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Abstract
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1 Introduction

One of the most common methods to obtain a proxy measure of volatility is to

fit parametric econometric models such as GARCH or stochastic volatility (SV)

models, and others include option implied volatility, the intra-day return volatility

(Andersen and Bollerslev, 1998) and range volatility (Parkinson, 1980; Garman and

Klass, 1980; Alizadeh, Brandt, and Diebold, 2002). In most cases, the results from

these parametric or nonparametric methods show that ex-post squared returns or

absolute returns are too noisy and volatility is highly persistent and smooth. These

results are consistent with the poor forecasting power of GARCH models on ex-post

squared returns or absolute returns.

However, we may ask if the persistence and smoothness represent the properties

of true volatility. For example, GARCH conditional volatility reflects only lagged

information and is not designed to take account of cross-sectional information. If

asset returns follow linear factor models such as Fama and French (1992), then there

are multiple cross-sectional factors which are not explained by conditional volatility,

but are sources of volatility. Campbell, Lettau, Malkiel, and Xu (2001), for ex-

ample, using cross-sectional decomposition on equity volatility, showed that market

and industry volatilities are important components for the explanation of individual

asset volatility. Connor and Linton (2001) and Hwang and Satchell (2004) also sug-

gested that there is common heteroskedasticity in asset-specific returns. Therefore,

a significant amount of squared returns may not be noise but come from cross-

sectional heteroskedasticity in factors and factor loadings, which is not explained by

conditional volatility.

Another econometric question is that the persistence and smoothness obtained

with well known volatility models such as GARCH or SV models may come from the

restrictive nature of the models. For example, Lobato and Savin (1998), Granger

and Hyung (1999) and Diebold and Inoue (2001) suggested that structural breaks

in the mean of volatility may be a source of persistence. As a second example,
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Bollerslev’s (1986) nonnegativity constraints on coefficients on GARCH model may

restrict autocorrelation structure of volatility. Nelson and Cao (1992) showed that

the Bollerslev’s non-negativity conditions are too restrictive and in some cases nega-

tive estimates may be obtained in practice. He and Teräsvirta (1999) further showed

that allowing negative parameters in GARCH models can give us various autocor-

relation structures of squared returns.

In our study we use SV models with Markov regime changing state equations

(SVMRS) to investigate the questions on persistence and smoothness of volatility.

Existing models such as So, Lam, and Li (1998), Kalimipalli and Susmel (2001),

and Smith (2002) provide such a structure, but our model is more general in that

we allow volatility to have regime-dependent means, variances and autoregressive

characteristics. SV models are useful for our purpose since they allow us to de-

compose squared returns into transitory noise and permanent innovation (volatility

process). Note that the error (innovation) in the state equation matters over time

through a process, whilst the error (noise) in observation equation does not, and it

is the innovation term that captures the persistence of the model. In addition, in

SV models we do not need nonnegativity restrictions on the parameters.

Furthermore, by allowing regime changes in the parameters of the state equations

in SV models, we can investigate properties of the volatility process. As is standard,

we assume that the state equation in our SV model follows an AR(1).1 However, the

assumption of volatility process being AR(1) processes seems to be too restrictive, if

there are structural breaks. Therefore, we allow the state equation in our SV model

to Markov regime switch over time.

We find that the squared returns are better specified with our SVMRS model.

More importantly, we find that volatility is far less smooth and persistent. Our

results suggest that the conventional SV and GARCH models may be too restrictive

for squared returns. In addition, the large proportion of transitory noise in SV

1Using ARMA processes in the state equation does not change the persistence and smoothness

of the volatility process. See Hwang and Satchell (2000) for example.
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models decrease significantly in the SVMRS model and many cases in our study

show that there is little transitory noise in squared returns when the SVMRS model

is used. We also show that when a AR(1) process follows regime changes, under

certain conditions in the transition probabilities, autocorrelation coefficients may

show more persistence than the AR parameter suggests. These results are consistent

with those of Granger and Hyung (1999) and Diebold and Inoue (2001) for example.

In the next section we introduce our model. We also derive the autocorrelation

function of the regime switching AR(1) process. In section 3 using S&P500 and

FTSE100 daily and weekly returns, we show estimates of our SVMRS model and

compare the conventional SV model. Conclusions follow in section 4.

2 Models

2.1 SV and Markov Regime Switching Models

The stochastic volatility (variance) (SV) model was introduced by Taylor (1986) and

Hull and White (1987) and has been further developed by Harvey and Shephard

(1993, 1996) and Harvey, Ruiz and Shephard (1994). In the SV model, the log of ε2t ,

where εt is typically asset returns (or residuals from a return process), is modelled

as a stochastic process:

εt = εtσ exp(
1

2
ht) (1)

ht = φht−1 + ηt

where εt ∼ N(0, 1) and independent of ηt ∼ N(0, σ2
η), and σ is a positive scale factor.

Squaring (1) and taking logs we have a process

ln ε2t = ln ε2t + ln σ2 + ht (2)

= E[ln ε2t ] + ln σ2 + ht + ln ε2t − E[ln ε2t ]

= µ+ ht + ϕt
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where µ = E[ln ε2t ] + ln σ2 and ϕt = ln ε2t − E[ln ε2t ] is a martingale difference, but

not normal. When we replace ln ε2t with yt and µ + ht with xt, the SV model in

equations (1) and (2) can be written as

yt = xt + ϕt (3)

xt − µ = φ(xt−1 − µ) + ηt (4)

SV models are useful to decompose log-squared returns into transitory noise and

permanent innovation. This is because the innovation, ηt, matters over time through

the AR(1) process, whilst noise, ϕt, does not. Using this concept, Hwang and

Satchell (2000) showed that squared daily index returns such as FTSE100 or S&P500

consists of 95% of noise and 5% of unobserved innovation (volatility). This result is

asymptotically consistent with the poor forecasting power of GARCH models (see

Andersen and Bollerslev (1998)).

Note that the AR(1) process is commonly used in the state equation (volatility

process). However, the assumption of the volatility process being an AR(1) process

seems to be too restrictive. We may use ARFIMA models to generalise the volatility

process. In our study, we focus on structural breaks. Many studies such as Lobato

and Savin (1998), Granger and Hyung (1999), and Diebold and Inoue (2001) showed

that there are structural breaks in the volatility process and the structural breaks

have been blamed as a source of extreme persistence in volatility. Hwang (2004)

recently showed that in a mean zero AR(1) process, persistence (or the magnitude

of estimated AR coefficient) is a function of structural breaks in the mean as well

as in the AR parameter.

