of this paper might provide some warning about some

possible negative consequences for small open economies moving to this framework. The message that we

want to convey is that some specifications of the aforementioned rules may generate endogenous fluctuations

and therefore aggregate instability in the economy. This implies that further research in this area is needed.

Second our results point out the importance of considering particular features of the open economy in

the design of the monetary policy. In particular this paper emphasizes the relevant role that the degree

of openness of the economy plays not only in the local equilibrium analysis but also in the global equi-

librium analysis. Clearly the degree of openness of the economy, measured in our model as the share of

traded goods, is a characteristic of an open economy that is not present in previous closed economy models.

More importantly this feature of the open economy varies among economies that follow (or followed) active

contemporaneous or forward-looking interest rate rules as Table 1 shows.4

Table 1:

Country Degree of Openness Type of Rule ρπ Study

Imports/GDP

Germany 0.26 Forward− Looking 1.31 Clarida, Gali and Gertler (1998)

France 0.22 Forward− Looking 1.13 Clarida, Gali and Gertler (1998)

Japan 0.10 Forward− Looking 2.04 Clarida, Gali and Gertler (1998)

United Kingdom 0.28 Contemporaneous 1.84 Lubik and Schorfheide (2003)

Australia 0.19 Contemporaneous 2.10 Lubik and Schorfheide (2003)

Canada 0.31 Contemporaneous 2.24 Lubik and Schorfheide (2003)

New Zealand 0.28 Contemporaneous 2.49 Lubik and Schorfheide (2003)

Costa Rica 0.42 Forward− Looking 1.47 Corbo (2000)

Colombia 0.20 Contemporaneous 1.31 Zanna (2003b)

Chile 0.28 Forward− Looking 1.39 Restrepo (1999)

Note: ρπ is the interest rate response coefficient to the CPI-inflation in the rule.

Data from IFS was used to calculate the Imports/GDP share.

The remainder of this paper is organized as follows. Section 2 presents a flexible-price model with its

4 In this table we measure the degree of openness of the economy as the share of imported goods. We also present some of

the estimates of contemporaneous and forward-looking rules that have been done for some of the economies. We borrow the

estimates from Clarida, Gali and Gertler (1998), Restrepo (1999), Corbo (2000), Lubik and Schorfheide (2003), and Zanna(2003).

The share of imports goods was calculated as the annual average of this share for the respective period of time used for the

aformentioned estimations.
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main assumptions. Section 3 defines the equilibrium concept we refer to. Section 4 pursues a local and

a global equilibrium analyses for an active contemporaneous interest rate rule. Section 5 does the same

analyses for an active forward looking rule. Section 6 presents a sensitivity analysis for the previous results

under changes of the inflation target, the degree of aggressivness of the rule and the importance of money

in our model. Section 7 analyzes the role of cash in providing transaction services and argues that there is

still some role for monetary policy to eliminate cyclical fluctuations without any help from the fiscal side.

Section 8 discusses briefly the implications in terms of our previous results of adopting a backward-looking

rule or of targeting the non-traded goods inflation in stead of the CPI-inflation. Finally Section 9 concludes.

2 A Flexible-Price Model

2.1 The Household-Firm Unit

Consider a small open economy populated by a large number of infinitely lived household-firm units with

preferences described by the following intertemporal utility function5

E0

∞X
t=0

βt

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∙
(cTt )

αγ(cNt )
(1−α)γ

³
Md
t

PT
t

´1−γ¸1−σ
1− σ

+ ψ(1− hTt − hNt )

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (1)

where α, β, γ ∈ (0, 1), and ψ, σ > 0;E corresponds to the expectation operator, cTt and cNt denote the

consumption of traded and non-traded goods in period t respectively, Md
t denotes nominal money balances,

PT
t denotes the price level of the traded good, and hTt and hNt are the labor allocated to the production of

the traded good and the non-traded good respectively. Equation (1) implies that the household-firm unit

derives utility from consuming traded and non-traded goods, from the liquidity services of money and from

not working in either sector.

The representative household-firm unit only requires labor for the production of traded and non-traded

goods. It makes use of following instantaneous production technologies

yTt =
¡
hTt
¢θT

and yNt =
¡
hNt
¢θN (2)

where 0 < θT < 1 and 0 < θN < 1.

Before we continue with the description of the model it is worth pointing out that we have introduced

money in the utility function but we have not imposed any restrictions in terms of the relationship between

real money balances and consumption. In other terms denoting c as the aggregate consumption, c =

(cTt )
α(cNt )

(1−α), we will consider the case in which real money balances and consumption are Edgeworth

substitutes, Ucm < 0 and the case in which they are complements, Ucm > 0. In our model these cases

are in turn determined by the value of the parameter σ that corresponds to the relative risk aversion

coefficient. Namely if σ > 1 (σ < 1) then real money balances and consumption are Edgeworth substitutes

(complements).

5 In this paper specific functional forms are assumed to be able to convey the main message of this paper.
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In addition it is important to observe that recent studies about interest rate rules in closed economies,

such as Benhabib et al. (2001a,b, 2002), have analyzed the consequences in the equilibrium analysis of

introducing money-in-the-production-function (MIPF). As noted by Feenstra (1986) models of money in the

production function are isomorphic to a money-in-the-utility-function (MIUF) endowment economy with

Ucm < 0. Therefore we expect that our results for the MIUF in which real money balances and consumption

are Edgeworth substitutes, Ucm < 0, would be similar to those derived on a MIPF set-up.

We assume that the law of one price holds for the traded good and to simplify the analysis we normalize

the foreign price of the traded good to one. Therefore, the domestic currency price of traded goods (PT
t ) is

equal to the nominal exchange rate (Et). That is PT
t = Et. This simplification in tandem with (1) can be

used to derive the consumer price index (CPI)

pt =
(Et)α

¡
PN
t

¢1−α
αα(1− α)1−α

(3)

Using equation (3) and defining the gross nominal devaluation rate as

�t = Et/Et−1 (4)

it is straightforward to derive the gross CPI-inflation rate, πt, as a weighted average of the gross nominal

depreciation rate, �t, and the gross inflation of the non-traded goods, πNt = PN
t /PN

t−1; that is

πt = �αt (π
N
t )

(1−α) (5)

where the weights are related to the share of traded goods α. This share can be seen as a measure of openness

of the economy. As α goes to zero (α→ 0) we regard the economy as a closed economy; whereas if α tends

to one (α→ 1) then we consider the economy as a very open one.

We define the real exchange rate (et) as the ratio between the price of traded goods and the aggregate

price of non-traded goods.

et = Et/PN
t (6)

From this definition of the real exchange rate we deduce that

et = et−1

µ
�t
πNt

¶
(7)

In order to avoid the “unit-root” problem in the local determinacy of equilibrium analysis we assume

complete financial markets.6 That is household-firm units have access to a complete set of contingent claims

traded internationally. In each period t ≥ 0 the agents can purchase two types of financial assets: fiat money
Md

t and a nominal state contingent claims, Dt+1, that pay one unit of currency in a specified state of period

t+ 1.
6The “unit-root” problem arises in small open economy models by the popular assumption of making the subjective discount

factor (β) constant and equal to the factor 1
1+rt

, that depends on the international interest rate (rt). This assumption introduces

a random walk in equilibrium consumption making the steady state dependent on the initial stock of wealth. As a result the

presence of a unit root in a dynamical system implies that it is not valid to apply the common technique of linearizing the

system around the steady state and studying the eigenvalues of the Jacobian matrix in order to characterize local determinacy.

See Azariadis (1993). Complete markets is one of the possible approaches to solve the ”unit-root” problem. See Schmitt-Grohé

and Uribe (2003).
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Under the assumption of complete markets the representative agent’s flow constraint each period can be

written as7

Md
t +EtQt,t+1Dt+1 ≤Wt + EtyTt + PN

t yNt − Etτ t − EtcTt − PN
t cNt (8)

where Qt,t+1 refers to the period-t price of a claim to one unit of currency delivered in a particular state of

period t+ 1 divided by the probability of occurrence of that state and conditional of information available

in period t. Hence EtQt,t+1Dt+1 denotes the cost of all contingent claims bought at the beginning of period

t. Constraint (8) says that the total end-of-period nominal value of the financial assets can be worth no

more than the value of the financial wealth brought into the period, Wt, plus non-financial income during

the period net of the value of taxes, Etτ t , and the value of consumption spending.
To derive the period-by-period budget constraint of the representative agent, it is important to notice

that total beginning-of-period wealth in the following period is given by

Wt+1 =Md
t +Dt+1 (9)

and that EtQt,t+1 corresponds to the price at period t of a claim that pays one unit of currency in every

state in period t+ 1 and represents the inverse of the risk-free gross nominal interest rate, Rt; that is

EtQt,t+1 =
1

Rt
(10)

Then we can use equations (8), (9) and (10) to derive the budget constraint of the representative agent as

EtQt,t+1Wt+1 ≤Wt + EtyTt + PN
t yNt − Etτ t −

Rt − 1
Rt

Md
t − EtcTt − PN

t cNt (11)

who is also subject to a Non-Ponzi game condition described by

lim
j→∞

Etqt+jWt+j ≥ 0 (12)

at all dates and under all contingencies. The variable qt represents the period-zero price of one unit of

currency to be delivered in a particular state of period t divided by the probability of occurrence of that

state, given information available at time 0. It is given by

qt = Q1Q2.....Qt

with q0 ≡ 1.
The problem of the representative household-firm unit is reduced to choose the sequences {cTt , cNt , hTt , hNt }

and {Md
t ,Wt+1}∞t=0 in order to maximize (1) subject to (2), (11) and (12), and given W0, and the time paths

for it, Et, PN
t , Qt+1 and τ t. Note that since the utility function specified in (1) implies that the preferences

of the agent display non-sasiation then constraints (11) and (12) both hold with equality.

The first order conditions correspond to (11) and (12) with equality and

αγ
¡
cTt
¢αγ(1−σ)−1 ¡

cNt
¢(1−α)γ(1−σ)µMd

t

Et

¶(1−γ)(1−σ)
= λt (13)

7We follow Woodford (2003) to construct the budget constraint of the representative agent under the assumption of complete

markets.
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αcNt
(1− α)cTt

= et (14)

λtθT
¡
hTt
¢(θT−1)

= ψ (15)

λtθN
¡
hNt
¢(θN−1)

= ψet (16)

Md
t

Et
=

µ
1− γ

αγ

¶µ
Rt

Rt − 1

¶
cTt (17)

λt
Et
Qt,t+1 =

λt+1
Et+1

β (18)

where λt/Et corresponds to the multiplier of the budget constraint.
The interpretation of the first order conditions is straightforward. Equation (13) is the usual intertemporal

envelope condition that makes the marginal utility of consumption of traded goods equal to the marginal

utility of wealth (λt). Condition (14) implies that the marginal rate of substitution between traded and

non-traded goods must be equal to the real exchange rate. In addition, from equations (15) and (16) it is

possible to derive the following expression

PN
t θN

¡
hNt
¢(θN−1)

= EtθT
¡
hTt
¢(θT−1)

that equalizes the value of the marginal products of labor in both sectors. Equation (17) represents the

demand for real balances of money as an increasing function of consumption of traded goods and a decreasing

function of the risk-free gross nominal interest rate. And finally condition (18) implies a standard pricing

equation for one-step-ahead nominal contingent claims. Note that under complete markets in each period t

there is one condition of this type for each possible state in period t+ 1.

2.2 The Government

The government issues two nominal liabilities: money, Ms
t , and a domestic bond, B

s
t , that pays a gross

free-risk nominal interest rate Rt. We assume that it cannot issue or hold state contingent assets. It also

levies taxes, τ t, pays interest on its debt, (Rt − 1)Bs
t , and receives revenues from seigniorage.

To derive the budget constraint of the government we proceed as follows. Let Lst denote the nominal

government liabilities at the beginning of period t. In the financial market of period t the government issues

money and bonds to finance these liabilities. Therefore

Lst =Ms
t +Bs

t

Using this definition and the aforementioned assumptions about the behavior of the government we can

write its budget constraint as

Lst = Rt−1L
s
t−1 − (Rt−1 − 1)Ms

t−1 − Etτ t (19)
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We assume that the government follows a Ricardian fiscal policy. Under this policy, it picks the path of

taxes, τ t, satisfying the intertemporal version of (19) in conjunction with the transversality condition

lim
t→∞

Lst/Et
tQ

k=0

³
Rt−1
�t

´k = 0 (20)

Finally we define the monetary policy as an interest rate feedback rule or Taylor rule whereby the

government can set the nominal interest rate, Rt, as an increasing function of either the CPI-inflation rate

between periods t− 1 and t, πt, or the CPI-inflation rate between periods t and t+ 1, πt+1. Hence the first

rule corresponds to a contemporaneous rule whereas the second one corresponds to a forward-looking rule.

For analytical and computational purposes we will focus on the following specific parametrization

Rt = ρ(πt+j) ≡ 1 + (R∗ − 1)
³πt+j

π∗

´ A
R∗−1

; with j = 0, 1 and R∗ = π∗/β (21)

where π∗ corresponds to the target rate of the CPI-inflation. We will assume that the government responds

aggressively to inflation. That is, at the inflation rate target the rule satisfies ρ0(π∗)π∗

ρ(π∗) = A
R∗ > 1.

It is important to observe that the interest rate rule is a continuous and non-decreasing function in the

CPI-inflation rate. In addition it satisfies the zero bound on the nominal interest rate, Rt = ρ(πt+1) > 1.

3 The Equilibrium

In equilibrium the money market and the non-traded goods market clear. Therefore

Md
t =Ms

t =Mt (22)

and

yNt =
¡
hNt
¢θN

= cNt (23)

We also assume free capital mobility. This implies that the following non-arbitrage condition must hold

Q∗t,t+1 = Qt,t+1
Et+1
Et

(24)

where Q∗t,t+1 refers to the period-t foreign currency price of a claim to one unit of foreign currency delivered

in a particular state of period t + 1 divided by the probability of occurrence of that state and conditional

of information available in period t. Furthermore under the assumption of complete markets we also have a

similar condition to (18) in the rest of the world. That is,

λ∗t
PT∗
t

Q∗t,t+1 =
λ∗t+1
PT∗
t+1

β∗ (25)

where λ∗t represents the marginal utility of wealth for the rest of the world, P
T∗
t is the foreign price of traded

goods, that we assumed to be normalized to one, and β∗ denotes the subjective discount rate of the rest of

the world. Using (18), (24), (25), the Law of One Price for traded goods and the assumption that β∗ = β

we can derive the following equation
λt+1
λt

=
λ∗t+1
λ∗t
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that holds at all dates and under all contingencies. This equation implies that the domestic marginal utility

of wealth is proportional to its foreign counterpart. Then

λt = ξλ∗t

where ξ refers to a constant parameters that determines the wealth difference across countries. Since we are

dealing with a small open economy, λ∗t can be taken as an exogenous variable. To simplify the analysis we

assume that λ∗t is constant and equal to λ
∗. This assumption implies that λt becomes a constant. That is

λt = λ = ξλ∗ (26)

This result allows us to write condition (18) as

Qt,t+1 =
Et
Et+1

β =
β

�t+1

that together with (10) imply that

Rt = β−1
∙
Et

1

�t+1

¸−1
(27)

where E denotes the expectation operator. Note that condition (27) is very similar to the uncovered interest

parity condition.

It is important to observe that to pursue the determinacy of equilibrium analysis, it is sufficient to

focus on a perfect foresight equilibrium. Assuming that the representative agent forecasts correctly all the

anticipated variables, we can write condition (27) as

Rt = β−1�t+1 (28)

that corresponds to the typical uncovered interest parity condition.

We proceed giving the definition of a perfect foresight equilibrium for a government that pursues a

Ricardian fiscal policy and follows an interest rate feedback rule.

Definition 1 Given, L0 and π∗, a Perfect Foresight Equilibrium under a Ricardian fiscal policy is defined
as a set of sequences {cTt , cNt , hTt , hNt , Mt, λt, Lt+1, τ t, et, Et, �t, πt, πNt , Rt}∞t=0 satisfying definitions (4),
(5), (7), the first order conditions of the representative agent (13), (14), (15), (16), (17), the intertemporal

version of (19) together with (20), the rule defined by (21), the market clearing conditions (22), (23), and

conditions (26), and (28).

To pursue the equilibrium analysis the model can be further reduced. It is important to observe that

we do not need to consider in the analysis equations (15), (16), (17), (19) and (20). The reasons are the

followings. Under the assumption that the fiscal policy is Ricardian, we know that the intertemporal version

of the government’s budget constraint in conjunction with its transversality condition will be always satisfied.

Moreover once we determine the paths for the risk-free gross nominal interest rate and consumption of traded

goods we can use conditions (17) and (22) to obtain the sequence of the stock of money. Utilizing the market

clearing condition for non-traded goods and conditions (15), (16), and (26) allows us to find out the paths

for labor allocated in the traded sector and labor allocated in the non-traded sector once we determine the

paths for the real exchange rate and consumption of non-traded goods.
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Using definitions (5) and (7), conditions (13), (14), (16), (23), (26) and (28), and the contemporaneous

version of the monetary rule (21) we can derive the following difference equation that summarizes and

represents the dynamics of our model under contemporaneous interest rate rules

µ
Rt+1

Rt+1 − 1

¶χµ
Rt+1 − 1
R∗ − 1

¶R∗−1
A

=
Rt

R∗

µ
Rt

Rt − 1

¶χ
(29)

where

χ =
(1− α)(1− γ)(1− σ)(1− θN )

{(1− γ) + γ[θN(1− α) + α]} (1− σ)− 1 (30)

On the other hand, using definitions (5) and (7), conditions (13), (14), (16), (23), (26) and (28), and

the forward-looking version of the monetary rule (21) we can derive the following difference equation that

summarizes and represents the dynamics of our model under forward-looking interest rate rules

µ
Rt+1

Rt+1 − 1

¶χ
=

Rt

R∗

µ
R∗ − 1
Rt − 1

¶R∗−1
A
µ

Rt

Rt − 1

¶χ
(31)

where χ was defined in (30).

Using definitions (5) and (7), the interest rate rule (21) and equation (29), or equation (31), it is straight-

forward to notice that in steady-state and regardless of the type of rule under analysis (contemporaneous or

forward-looking) we have

π̄N = �̄ = π̄

R̄ = ρ (π̄) = π̄/β (32)

Figure 1 depicts the left- and the right-hands side of equation ρ (π) = π/β using the particular functional

form (21). From this figure it is clear that there are two steady states. Under the first one the steady-state

CPI-inflation rate corresponds to π̄ = π∗ and the slope of the interest rate rule is ρ0 (π∗) = A
π∗ , which is

greater than 1
β . Therefore, at this steady state the interest rate rule satisfies

ρ0(π∗)π∗

ρ(π∗) = βA
π∗ > 1 and following

Leeper (1991) we say that the monetary policy rule is “active”. That is, in response to a one percent increase

in the CPI-inflation, the government raises the nominal interest rate by more than one percent leading to an

increase in the real interest rate. On the other hand, under the second steady state, the CPI-inflation rate

corresponds to π̄ = πL and the slope of the interest rate rule is ρ0
¡
πL
¢
= A

πL , which is less than
1
β . Hence at

this steady state the interest rate rule satisfies ρ0(πL)πL

ρ(πL)
= A

πL
< 1

β and following Leeper (1991) we say that

the monetary policy rule is “passive”. In this case in response to a one percent increase in the CPI-inflation,

the government raises the nominal interest rate by less than one percent leading to a decrease in the real

interest rate.

The existence of two steady states is crucial for our dynamics results.8 In addition it is important to

observe that the steady state equation (32) in this small open economy model corresponds to the same

steady state equation that arises in closed economy models such as in Benhabib, Schmitt-Grohé and Uribe

(2002). However this does not imply that the dynamics of the small economy model under interest rate rules

8For a more formal proof of the steady state multiplicity see the Appendix.
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Figure 1: Multiplicity of steady states. π∗ represents the target inflation rate or the inflation rate in the

active steady-state whereas πL represents the inflation rate in the passive steady state.

must be equal to the dynamics of the closed economy models. For instance the equilibrium dynamics of the

contemporaneous rule model are driven by equation (29) that differs from the equation derived in Benhabib

et al. in the exponent χ (defined in (30)). In their model this exponent is always positive. In our model

this exponent can be positive or negative and depends on some additional structural parameters of the small

open economy such as the degree of openness of the economy, α. This fact leads to much richer dynamics

as we will discuss below.

For the above reasons, it is helpful to summarize how the “driving” parameter χ is affected by the

relative risk aversion coefficient, σ, and by the degree of openness, α, since we will be specifically considering

environments differing with respect to those coefficients.9

To simplify the exposition, let χ (α, σ) = (1−θN )(1−γ)(1−α)(σ−1)
1+(σ−1)'(α) where' (α) = [γ (α+ (1− α) θN ) + (1− γ)] ∈

(0, 1) . We study the function χ (α, σ). It is straightforward to prove the following facts:

Fact 1: χ (1, σ) = χ (α, 1) = 0.

Fact 2: if σ ∈ (0, 1) then χ (α, σ) < 0 for any α ∈ (0, 1).

Fact 3: if σ > 1 then χ (α, σ) > 0 for any α ∈ (0, 1) .

Fact 4: ∂χ(α,σ)
∂σ = (1−γ)(1−θN )(1−α)

[1+(σ−1)'(α)]2 > 0 for any α ∈ (0, 1).

9The parameter χ also depends on the relative importance of real money balances in transactions, γ, and on the non-traded

sector production parameter θN . However we will not pursue any “bifurcation of equilibria” analysis with respect to them. The

message we want to convey in this paper is that the degree of openness in economies pursuing CPI-inflation targeting can play

a big role. As it turns out, such effect is present or not depending on the relative risk aversion coefficient. Of the remaining

parameters the share of real money balances in the utility function affects the nature of equilibria (more on this below). We

will pursue a sensitivity analysis with respect to this parameter.

12



Fact 5: if σ > 1, then ∂χ(α,σ)
∂α = −σ(1−γ)(1−θN )(σ−1)

[1+(σ−1)'(α)]2 < 0.

Fact 6: if σ ∈ (0, 1) , then ∂χ(α,σ)
∂α = −σ(1−γ)(1−θN)(σ−1)

[1+(σ−1)'(α)]2 > 0.

Facts 2 and 3 make the point that the sign of χ depends on the relative risk-aversion coefficient. The

remaining facts describe how χ is affected by this coefficient and by the degree of openness of the economy.

4 The Equilibrium Analysis Under a Contemporaneous Taylor

Rule

In this paper, we focus on rules that are active at the intended target steady state inflation rate, π∗. For the

time being passive rules will not be at the center of our discussion. For both the contemporaneous and the

forward looking policy set-ups, the equilibrium analysis is made of two parts. First we will check if active

interest rate rules are sufficient for the local determinacy of equilibrium of the target steady state. Active

rules have been strongly advocated by monetary economics academics as being simple, transparent and above

all stabilizing, in particular for what concerns closed economies. Then, we will question the robustness of

local results by studying the full global dynamics of the model.

We will start by analyzing active contemporaneous interest rate rules with respect to the CPI-inflation. In

order to motivate them we remember the estimations by Lubik and Schorfheide (2003) of contemporaneous

rules for United kingdom, Canada, Australia and New Zealand.

4.1 Local Analysis

From log-linearizing equation (29) around the target inflation rate we obtain

R̂t+1 =

Ã
1− χ

R∗−1
R∗

A −
χ

R∗−1

!
R̂t (33)

The following proposition summarizes the local determinacy of equilibrium analysis for contemporaneous

rules.

Proposition 1 Suppose the government follows an active contemporaneous interest rate rule given by Rt =

ρ(πt) with
ρ0(π∗)π∗

ρ(π* )
= A

R∗ > 1, with R∗ = π∗

β , and let χ be defined as in (30).

1. If σ ∈ (0, 1) then the model displays a unique local equilibrium.

2. Assume that σ > 1. If χ < 1
2(R

∗ − 1)
³
1 + R∗

A

´
then the model displays a unique equilibrium. On the

other hand, if χ > 1
2(R

∗ − 1)
³
1 + R∗

A

´
then the model displays multiple equilibria.

Proof. To prove this proposition we use (33). For 1 note that if σ < 1 then from Fact 2, we conclude
that χ < 0. This result and the zero bound on the nominal interest rate imply that χ

R∗−1 < 0. This inequality

and the assumption of an active rule, that is A
R∗ > 1, help us to see that

µ
1− χ

R∗−1
R∗
A −

χ
R∗−1

¶
> 1. But this means

that the mapping (33) becomes explosive. This feature of the mapping in conjunction with the fact that Rt
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is a non-predetermined variable imply that there exists a unique equilibrium that corresponds to the active

steady state.

For 2 note that if σ > 1 then from Fact 3 we derive that χ > 0. This result and the zero bound

on the nominal interest rate imply that χ
R∗−1 > 0. Since the rule is active, R∗

A < 1, we have to consider

three exclusive cases for the possible values of χ
R∗−1 . Case a:

χ
R∗−1 > 1; Case b: χ

R∗−1 < R∗

A and Case
c:R

∗

A < χ
R∗−1 < 1. We proceed by analyzing each case.

For case a, since χ
R∗−1 > 1 and R∗

A < 1, then R∗

A < 1 < χ
R∗−1 . These inequalities in turn imply

that 0 <
µ

1− χ
R∗−1

R∗
A −

χ
R∗−1

¶
< 1 which means that the mapping (33) becomes non-explosive. This feature of the

mapping in conjunction with the fact that Rt is a non-predetermined variable imply that there exist multiple

equilibria in which Rt converges asymptotically to its steady state.

For case b, since χ
R∗−1 <

R∗

A and R∗

A < 1, then we can derive that χ
R∗−1 <

R∗

A < 1. These inequalities in

turn imply that
µ

1− χ
R∗−1

R∗
A −

χ
R∗−1

¶
> 1, which means that the mapping (33) becomes explosive and by a similar

analysis to the one before we conclude that the model displays a unique equilibrium.

Finally for case c, since R∗

A < χ
R∗−1 < 1 then we can conclude that

µ
1− χ

R∗−1
R∗
A −

χ
R∗−1

¶
< 0. Moreover if

χ > 1
2(R

∗−1)
³
1 + R∗

A

´
then 0 < 1− χ

R∗−1 < −
R∗

A +
χ

R∗−1 , which in turn implies that −1 <
µ

1− χ
R∗−1

R∗
A −

χ
R∗−1

¶
< 0.

Therefore the mapping (33) becomes non-explosive and the model displays multiple equilibria. On the

other hand, if χ < 1
2(R

∗ − 1)
³
1 + R∗

A

´
then it is straightforward to prove that this inequality implies thatµ

1− χ
R∗−1

R∗
A −

χ
R∗−1

¶
< −1. Hence the aforementioned mapping becomes explosive and the model displays a unique

equilibrium.

Summarizing, we have that for σ > 1, if R
∗

A < 1 < χ
R∗−1 or

R∗

A < χ
R∗−1 < 1 with χ > 1

2 (R
∗−1)

³
1 + R∗

A

´
,

then there exists multiple equilibria. On the other hand, if χ
R∗−1 < R∗

A < 1 or R∗

A < χ
R∗−1 < 1 with

χ < 1
2(R

∗ − 1)
³
1 + R∗

A

´
then there exist a unique equilibrium. Hence part 2 of Proposition 1 follows.

The results stated in Proposition 1 point out that conditions under which contemporaneous interest rate

rules induce aggregate instability in the small open economy by generating local multiple equilibria depend

not only on the interest rate response coefficient to the CPI-inflation. They also depend on some structural

parameters such as the relative risk aversion coefficient, σ, and other parameters that affect χ such as the

degree of openness, α.

In particular, for a very low relative risk aversion coefficient (σ < 1) an active interest rate rule will

lead to a unique equilibrium regardless of the values of the other structural parameters of the model. On

the other hand, for a very high relative risk aversion coefficient (σ > 1), an active interest rate rule may

destabilize the economy depending on the values of some other structural parameters and how they affect χ.

As was mentioned above we are interested in understanding how the equilibrium dynamics of the small open

economy varies with respect to the relative risk aversion coefficient σ, and the degree of openness, α. In this

sense we defined the function χ (α, σ) . To grasp the role that α may play in the determinacy of equilibrium

analysis consider the following extreme cases as a first approximation. Assume that σ > 1 and that there is

a value for the degree of openness of the economy α̂ ∈ (0, 1) such that given the other structural parameters
we have that χ (α̂, σ) = 1

2(R
∗ − 1)

³
1 + R∗

A

´
. First, if the economy is extremely open, that is α → 1, then

χ→ 0 by Fact 1. Hence by part 2 of Proposition 1 the model displays a unique equilibrium. Second, if the
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economy is very closed namely α→ 0 then by Fact 5 we know that χ (0, σ) > χ (α̂, σ) = 1
2(R

∗−1)
³
1 + R∗

A

´
.

But by part 2 of Proposition 1 this means that the model displays multiple equilibria.

Focusing on the plane α vs σ we can derive formally the local equilibrium frontier, αI(σ). This frontier

divides the aforementioned plane into regions of values of the degree of openness, α, and the relative risk

aversion coefficient, σ, under which the model displays local multiple equilibria or a local unique equilibrium

for active contemporaneous interest rate rules. A sufficient and necessary condition for the existence of such

a frontier is the following.

Assumption 1: (1−γ)(1−θN )
1−γ(1−θN ) > 1

2(R
∗ − 1)

³
1 + R∗

A

´
.

Moreover define

χ(0, σ) ≡ (1− σ)(1− γ)(1− θN )

[1− γ(1− θN )] (1− σ)− 1 (34)

We are going to make this Assumption 1 and carry it throughout the paper, both for local and global

analysis. As can be seen the validity of this assumption depends on the parameter γ, among others, that

measures the importance of money for transaction purposes (more on this below).

The frontier αI(σ) is implicitly defined by χ(α, σ) = 1
2(R

∗−1)
³
1 + R∗

A

´
and using Assumption 1 we can

characterize it explicitly in the following proposition.

Proposition 2 Consider the plane α vs σ, define ΥI ≡ 1
2 (R

∗− 1)
³
1 + R∗

A

´
and let χ(0, σ) be defined as in

(34). Under Assumption 1 and σ > 1 the local equilibrium frontier

αI(σ) =

∙
1 +ΥI

µ
γ

1− γ

¶¸−1 ∙
1− ΥI

χ(0, σ)

¸

is a well-defined function, strictly increasing and concave for σ ≥ σI∗ > 1, where σI∗ ≡ 1+
h

ΥI

1−γ(1−θN )

i
h
(1−γ)(1−θN )

1−γ(1−θN ) −ΥI
i .

Moreover it satisfies lim
σ→σI∗

αI(σ) = 0 and lim
σ→∞

αI(σ) = αI∗, where αI∗ ≡ 1− ΥI

[1−ΥI(1−γ)](1−θN) ∈ (0, 1) .

Proof. See Appendix.
A graphical description of the local equilibrium frontier is given by Figure 2, with respect to the driving

parameters α and σ. From Figure 2 one might conclude that given σ < σI∗ the rule always guarantees a

local unique equilibrium as long as the government implements an active monetary policy. In addition one

might derive the same conclusion for very open economies (high α) and regardless of the relative risk aversion

coefficient.10 In other words, given the relative risk aversion coefficient, the more open the economy is the

more likely is that an active rule leads to a unique equilibrium. It is in this sense that an active interest rate

rule might be viewed as stabilizing11 .