It is clear that if there are structural breaks in volatility, the conventional

GARCH or SV models are misspecified and we need a model for the structural

breaks. In recent years economic time series have been modelled with the assump-

tion that the distribution of the variables is known conditional on a regime or state

occurring. The Markov regime switching models introduced by Hamilton (1989)

allow the unobserved regime to follow a first order Markov process. The models
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have been used extensively in macroeconometrics as a means of capturing the dif-

ferent patterns of expected growth in output, see, for example, Filardo (1994) and

Goodwin (1993).

Suppose that there is a state variable, st, which is unobservable. When we allow

regime switching in the fundamental equation, a simple state equation is

xt =

 µ0 + η0,t, when st = 0,

µ1 + η1,t, when st = 1,

where ηi,t ∼ N(0, σ2
η
i
), i = 0, 1, and st follows a Markov chain. Here xt does

not allow persistence, and thus the simple state equations are not appropriate for

volatility process. Note that we can easily allow xt to follow AR(1) processes, but

this assumption can be generalised by the introduction of more lags in the AR

component, i.e., AR(p) processes. For simplicity, throughout this study we assume

that the state equation follows a regime switching AR(1) process;

xt =



µ0 + φ0(xt−1 − µ0) + η0,t, when st = 0, st−1 = 0,

µ0 + φ0(xt−1 − µ1) + η0,t, when st = 0, st−1 = 1,

µ1 + φ1(xt−1 − µ0) + η1,t, when st = 1, st−1 = 0

µ1 + φ1(xt−1 − µ1) + η1,t, when st = 1, st−1 = 1

. (5)

Previous studies introduced regime switching state equations to investigate the

effects of structural breaks on the persistence of volatility. See Diebold and Inoue

(2001) for example. However, they only allowed µ to have different values over time.

Our model is more general in the sense that φ and σ2
η as well as µ are allowed to

change.

2.2 Stochastic Volatility Models with Markov Regime Switch-

ing Equation

It is interesting if we can combine (3) and (5), i.e., a stochastic volatility model with

a Markov regime switching state equation (SVMRS). As pointed out in Andersen
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and Bollerslev (1998) among many others, if squared residuals are too noisy for a

proxy volatility process, we need to take out noise from the squared residuals and

then investigate the remainder to see if there are structural breaks or persistent.

However, the decomposition of squared returns depends on which models are

used for state equations. There are some previous attempts to model with stochastic

volatility and regime switching models. For example, in the studies of So, Lam, Li

(1998) and Kalimipalli and Susmel (2001), µ is allowed to regime-change. So, Lam,

Li (1998), using weekly S&P500 index volatility, found that volatility is far less

persistent than that of SV models. Kalimipalli and Susmel (2001) applied their

model to explain the behaviour of short-term interest rates. They found that their

regime switching model performs better than the GARCH family of models and

SV models. On the other hand, Smith (2002) generalised these models and showed

that Markov-regime switching or stochastic volatility models need to be improved

to explain short-term interest rates.

Our SVMRS model allows all three parameters in (5) to change and thus is a

generalised version. That is, there are two regimes and the state equation is assumed

to follow an AR(1) process;

yt = xt + ϕt (6)

xt = µi + φi(xt−1 − µj) + ηi,t, when st = i, st−1 = j, (7)

where i = 0, 1 and j = 0, 1, ϕt˜N(0, σ2
ϕ), ηi,t˜N(0, σ2

η
i
), and the transition probabil-

ities are given by:

p(i,j) = Pr(st = i|st−1 = j) (8)

and the transition matrix is given by:

p =

 p(0,0) 1− p(1,1)

1− p(0,0) p(1,1)

 (9)

We note that the above SVMRS model has two unobserved variables; xt which

follows different processes according to an unobserved variable st. We may allow
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more states and lags, but the number of cases we should consider for xt increases

rapidly, i.e., (number of states)lags+1.

The SVMRS model treats ϕt as a transitory noise and ηt as a permanent in-

novation (or volatility process) as suggested by Hwang and Satchell (2000). The

treatment provides intuitively interesting perspective since we can decompose any

process into just noise which is not explained by the state equation and innovation.

In addition, when ση0
= ση1

, the volatility of volatility is unchanged regardless of

states and when µ0 = µ1, the unconditional level of volatility is the same across

different states. Finally, when φ0 = φ1, xt has the same persistence.

The SVMRS model above is the generalised version of SV as well as the Hamil-

ton’s Markov regime switching model. By restricting parameters in appropriate

ways, we can derive these models. Usually this can be achieved when we estimate

the SVMRS model and investigate if parameters satisfy some conditions;

• If σ2
ϕ = 0, the SVMRS model becomes Hamilton’s Markov regime switching

model.

• If µ0 = µ1, φ0 = φ1, ση0
= ση1

, and σ2
ϕ �= 0, then we have the SV model.

• If µ0 = µ1, φ0 = φ1, ση0
= ση1

, and σ2
ϕ = 0, then we have the AR(1) model.

• If one of σηi
is zero, then the unobserved process consists of a stochastic process

and a deterministic process.

Note that by restricting φ0 = φ1, σ0 = σ1, and σ2
ϕ = π2

2
under the assumption

that εt is standard normal in (2), we have a model similar to Smith (2002) which is

yt = xt + ϕt (10)

xt =

 c0 + φxt−1 + ηt, when st = 0,

c1 + φxt−1 + ηt, when st = 1
(11)

where ϕt˜N(0, π2

2
) and ηt ∼ N(0, σ2

η). The model can be easily generalised so that φ

and ση may have different values for different states. However, the model does not
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explain the two other cases, i.e., st = 0 and st−1 = 1, and st = 1 and st−1 = 0. If

the frequency of inter-state changing is small, the effects of disregarding these two

cases may be trivial, and this may be appropriate for most macroeconomic variables

where the number of structural breaks is usually less than 1%. See Stock andWatson

(1996), Ben-David and Papell (1998), McConnell and Perez-Quiros (2000), Hansen

(2001), and Bai, Lumsdaine, and Stock (1998) among many. However, as will be

shown later, for volatility which has many structural breaks, Smith’s (2002) model

may become restrictive.

When we define ξ1t as a random variable that is equal to unity when st = 1 and

zero otherwise, the AR(1) representation of state 1 is

ξ1,t = (1− p(0,0)) + (−1 + p(0,0) + p(1,1))ξ1,t−1 + v1,t, (12)

where v1,t is a martingale difference sequence of state 1 at time t. The unconditional

probability that the process will be in regime 1 at any time, p1, is;

p1 = E(ξ1,t) =
1− p(0,0)

2− p(0,0) − p(1,1)
(13)

Theorem 1 The autocorrelation function with lag τ , ρ(τ ), of the state equation in

(7) which is equivalent to that of Markov regime switching process, is

ρ(τ ) = E

[
τ∏

s=1

(φ0 + (φ1 − φ0)st−s+1)

]
.

Proof. The state equation in (7) can be represented as

xt − [µ0 + (µ1 − µ0)st] = (φ0 + (φ1 − φ0)st) [xt−1 − [µ0 + (µ1 − µ0)st−1]] (14)

+(ση
0
+ (ση

1
− ση

0
)st)ξt,

where ξt˜N(0, 1). Note that

E [xt − [µ0 + (µ1 − µ0)st]] = E(xt)− E [µ0 + (µ1 − µ0)st]

= E
[
xtξ1,t + xt(1− ξ1,t)

]
− E [µ0 + (µ1 − µ0)st]

= µ1p1 + µ0(1− p1)− µ0 − (µ1 − µ0)p1

= 0.
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Substituting zt = xt − [µ1 + (µ0 − µ1)st] , we have the following mean zero AR(1)

process;

zt = (φ0 + (φ1 − φ0)st)zt−1 + (ση0
+ (ση1

− ση0
)st)ξt, (15)

and thus

ρ(τ ) = E

[
τ∏

s=1

(φ0 + (φ1 − φ0)st−s+1)

]
.

Note that when τ = 1, ρ(1) = φ0+(φ1−φ0)p1, since E(st) = p1. However, when

τ = 2, we have

ρ(2) = E [(φ0 + (φ1 − φ0)st) (φ0 + (φ1 − φ0)st−1)]

= E
[
φ2
0 + (φ1 − φ0)φ0st + (φ1 − φ0)φ0st−1 + (φ0 − φ1)

2stst−1

]
= φ2

0 + 2(φ1 − φ0)φ0p1 + (φ1 − φ0)
2E[stst−1].

Since

E[stst−1] = E[ξ1,tξ1,t−1]

= E[((1− p(0,0)) + (−1 + p(0,0) + p(1,1))ξ1,t−1 + v1,t)ξ1,t−1]

= E[((1− p(0,0))ξ1,t−1 + (−1 + p(0,0) + p(1,1))ξ21,t−1]

= (1− p(0,0))p1 + (−1 + p(0,0) + p(1,1))p1

= p(1,1)p1,

we have

ρ(2) = φ2
0 + 2(φ1 − φ0)φ0p1 + (φ1 − φ0)

2p(1,1)p1

= [φ0 + (φ1 − φ0)p1]
2 + (φ1 − φ0)

2[p(1,1)p1 − (p1)
2]

= ρ(1)2 + (φ1 − φ0)
2p1[p

(1,1) − p1].

Therefore, Theorem 1 shows that generally ρ(τ ) �= ρ(1)τ , unless either φ1 = φ0 or

p1 = 0 or 1, i.e., there is only one state. Therefore, the autocorrelations of the

Markov regime changing AR(1) process may not show the persistence level that the

value of ρ(1) suggests.
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Remark 1 Equation (13) suggests that when p(1,1) > 1 − p(0,0) and φ1 �= φ0, we

have [p(1,1) − p1] > 0 and thus ρ(2) > ρ(1)2.

Thus even though (15) has an AR(1) representation, the process does not show

the same exponential decay rate as the conventional AR(1) process because of the

probability of states. In addition, the difference between ρ(2) and ρ(1)2 is a positive

function of persistence difference φ1 − φ0, p1, and p(1,1) − p1.
2

2.3 Estimation Procedure

Harvey, Ruiz and Shephard (1994) adopted a procedure based on the Kalman filter

to estimate SV models in (3) and (4). However, since the distribution of ϕt is

not known, it is not possible to represent the likelihood function in closed form.

However, quasi-maximum likelihood (QML) estimators of the parameters can be

obtained using the Kalman filter by treating ϕt and ηt as normal. Harvey, Ruiz

and Shephard (1994) treated ϕt as though it were N(0, π2/2), and maximized the

resulting quasi-likelihood function. Ruiz (1994) suggested that for the kind of data

typically encountered in empirical finance, the QML for the SV model has good

finite sample properties.

In this study we propose a Quasi-Maximum Likelihood (QML) estimation method

using the Kalman filter. The basic concept is that both xt and conditional probabil-

ity that are unobserved processes, can be obtained through predicting and updating

which was proposed by Smith (2002). That is, we have (number of states)lags+1

state equations, e.g., in our study 4 state equations, and each state equation is up-

dated and predicted in the same way as for the standard Kalman filter. We use the

method suggested in Hamilton (1989) to update the conditional probability with a

transition probability matrix. A detailed explanation on estimation and smoothing

procedure can be found in the Appendix. We could use other methods such as

2We only show the cases of ρ(1) and ρ(2). The autocorrelations with larger lags are complicted

and we do not discuss them further in this study.
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Markov Chain Monte Carlo (MCMC), the generalised method of moments (GMM),

the efficient method of moments (EMM) to estimate the SVMRS. However, these

methods are more complicated than the QML with the updating procedure proposed

in the appendix.

One problem of the Markov regime switching model is that the model is multi-

modal. To find out the global maximum of the log-likelihood, we try various starting

values. However, the largest ML value does not always guarantee that the estimates

are appropriate. Another criterion we use for the SVMRS model is the relative

magnitude of ση
i
to σϕ (signal-to-noise ratio). If a model is well specified, then

the proportion that is not explained by the model, i.e., the transitory noise in the

SVMRS model, should be minimised. Since the true volatility process and thus the

amount of transitory noise included in squared returns is not known, a model that

explains squared returns as much as possible may be better than a model that does

not. Thus, signal-to-noise ratio can be a criterion to differentiate different sets of

converged estimates.3

3 Empirical Tests

We use two daily indices, i.e., S&P500 and FTSE100, from 27 February 1992 to 27

February 2002. For the sample period, 2548 and 2606 log-returns are obtained for

FTSE100 and S&P500 indices, respectively. We also use 522 weekly log-returns from

26 February 1992 to 27 February 2002 for the two indices. To calculate residuals,

we simply take the mean returns during the sample from the log-returns.4

3However, this criterion may be controversial. We may use the Bayesian analysis, but again we

need some knowledge of the true volatility process. Empirical results in the next section show that

there are not significantly differences in model selection between ML values and signal-to-noise

ratio.
4Since daily and weekly expected returns are very small, and taking the mean returns from the

daily and weekly returns does not have significant effects. In the following we use ‘log-squared

returns’ for the logs of squared de-meaned returns.
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Table 1 reports the property of two index returns. As expected, daily returns

are negatively skewed and leptokurtic, suggesting non-normal. In addition, auto-

correlation coefficients are not significant. For the two weekly returns, we also find

similar property, but the magnitude of non-normality is much smaller than that of

the daily returns.