10 In fact this result is more general since a quick inspection of Proposition 1 suggests that if the the economy is very open,

an active rule leads to a unique equilibrium regardless of the values of the other structural parameters.
11This result might seems controversial given some result from the closed economy literature on Taylor rules. In our model, as

the economy gets very closed (α→ 0), for sufficiently high risk aversion, active rules deliver indeterminacy (which contrasts with

the general optimistic view on aggressive targeting). However, as Benhabib et al. (2001a) have pointed out, the ability of active

rules to deliver stability depends on whether consumption and real money balances are complements or substitutes. In our

model, real money balances and consumption may be Edgeworth substitutes Ucm < 0 or Edgeworth complements Ucm > 0. Our

results for the extreme case of a closed economy are fairly consistent with the Benhabib et al. conclusions.
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Figure 2: Local equilibrium analysis for an active contemporaneous interest rate rule. This figure shows the

local equilibrium regions. M stands for local multiple equilibria and U stands for a local unique equilibrium.

α corresponds to the degree of openness of the economy and σ denotes the relative risk aversion coefficient.

By sticking to local dynamics, one might conclude that active rules are likely to deliver unique equilibria

(and therefore real stability) for most parametrizations. In particular, central banks seem to have an “easy”

task in quite open economies. The point of this paper is to show that this is not necessarily the case under

a global equilibrium analysis. The economy might be likely to end up on a variety of other dynamic paths,

all consistent with rational expectation equilibria. The next section pursues the analysis.

4.2 Global Dynamics

The global equilibrium dynamics for a contemporaneous rule are completely described by the following

non-linear difference equation

∙
Rt+1 − 1
Rt+1

¸χ ∙
R∗ − 1
Rt+1 − 1

¸R∗−1
A

=

∙
Rt − 1
Rt

¸χ
R∗

Rt
(35)

that characterizes the equilibrium path of the gross nominal interest rate Rt. The object of this section is

to study the equilibrium paths consistent with this difference equation. We will show how the degree of

openness (α) and the relative risk aversion coefficient (σ) are fundamental to understand the stability of the

steady state equilibria and the dynamic behavior of the non-stationary paths converging to them. To start

with, we are going to study both sides of (35). Let

K (Rt+1) =

∙
Rt+1 − 1
Rt+1

¸χ ∙
R∗ − 1
Rt+1 − 1

¸R∗−1
A

(36)

J (Rt) =

∙
Rt − 1
Rt

¸χ
R∗

Rt
(37)
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The dynamic equation is therefore summarized by

K (Rt+1) = J (Rt)

The multiple steady states result motivates us to look for saddle path connections between the low and the

high inflation stationary points. Clearly if K were monotonic we would have well-defined forward dynamics.

Well-defined backward dynamics would result if J were monotonic instead. Studying the behavior of those

two functions is therefore a first necessary step for global results.

Lemma 3 Consider the function J (R) defined in (37), with R > 1 (the zero-bound condition). The follow-

ings hold:

1. if σ ∈ (0, 1) , J (R) is strictly decreasing for R > 1 and for any α ∈ (0, 1) , with lim
R→1

J (R) = ∞ and

lim
R→∞

J (R) = 0;

2. if σ > 1, J (R) hump-shaped with a peak at RJ = 1 + χ > 1 for any α ∈ (0, 1) , with lim
R→1

J (R) =

lim
R→∞

J (R) = 0;

Proof. See Appendix.

In order to study the behavior of function K it is useful to define the properties of another function

defined as αp(σ). The reason is that this function that divides the plane α vs σ into two regions will define

the values of α and σ for which the function K is either strictly decreasing or hump-shaped. The function

αp(σ) is implicitly defined by χ(α, σ) = R∗−1
A and using Assumption 1 we can characterize it explicitly in

the following Lemma.12

Lemma 4 Consider the plane α vs σ, define Υp ≡ R∗−1
A and let χ(0, σ) be defined as in (34). Under

Assumption 1 and σ > 1 the frontier

αp(σ) =

∙
1 +Υp

µ
γ

1− γ

¶¸−1 ∙
1− Υp

χ(0, σ)

¸

is a well-defined function, strictly increasing and concave for σ ≥ σp∗ > 1 where σp∗ ≡ 1+
h

Υp

1−γ(1−θN )

i
h
(1−γ)(1−θN )

1−γ(1−θN ) −Υp
i .

Moreover it satisfies lim
σ→σp∗

αp(σ) = 0 and lim
σ→∞

αp(σ) = αp∗ where αp∗ ≡ 1 − Υp

[1−Υp(1−γ)](1−θN ) ∈ (0, 1). In
addition αp∗ > αI∗ and σp∗ < σI∗, where αI∗ and σI∗ were defined in Proposition 2.

Proof. See Appendix.
A graphical representation of the frontier αp(σ) can be seen in Figure 2. Using the definition of the

frontier αp(σ) in the plane α vs σ, it is possible to pursue the characterization of the function K in the

following manner.

Lemma 5 Consider the function K (R) defined in (36), with R > 1, and recall the definitions of αp(σ), σp∗,

and Υp in Lemma 4. The followings hold:
12 In the Lemma we use Assumption 1. This assumption is more than we need to have a well-defined function αp(σ). In fact

we only need that (1−γ)(1−θN )
1−γ(1−θN )

> R∗−1
A

. However we keep Assumption 1 to be able to compare the results from the local

equilibrium analysis with the results from the global equilibrium analysis.
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1. If σ ∈ (0, 1) , K (R) is strictly decreasing for R > 1 and for any α ∈ (0, 1) . Moreover lim
R→1

K(R) = ∞
and lim

R→∞
K(R) = 0;

2. Assume σ > 1 then

(a) for any σ ∈ (1, σp∗) and α ∈ (0, 1) or for any σ ∈ [σp∗,∞) such that α ≥ αp(σ), K (R) is strictly

decreasing;

(b) for any σ ∈ (σp∗,∞) such that α < αp(σ), K (R) is hump-shaped with a peak at RK = χA
R∗−1 > 1.

Proof. See Appendix.
We can now define some parametric zones with respect to α and σ within which the equilibrium dynamics

will be extensively studied. In order to accomplish this task it is important to notice the following. For the

values of the parameters α and σ defined in part 2(a) of Lemma 5, J (R) peaks at RJ = 1+ χ and K (R) is

monotonically decreasing with respect to R. From the steady state analysis we know that they meet twice, at

the target interest rate R∗ and at RL < R∗. The higher steady state has to occur on the decreasing portion

of the function J (R) . The lower steady state intersection can instead occur both above, below or at RJ

(namely, both on the increasing, decreasing or peaking portion of J). In other words we can have RL R RJ .

The equilibrium dynamics will be substantially different according to which case we will be considering.

Since RJ = 1+ χ (α, σ) we need to study the parametric ranges of α and σ over which 1 + χ (α, σ) R RL or

equivalently χ (α, σ) R RL − 1. This implies we have to define a new frontier or curve αT (σ) that describes
the values of α and σ such that χ (α, σ) = RL − 1.
We will also make another assumption that seems empirically reasonable13 .

Assumption 2: R∗ − 1 > A
¡
RL − 1

¢
.

Using Assumptions 1 and 2 we can characterize the frontier αT (σ) in the following Lemma.

Lemma 6 Consider the plane α vs σ, define ΥT ≡ RL − 1 and let χ(0, σ) be defined as in (34). Under
Assumptions 1, 2 and σ > 1 the frontier

αT (σ) =

∙
1 +ΥT

µ
γ

1− γ

¶¸−1 ∙
1− ΥT

χ(0, σ)

¸

is a well-defined function, strictly increasing and concave for σ ≥ σT∗ > 1 where σT∗ ≡ 1+
h

ΥT

1−γ(1−θN )

i
h
(1−γ)(1−θN )

1−γ(1−θN ) −ΥT
i .

Moreover it satisfies lim
σ→σT∗

αT (σ) = 0 and lim
σ→∞

αT (σ) = αT∗, where αT∗ ≡ 1− ΥT

[1−ΥT (1−γ)](1−θN) ∈ (0, 1) . In
addition αT∗ > αp∗ and σT∗ < σp∗, where αp∗ and σp∗ were defined in Lemma 4.

Proof. See Appendix.
Figure 2 shows the αT (σ) frontier. With this figure we can study the regions for which RJ = 1+χ (α, σ) R

RL. Note that since αT (σ) describes all the feasible combinations of σ and α such that χ (α, σ) = RL−1 then
we can pursue the following analysis. Take a pair (σT , αT ) such that χ

¡
αT , σT

¢
= RL−1. Given Fact 5 any

α ≥ αT implies that χ
¡
α, σT

¢
≤ χ

¡
αT , σT

¢
= RL − 1. But this implies that RJ = 1 + χ

¡
α, σT

¢
≤ RL. In

other words for any σ ≥ σT∗ and any α ≥ αT (σ), we have that the function K (R) meets twice the function

13 It can be shown that this requires R∗ > A
R∗−1
A

h
1 + R∗−1

A

i
.
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J (R) in its decreasing part. This analysis, Lemmas 4 and 6 and Propositions 3 and 5 allow us to divide the

parametric space α vs σ into 6 zones:14

1. Zone 1: σ ∈ (0, 1) and α ∈ (0, 1) . Both J (R) and K (R) are strictly decreasing and meet twice.

2. Zone 2: σ ∈ (1, σT∗) and α ∈ (0, 1) . K (R) is strictly decreasing and J (R) is hump-shaped but K (R)

cuts J (R) at RL and R∗, both on the decreasing side of J (R) .

3. Zone 3: σ ≥ σT∗ and α ∈ [αT (σ), 1). The properties of K (R) and J (R) are the same as in Zone 2,

with RL = RJ over αT (σ).

4. Zone 4: σ ∈ (σT∗, σp∗) and α ∈ (0, αT (σ)). K (R) is strictly decreasing and J (R) is hump-shaped. But

K (R) cuts J (R) at RL < RJ and R∗ > RJ .

5. Zone 5: σ ≥ σp∗ and α ∈ [αp (σ) , αT (σ)). The properties of K (R) and J (R) are the same as in Zone

4.

6. Zone 6: σ > σp∗ and α ∈ (0, αp (σ)). Both J (K) and K (R) are hump-shaped.

The next step is to show that within each of those zones we can face very different dynamics. We will be

spelling out clearly what additional assumptions (mostly sufficient ones) will be needed to get endogenous

cycles and chaotic dynamics. The point of this work is in fact to show that rich dynamics are likely to occur

not that they occur for sure. We will be focusing on equilibrium dynamics for initial conditions between the

two steady states

From simple inspection of the parametric zones it looks like we have left the case σ = 1 out of the picture.

This is the standard log-utility case, where utility is separable with respect to all its arguments. It can be

easily shown that in that case no interesting dynamics will occur other than the standard closed economy

liquidity trap of Benhabib, Schmitt-Grohé and Uribe (2002). Technically it is important to clarify that in our

model a standard liquidity trap corresponds to a case in which given an initial nominal interest rate between

the two steady-states, the nominal interest rate converges monotonically to the lower steady-state. We refer

to this case as a liquidity trap following Benhabib et al (2001b, 2002). They argue that the dynamical

features of the aformentioned converging path resembles the dynamical properties of a standard liquidity

trap.

We start by showing the possibility of liquidity traps.

Proposition 7 Standard liquidity traps or deflationary paths, i.e. interest rate equilibrium paths converging

asymptotically to the lower steady state for any R0 ∈
¡
RL, R∗

¢
, occur if the pair (σ,α) belongs either to

Zone 1,2, or 3 (see Figure 3 and use the aforementioned definitions of the zones).

Proof. The result follows straight from showing that the mapping Rt+1 = f (Rt) for Rt ∈
¡
RL, R∗

¢
has

the following features: 1) f 0 (Rt) > 0 for any Rt > 1; 2) f 0 (R∗) > 1; 3) f 0
¡
RL
¢
< 1; 4) f (Rt) < Rt (a simple

graph makes the arguments clear). Point 1) follows from applying the Implicit Function Theorem: f 0 (Rt) =
J0(Rt)
K(Rt+1)

< 0. Point 2) and 3) follow from computing J0(Rt)
K(Rt+1)

at Rt+1 = Rt = R∗ and Rt+1 = Rt = RL. To

prove point 4) take R0 ∈
¡
RL, R∗

¢
. R0 = f (R0) is defined by K (R0) = J (R0) . But also K (R0) < J (R0) .

14Although these zones are not marked in Figure 2, this figure is still useful to understand the definition of the zones.
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Figure 3: Graphs of the functions J and K to study the dynamics of the model in Zones 1, 2, and 3. See

Proposition 7. This is the standard liquidity traps case. Dynamics are similar if the leftmost crossing point

of J and K was to the right of function J ’s peak

Since K is monotonically decreasing R0 = f(R0) < R0. Since R0 was taken arbitrarily, the result follows.

The sequence Rt is then monotonically decreasing within the closed and compact set
£
RL, R∗

¤
. Therefore it

should converge to a point within the set. The unique stationary point below R0 is RL. A standard liquidity

trap occurs: the economy is driven asymptotically to the passive (low inflation) steady state.

The next few propositions will focus on Zone 4 and 5. Within these zones K is monotonically decreasing.

Forward dynamics are then well defined. However, the hump-shaped behavior of J creates opportunities

for complex erratic paths. For degrees of openness and risk aversion within those ranges defined in the

aformentioned zones we will show that both two-period cycle equilibria and chaotic dynamics (cyclical orbits

of any periodicity) are possible.

It is important to observe that the parametric zones defined above do not divide the parametric space α

vs σ between “zones with standard liquidity traps occurring with probability one” and “zones with cycles and

chaos occurring with probability one”. Zones 1, 2, and 3 simply can not have cyclical or chaotic equilibria.

A necessary (but not sufficient) condition for oscillating equilibria to occur is that the implicitly forward

looking mapping defined in (35) be not monotonic. That is, it must have at least one critical point: a peak

or a trough. Clearly those zones 1, 2 and 3 do not display these feature over the range
¡
RL, R∗

¢
. More

formally, within zones 4 and 5 we will be looking for some kind of “flip bifurcations”, namely for parameters

defining thresholds above/below which the steady states loose/gain stability. 15

In order to proceed with the analysis, define R and eR implicitly as follows:

15Another kind of bifurcation would be to check for parametric thresholds such that we observe the appearance and disap-

pearance of steady states. Clearly this can not be the case here over the “risk aversion-openness space” since steady states have

been shown to depend solely on monetary policy parameters.
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K (R) = J
¡
RJ
¢
⇔ R = f

¡
RJ
¢

K
³ eR´ = J (R∗)⇔ R∗ = f

³ eR´
Given the fact that for zones 4 and 5K (R) is monotonically decreasing and that within these zones RL < RJ ,

we have that R < RJ . The hump-shaped J (R) guarantees that eR < R∗ (see Figure 4). We have to consider

the three cases R R eR separately. The idea here is to show that an attractive set exists under different

parametrizations and that within such a set cycles and chaos are likely to occur.

Assumption 316 : fmin = f
¡
RJ
¢
≥ eR

Proposition 8 If Assumption 3 is satisfied, the followings hold:

1. The mapping f is such that f : [R,R∗]→ [R,R∗] . Moreover for any Rt ∈
³ eR,R´ , Rt ∈ (R,R∗) .

2. Period 2 cycles exists within such set.

3. Topological chaotic dynamics, in a Li-Yorke sense are possible.

Proof.

1. The proof is trivial and therefore omitted.

2. Define a function g (R) = R− f2 (R) . We need to distinguish between the two cases in Assumption 3:

a) f
¡
RJ
¢
= eR; b) f ¡RJ

¢
> eR.