On the other hand, the log-squared residuals, as reported in many other studies,

are negatively skewed and fat-tailed, and also are persistent. One noticeable differ-

ence between the daily and weekly log-squared residuals is that daily log-squared

residuals are more persistent than weekly log-squared residuals. The temporal ag-

gregation affects the level of persistence, i.e., autocorrelation structure.

The large negative skewness in the log-squared residuals results from the so-called

’inlier’ problem in stochastic volatility models. For the daily returns used in this

study, for example, the largest log-squared residuals of 3.559 for the FSTE100 and

3.935 for the S&P500 are within three standard deviations. However, the lowest

log-squared residuals are -13.857 for the FTSE100 and -16.237 for the S&P500,

respectively, and both of them are outside five standard deviations. These extremely

small log-squared returns reflect returns close to zero.

Various methods may be used for inlier adjustment for the squared residuals.

Harvey and Shephard (1993) set an arbitrary critical value and trim all values less

than the critical value to the arbitrary critical value. These trimmed estimates are

better behaved than the untrimmed estimates in their simulations. However, these

kinds of inlier adjustments are criticised to be ”profoundly suspicious” by Nelson

(1994). In this study, we use the following Breidt and Carriquiry (BC) (1996)

transformation as used in Harvey and Strieibel (1996):

l̂n ε2t = ln(ε2t + κσ2
ε)− κσ2

ε/(ε
2
t + κσ2

ε) (16)

The idea behind the BC transformation is as follows. For the zero or extremely small

ε2t , ln(ε
2
t + δ), where δ is a small increment, is evaluated. Then, the transformed

ln(ε2t ) can be obtained by the linear extrapolation from the point (ε2t + δ, ln(ε2t + δ))
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using the slop of the tangent line, (ε2t + δ)−1. In the above equation, δ is set to κσ2
ε.

Table 1 reports the property of log-volatility changes for the three different pa-

rameter values of κ, i.e., 0.02, 0.05, 0.1. For different time series, different values of

κ are required. For example, S&P500 daily log-squared residuals show that when

κ = 0.02, we have the smallest Jarque and Bera statistic, whilst κ = 0.1 gives the

smallest Jarque and Bera statistic for FTSE100 weekly log-squared residuals. Note

that when κ is too large, then we may lose information included in the original data.

For example, the autocorrelation coefficients increase as κ increases. On the other

hand when κ is too small, we still have the inlier problem. In many case, the choice

of κ is arbitrary and needs econometricians subjective decision. In this study, we

choose κ = 0.05 to minimise the inlier problem in the stochastic volatility model.

3.1 SV and SVMRS Models

We first estimate the SV model in (3) and (4) for daily data. As in many other

previous studies, we find that the unobserved volatility process is highly persistent

for both S&P500 and FTSE100 daily log-squared returns. This is a typical result

of SV models; the extreme persistence in volatility process. However, the auto-

correlation coefficients presented in table 1 does not suggest such a high level of

persistence. The difference between the two is usually attributed to high level of

noise in squared returns (see Andersen and Bollerslev, 1998). This is supported by

the signal-to-noise (SN) ratios, ση/σϕ, which are 0.018 and 0.049 for S&P500 and

FTSE100, respectively. This means that SV models (or asymptotically GARCH

models) explain only a small proportion of squared residuals. Figures 1a and 2a

show absolute values of residuals and smoothed standard deviation obtained from

the SV model. As in most empirical results on SV models, they show the volatility

is smooth. However, as discussed in the previous section, the smoothness in the SV

model may be achieved by disregarding the structural breaks.

The estimates of our SVMRS model for the daily data are reported in table 2.

14



We find that the ML values are larger than those of the SV model in both indices,

suggesting that the SV model with the MRS state equation better specifies the log-

squared residuals. This is also supported by large SN ratios. For S&P500, the SN

ratios are 1436 (st = 0) and 774 (st = 1), whilst for FTSE100, these ratios are 1.74

(st = 0) and 0.79 (st = 1). In particular, the transitory noise for S&P500 from the

SVMRS is close to zero. Therefore, the large amount of transitory noise unexplained

by the SV model is now explained by switching regimes. In addition, we also notice

that state 0 which is the lower level of volatility is more volatile; the SN ratios of

state 0 are larger than those of state 1. However, the large volatility of the lower

level of log-volatility (st = 0) may not have significant meaning, because state 0

represents lower level of volatility which is close to zero when transformed back to

volatility using the exponential function.

More importantly, the high persistence found with the SV model disappears in

the SVMRS model. For example, the estimates of the AR parameter in the SV model

are 0.999 and 0.990 for S&P500 and FTSE100, respectively. However, the estimates

of the SVMRS model show that the AR parameters are 0.361 (st = 0) and 0.126

(st = 1) for S&P500 and 0.899 (st = 0) and 0.260 (st = 1) for FTSE100, respectively.

These estimates are far from those of the SV model. The significantly different levels

of means in states 0 and 1 suggest that structural breaks in mean may be a source

of high persistence. Therefore, SV models without considering structural breaks can

provide spurious persistence. These results are consistent with recent studies such

as Lobato and Savin (1998), Granger and Teräsvirta (1999), Granger and Hyung

(1999), Diebold and Inoue (2001), and Hwang (2004).

Interestingly we find that the AR coefficients of ξ0,t in equation (12) are all small

negative and thus not persistent at all; i.e., the probability of state 0 has the AR

coefficient of −1 + p(0,0) + p(1,1) which is close to zero. Therefore, structural breaks

do not have memory and there are many structural breaks in the state process.

These results seem to be inconsistent with Granger and Hyung (1999) who found

a small probability (less than 1%) of structural breaks in squared returns in a long
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memory volatility model. However, the difference between our approach and other

previous studies including Granger and Hyung (1999) is that in our model, all three

components, i.e., the level of volatility, AR coefficient and the volatility of permanent

error, are allowed to change.

Note that the unconditional probability that st = 1, E(st = 1), is

E (st = 1) =
1− p(0,0)

2− p(0,0) − p(1,1)

from (13). Using this equation, we obtain the unconditional probability of st = 1

for the daily S&P index, p̂1 = 0.703 (and we have 0.759 for FTSE100 index). This

means that around 70% of cases, volatility is in higher state with mean of -1.006 and

AR parameter of 0.126. The AR coefficient of the Markov regime switching state

equation for the S&P500 is

φ̂0 + (φ̂1 − φ̂0)p̂1 = 0.196

from theorem 1. Using the same method we find that the estimated AR coefficient for

the FTSE100 is 0.414. Thus when we remove the transitory noise and allow regimes,

the AR coefficients estimated are much smaller than those with the SV model which

show extreme persistence. In addition, the estimated transition probabilities in

table 2 (and weekly cases in table 3) show that p(1,1) < 1 − p(0,0) in all four cases,

suggesting ρ(2) < ρ(1)2. Therefore, at the second lag the autocorrelation coefficient

decays faster than the ordinary AR(1) process whose autocorrelation coefficient at

lag 1 is equivalent to ρ(1).

Table 3 and Figure 3 report the results of weekly data. As in daily data, we find

extreme persistence in volatility processes and small SN ratios from the estimates of

the SV model; the estimated AR parameters are 0.992 and 0.969 and the SN ratios

are 0.04 and 0.06 for the S&P500 and the FTSE100, respectively. In addition, the

AR coefficient of xt calculated from the estimates of the SVMRS model as in (12)

are 0.192 and 0.114 for the S&P500 and the FTSE100, respectively. Again there is

clear difference in persistence between SV and SVMRS models.
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We plot squared residuals, smoothed volatility and probability in figures 1 to 3.

Figures 1b, 2b and 3b clearly show that when we allow two different regimes for

the mean, the AR parameter and the volatility of log-volatility, we have much more

volatile smoothed volatility. For the S&P500, since the transitory noise is close to

zero, most squared residuals are now explained by the two regimes. On the other

hand, for the FTSE100, we still have a significant portion of squared returns which

is not explained by the SVMRS model.

Tables 2 and 3 and Figures 1 to 3 suggest that the large amount of transitory

noise unexplained by the SV model is now explained by either one of the two states.

Asymptotically SV models are equivalent to GARCH models, and thus these results

can also be applicable to GARCH models; when we allow structural breaks, the

persistence level is reduced and the explanatory power of the model will increase.

3.2 Some Other Considerations in SVMRS Models

The SVMRS model proposed in this study can be used to investigate various different

cases. Here we investigate two cases; when the mean is regime changing and when

the state equation follows (11) as in Smith (2002).

The former is useful to investigate if structural breaks in mean are sources of

persistence.5 The results with daily and weekly data when φ0 = φ1 and ση
0
= ση

1

are reported in tables 2 and 3. First of all, even though we allow regime changes in

mean, the results still show extreme persistence; the estimated AR coefficients are

all around from 0.97 to 0.99. Interestingly the ML values of this restricted model

have larger ML values than the unrestricted model of SVMRS (except for weekly

FTSE100 case). However, in all four cases, the transitory noise is much larger than

the signal. This restricted model may not be appropriate if a good model should

explain observed time series as much as possible. Figures 1c, 2c and 3c show an

5See Diebold (1986), Lamoureux and Lastrapes (1990), Chu (1995), Lobato and Savin (1998)

Lobato and Savin (1998), Granger and Teräsvirta (1999), Granger and Hyung (1999), and Diebold

and Inoue (1999) for example.
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interesting pattern. Since the permanent innovation is much less than the noise, the

two states (the common high and low volatility process) move smoothly over time.

However, because of frequently changing probability, the volatility becomes highly

volatile; despite the high persistence, the volatility process is far less persistent or

smooth.

The figures for the restricted SVMRS model show that the lower volatility pro-

cess is dominated by close to zero volatility. When we accept that volatility is a

proxy measure of risk, we are less interested in small volatilities. In order to avoid

econometric difficulties from inliers and to concentrate on large volatilities we use

BC method in (16) with κ = 0.05. Table 2 reports that we still have a similar

high AR coefficient for the volatility process for the modified log-squared returns.

However, there is significant reduction of transitory noise and the lower level of log-

volatility is now significantly shifted upward. Figures 1d, 2d and 3d show that the

volatility process is now more concentrated and the difference between higher and

lower volatility is reduced. However, we still find that smoothed volatility is highly

volatile because of the frequently changing state. For example, the AR coefficients

of ξ1,t, the probability of state 1 at time t, are -0.012 and -0.023 for the S&P500 and

FTSE100 daily modified log-squared residuals, respectively.

The second case we consider in this study is the model proposed by Smith (2002)

as in (11). The last two columns of tables 2 and 3 report the estimates and their

standard deviations. Interestingly we find that the estimated AR coefficients show

that the volatility process is not persistent; all of them are less than 0.11. Comparing

the levels of persistence with the SV model, these estimates are significantly small.

This may be further evidence that volatility may be far less persistent. Note that

the estimated ML values and SN ratios of Smith’s model are much larger than those

of the SV model. However, as explained in the previous section, Smith’s model does

not consider the two other cases, i.e., st = 0, st−1 = 1 and st = 1, st−1 = 0 and thus

is more restrictive than the SVMRS model.

Figure 4 plots the four cases of Smith (2002) model in (11) for the weekly S&P500;
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i.e., SV model, SVMRS model, SVMRS model with φ0 = φ1 and ση0
= ση1

(see the

last two columns of table 3a), and SVMRS model with φ0 = φ1 and ση
0
= ση

1
for

BC modified log-squared returns with κ = 0.05.6 As in figure 3, figure 4 confirms

that the volatility is much more volatile and less persistent.

4 Conclusions

This paper has presented a SV model with regime-dependent mean, variance, and

autocorrelation that generalises existing SV regime-dependent models. We estimate

our model using generalisations of the Kalman filter methods of Harvey, Ruiz, and

Shephard (1994). Our results show that squared returns are better specified by our

SVMRS models. In addition, a broad pattern we have found seems to be that the

regime-dependent estimates are less persistent (and more volatile) than single regime

estimates provided by other authors. This suggests that ignoring regime switching

increases the estimate of persistence.

6The estimates that are not reported in the paper can be obtained from authors upon request.