(a) In this case eR,R and the set invariant under mapping f is therfore h eR,R∗i . It should be clear that
g
¡
RL
¢
= g (R∗) = 0, g

¡
RJ
¢
< 0 and g

³ eR´ < 0. Furthermore g0
¡
R
¢
= 1 −

£
f 0
¡
R
¢¤2

, R being

either one of the two steady states. This implies that g0 (R∗) < 0 since f 0 (R∗) = J(R∗)
K(R∗) =

A
R∗ > 1.

Since the mapping f is continous, there exists a point Ru ∈
¡
RJ , R∗

¢
such that g (Ru) = 0. The

period-2 cycle is then {Rl, Ru} , with Rl = f (Ru) ∈
¡
R,RL

¢
(this is left to the reader).

(b) The set invariant under mapping f is now [R,R∗] . As in case a), g
¡
RL
¢
= g (R∗) = 0, and

g0 (R∗) < 0. But now g (R) ≤ 0 and g
¡
RJ
¢
R 0 If g

¡
RJ
¢
= 0, the period-2 cycle is

©
RJ , R

ª
.

If it is g
¡
RJ
¢
< 0, then as before there exists a point Ru ∈

¡
RJ , R∗

¢
such that g (Ru) = 0.

However, if g
¡
RJ
¢
> 0, there is no guarantee that the function g has an additional zero. A

sufficient (but not necessary) condition is that g0
¡
RL
¢
< 0. But this is simply the requirement

that 1 −
£
f 0
¡
RL
¢¤2

< 0, which occurs if f 0
¡
RL
¢
=

J(RL)
K(RL) < −1. It can be shown that such

sufficient assumption is satisfied for χ > 0.5
h
RL

³
1 + R∗−1

A

´
− 1
i
. This implies the existence of

a point Ru ∈
¡
RL, RJ

¢
such that g (Ru) = 0.

16 If fmin = f
¡
RJ
¢
< eR there is not non-trivial mapping-invariant set. This case displays a different type of multiplicity.

It can be shown that there exist set of point within the mapping-invariant set that leave such a set after a finite number of

iterations, and settle to an exploding path diverging from the active steady state. More detailed results are available from the

authors upon request.
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Figure 4: Graphs of the functions J and K to study the dynamics of the model in Zones 4 and 5, with R̃ =R
¯
.

See Proposition 8.

3. Define a function h (R) = R−f3 (R) . Again we need to distinguish between the two cases in Assumption
3: a) f

¡
RJ
¢
= eR; b) f ¡RJ

¢
> eR.

(a) It should be clear that h
¡
RL
¢
= h (R∗) = 0, h

¡
RJ
¢
< 0, h

³ eR´ < 0. and h0 (R∗) < 0 We

show that the Li-Yorke sufficient condition for the existence of topological chaos is satisfied. Let

Rc ∈
¡
RJ , R∗

¢
be such that K

¡
RJ
¢
= J (Rc) , in other words Rc is the pre-image of RJ . We will

have that RJ = f (Rc) , R = f2 (Rc) < RJ < Rc and R∗ = f3 (Rc) > Rc. The Li-Yorke sufficient

condition is satisfied. Furthermore, since the function h is continous, h
¡
RJ
¢
< 0 and h0 (R∗) < 0,

it follows that h
³ bR´ = 0 for some bR ∈ ¡RJ , R∗

¢
. A period-3 cycles exists and by Sarkovskii’s

Theorem cycles of any orbit exist.

(b) As above h
¡
RL
¢
= h (R∗) = 0 and h0 (R∗) < 0. But now h

¡
RJ
¢
R 0. Obviously, if h

¡
RJ
¢
= 0

the period-3 cycle is
©
RJ , R, f (R)

ª
. If h

¡
RJ
¢
< 0 by continuity of the function there exists a

zero of h between RJ and R∗, and since h0
¡
RL
¢
> 0 there is also a zero between RL and RJ . In

any case a period-3 cycles occurs. In both cases because of Sarkovskii’s Theorem cycles of any

periodicity exist. Furthermore by Li-Yorke there exist chaotic dynamics: period 3 implies chaos.

However, if h
¡
RJ
¢
> 0 there is no guarantee that cycles of period 3 and/or of any higher order

exist. Therefore h
¡
RJ
¢
≤ 0 is sufficient to have chaotic dinamics.

To conclude, in this section we showed that apart from standard liquidity traps, active contemporaneous

interest rate rules in small open economies can generate very complex dynamics for plausible parametric

ranges. We showed that contemporaneous inflation targeting can produce both monotonically and cyclically

deflationary paths (the latter not converging to any stationary point).
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Figure 5: Graphs of the functions J and K to study the dynamics of the model in Zones 4 and 5, with R̃ <R
¯
.

See Proposition 8.

The reader has probably noticed that we did not cover zone 6 in details. Within this zone both the K and

the J functions are hump-shaped. This case is isomorphic to the case studied by Benhabib, Schmitt-Grohé

and Uribe (2002) in the closed economy set-up. It can be easily shown that under some assumptions chaotic

dynamics and cycles can arise around the active steady state. The proofs of this results are omitted in this

version of the paper but are available upon request from the authors.

4.3 Local Uniqueness vs. Global Multiplicity

To what extent local and global dynamics analyses can lead to conflicting results? Figure 6 puts together

our local and global analysis results.

By sticking to local dynamics (around the target steady state), we would conclude that the “Taylor

principle” of active monetary policy leads to stability for any degree of openness, α, as long as the relative

risk aversion coefficient, σ, stays below a threshold σI∗ with σI∗ > 1; and for any degree of openness above

some function αI(σ) with domain σ ∈ [σI∗,∞).
On the other hand, by studying the whole dynamics we found that within those local uniqueness ranges,

monotonic deflations, cyclical and chaotic equilibria can occur. It is interesting to see how openness affects

the dynamics for σ > σp∗. For very closed economies, cycles/chaos around the active steady state can occur.

In other words, the economy is highly unstable but without risks of falling into deflationary paths. As the

economy opens more, specifically above some threshold αp(σ), the probability of entering vicious deflationary

spirals become positive. The economy is not only highly unstable but might end up in a liquidity trap (cyclical

or monotonic). In other words, given the coefficient of relative risk aversion, we have shown that the more

open the economy is, the more likely is that a contemporaneous active rule will drive the economy into a

liquidity trap. On the other hand, the more closed the economy is, the more likely is that the same rule will
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Figure 6: Equilibrium analysis for an active contemporaneous interest rate rule. This figure shows a compar-

ison between the local equilibrium analysis and the global equilibrium analysis. M stands for local multiple

equilibria and U stands for a local unique equilibrium. α corresponds to the degree of openness of the

economy and σ denotes the relative risk aversion coefficient.

lead to cycles and chaotic dynamics around the inflation target.

We can confirm these theoretical results pursuing a calibration-simulation exercise. We set the time unit

to be a quarter and use Canada as the representative economy. From Mendoza (1995) we borrow the labor

income shares for the non-traded sector θN . The steady-state inflation, π∗, and the steady state nominal

interest rate, R∗, are calculated as the average of the CPI-inflation and the Central Bank discount rate

between 1983-2002. Then the subjective discount rate is calculated as β = π∗/R∗. We use the estimate of

Lubik and Schorfheide (2003) for the Canadian interest rate response coefficient to inflation, A
R∗ . Estimates

for the share of expenditures on real money balances, 1− γ, for Canada are not available.17 For the United

States, estimates of this parameter vary from 0.0146 to 0.039 depending on the specification of the utility

function and method of estimation.18 We set 1− γ equal to 0.03 and will pursue a sensitivity analysis with

respect to this parameter. Table 2 presents the values of the parameters.

Table 2: Parametrization

θN β π∗ R∗ 1− γ A
R∗

0.56 0.99 1.031
1
4 1.072

1
4 0.032 2.24

In our analysis we will vary the degree of openness of the economy, α, and the relative risk aversion

17 Imrohoroglu (1994) presents some estimates of currency substitution between the Canadian dollar and the U.S. dollar, but

in our model only domestic money enters into the utility function.
18 See Poterba and Rotemberg (1987), Finn, Hoffman and Schlagenhauf (1990) and Holman (1998).
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coefficient, σ. However an estimate for Canada of the former parameter can be obtained using the average

imports to GDP share during 1983-2002. This yields α = 0.31. In contrast an estimate of the relative risk

aversion coefficient is more difficult to obtain. The RBC literature usually sets this parameter to 2.19 Since

setting this parameter immediately implies to assume that consumption and real money balances are either

Edgeworth substitutes or complements we will use different values. That is σ ∈ {0.8, 2, 2.5} .
Using this parametrization we can show quantitatively how misleading the local equilibrium analysis for

active contemporaneous rules is. Setting σ = 2.5 and using the parameters in Table 2 we can calculate

σI∗ = 3.14. Since σ = 2.5 < σI∗ = 3.14 then doing a local equilibrium analysis and using Figure 6 we

would conclude that the active contemporaneous rule is not destabilizing since it leads to a unique local

equilibrium. However the global equilibrium analysis conveys a different message. In Figure 7 we present the

global dynamics of the model for different degrees of openness α ∈ {0.01, 0.37, 0.90} . It basically shows the
first three iterates of the difference equation (29), which describes the equilibrium dynamics for the nominal

interest rate. In all the panels the straight line corresponds to the 45o degree line. In particular notice

that for α = {0.01, 0.37} , almost closed and open economies respectively, the second and third iterates,
Rt+2 = f2(Rt) and Rt+3 = f3(Rt), have fixed points different from the steady state values R∗ and RL.

This implies that there exist two and three period cycles. By Sarkovskii’s (1964) theorem, the existence

of three-period cycles implies that the map F has cycles of any periodicity. Furthermore by Li and Yorke

(1975), the existence of three-period cycles implies chaos. However it is important to observe that there

is a difference in terms of the dynamics of the almost closed economy (α = 0.01) and the open economy

(α = 0.37). Whereas in the former cycles and chaos arise around the active steady state. In the latter these

types of dynamics are present around the passive steady state. On the other hand for very open economies

(α = 0.90), no cycles and chaotic dynamics appear. Only deflationary paths (liquidity traps) converging to

the passive steady state are possible.

Finally, it is important to mention the relevance of Assumption 2 in the global analysis. This assumption

assures the existence of cycles and chaos around the passive steady state. If we relax it, that is if we assume

that R∗ − 1 ≤ A
¡
RL − 1

¢
, then the aforementioned dynamics are not present in the global analysis. In

other words, the model only displays standard liquidity traps and cycles and chaos around the active steady

state.

5 The Equilibrium Analysis Under a Forward- Looking Taylor

Rule

We proceed to study forward-looking interest rate rules with respect to the CPI-inflation. In order to motivate

them we remember the estimations by Clarida Gali and Gertler (1998) of forward-looking rules for United

kingdom, Germany, France, Italy and Japan; and the estimations by Corbo(2000) for Chile, Colombia, Peru,

Costa Rica and El Salvador.
19See Mendoza (1991) among others.
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Figure 7: Active Contemporaneous Interest Rate Rules. This graph shows that depending on the degree of

openness of the economy (α) two-period cycles and three-period cycles around the active and the passive

steady states are possible.

5.1 Local Analysis

In order to pursue a local determinacy of equilibrium analysis for forward-looking interest rate rules we

log-linearize equation (31) around the target steady states R∗. This yields

R̂t+1 =

"
1 +

R∗

A − 1
χ

R∗−1

#
R̂t (38)

The following proposition summarizes the local determinacy of equilibrium analysis for forward-looking rules.

Proposition 9 Suppose the government follows an active forward-looking interest rate rule given by Rt =

ρ(πt+1) with ρ0(π∗) =
βA
π∗ =

A
R∗ > 1 and let χ be defined as in (30),

1. if σ < 1 then the model displays a unique equilibrium.

2. assume that σ > 1. If χ < 1
2 (R

∗ − 1)
³
1− R∗

A

´
then the model displays a unique equilibrium. On the

other hand, if χ > 1
2(R

∗ − 1)
³
1− R∗

A

´
then the model displays multiple equilibria.

Proof. To prove this proposition we use (38). For 1 note that if σ < 1 then from Fact 2, we conclude
that χ < 0. This result and the zero bound on the nominal interest rate imply that χ

R∗−1 < 0. This inequality

and the assumption of an active rule, that is A
R∗ > 1, help us to see that

µ
1 +

R∗
A −1
χ

R∗−1

¶
> 1. But this means

that the mapping (38) becomes explosive. This feature of the mapping in conjunction with the fact that Rt
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is a non-predetermined variable imply that there exists a unique equilibrium that corresponds to the active

steady state.

For 2 note that if σ > 1 then from Fact 3 we derive that χ > 0. This result and the zero bound

on the nominal interest rate imply that χ
R∗−1 > 0. This inequality and the assumption that the rules is

active, R∗

A < 1, lead us to conclude that
µ
1 +

R∗
A −1
χ

R∗−1

¶
< 1. This means that in order for an active forward-

looking rule to induce a unique equilibrium (for the mapping 38 to become explosive) it is necessary thatµ
1 +

R∗
A −1
χ

R∗−1

¶
< −1. If χ < 1

2(R
∗ − 1)

³
1− R∗

A

´
then R∗

A − 1 < −2
χ

R∗−1 and therefore
µ
1 +

R∗
A −1
χ

R∗−1

¶
< −1.

On the other hand, if χ > 1
2(R

∗−1)
³
1− R∗

A

´
then it is straightforward to prove that this inequality implies

that −1 <

µ
1− χ

R∗−1
R∗
A −

χ
R∗−1

¶
< 1. Hence the aforementioned mapping becomes non-explosive and the model

displays a multiple equilibria.

As in the contemporaneous interest rate rule analysis, Proposition 9 points out that conditions under

which active forward-looking interest rate rules lead to multiple equilibria in the small open economy depend

on some structural parameters such as the relative risk aversion coefficient σ and the parameters that affect

χ. In particular, for a very low relative risk aversion coefficient (σ < 1) an active interest rate rule will

lead to a unique equilibrium regardless of the values of the other structural parameters of the model. On

the other hand, for a very high relative risk aversion coefficient (σ > 1), an active interest rate rule may

destabilize the economy depending on the values of some other structural parameters and how they affect χ.

As was mentioned above we are interested in understanding how the equilibrium dynamics of the small open

economy varies with respect to the relative risk aversion coefficient σ, and the degree of openness, α. In this

sense we defined the function χ (α, σ) . To grasp the role that the degree of openness of the economy, α, may

play in the determinacy of equilibrium analysis consider the following extreme cases as a first approximation.

Assume that σ > 1 and that there is a value for the degree of openness of the economy α̂ ∈ (0, 1) such that
given the other structural parameters we have that χ (α̂, σ) = 1

2(R
∗ − 1)

³
1− R∗

A

´
. First, if the economy is

extremely open, that is α → 1, then χ→ 0 by Fact 1. Hence by part 2 of Proposition 9 we conclude that
the model displays a unique equilibrium. Second, if the economy is very closed namely α→ 0, then by Fact
5 we know that χ (0, σ) > χ (α̂, σ) = 1

2(R
∗ − 1)

³
1− R∗

A

´
. But by part 2 of Proposition 9 this means that

the model displays multiple equilibria.

As we did before for the local analysis of contemporaneous, it is possible to derive formally the local

equilibrium frontier, αd(σ), on the plane α vs σ. This frontier divides the aforementioned plane into values

of the degree of openness, α, and the relative risk aversion coefficient, σ, under which the model displays

multiple local equilibria or a unique local equilibrium for active forward-looking interest rate rules.

The frontier αd(σ) is implicitly defined by χ(α, σ) = 1
2(R

∗−1)
³
1− R∗

A

´
and using Assumption 1 we can

characterize it explicitly in the following proposition.