We also estimated these models using ten years monthly data. The results are similar and can be

obtained from authors upon request.
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Appendix

A. Estimation Procedure

We need some notation for the prediction of the state vector and also for its

variance depending upon which regime is being used in the conditional set. Predic-

tion equation (x
(i,j)
t|t−1), mean squared error associated with x

(i,j)
t|t−1 (M

(i,j)
t|t−1), prediction

error (v
(i,j)
t ), prediction variance (f

(i,j)
t ) and updating equations (x

(i,j)
t|t ,M

(i,j)
t|t ) can

be obtained using the following procedure; For st = i and st−1 = j, i, j = 0, 1, we

have

x
(i,j)
t|t−1 = E[xt|st = i, st−1 = j, It−1] (17)

= (µi − µjφi) + φix
(j)
t−1|t−1,

M
(i,j)
t|t−1 = E[(xt − x

(i,j)
t|t−1)

2|st = i, st−1 = j, It−1] (18)

= φ2
iM

(j)
t−1|t−1 + σ2

i ,

v
(i,j)
t = yt − x

(i,j)
t|t−1 (19)

= xt − x
(i,j)
t|t−1 + ϕt

f
(i,j)
t = M

(i,j)
t|t−1 + σ2

ϕ (20)

x
(i,j)
t|t = x

(i,j)
t|t−1 +M

(i,j)
t|t−1

(
f
(i,j)
t

)−1

v
(i,j)
t (21)

M
(i,j)
t|t = M

(i,j)
t|t−1 −M

(i,j)
t|t−1

(
f
(i,j)
t

)−1

M
(i,j)
t|t−1 (22)

Note that as in Hamilton (1989), the filtered transition probability, Pr(st =

i, st−1 = j|It−1), is updated with transition probability, Pr(st = i|st−1 = j), and

conditional probability, Pr(st−1 = j|It−1) as follows;

Pr(st = i, st−1 = j|It−1) = Pr(st = i|st−1 = j) Pr(st−1 = j|It−1). (23)

The conditional probability updated with information at time t are given by:

Pr(st = i, st−1 = j|It) =
f(yt, st = i, st−1 = j|It−1)

f(yt|It−1)
(24)

=
f(yt|st = i, st−1 = j, It−1) Pr(st−1 = j|It−1)

1∑
i=0

1∑
j=0

f(yt|st = i, st−1 = j, It−1) Pr(st−1 = j|It−1)

.
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Assuming normality the density for yt conditional on st, st−1 and It−1 is given

by:

f(yt|st = i, st−1 = j, It−1) =
1√

2πf
(i,j)
t

exp

−

(
v
(i,j)
t

)2

2f
(i,j)
t

 . (25)

and

Pr(st = i|It) =
1∑

j=0

Pr(st = i, st−1 = j|It).

Note that

Pr(st = 0|st−1 = 1) = 1− Pr(st = 1|st−1 = 1)

Pr(st = 1|st−1 = 0) = 1− Pr(st = 0|st−1 = 0).

We also obtain

x
(i)
t|t = E[xt|st = i, It]

=

1∑
j=0

Pr(st = i, st−1 = j|It)x
(i,j)
t|t

Pr(st = i|It)
,

M
(i)
t|t = E[(xt − x

(j)
t|t )

2|st = i, It]

=

1∑
j=0

Pr(st = i, st−1 = j|It)M
(i,j)
t|t

Pr(st = i|It)
.

The above procedure should be repeated from t=1 to T to calculate the log

likelihood:

$(y|θ) =
T∑
t=1

log[f(yt|It−1)]

where θ = {µ0, µ1, φ0, φ1, σ
2
0, σ

2
1,Pr(st = 0|st−1 = 0),Pr(st = 1|st−1 = 1)}. We

choose different initial value sets of θ to find the global maximum likelihood value,

since Markov regime switching models usually have many local maxima. The start-
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ing values may be given by

x
(i)
0|0 = µi

M
(i)
0|0 =

σ2
i

1− φ2
i

P (s0 = 1|I0) =
1

2
.

B. Smoothing Procedure

As before, in order to extract the volatility we need the smoother component.

In order to get theses estimates we need some notation

x
(k,i)
t|T = E[xt|st+1 = k, st = i, IT ] (26)

M
(k,i)
t|T = E[(xt − x

(k,i)
t|T )2|st+1 = k, st = i, IT ] (27)

Pr(st+1 = k, st = i|IT ) = Pr(st+1 = k|IT ) Pr(st = i|It)
Pr(st+1 = k|st = i)

Pr(st+1 = k|It)
,(28)

where

Pr(st+1 = k|IT ) =
1∑

l=0

Pr(st+2 = l, st+1 = k|IT ),

and

Pr(st = i|It) =
1∑

j=0

Pr(st = i, st−1 = j|It),

Pr(st+1 = k|It) =
1∑

i=0

Pr(st+1 = k, st = i|It)

from the estimation procedure in Appendix A. The smoothing equations are

x
(k,i)
t|T = x

(i)
t|t + J

(k,i)
t (x

(k)
t+1|T − x

(k,i)
t+1|t)

M
(k,i)
t|T = M

(i)
t|t + J

(k,i)
t (M

(k)
t+1|T −M

(k,i)
t+1|t)J

(k,i)
t

where
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J
(k,i)
t = M

(i)
t|t φk(M

(k,i)
t+1|t)

−1.

Note that

x
(i)
t|T =

1∑
k=0

Pr[st+1 = k, st = i|IT ]x
(k,i)
t|T

Pr(st = i|IT )

M
(i)
t|T =

1∑
k=0

Pr[st+1 = k, st = i|IT ]M
(k,i)
t|T

Pr(st = i|IT )

xt|T =
1∑

k=0

1∑
i=0

Pr[st+1 = k, st = i|IT ]x
(k,i)
t|T

Mt|T =

1∑
k=0

1∑
i=0

Pr[st+1 = k, st = i|IT ]M
(k,i)
t|T

where t = T − 1, T − 2, ..., 1. For t = T , we use the last values from estimation

procedure; these are x
(k,i)
T |T , x

(i)
T |T , M

(k,i)
T |T , M

(i)
T |T , Pr(sT = k, sT−1 = i|IT ), Pr(sT =

k|IT ).
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Table 1  Properties of Log-Squared Residuals 

A. S&P500 Index Volatility

Returns (%)

Log- Squared 

Residuals     

(Returns-Mean)

Log- Squared Residuals 

Modified with Breidt and 

Carriquiry (1996) Method 

(κ=0.02)

Log- Squared Residuals 

Modified with Breidt and 

Carriquiry (1996) Method 

(κ=0.05)

Log- Squared Residuals 

Modified with Breidt and 

Carriquiry (1996) Method 

(κ=0.10)
Daily Returns Mean 0.046 -1.945 -1.624 -1.459 -1.290

(A total number Standard Deviation 0.983 2.606 1.956 1.739 1.551

of 2548 returns Skewness -0.307 -1.120 -0.051 0.208 0.434

 from 27 February Excess Kurtosis 4.937 2.101 -0.868 -0.867 -0.708

1992 to 27 February Jarque and Bera Statistics 2687.326 1024.458 82.962 100.341 136.093