Proposition 10 Consider the plane α vs σ, define Υd ≡ 1
2(R

∗ − 1)
³
1− R∗

A

´
and let χ(0, σ) be defined as

in (34). Under Assumption 1 and σ > 1 the local equilibrium frontier

αd(σ) =

∙
1 +Υd

µ
γ

1− γ

¶¸−1 ∙
1− Υd

χ(0, σ)

¸
is a well-defined function, strictly increasing and concave for σ ≥ σd∗ > 1 where σd∗ ≡ 1+

h
Υd

1−γ(1−θN )

i
h
(1−γ)(1−θN )

1−γ(1−θN ) −Υd
i .
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Figure 8: Local equilibrium analysis for an active forward-looking interest rate rule. This figure shows the

local equilibrium regions. M stands for local multiple equilibria and U stands for a local unique equilibrium.

α corresponds to the degree of openness of the economy and σ denotes the relative risk aversion coefficient.

Moreover lim
σ→σd∗

αd(σ) = 0 and lim
σ→∞

αd(σ) = αd∗, where αd∗ ≡ 1− Υd

[1−Υd(1−γ)](1−θN ) ∈ (0, 1) .

Proof. See Appendix.
Figure 8 presents the frontier αd(σ). In particular this figure shows that for σ < σd∗ the forward-looking

rule guarantees a unique equilibrium. In addition it is possible to observe that for σ > σd∗, the more open

the economy is (higher α) the more likely is that an active rule leads to a unique equilibrium. This reinforces

the idea that even in the case of forward-looking rules an active rule might be viewed as stabilizing for some

open economies. However as was pointed out this view may be misleading. As we will show in the global

analysis of the equilibrium, active forward-looking rules may also generate deflationary paths and cyclical

and chaotic dynamics.

5.2 Global Dynamics

As was said before the following difference equation summarizes the dynamics of our model under forward-

looking interest rate rules:

µ
Rt+1 − 1
Rt+1

¶χ
=

R∗

(R∗ − 1)
R∗−1
A

(Rt − 1)χ+
R∗−1
A

R1+χt

(39)

where χ was defined in (30). We will define the left hand-side and the right hand side of equation (39) as

Kf (R) and Jf (R) respectively. In order to study the behavior of function Jf (R) it is useful to define the

properties of another function defined as αv(σ). The reason is that this function that divides the plane α vs

σ into two regions will define the values of α and σ for which the function Jf is either strictly decreasing
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or hump-shaped. The function αv(σ) is implicitly defined by χ(α, σ) = 1−R∗
A and can be characterized

explicitly in the following Lemma.

Lemma 11 Consider the plane α vs σ, define Υv ≡ 1−R∗
A < 0 and let χ(0, σ) be defined as in (34),

1. if (1−γ)γ > −Υv then the frontier

αv(σ) =

∙
1 +Υv

µ
γ

1− γ

¶¸−1 ∙
1− Υv

χ(0, σ)

¸
is strictly decreasing and concave for σ < 1.Moreover lim

σ→σv∗
αv(σ) = 0, lim

σ→0
αv(σ) = 1, and lim

σ→1−
αv(σ) =

−∞ where σv∗ ≡
h
1−Υ

vγ
1−γ

i
∙
1−Υ

v [1−γ(1−θN )]
(1−γ)(1−θN )

¸ satisfying 0 < σv∗ < 1.

2. if (1−γ)γ < −Υv then αv(σ) never crosses the region α ∈ (0, 1) vs σ ∈ (0,∞).

Proof. See the Appendix.
Figure 9 shows the frontier αv(σ) in the plane α vs σ.We can use it and the previous lemma to characterize

the behavior of the function Jf (R).

Lemma 12 Recall the definitions of αv(σ), σv∗ and Υv in the Lemma 11 and assume (1−γ)
γ > −Υv. The

function Jf (R) = R∗

(R∗−1)
R∗−1
A

(R−1)χ+
R∗−1
A

R1+χ has the following features:

1. It is always positive for any R > 1 with lim
R→1

Jf (R) = 0 and lim
R→∞

Jf (R) = 0.

2. For any σ > 0 and α > αv(σ) the function Jf (R) is hump-shaped with a peak at RJf = 1+χ

1−R∗−1
A

> 1.

3. For σ ∈ (0, σv∗] and α ≤ αv(σ) the function Jf (R) is strictly decreasing.

Proof. See the Appendix.

Lemma 13 The function Kf (R) =
£
R−1
R

¤χ
has the following features:

1. It is always positive for any R > 1;

2. For σ ∈ (0, 1), the function Kf (R) is strictly decreasing with lim
R→1

Kf (R) =∞ and lim
R→∞

Kf (R) = 1.

3. For σ > 1, the function Kf (R) is strictly increasing with lim
R→1

Kf (R) = 0 and lim
R→∞

Kf (R) = 1.

Proof. See the Appendix.
As was done for the analysis of contemporaneous rules we can now define some parametric zones with

respect to α and σ within which equilibrium dynamics will be extensively studied. In order to accomplish

this task it is important to notice the following. From Lemmas 12 and 13 it is clear that for α ∈ (0, 1)
and σ ∈ (0, 1), Jf (R) may have a peak at RJf = 1+χ

1−R∗−1
A

and Kf (R) is monotonically decreasing with

respect to R. In addition, from the steady state analysis we know that Jf (R) and Kf (R) meet twice, at

the target interest rate R∗ and at RL < R∗. On one hand the higher steady state has to occur on the
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decreasing side of the function Jf (R) . On the other hand, the lower steady state intersection can occur

above, below or at RJf (namely, on the increasing part, decreasing part or at the peak of Jf (R)). In other

words we can have RL R RJf . The equilibrium dynamics will be affected by the case we consider. Since

RJf = 1+χ

1−R∗−1
A

we need to study the parametric ranges of α and σ over which RL R 1+χ

1−R∗−1
A

or equivalently

χ (α, σ) R
³
1− R∗−1

A

´
RL − 1. This implies we have to define a new frontier or curve αw(σ) that describes

the values of α and σ such that χ (α, σ) =
³
1− R∗−1

A

´
RL − 1. Note that since we are focusing on the case

that σ ∈ (0, 1) then by Fact 2 we know that χ (α, σ) < 0 which in turn implies that we are only interested
on cases for which

³
1− R∗−1

A

´
RL − 1 < 0 is valid.

Using Assumptions 2 we can characterize the frontier αw(σ) in the following Lemma.

Lemma 14 Consider the plane α vs σ, define Υw ≡
³
1− R∗−1

A

´
RL − 1, Υv ≡ 1−R∗

A and let χ(0, σ) be

defined as in (34). Under Assumption 2 and (1−γ)
γ > −Υv, the frontier

αw(σ) =

∙
1 +Υw

µ
γ

1− γ

¶¸−1 ∙
1− Υw

χ(0, σ)

¸
is strictly decreasing and concave for σ < 1. Moreover lim

σ→σw∗
αw(σ) = 0, lim

σ→0
αw(σ) = 1, and lim

σ→1−
αw(σ) =

−∞, where σw∗ ≡
h
1−Υ

wγ
1−γ

i
∙
1−Υ

w[1−γ(1−θN )]
(1−γ)(1−θN )

¸ satisfying 0 < σw∗ < σv∗ < 1, and σv∗ was defined in Lemma 11.

Figure 9 presents a graphical representation of the αw(σ) frontier. Using this frontier we can study the

regions on the α vs σ plane for which RL R RJf ≡ 1+χ

1−R∗−1
A

. Note that since αw(σ) describes all the feasible

combinations of σ and α such that χ (α, σ) =
³
1− R∗−1

A

´
RL− 1 then we can pursue the following analysis.

Take a pair (σw, αw) such that χ (αw, σw) =
³
1− R∗−1

A

´
RL − 1. Given Fact 6 any α ≤ αw implies that

χ (α, σw) < χ (αw, σw) =
³
1− R∗−1

A

´
RL − 1. But this implies that RJf = 1+χ(α,σw)

(1−R∗−1
A )

≤ RL. In other words

for any σ ≤ σw∗ and any α ≤ αw(σ), we have that the function Kf (R) meets twice the function Jf (R) in

its decreasing part. This particular feature of these functions becomes important to prove that cycles and

chaotic dynamics are not possible.

Moreover from Lemmas 12 and 13 it is possible to see that for α ∈ (0, 1) and σ > 1, Jf (R) has a

peak at RJf = 1+χ

1−R∗−1
A

and Kf (R) is monotonically increasing with respect to R. In addition, from the

steady state analysis we know that Jf (R) and Kf (R) meet twice, at the target interest rate R∗ and at

RL < R∗. The lower steady state, RL occurs on the increasing part of the function Jf (R) . But the higher

steady state, R∗ may occur above, below or at RJf (namely, on the decreasing part, increasing part, or at

the peak of Jf (R)). In other words we can have RJf R R∗. The equilibrium dynamics will be affected by

the case we consider. Since RJf = 1+χ

1−R∗−1
A

we need to study the parametric ranges of α and σ over which

1+χ

1−R∗−1
A

R R∗ or equivalently χ (α, σ) R
³
1− R∗−1

A

´
R∗ − 1. This implies we have to define a new frontier

or curve αa(σ) that describes the values of α and σ such that χ (α, σ) =
³
1− R∗−1

A

´
R∗ − 1 or equivalently,

χ (α, σ) = (R∗ − 1)
³
1− R∗

A

´
> 0.

The following lemma characterizes the frontier αk(σ).
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Lemma 15 Consider the plane α vs σ, define Υk ≡ (R∗−1)
³
1− R∗

A

´
and let χ(0, σ) be defined as in (34).

If σ > 1 and (1−γ)(1−θN)
1−γ(1−θN) > Υk then the local equilibrium frontier

αk(σ) =

∙
1 +Υk

µ
γ

1− γ

¶¸−1 ∙
1− Υk

χ(0, σ)

¸

is a well-defined function, strictly increasing and concave for σ ≥ σk∗ > 1 where σk∗ ≡ 1+
h

Υk

1−γ(1−θN )

i
h
(1−γ)(1−θN )

1−γ(1−θN )
−Υk

i .
Moreover lim

σ→σk∗
αk(σ) = 0, lim

σ→∞
αk(σ) = αk∗, σk∗ > σd∗ and αk∗ < αd∗ where αk∗ ≡ 1− Υk

[1−Υk(1−γ)](1−θN) ∈
(0, 1) ; and σd∗ and αd∗ were defined in Proposition 10.

Proof. See Appendix.

A graphical representation of αk(σ) can be found in Figure 9. Using this frontier it is possible to study

the regions on the α vs σ plane for which R∗ R RJf ≡ 1+χ

1−R∗−1
A

. To do so, it is important to observe

that since αk(σ) describes all the feasible combinations of σ and α such that χ (α, σ) = (R∗ − 1)
³
1− R∗

A

´
then we can pursue the following analysis. Take a pair (σk, αk) such that χ

¡
αk, σk

¢
= (R∗ − 1)

³
1− R∗

A

´
.

Given Fact 5 any α ≤ αk implies that χ
¡
α, σk

¢
≥ χ

¡
αk, σk

¢
= (R∗ − 1)

³
1− R∗

A

´
. But this implies that

RJf ≥ 1+χ(α,σk)
(1−R∗−1

A )
> R∗. In other words for any σ ≥ σk∗ > 1 and any α ≤ αk(σ), we have that the function

Kf (R) meets twice the function Jf (R) in its increasing part. But as we will see, this feature leads to the

no possibility of cycles and chaotic dynamics.

This analysis, Lemmas 11, 12, 13, 14, and 15 help us to divide the parametric space α vs σ into 5 zones:20

1. Zone 1: σ ∈ (0, σw∗] and α ∈ (0, αw(σ)]. Kf (R) is strictly decreasing and Jf (R) is either strictly

decreasing or hump-shaped. They meet twice and in the case in which Jf (R) is hump-shaped, they

meet in the decreasing part of Jf (R) . This means that in this case RJf ≤ RL. Standard liquidity

traps (or deflationary paths) can be shown to occur as we will see below.

2. Zone 2: σ ∈ (0, 1) and α ∈ (αw(σ), 1) . Kf (R) is strictly decreasing and Jf (R) hump-shaped. They

meet twice but in this case RJf > RL. As will be shown cycles and chaotic dynamics around the

passive steady state may occur.

3. Zone 3: σ ∈ (1, σk∗) and α ∈ (0, 1) . Kf (R) is always increasing and Jf (R) is hump-shaped. They

meet twice but in this case RJf < R∗. As will be shown cycle and chaotic dynamics around the active

steady state may occur.

4. Zone 4: σ > σk∗ and α ∈ (αk(σ), 1). The properties of Kf (R) and Jf (R) are the same as in Zone 3

with RJf = R∗ over αk(σ).

5. Zone 5: σ ≥ σk∗ and α ∈ (0, αk(σ)]. Kf (R) is always increasing and Jf (R) is hump-shaped. They

meet twice but in this case RJf ≥ R∗. In this zone monotonic inflationary paths converging to the

active steady state occur and cycles and chaotic dynamics are not present.

20Although these zones are not marked in Figure 9, this figure is still useful to understand the definition of the zones.
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Using these parametric zones and Lemmas 11, 12, 13, 14, and 15 it is possible to prove the existence of

standard liquidity traps, cycles and chaos for forward-looking rules as we did for contemporaneous rules.

We intentionally omit formal proofs on the existence of chaos and cycles for Zone 2, since this case is

isomorphic to what extensively analyzed for the contemporaneous rule case (specifically what we labelled

Zone 4 and 5 over there). It is hower of interest to consider more formally what occurs for relative risk

aversion above one.

Proposition 16 Let σ > σk∗ and α ∈
¡
0, αk (σ)

¢
, namely Zone 5 For any R0 ∈

¡
RL, R∗

¢
, lim
t→∞

Rt = R∗.

Proof. The proof is trivial and therefore omitted. The reader should simply note that in this case the
mapping Rt+1 = f (Rt) is monotonically increasing over the set

¡
RL, R∗

¢
.

Therefore Zone 5 of the forward looking case displays monotonic paths converging to the target steady

state for any initial value between the target and the low steady state. Now we focus on Zones 3 and 4.

Following steps similar to the contemporaneous rules case, define R and eR as follows:

K
¡
R
¢
= J

¡
RJ
¢
⇐⇒ R = f

¡
RJ
¢

J
³ eR´ = J

¡
RL
¢
⇔= RL = f

³ eR´
It should be evident that R > RJ and that eR > RJ too. As pointed out before the forward mapping f is

unimodal with a maximum at RJ . The following assumption will be used throughout the formal analysis.

Assumption 421 : fmax = f
¡
RJ
¢
≤ eR.

Proposition 17 Let σ ∈
¡
1, σk∗

¢
and α ∈ (0, 1) , or σ > σk∗ and α ∈

¡
αk (σ) , 1

¢
, i.e. Zone 3 and 4. If

Assumption 3 is satisfied, the followings hold:

1. The mapping f is such that f :
£
RL, R

¤
→
£
RL, R

¤
. Moreover for any Rt ∈ (R, eR], Rt ∈

£
RL, R

¤
.

2. Period 2 cycles exists within such set.

3. Topological chaotic dynamics, in a Li-Yorke sense are possible.

Proof.

1. The proof is trivial and therefore omitted.

2. Define a function g (R) = R− f2 (R) . We need to distinguish between the two cases in Assumption 3:

a) f
¡
RJ
¢
= eR; b) f ¡RJ

¢
< eR.

(a) The set invariant under mapping f is therfore
h
RL, eRi . It should be clear that g ¡RL

¢
= g (R∗) =

0, g
¡
RJ
¢
> 0, g

³ eR´ > 0. and g0
¡
RL
¢
< 0 Since the mapping f is continous, a sufficient condition

for the existence of period-2 cycles (namely of zeros of the function g) is that g0 (R∗) < 0 as well.

21 If fmax = f
¡
RJ
¢
> eR there is no non-trivial mapping invariant set. This case gives rise to another type of equilibria of

non cyclical nature. More specifically, we can define subset of point within the domain of f that leave such set after a finite

number of iterations. They would settle on a path converging to the lower bound of the interest rate.
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This is indeed holding if f 0 (R∗) < −1, i.e. over regions of the (α, σ) plane where the model
displays LOCAL uniqueness (above the frontier αd (σ)). In the region between αd (σ) and αk (σ) ,

we have that f 0 (R∗) ∈ (−1, 0) and that sufficient condition fails. Instead g (R∗) > 0. We can still
show existence of period-2 cycles around the active steady state R∗ by construction. Let bR ∈³
RJ , eR´ be the pre-image of RJ , i.e. RJ = f

³ bR´ .Clearly g
³ bR´ = bR − eR < 0. This together

with the pervious information implies the existence of at least other four zeros of g, respectively

two to the right of R∗ and the other two to its left.

(b) The set invariant under mapping f is therfore
£
RL, R

¤
. As in case a), g

¡
RL
¢
= g (R∗) = 0, and

g0
¡
RL
¢
< 0. But now g

¡
R
¢
≥ 0 and

¡
RJ
¢
R 0 If g

¡
RJ
¢
= 0, the period-2 cycle is

©
RJ , R

ª
.

If it is an inequality, we need to make some distinction. Again if we are within a region where

f 0 (R∗) < −1, by continuity there exists a point Rl ∈
¡
RL, R∗

¢
such that g (Rl) = 0. Let eR∗be

the pre-image of R∗. It has to be that g
³ eR∗´ < 0. Then if g

¡
RJ
¢
> 0, Rl ∈

³ eR∗, RJ
´
; g
¡
RJ
¢
<

0, Rl ∈
¡
RJ , R∗

¢
. In both cases this implies that the second focal point of the period-2 cycle,

Ru = f (Rl) ∈
¡
R∗, R

¢
If instead we lie between αd (σ) and αk (σ) and we have that f 0 (R∗) ∈ (−1, 0) , period-2 cycles
occur surely if g

¡
RJ
¢
> 0. In this case since g (R∗) > 0, two zeros of g occur to the right of R∗,one

between RJ and R∗, and one between eR∗and RJ . Cycles might not occur if g
¡
RJ
¢
> 0.

3. Define a function h (R) = R−f3 (R) . Again we need to distinguish between the two cases in Assumption
3: a) f

¡
RJ
¢
= eR; b) f ¡RJ

¢
< eR.

(a) It should be clear that h
¡
RL
¢
= h (R∗) = 0, h

¡
RJ
¢
> 0, h

³ eR´ > 0. and h0
¡
RL
¢
< 0 We show

that the Li-Yorke sufficient condition for the existence of topological chaos is satisfied. Moreover

h0 (R∗) > 0 always. But this is sufficient to show the existence of a period-3 cycle since there

must be a point between RJ and R∗ such that h (R) = 0. By Sarkovskii’sTheorem cycles of any

periodicity exist. The Li-Yorke condition applies too. Let bR ∈ ¡RL, RJ
¢
be the pre-image of RJ .

We then have that RJ = f
³ bR´ ; R = f2

³ bR´ and RL = f3
³ bR´ with RL < bR < RL < R. Such

condition holds.

(b) It should be clear that h
¡
RL
¢
= h (R∗) = 0, h0 (R∗) > 0 and h0

¡
RL
¢
< 0. But now h

¡
RJ
¢
R 0.

Similarly to the analogous case for the contemporaneous rule, those conditions are enough for the

existence of a period 3 cycles and therefore chaos if h
¡
RJ
¢
≥ 0.

The following figure summarizes the main results of the global analysis. Afterward we will use this figure

to compare the results from the forward-looking rules analysis with the results from the contemporaneous

rules analysis presented in Figure 6.

Figure 9 shows that forward looking rules alter the flavour of our previous conclusions for contemporane-

ous rules. Although as before interest rate rules that target the expected future CPI-inflation can be highly

destabilizing, there are some important differences with respect to the case of contemporaneous interest rate

rules. It is still valid that the degree of openness of the economy matters for the appearance of cycles and

chaotic dynamics. However under forward-looking rules these types of endogenous fluctuations may appear
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Figure 9: Equilibrium analysis for an active forward-looking interest rate rule. This figure shows the results

from the global equilibrium analysis and a comparison between the local equilibrium analysis and the global

equilibrium analysis. M stands for local multiple equilibria and U stands for a local unique equilibrium. α

corresponds to the degree of openness of the economy and σ denotes the relative risk aversion coefficient.

even for economies with relative risk aversion coefficients smaller than one. In this case, given the relative

risk aversion coefficient, the more open the economy is the more likely is that a forward-looking rule will

lead the economy to cyclical and chaotic dynamics around the passive steady state.

Furthermore, in contrast to the results for contemporaneous rules, the degree of openness of the economy

plays an opposite role for economies that follow a forward-looking rule and have a relative risk aversion

coefficient greater that one. In other words, given a relative risk aversion coefficient bigger than one, the

more open the economy is the more likely is that a forward-looking rule will drive the economy to cyclical

and chaotic dynamics around the active steady state.

As was mentioned above, following the arguments and proofs developed for contemporaneous interest

rate rules, it is possible to state proofs of the existence of two-period cycles and chaotic dynamics under

forward-looking rules. In stead of doing this analysis we will use the aforementioned parametrization and

present the following orbit diagrams for σ = {0.8, 2}.
Figures 10 and 11 show how depending on the degree of openness of the economy, an active forward-

looking rule may drive the economy into period-2 cycles, period-4 cycles, period-8 cycles and even chaotic

dynamics. Both Figures show that as the degree of openness of the economy, α, increases from zero, the rule

drives the economy into a period-2 cycle, as indicated by the first split into two branches. As the economy

becomes more open both branches split simultaneously yielding a period-4 cycle. A cascade of further period

doublings occurs as the degree of openness of the economy increases, yielding period-8, period-16 and so on.

Finally after some degree of openness the rule drives the economy into a chaotic dynamics, that is when the

map (31) becomes chaotic and the attractor changes from a finite to an infinite set of point.
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Figure 10: Orbit diagram for an active forward-looking rule and σ = 2. Rt denotes the nominal interest rate

and σ stands for the relative risk aversion coefficient.

Figure 11: Orbit diagram for an active forward-looking rule and σ = 0.8.Rt denotes the nominal interest

rate and σ stands for the relative risk aversion coefficient.
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In general terms the Figures suggest that the more open the economy is, the more likely is that the rule

will cause chaotic dynamics. However it is important to observe that the relative risk aversion coefficient also

plays a role in the analysis. As we found before, for relative risk aversion coefficients greater than one, σ > 1,

(that is when consumption and real money balances are substitutes), the cyclical and chaotic dynamics may

occur around the active steady state as shown in Figure 10. On the other hand, for relative risk aversion

coefficients smaller than one, σ < 1, (that is when consumption and real money balances are complements),

the cyclical and chaotic dynamics may be present around the passive steady state as shown in Figure 11.

To conclude the global equilibrium analysis it is important to point out how the results presented in

this analysis may be affected by relaxing the assumption that (1−γ)
γ > −Υv. If it is assumed that (1−γ)

γ <

−Υv ≡ R∗−1
A but (1−γ)

γ > −Υw ≡ 1 −
³
1− R∗−1

A

´
RL then the results are not affected. However if it is

assumed that (1−γ)
γ < −Υw < −Υv, then the degree of openness plays no role in the analysis for σ < 1. In

other words, regardless of the degree of openness, the model displays chaotic and cyclical dynamics around

the passive steady state for relative risk aversion coefficients smaller than one. However if the relative risk

aversion coefficient is greater than one, it is still valid that the more open the economy is the more likely

is that an active forward-looking rule will drive the economy to chaotic and cyclical dynamics around the

active steady state.

5.3 Local Uniqueness vs. Global Multiplicity

As we have done for the contemporaneous case, we compare the local and global results for forward-looking

rules. A graphical comparison is presented in Figure 9. Once more by studying dynamics in a small

neighborhood of the active steady state we would conclude that active rules deliver stability in equilibrium

for any level of openness, as long as the risk aversion coefficient stays below an upper threshold σd∗. For

higher risk aversion coefficients a unique equilibrium still occurs as long as the economy is open enough.

The conclusions from the global analysis are radically different. In particular for very open economies

with relative risk aversion coefficients greater than one active forward-looking rules may lead the economy

to cyclical and chaotic dynamics around the active steady state. In addition for economies with relative risk

aversion coefficients smaller than one, the aforementioned rules may drive the economy not only to liquidity

traps (deflationary paths) but also to chaotic and cyclical dynamics around the passive steady state. In both

cases the existence of this chaotic and cyclical dynamics are associated with the degree of openness of the

economy.

6 A Sensitivity and a Quantitative Analysis

In this section, we use the parametrization of Table 2 to pursue two exercises for contemporaneous and

forward-looking rules. The first one is to assess the size of the local and global uniqueness/multiplicity

regions shown in Figures 6 and 9. The second one consists of studying how these regions vary accordingly

to changes in parameters such as the share of expenditure of real money balances, 1− γ, the inflation target

π∗, and the degree of active responsiveness to the CPI-inflation of the rule, A
R∗ . As before we will do the

analysis using the plane α vs σ considering feasible values for these parameters.

First we pursue the analysis for active contemporaneous rules. The results are presented in Figure 12. For
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the following analysis it is useful to use this Figure and Figure 6. In Figure 12 the top-left panel represents

the base case that sets 1 − γ = 0.03, π∗ = 1.008, and A
R∗ = 2.24. From this panel it is clear that given

typical values used in the RBC literature σ ∈ (1, 3) and depending on the degree of openness the economy,
the active contemporaneous rule may drive the economy to cycles and chaos around both the active and the

passive steady states and to liquidity traps.

The top-right panel draws the frontiers that determine the local and global multiple equilibria regions,

after a change in the share of expenditure of real money balances, 1 − γ. It shows that a reduction in this

share shifts all the frontiers down increasing the area of possible liquidity traps and reducing no only the

areas of cyclical and chaotic dynamics but also the areas of local multiple equilibria. In this sense economies

that are “less cash dependent” (lower 1−γ) are less likely to be driven to local and global multiple equilibria
(cycles or chaos) by an active contemporaneous interest rate rule.

The effects on the frontiers from increasing the inflation target are shown in the bottom-left panel of

Figure 12. From this panel we can conclude that increasing the inflation target will also shift down the

frontiers. This implies that local and global multiple equilibria become less likely.

Finally the bottom-right panel represents the case of a reducing the degree of responsiveness of the rule

with respect to the CPI-inflation. In this case we assume that the interest rate response coefficient to the

CPI-inflation corresponds to the one in the well studied Taylor rule A
R∗ = 1.5. The reduction in the level of

aggressiveness of the rule with respect of inflation causes a shift down of all the frontiers meaning that the

local and global multiple equilibria become less feasible. In other words, a more aggressive central bank with

respect to the CPI-inflation is more likely to lead the economy to cycles and chaos than a less aggressive

one.

In Figure 13 we show the results for forward-looking rules of the same two exercises we did for the

contemporaneous rules. Using this Figure and Figure 10. We can pursue the following analysis. The base

case is presented in the top-left panel setting 1 − γ = 0.03, π∗ = 1.008, and A
R∗ = 2.24. It is clear that for

σ ∈ (1, 2) an active forward-looking rule assures a local unique equilibrium but depending on the degree of

openness it also may drive the economy to cycles or chaos around the inflation target. Furthermore for the

type of rules under analysis and for σ < 1, cyclical and chaotic dynamics around the passive steady state

may appear depending on the degree of openness.

The top-right panel shows the effects on the frontiers that determine the local and global multiple

equilibria regions, caused by a change in the share of expenditure of real money balances, 1− γ. In contrast

to the results for contemporaneous rules we find that “less cash dependent economies” (lower 1−γ) are more
are more likely to be driven to cyclical and chaotic dynamics around the active or the passive steady state

by forward-looking rules.

The bottom-left panel of Figure 13 presents the results of an increase in the inflation target. This increase

shifts down the frontiers implying that possible cycles, chaos and local multiple equilibria for forward-looking

rules become more likely under active forward-looking rules.

Finally the bottom-right panel represents the case of a reducing the degree of responsiveness of the rule

with respect to the CPI-inflation to A
R∗ = 1.5 (the Taylor rule). Although in principle the reduction of the

degree of aggressiveness of the rule does not affect the frontiers for σ < 1, it can be observed that it causes a

shift up of all the frontiers for σ > 1. This means that local multiple equilibria become more feasible whereas
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Figure 12: This figure shows how the local and global equilibrium frontiers for active contemporaneous rules

vary with changes of the share of expenditures on real money balances, 1−γ, the target inflation, π∗, and the
degree of responsiveness of the rule, A

R∗ . The base case corresponds to the left-top panel. See also Figure 7.

α corresponds to the degree of openness of the economy and σ denotes the relative risk aversion coefficient.

Figure 13: This figure shows how the local and global equilibrium frontiers for active forward-looking rules

vary with changes of the share of expenditures on real money balances, 1−γ, the target inflation, π∗, and the
degree of responsiveness of the rule, A

R∗ . The base case corresponds to the left-top panel. See also Figure 10.

α corresponds to the degree of openness of the economy and σ denotes the relative risk aversion coefficient.
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global multiple equilibria (cycles and chaos around the inflation target) become less possible. In other words

and in contrast to the contemporaneous rules results we have the following result. Although it is less likely

that a more aggressive forward-looking rule with respect to the CPI-inflation will lead the economy to local

multiple equilibria, it also more likely that the same rule will drive the same economy to cycles and chaos

around the inflation target.

7 Avoiding Cyclical and Chaotic Equilibria:

In this section, we show how the existence of cyclical and chaotic equilibria around either the active or the

passive steady state depends on the importance of real money balances for welfare. Other things being equal

the equilibrium level of real balances is clearly increasing in the parameter γ. We consider separately the

case of contemporaneous and forward looking rules.

7.1 Contemporaneous Inflation Rule

Throughout the paper we assumed that κ
'(0) >

1
2 (R

∗ − 1)
³
1 + R∗

A

´
. This was necessary and sufficient for

the possibility of parametric regions of, respectively, local indeterminacy and local determinacy (but global

multiplicity) with respect to openness and risk aversion coefficients. Given the monetary policy related

parameters (R∗ and A), we study how the left hand side of the inequality above depends on γ.

Define the function δ(γ) = κ
'(0) . Clearly δ0(γ) < 0, δ(0) = 1 − θN and δ(1) = 0. If (1 − θN ) >

1
2 (R

∗ − 1)
³
1 + R∗

A

´
, then δ(γ) crosses the lines 12 (R

∗ − 1)
³
1 + R∗

A

´
, R
∗−1
A and RL− 1 at positive values of

γ, that we denote, respectively by γc, γ∗ and eγ.
We can then observe that for γ ∈ (0, γc), with γc = 1−θN− 1

2 (R
∗−1)(1+R∗

A )
1−θN−(1−θN ) 12 (R∗−1)(1+

R∗
A )
, δ(γ) > 1

2 (R
∗ − 1)

³
1 + R∗

A

´
and all dynamics described in the contemporaneous rules section above are possible. However if γ ∈
(γc, γ∗), with γ∗ =

1−θN−R∗−1
A

1−θN−(1−θN )R
∗−1
A

, δ(γ) ∈ (R∗−1A , 12 (R
∗ − 1)

³
1 + R∗

A

´
and the model always delivers

local uniqueness. Multiple global equilibria still occur as described. As we move to γ ∈ (γ∗, eγ) witheγ = 1−θN−(RL−1)
1−θN−(1−θN )(RL−1) , δ(γ) ∈ (R

L − 1, R∗−1A ) and the model can not display cycles/chaos around the

active steady state but only around the passive one. Finally for γ > eγ, δ(γ) < RL − 1 and the forward
dynamics mapping is monotonic between the two steady states. This rules out any possible cycle or chaotic

behavior around both steady states. In this case multiple global equilibria are possible but take the form of

monotonic deflationary paths (or standard liquidity traps) only.