2002) Ljung and Box (10) 21.335 304.897 545.184 630.323 697.345

Ljung and Box (50) 95.914 1371.533 2328.800 2606.691 2807.545

Autocorrelation (Lag 1) 0.005 0.092 0.117 0.126 0.133

Autocorrelation (Lag 5) -0.034 0.127 0.178 0.190 0.199

Autocorrelation (Lag 10) 0.043 0.133 0.171 0.183 0.191

Autocorrelation (Lag 15) 0.016 0.099 0.137 0.143 0.147

Autocorrelation (Lag 20) -0.008 0.094 0.122 0.126 0.130

Autocorrelation (Lag 30) -0.010 0.109 0.142 0.150 0.154

Autocorrelation (Lag 40) 0.012 0.084 0.121 0.131 0.138

Autocorrelation (Lag 50) -0.013 0.088 0.110 0.114 0.115

Weekly Returns Mean 0.227 -0.110 0.130 0.259 0.397

(A total number Standard Deviation 2.090 2.395 1.856 1.664 1.492

of 522 returns Skewness -0.421 -1.237 -0.251 0.010 0.244

 from 26 February Excess Kurtosis 1.743 2.207 -0.701 -0.829 -0.786

1992 to 27 February Jarque and Bera Statistics 81.463 239.005 16.166 14.957 18.610

2002) Ljung and Box (10) 16.357 51.645 76.889 88.010 98.154

Ljung and Box (50) 41.056 190.159 296.735 332.606 361.150

Autocorrelation (Lag 1) -0.094 0.099 0.117 0.123 0.128

Autocorrelation (Lag 5) -0.015 0.035 0.067 0.083 0.098

Autocorrelation (Lag 10) 0.031 0.051 0.069 0.079 0.087

Autocorrelation (Lag 15) 0.017 0.098 0.121 0.119 0.115

Autocorrelation (Lag 20) 0.043 0.064 0.128 0.146 0.158

Autocorrelation (Lag 30) 0.032 0.101 0.123 0.128 0.132

Autocorrelation (Lag 40) -0.020 0.006 0.037 0.047 0.055

Autocorrelation (Lag 50) 0.045 0.097 0.121 0.126 0.130



B. FTSE100 Index Volatility

Returns (%)

Log- Squared 

Residuals     

(Returns-Mean)

Log- Squared Residuals 

Modified with Breidt and 

Carriquiry (1996) Method 

(κ=0.02)

Log- Squared Residuals 

Modified with Breidt and 

Carriquiry (1996) Method 

(κ=0.05)

Log- Squared Residuals 

Modified with Breidt and 

Carriquiry (1996) Method 

(κ=0.10)
Daily Returns Mean 0.041 -1.556 -1.339 -1.212 -1.074

(A total number Standard Deviation 1.003 2.321 1.852 1.666 1.496

of 2606 returns Skewness -0.115 -1.084 -0.234 0.016 0.236

 from 27 February Excess Kurtosis 2.163 1.591 -0.744 -0.873 -0.830

1992 to 27 February Jarque and Bera Statistics 502.327 767.686 82.045 81.106 96.734

2002) Ljung and Box (10) 41.900 283.552 389.479 443.857 502.353

Ljung and Box (50) 77.288 894.607 1297.436 1478.730 1658.872

Autocorrelation (Lag 1) 0.059 0.110 0.116 0.121 0.126

Autocorrelation (Lag 5) -0.011 0.123 0.136 0.141 0.148

Autocorrelation (Lag 10) 0.011 0.105 0.118 0.124 0.130

Autocorrelation (Lag 15) -0.008 0.072 0.101 0.110 0.117

Autocorrelation (Lag 20) 0.006 0.089 0.107 0.113 0.120

Autocorrelation (Lag 30) 0.000 0.083 0.108 0.117 0.124

Autocorrelation (Lag 40) -0.033 0.037 0.041 0.044 0.047

Autocorrelation (Lag 50) 0.040 0.051 0.082 0.093 0.101

Weekly Returns Mean 0.199 0.047 0.293 0.417 0.548

(A total number Standard Deviation 2.147 2.429 1.854 1.660 1.488

of 522 returns Skewness 0.091 -1.416 -0.410 -0.169 0.039

 from 26 February Excess Kurtosis 1.152 2.722 -0.730 -0.947 -0.990

1992 to 27 February Jarque and Bera Statistics 29.572 335.635 26.225 21.989 21.438

2002) Ljung and Box (10) 9.657 16.255 27.094 33.236 40.110

Ljung and Box (50) 59.082 64.692 95.459 109.816 124.071

Autocorrelation (Lag 1) -0.079 0.009 0.039 0.048 0.056

Autocorrelation (Lag 5) -0.015 0.040 0.049 0.056 0.064

Autocorrelation (Lag 10) 0.067 0.052 0.069 0.080 0.091

Autocorrelation (Lag 15) -0.053 0.104 0.110 0.120 0.128

Autocorrelation (Lag 20) -0.014 0.039 0.053 0.058 0.062

Autocorrelation (Lag 30) -0.035 -0.029 -0.011 -0.002 0.007

Autocorrelation (Lag 40) -0.029 0.014 0.034 0.033 0.030

Autocorrelation (Lag 50) 0.023 0.032 0.034 0.027 0.022



Table 2 Estimates of SV, SV with Regime Changing Mean and SV with MRS State Equation for Daily Volatility

A. S&P500 Index Volatility
SV Model SVMRS Model SVMRS Model with Restriction of φ1 = φ2  and σ1η=σ2η Smith's (2002) Model

Log-Squared Residuals Log-Squared Residuals Log-Squared Residuals BC Log-Volaitlity (κ=0.05) Log-Squared Residuals
Estimates STD Estimates STD Estimates STD Estimates STD Estimates STD

µ0 -1.976 0.455 -4.602 0.278 -9.241 0.676 -2.860 0.265 -6.546 0.229
µ1 -1.006 0.099 -3.796 0.624 -0.334 0.268 -1.075 0.064
φ0 0.999 0.001 0.361 0.141 0.993 0.002 0.996 0.003 0.081 0.019
φ1 0.126 0.036
ση0 0.044 0.016 2.872 0.108 0.105 0.026 0.066 0.020 1.829 0.051
ση1 1.548 0.042
σϕ 2.465 0.054 0.002 0.003 1.668 0.048 0.991 0.022 0.000 0.000

p (0,0) 0.268 0.050 0.132 0.020 0.486 0.021 0.134 0.024
p (1,1) 0.691 0.036 0.877 0.012 0.502 0.021 0.871 0.013

ML Values -6071.1 -5950.9 -5854.5 -4886.6 -6002.452
Notes: A total number of 2606 returns from 27 February 1992 to 27 February 2002 is used.