From this technical observation we can conclude that erratic equilibrium dynamics of the form described

extensively in the paper become less likely as the role of real money balances in transactions vanishes.

Economies in which cash is greatly valued for transaction purposes (low γ) seem more vulnerable to the

endogenous volatility described in this study. On the contrary, as the credit market improves and cash

becomes less and less needed, such endogenous fluctuations disappear and the only risky equilibrium becomes

a liquidity trap (the short interest rate falls progressively towards zero). It would be interesting then to

compare the aggregate performance of developed and emerging economies following some kind of implicit

CPI inflation targeting as defined here. We are currently pursuing this.

Apart from allowing us to distinguish between economies with different levels of financial innovation,

these latest results on γ highlight some role for monetary policy to eliminate or at least reduce unwanted
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multiplicity. In fact for a given importance of real balances (i.e. given γ), the central bank could design an

active interest rate rule that could both deliver local uniqueness and eliminate cyclical/chaotic equilibria.

The following proposition defines the necessary conditions.

Proposition 18 Take a given γ ∈ (0, 1). If the inflation target π∗ > β(1 + δ(γ)) - with δ(γ) defined above

- and the interest rate reaction to current CPI inflation is bigger than one but smaller than an upper-bound

ρ (defined below), then no cyclical/chaotic equilibria can occur for contemporaneous active Taylor rules.

Proof. Since we want RL − 1 > δ(γ), we need R∗ > 1 + δ(γ), i.e. if a second steady state exists it has

to be lower than the target. A second condition has to do with the steepness of the rule around the target

itself. If the elasticity is exactly one, we have two coincident steady states and no dynamics occur. However

the stationary equilibrium is hyperbolic and local analysis is meaningless. By continuity, as we increase

the elasticity slightly above one a second steady state arises but not that far from the target. A sufficient

condition for RL to occur to the right of 1 + δ(γ) is that R∗ (δ(γ)))
R∗−1
A < (1 + δ(γ)) (R∗ − 1)

R∗−1
A . Taking

logs of both sides, rearranging and using fact that A = βρ0(π∗), we get that this occurs if

ρ0(π∗) <
R∗ − 1

β

ln(R∗ − 1)− lnδ(γ)

lnR∗ − ln(1 + δ(γ))
(40)

This poses an upper bound to the level of inflation aggressiveness consistent with local determinacy and no

equilibrium cycles/chaos

Though the result might have been quite intuitive since the beginning, we have stated formally the

importance of choosing the target inflation rate, in addition to the level of aggressiveness, in order to make

endogenous fluctuations less likely. And this has can be accomplished without requiring any specific Ricardian

or non-Ricardian fiscal policy rule. The latter channel might still play a role in eliminating deflationary paths

too. This is the purpose of a research project we are currently dealing with.

7.2 Forward-Looking Inflation Rule

For a forward looking rule we have shown that the degree of openness plays a role on for a coefficient of

relative risk aversion below one. There, we identified an openness frontier distinguishing between standard

liquidity traps and cycles/chaos around the passive steady state. For risk aversion above one, the only role

of openness regards the local equilibrium determinacy. At a global level cycles around the active steady state

are always possible.

A necessary and sufficient condition for the existence of an α-frontier dividing liquidity traps from cycles

was (1−γ)
γ > −Υw. Given the monetary policy parameters defining Υw, we study for which values of γ this

inequality holds.

Let δ(γ) = (1−γ)
γ . The following are clearly true:δ0(γ) < 0, δ(0) = ∞ and δ(1) = 0. Therefore if

−Υw = 1 − RL
³
1− R∗−1

A

´
> 0, there exists a γc ∈ (0, 1) such that δ(γc) = −Υw. It follows that for

γ ∈ [γc, 1), δ(γ) ≤ −Υw the frontier αw is not defined. This implies that standard liquidity traps, though
still possible, become a "measure zero event", since the economy would display a monotonically decaying

series of interest rates only for a peculiar initial condition. For values below such critical point, the frontier

is well defined and liquidity traps become the unique type of self-fulfilling equilibrium for levels of openness.
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The policy implication is not as clear as what obtained in the contemporaneous case. Under a forward

looking rule more volatile dynamics occur when real balances are less valued for welfare. They can still occur

even for more cash-dependent economies but together with deflationary paths.

Is there any role then for monetary policy to at least get rid of cyclical patterns, as we found for the

contemporaneous case? An intuitive policy prescription could be the following. Take a small open economy,

characterized by a triplet (σ, α, γ), for σ < 1. The monetary authority could design a monetary rule

appropriately (by accurately choosing R∗ and A, such that χ(σ, α, γ)) < Υw. This would bring the economy

out of the cyclical pattern region, though still allowing liquidity traps.22

Now we move fto σ > 1. Here cycles disappear if χ(α, σ, γ) > Υk. This would occur for any level of

openness if Υk ≡ (R∗ − 1)
³
1− R∗

A

´
= 0. But this is never true in our model since we consider specifically

R∗ > 1 and A > R∗. Nevertheless, Υk is affected by the choice of the inflation target π∗ and the interest rate

rule responsiveness ρ = A
R∗ since it can be written as Υ

k ≡ (βπ∗−1)
³
1− 1

ρ

´
. Then, given a triplet (α, σ, γ),

the monetary authority could either a) keep ρ constant and choose the target π∗ < β−1
h
1 + χ(α,σ,γ)

1− 1
ρ

i
; or b)

keep the target π∗ constant and choose the responsiveness ρ < 1

1−χ(α,σ,γ)
βπ∗−1

.

8 Backward-Looking Rules and Targeting The Non-Traded Good

Inflation

8.1 Backward-Looking Rule

We have shown that contemporaneous and forward-looking rules may lead to cyclical and chaotic dynamics

and more importantly that these dynamics are related to the degree of openness of the economy and to the

relative risk aversion coefficient. The next step is to study the dynamics of the small open economy model

under an active backward-looking rule. In this case the rule is defined as:

Rt ≡ 1 + (R∗ − 1)
³πt−1

π∗

´ A
R∗−1

; with
A

R∗
> 1 (41)

and the first order conditions of the model can be reduced to:µ
Rt − 1
Rt

¶χ
=

βRt

πt+1

µ
Rt+1 − 1
Rt+1

¶χ
(42)

These last two equations form a system of two first-order difference equations. As is well known to derive

analytic results, as before, from the non-linear study of this system is a very difficult task. Therefore we

rely on simulations trying to find if for different values of α and σ the system presents cycles or chaos. The

results that are available upon request show that these types of dynamics are not present under backward-

looking rules. In other words, the model always converges to either the active steady state or to the passive

steady-state.

22Cycles and chaos around the passive steady state are ruled out for any level of openness if the threshold Υw is bigger than

zero. It can be shown that this can be achieved by choosing R∗ and A accordingly.
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8.2 Targeting the Non-Traded Goods Inflation Rate

It is possible to pursue all the previous analysis for contemporaneous and forward-looking rules changing

the target of the rule from the CPI-inflation to the Non-traded goods inflation. If the government targets

the non-traded goods inflation rate, the analyses for contemporaneous and forward-looking rules correspond

to study the equations (29) and (31), as before, but replacing the exponent χ by χ0, where χ0 is defined as

χ0 ≡ χ
1−α . In fact, under some assumptions, it is possible to derive similar lemmas and propositions to the

ones derived before.23 Due to space constraint, we prefer to use the parametrization of Table 2 and draw the

frontiers that determine the local and global equilibria regions in the plane α vs σ for the aforementioned

rules. Figure 14 presents the results. In this figure we have abused of notation using the same names

αT (σ), αp(σ) and αI(σ), and αw(σ), αd(σ) and αk(σ) for the frontiers as we used before. 24 We keep the

same notation to facilitate comparisons. The top panel of this figure shows the local and global multiple

equilibria regions for the contemporaneous rule. To some extent it seems that given the relative risk aversion

coefficient (for instance σ = 2.1), the degree of openness differentiates between the possibility of cycles and

chaos around the passive steady state and the possibility of the same type of dynamics around the active

steady state. It is also clear that for specific relative risk aversion coefficients, standard liquidity traps may

arise for any degree of openness of the economy.

The bottom panel presents the results for the forward-looking rule. It is possible to observe that in this

case the degree of openness of the economy is not as important as the coefficient of relative risk aversion

coefficient in determining the possible dynamics of the model. In fact we can pursue a closer analysis of this

case and construct an orbit diagram varying the relative risk aversion coefficient.

Figure 15 presents the results. The top panel corresponds to the case of an almost closed economy

(α = 0.01), while the bottom panel corresponds to an open economy (α = 0.50). For low relative risk

aversion coefficients (σ < 1) the rule drives the economy into standard liquidity traps and as the coefficient

increases cycles and chaos around the passive steady state appear. For high relative risk aversion coefficients

(σ > 1) the story is different. The economy is driven into chaotic dynamics around the active steady state

and as the coefficient increases cycles and monotonic inflationary paths converging to the active steady-state

appear.25 As can be observed the role of the degree of openness of the economy in the analysis is not as

important as the role played by the relative risk aversion coefficient. In fact varying the degree of openness

of the economy from 0.01 to 0.50 does not affect significantly the dynamics around the passive steady state

but it has an effect on the dynamics around the active steady state, as predicted by Figure 13. For instance

for σ = 1.5, the forward-looking rule drives an almost closed economy (α = 0.01) to a monotonic inflationary

path converging to the active steady state, while the same rule drives the open economy (α = 0.50) into a

period-two cycle around the active steady state.

23They are available from the authors upon request.
24The functional forms of these frontiers are different from the ones in the CPI-inflation targeting analysis.
25The reader may ask for the white window between the chaotic region around the passive steady state and the chaotic region

around the active steady state. In that window there are paths of the nominal interest rate (Rt) going to either 1 or ∞. Both

dynamics are discarded in our analysis since we are interested exclusively in paths that satisfy 1 < Rt ≤ ∞.
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Figure 14: Targeting the non-traded goods inflation. Equilibrium analysis for an active contemporaneous rule

(top panel) and an active forward-looking rule (bottom panel). This figure shows the results from the global

equilibrium analysis and a comparison between the local equilibrium analysis and the global equilibrium

analysis. α corresponds to the degree of openness of the economy and σ denotes the relative risk aversion

coefficient.

Figure 15: Targeting the non-traded goods inflation. Orbit diagrams for an active forward-looking rule.The

top panel corresponds to the case of an almost closed economy (α = 0.01), while the bottom panel corresponds

to an open economy (α = 0.50). Rt denotes the nominal interest rate and σ stands for the relative risk

aversion coefficient.
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9 Conclusions

In this paper we have shown that Taylor rules that are active "in the Taylor sense" around the target

steady state might actually have perverse effects on a small open economy dynamics. In particular we

have shown that there is an interesting interaction between the coefficient of relative risk aversion and the

degree of openness (measured by the share of tradable goods in consumers’ preferences) in characterizing the

economic dynamics of our small open economy. To further stress the relevance of our results, we have been

pursuing both a local and a global equilibrium dynamics analysis (the former being the standard approach

in the monetary rules literature).

In the contemporaneous Taylor rule case, for risk aversion and openness ranges for which local analysis

would conclude in favor of price stability, we highlight the possibility of standard liquidity traps, cycli-

cal/chaotic dynamics both around a desired (targeted) and an undesired (passive) steady steady. In partic-

ular, for high enough risk aversion, all these possibilities can arise according to the degree of openness of the

economy. More closed economies can display high instability but still around the target. As the share of

traded goods increases (the economy opens up, and so the weight of traded goods in CPI inflation increases),

the likelihood of falling (monotonically or cyclically) into dangerous deflations does too. An extremely open

economy seems to fall into such traps with probability one.

Forward looking Taylor rules do not seem to do a much better job. For local determinacy ranges of risk

aversion and openness, we can get liquidity traps, cyclical and chaotic equilibria as for the contemporaneous

case. All our analytical results are confirmed by a simple parametrization of the model.

Though from a local point of view contemporaneous or forward looking inflation targeting give basically

identical results, from a global point of view there are few interesting differences. First, while for moderate

risk aversions (below 1) contemporaneous rules can deliver monotonic deflationary paths only, forward looking

rules could also produce cycles and chaotic dynamics around the low inflation state. Second, for risk aversion

above one, liquidity traps are only possible with contemporaneous rules but not with forward looking. The

latter can still create endogenous fluctuations but around the target state only. Furthermore, forward looking

rules also display monotonic equilibrium paths converging to the active steady state. For what concerns local

stability, they behave quite similarly. Nevertheless, the size of the local indeterminacy region is generally

smaller for the contermporaneous rule case.

For the contermporaneous rule case, we found out that erratic equilibrium dynamics of the form described

extensively in the paper become less likely as the role of real money balances in transactions vanishes.

Economies in which cash is greatly valued for transaction purposes (low γ) seem more vulnerable to the

endogenous volatility described in this study. On the contrary, as the credit market improves and cash

becomes less and less needed, such endogenous fluctuations disappear and the only risky equilibrium becomes

a liquidity trap (the short interest rate falls progressively towards zero). In such circumstances there is still

an active role for monetary policy in eliminating at least part of the multiplicity. We showed that if the

target inflation rate and the interest rate rule response to inflation are chosen appropriately (accurately

monitoring the level of, exogenous, financial innovation), cycles and chaos can be completely eliminated,

without requiring any specific Ricardian or non-Ricardian fiscal policy rule. The latter channel might still

play a role in eliminating deflationary paths too. This is going to be part of our for future research.

The relationship between cash dependency and multiplicity is more mixed in the case of forward looking
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rules. A decrease in the role of money in providing transaction services does not eliminate unwanted cyclical

paths and chaos. Actually it seems to be the case that for less cash dependent econmies cyclical patterns

are the most likely outcome.

A result of some interest is that the exixtence of endogenous cycles and chaos does not depend on targeting

a CPI inflation rate, or, in other words, considering traded goods prices in the price index. The degree of

openness still plays a role even though the interest rate reacts to non-traded goods inflation only (domestic

inflaition). To conclude we consider rules that react to past inflation (backward looking rules) and find out

that cyclical and chaotic dynamics are not possible, although the econmy can still display multiple equilibria

in the form of liquidity traps or monotonic paths to the target.

The bottom line though is that price stability could be indeed a difficult task. From a technical point of

view this paper points out the misleading results one would get by focusing on local techniques in judging

the stabilizing properties of monetary rules. From a policy point of view it might highlight some warnings

for small open economies fastly moving to inflation targeting regime through interest rate feedback rules.

Central bank of developing and developed small open economies are explicitly making price stability their

prime objective and therefore pursuing aggressive anti-inflationary policies.

A Appendix

A.1 Steady state multiplicity

At the steady state Rt+1 = Rt = R̄. Equation (29) reduces to

(R∗ − 1)
R∗−1
A R̄ = R∗

¡
R̄− 1

¢R∗−1
A (43)

It is clear that R̄ = R∗ is a possible steady state. We are going to show that if the Taylor rule is active at

this steady state a second lower steady state RL < R∗ exists and it is unique.

Proposition 19 If A
R∗ > 1 (an active Taylor rule) then there exists a unique R

L ∈ (1, R∗) that solves (43).