B. FTSE100 Index Volatility
SV Model SVMRS Model SVMRS Model with Restriction of φ1 = φ2  and σ1η=σ2η Smith's (2002) Model

Log-Squared Residuals Log-Squared Residuals Log-Squared Residuals BC Log-Volaitlity (κ=0.05) Log-Squared Residuals
Estimates STD Estimates STD Estimates STD Estimates STD Estimates STD

µ0 -1.549 0.205 -4.814 1.537 -7.690 0.467 -3.383 0.212 -6.042 0.248
µ1 -0.941 0.397 -2.706 0.407 -0.825 0.208 -0.871 0.060
φ0 0.990 0.005 0.899 0.241 0.985 0.005 0.986 0.005 0.079 0.018
φ1 0.260 0.146
ση0 0.107 0.027 1.881 0.605 0.142 0.026 0.120 0.018 1.653 0.036
ση1 0.856 0.156
σϕ 2.196 0.042 1.084 0.200 1.490 0.036 0.909 0.019 0.000 0.046

p (0,0) 0.217 0.053 0.157 0.023 0.382 0.019 0.135 0.022
p (1,1) 0.752 0.151 0.892 0.012 0.595 0.020 0.897 0.012

ML Values -5670.3 -5494.9 -5423.9 -4674.3 -5540.448
Notes: A total number of 2548 returns from 27 February 1992 to 27 February 2002 is used.



Table 3 Estimates of SV, SV with Regime Changing Mean and SV with MRS State Equation for Weekly Volatility

A. S&P500 Index Volatility

SV Model SVMRS Model SVMRS Model with Restriction of φ1=φ2  and σ1η=σ2η Smith's (2002) Model

Log-Squared Residuals Log-Squared Residuals Log-Squared Residuals BC Log-Volaitlity (κ=0.05) Log-Squared Residuals

Estimates STD Estimates STD Estimates STD Estimates STD Estimates STD

µ0 -0.050 0.396 -2.770 0.474 -5.973 0.416 -1.930 0.447 -4.870 0.617

µ1 0.738 0.144 -0.682 0.732 0.504 0.456 0.526 0.139

φ0 0.992 0.007 0.426 0.253 0.995 0.004 0.994 0.009 0.109 0.064

φ1 0.104 0.052

ση0 0.088 0.036 2.673 0.219 0.050 0.032 0.069 0.069 1.225 0.835

ση1 1.368 0.079

σϕ 2.280 0.109 0.001 0.005 1.561 0.116 1.015 0.056 1.121 0.867

p
(0,0)

0.256 0.086 0.123 0.031 0.390 0.047 0.105 0.047

p
(1,1)

0.718 0.057 0.886 0.047 0.615 0.053 0.886 0.030

ML Values -1179.4 -1133.8 -1125.6 -968.0 -1145.273

Notes: A total number of 522 returns from 26 February 1992 to 27 February 2002 is used.

B. FTSE100 Index Volatility

SV Model SVMRS Model SVMRS Model with Restriction of φ1=φ2  and σ1η=σ2η Smith's (2002) Model

Log-Squared Residuals Log-Squared Residuals Log-Squared Residuals BC Log-Volaitlity (κ=0.05) Log-Squared Residuals

Estimates STD Estimates STD Estimates STD Estimates STD Estimates STD

µ0 0.050 0.217 -2.224 0.682 -5.881 0.406 -1.658 0.210 -5.186 0.530

µ1 1.075 0.194 -0.070 0.612 1.092 0.208 0.654 0.100

φ0 0.969 0.019 0.303 0.290 0.972 0.012 0.972 0.014 0.009 0.031

φ1 0.021 0.038

ση0 0.142 0.058 2.795 0.207 0.164 0.039 0.112 0.030 1.646 0.081

ση1 1.229 0.156

σϕ 2.357 0.113 0.001 0.399 1.541 0.078 0.893 0.037 0.000 0.014

p
(0,0)

0.255 0.083 0.118 0.020 0.323 0.036 0.120 0.048

p
(1,1)

0.631 0.145 0.899 0.047 0.625 0.043 0.899 0.021

ML Values -1198.0 -1126.8 -1130.6 -958.8 -1142.167

Notes: A total number of 522 returns from 26 February 1992 to 27 February 2002 is used.



Figure 1 Smoothed Volatility and State Probabillity for S&P500 Index Daily Volatility

Notes: A total number of 2606 returns from 27 February 1992 to 27 February 2002 is used.
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1b. SVMRS Model
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1d. SVMRS Model with Restriction of φφφφ0000=φ=φ=φ=φ1111 and σσσση0η0η0η0=σ=σ=σ=ση1η1η1η1 for BC Modified Log-Volatility
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Figure 2 Smoothed Volatility and State Probabillity for FTSE100 Index Daily Volatility

Notes: A total number of 2548 returns from 27 February 1992 to 27 February 2002 is used.
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2c. SVMRS Model with Restriction of φφφφ0000=φ=φ=φ=φ1111 and σσσση0η0η0η0=σ=σ=σ=ση1η1η1η1
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2b. SVMRS
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2d. SVMRS Model with Restriction of φφφφ0000=φ=φ=φ=φ1111 and σσσση0η0η0η0=σ=σ=σ=ση1η1η1η1 for BC Modified Log-Volatility
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Figure 3 Smoothed Volatility and State Probabillity for S&P500 Index Weekly Volatility

Notes: A total number of 522 returns from 26 February 1992 to 27 February 2002 is used.
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3c. SVMRS Model with Restriction of φφφφ0000=φ=φ=φ=φ1111 and σσσση0η0η0η0=σ=σ=σ=ση1η1η1η1
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3b. SVMRS Model
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3d. SVMRS Model with Restriction of φφφφ0000=φ=φ=φ=φ1111 and σσσση0η0η0η0=σ=σ=σ=ση1η1η1η1 for BC Modified Log-Volatility
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Figure 4 Smoothed Volatility and State Probabillity for S&P500 Index Weekly Volatility
                 with Smith (2002) Model

Notes: A total number of 522 returns from 26 February 1992 to 27 February 2002 is used.
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4c. SVMRS Model with Restriction of φφφφ0000=φ=φ=φ=φ1111 and σσσση0η0η0η0=σ=σ=σ=ση1η1η1η1 
  

 in Smith (2002) Model
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4b. SVMRS Model
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4d. SVMRS Model with Restriction of φφφφ0000=φ=φ=φ=φ1111 and σσσση0η0η0η0=σ=σ=σ=ση1η1η1η1 for BC Modified Log-Volatility  in Smith 
(2002) Model
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