Proof. First of all denote the left hand side and the right hand side of equation (43) as LHS(R̄) and

RHS(R̄) respectively. Second note that

lim
R̄→1

LHS(R̄) = (R∗ − 1)
R∗−1
A > 0

lim
R̄→1

RHS(R̄) = 0

LHS(R̄) is linear in R̄ with slope (R∗ − 1)
R∗−1
A > 0. RHS(R̄) slopes upwards as well for any R̄ > 1,

∂RHS(R̄)

∂R̄
= R∗

R∗ − 1
A

¡
R̄− 1

¢R∗−1
A −1

> 0

A sufficient condition for a second solution R̄ = RL to exist is that the slope of the RHS(R̄) at R∗ be smaller

than (R∗ − 1)
R∗−1
A . This will guarantee that the LHS(R̄) and RHS(R̄) will cross at a second point R̄ = RL
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between 1 and R∗. The slope of the RHS(R̄) at R∗ is R∗

A (R∗ − 1)
R∗−1
A . Hence the sufficient condition is

R∗

A < 1 or equivalently A
R∗ > 1.

Next we show that the second lower steady state is unique. For that it is enough to show that the

RHS(R̄) is strictly concave. Taking second derivative:

RHS
00
(R̄) = R∗

R∗ − 1
A

¡
R̄− 1

¢R∗−1
A −2

µ
R∗ − 1

A
− 1
¶

which is strictly negative as long as R∗−1
A − 2 < 0. But this is guaranteed by the fact that A

R∗ > 1.

A.2 Proof of Proposition 2

Proof. The explicit expression for αI(σ) comes directly from its implicit definition χ(α, σ) = ΥI and some

algebra. αI(σ) is well defined in the sense that for feasible values of the structural parameters and for

any σ ≥ σI∗ > 1 it is a continuous function with αI(σ) ∈ (0, 1). To see this, note that since ΥI > 0, γ,

θN ∈ (0, 1) and σ > 1 then it is straightforward to derive that αI(σ) < 1. Furthermore it is simple to see that

the expression for σI∗ ≡ 1 +
h
(1−γ)(1−θN)
1−γ(1−θN) −Υ

I
i−1 h

ΥI

1−γ(1−θN)

i
comes from solving χ(0, σI∗) = ΥI . Using

Assumption 1 we may infer that σI∗ > 1. Utilizing this and Fact 4 we can deduce that for any σ ≥ σI∗ > 1,

it is valid that χ(0, σ) > χ(0, σI∗) = ΥI , which in turn means that 1 > ΥI

χ(0,σ) . But this last inequality and

ΥI > 0, γ, θN ∈ (0, 1) and σ > 1 imply that αI(σ) > 0.

Moreover it is simple to show that ∂α
I(σ)
∂σ =

h
1 +ΥI

³
γ
1−γ

´i−1 h
ΥI

(1−γ)(1−θN )(1−σ)2
i
> 0 and that ∂

2αI(σ)
∂σ2 =h

1 +ΥI
³

γ
1−γ

´i−1 h
2ΥI

(1−γ)(1−θN )(1−σ)3
i
< 0 for ΥI > 0, γ, θN ∈ (0, 1) and σ > 1. Therefore the function

αI(σ) is strictly increasing and concave for any σ ≥ σI∗ > 1. Additionally from the definition of αI(σ)

it is straightforward to show that lim
σ→σI∗

αI(σ) = 0 and lim
σ→∞

αI(σ) = 1 − ΥI

[1−ΥI(1−γ)](1−θN) ∈ (0, 1) since
αI(σ) ∈ (0, 1) for any σ ≥ σI∗.

A.3 Proof of Lemma 3

Proof. First compute the derivative of the function J(R) in (37) with respect to R

J 0 (R) =
R∗Rχ (R− 1)χ−1

(R1+χ)
2 (1 + χ−R)

For any R > 1, sign [J 0 (R)] = sign (1 + χ−R) .

1. if σ ∈ (0, 1) , χ < 0 for any α because of Fact 2. Therefore 1− R + χ < 0 for any R > 1. The limits

are trivial.

2. if σ > 1, χ > 0 for any α from Fact 3. We have that J 0 (R) = 0 if and only if R = RJ = 1 + χ > 1.

J (R) is increasing for any R < RJand decreasing for R > RJ . The limits are trivial.
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A.4 Proof of Lemma 4

Proof. The proof procceds following the same steps that we followed in the proof for Proposition 2. The
only difference is that instead of using ΥI ≡ 1

2(R
∗ − 1)

³
1 + R∗

A

´
we use Υp ≡ R∗−1

A . Moreover use the fact

that ΥI > Υp. Finally the inequalities αp∗ > αI∗ and σp∗ < σI∗ follow from ΥI > Υp and the definitions of

αp∗, αI∗, σp∗ and σI∗ (see Proposition 2).

A.5 Proof of Lemma 5

Proof. First of all the derivative of K (R) in (36) with respect to R is:

K0 (R) =
(R∗ − 1)

R∗−1
A (R− 1)χ+

1−R∗
A

Rχ

"
R 1−R∗

A + χ

(R− 1)R

#

For any R > 1, we have that sign [K0 (R)] = sign
h
R 1−R∗

A + χ
i
.

1. If σ ∈ (0, 1) , χ < 0 for any α ∈ (0, 1) because of Fact 2. Therefore for R∗ > 1 we have that

R 1−R∗
A + χ < 0 for any R > 1. But this implies that K0 (R) < 0. Moreover since 1−R∗

A + χ < 0, for

σ ∈ (0, 1) , using (36) we derive that lim
R→1

K(R) =∞ and lim
R→∞

K(R) = 0.

2. Now consider σ > 1. We know from of Fact 3 that this is enough to have χ (α, σ) > 0. Therefore

K0 (R) = 0 if and only if R = RK = χA
R∗−1 . However we need RK to be bigger than 1 to be a valid

peak. This requires χ (α, σ) > R∗−1
A . Is this true for any σ > 1 and for any α ∈ (0, 1)? The answer is

no and this is why there are two cases: (a) and (b).

(a) Note that αp(σ) is defined implicitly as the values of α and σ such that χ (α, σ) = R∗−1
A and σp∗

is such that χ (0, σp∗) = R∗−1
A . For any σ ∈ (1, σp∗) and α ∈ (0, 1) we have that χ (α, σ) < R∗−1

A .

The reason is that from Facts 4 and 5, given α ∈ (0, 1) and for any σ ∈ (1, σp∗) we have that
χ (α, σ) < χ (α, σp∗) < χ (0, σp∗) = R∗−1

A . Hence χ (α, σ) < R∗−1
A , which in turn means that RK

< 1. However we have assumed that R > 1. Therefore it is clear that we are only interested in

the decreasing part of K (R) and the first part of part (a) follows.

Furthermore for any σ ∈ [σp∗,∞) such that α ≥ αp(σ), K (R) is strictly decreasing. The reason is

that by definition αp(σ) is defined implicitly as the values of α and σ such that χ (α, σ) = R∗−1
A .

Then using Facts 5 it is clear that for any σ ∈ [σp∗,∞) and any α ≥ αp(σ), we have that

χ (α, σ) ≤ χ (αp(σ), σ) = R∗−1
A . But this means that RK ≤ 1. However we have assumed that

R > 1. Therefore it is clear that we are only interested in the decreasing part of K (R) and the

second part of part (a) follows.

(b) Since αp(σ) is defined implicitly as the values of α and σ such that χ (α, σ) = R∗−1
A , then using

Facts 5 it is clear that for any σ ∈ (σp∗,∞) and any α < αp(σ) we have that χ (α, σ) >

χ (αp(σ), σ) = R∗−1
A . But this means that RK = χA

R∗−1 > 1 is a valid peak of K (R) . Hence K (R)

is hump-shaped with a peak at RK = χA
R∗−1 > 1.
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A.6 Proof of Lemma 6

Proof. The proof procceds following the same steps that we follow in the proof for Proposition 2. The only
difference is that instead of using ΥI ≡ 1

2(R
∗ − 1)

³
1 + R∗

A

´
we use ΥT ≡ RL − 1. Moreover use the fact

that ΥI > ΥT . For the last part of the Lemma remember that since Υp ≡ R∗−1
A then Assumption 2 can

be rewritten as Υp > ΥT . Then utilizing this and the definitions of αp∗, αT∗, σp∗ and σT∗ the inequalities

αT∗ > αp∗ and σT∗ < σp∗ follow (see Lemma 4).

A.7 Proof of Proposition 10

Proof. The proof follows the same steps that we apply in the proof for Proposition (2). The only difference
is that instead of using ΥI ≡ 1

2(R
∗ − 1)

³
1 + R∗

A

´
we use Υd ≡ 1

2(R
∗ − 1)

³
1− R∗

A

´
. Moreover use the fact

that ΥI > Υd.

A.8 Proof of Lemma 11

Proof. The explicit expression for αv(σ) comes directly from its implicit definition χ(α, σ) = Υv < 0 and

some algebra.

1. First note that using Υv < 0, γ, θN ∈ (0, 1), and the assumption (1−γ)
γ > −Υv we can infer that

for any σ < 1, we have that ∂αv(σ)
∂σ =

h
1 +Υv

³
γ
1−γ

´i−1 h
Υv

(1−γ)(1−θN )(1−σ)2
i
< 0 and that ∂2αv(σ)

∂σ2 =h
1 +Υv

³
γ
1−γ

´i−1 h
2Υv

(1−γ)(1−θN )(1−σ)3
i
< 0, which means that αv(σ) is strictly decreasing and concave

for any σ < 1. The limits are trivial using Fact 1, and the definition of αv(σ) and σv∗. In particular note
that the expression for σv∗ comes from solving χ(0, σv∗) = Υv, and that 0 < σv∗ < 1 if (1−γ)γ > −Υv.

The reader may ask why we focus on values of σ such that σ < 1. The reason is that for σ > 1, the

function αv(σ) /∈ (0, 1). To see this note that from the definition of αv(σ), Fact 3 and the assumptions
Υv < 0, γ, θN ∈ (0, 1), and (1−γ)

γ > −Υv, we may conclude that αv(σ) > 1 for any σ > 1 with

lim
σ→1+

αv(σ) = +∞.

2. First note that it is easy to check that if (1−γ)γ < −Υv then lim
σ→1−

αv(σ) = +∞ and lim
σ→1+

αv(σ) = −∞.

Second using the expressions derived in part 1 of this proof for ∂αv(σ)
∂σ and ∂2αv(σ)

∂σ2 , Fact 2, Υv < 0,

γ, θN ∈ (0, 1) and (1−γ)
γ < −Υv we can derive that ∂αv(σ)

∂σ > 0 and ∂2αv(σ)
∂σ2 > 0 for any σ < 1.

Which means that αv(σ) is strictly increasing and convex for any σ < 1. However using this and since

lim
σ→0

αv(σ) = 1 and lim
σ→1−

αv(σ) = +∞, then we can conclude that for any 0 ≤ σ ≤ 1 we have that
αv(σ) > 1.

Moreover from the definition of αv(σ), Fact 3, Υv < 0, γ, θN ∈ (0, 1) and (1−γ)
γ > −Υv we can observe

that for any σ > 1 we have that αv(σ) < 0. Hence if (1−γ)γ < −Υv then αv(σ) never crosses the region

α ∈ (0, 1) vs σ ∈ (0,∞).
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A.9 Proof of Lemma 12

Proof.

1. Trivial.

2. By differentiating once and after some algebra we obtain

Jf 0 (Rt) =
R∗
³
1− R∗−1

A

´
(R∗ − 1)

R∗−1
A

(R− 1)χ−1+
R∗−1
A

R2+χ

"
1 + χ

1− R∗−1
A

−R

#

Therefore for any R > 1, sign
£
Jf 0 (R)

¤
= sign

h
1+χ

1−R∗−1
A

−R
i
.

Note that if 1 > −χ then Jf (R) is a hump-shaped function with a peak at RJf = 1+χ

1−R∗−1
A

since

Jf 0 (Rt) > 0 for
1+χ

1−R∗−1
A

> R and Jf 0 (Rt) < 0 for
1+χ

1−R∗−1
A

< R. We will assume 1 > −χ and relax this
assumption in part 3 of this proof. If there is a peak at R = RJf , in order for it to be a valid peak we

need that RJf > 1. In other words we need that χ > 1−R∗
A . It is important to remember that 1 < R∗

and therefore 1−R∗
A < 0. If σ > 1 then Fact 3 guarantees that 1 > −χ and since χ > 0 then we have

a valid peak. This in turn means that Jf (R) is hump-shaped for any α ∈ (0, 1) and σ > 1. On the

other hand if σ ∈ (0, 1) we know from Lemma 11 that αv(σ) define all the combinations of α and σ

for which χ(α, σ) = 1−R∗
A = Υv. Let’s take the particular pair (αv, σv) such χ(αv, σv) = 1−R∗

A = Υv.

Then using the assumption (1−γ)
γ > −Υv, Lemma 11 and Fact 6 we know that for any α > αv we

have that χ(α, σv) > χ(αv, σv) = 1−R∗
A = Υv which means that RJf > 1. But this result together with

the result for σ > 1 imply that for any σ > 0 and α > αv(σ) the function Jf (R) is hump-shaped with

a peak at RJf = 1+χ

1−R∗−1
A

> 1.

3. Assume that 1 > −χ. If σ ∈ (0, σv∗] we know from Lemma 11 that αv(σ) define all the combinations

of α and σ for which χ(α, σ) = 1−R∗
A = Υv. Let’s take the particular pair (αv, σv) such χ(αv, σv) =

1−R∗
A = Υv. Then using the assumption (1−γ)

γ > −Υv, Lemma 11 and Fact 6 we know that for any
α ≤ αv we have that χ(α, σv) ≤ χ(αv, σv) = 1−R∗

A = Υv which means that RJf ≤ 1. That is we

do not have a valid peak since we assumed that R > 1. In this case we are only interested in the

strictly decreasing part of Jf (R) . What if 1 < −χ? In this case 1+χ

1−R∗−1
A

−R is always negative which

implies from sign
£
Jf 0 (R)

¤
= sign

h
1+χ

1−R∗−1
A

−R
i
that Jf 0 (R) < 0. Therefore Jf (R) is always strictly

decreasing.

A.10 Proof of Lemma 13

Proof.

1. Trivial.

2. By differentiating Kf (R) once we obtain

Kf 0 (R) = χ
(R− 1)
R1+χ

χ−1
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which means that sign
£
Kf 0 (R)

¤
= sign [χ] for any R > 1. Using this and Fact 2 we conclude that

for any σ ∈ (0, 1), the function Kf (R) is strictly decreasing. The limits are trivial.

3. Use sign
£
Kf 0 (R)

¤
= sign [χ] for any R > 1, and Fact 3 to conclude that for any σ > 1, the function

Kf (R) is strictly increasing. The limits are trivial.

A.11 Proof of Lemma 14

Proof. The explicit expression for αw(σ) comes directly from its implicit definition χ(α, σ) = Υwand

some algebra. The proof follows the same steps as in the proof for Lemma 11 taking into account the

following. First notice that using Assumption 2 we may conclude that Υw ≡
³
1− R∗−1

A

´
RL − 1 < 0

since RL−1
RL

< RL − 1 < R∗−1
A . Second it is simple to show that since the rule is active R∗

A < 1 then³
1− R∗−1

A

´
RL − 1 < −R∗−1

A , or equivalently that −Υw < −Υv. With these results proceed following the
same steps as the ones in the proof for Lemma 11. The result σw∗ < σv∗ < 1 follows from the definitions of

σw∗and σv∗ and from −Υw < −Υv.

A.12 Proof of Proposition 15

Proof. The proof follows the same steps as the ones to prove Proposition 10. The only difference is that
instead of using Υd ≡ 1

2(R
∗ − 1)

³
1− R∗

A

´
we use Υk ≡ (R∗ − 1)

³
1− R∗

A

´
. Moreover instead of using

Assumption 1 we use (1−γ)(1−θN)
1−γ(1−θN ) > Υk. Finally σk∗ > σd∗ and αk∗ < αd∗ follow from the definitions of σk∗,

σd∗, αk∗, and αd∗, and applying the fact that Υk > Υd.
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