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Abstract 

One of the lessons of the treatment effects literature is the lack of consensus about 
the ability of statistical and econometric methods to replicate experimental estimates. 
In this paper, we provide new evidence using an unusual unemployment insurance 
experiment that allows the identification of discontinuities in the assignment 
mechanism. In particular, we use a set of regression functions and matching 
estimators based on kernel methods with mixed categorical and continuous data. A 
crucial issue with the kernel approach is the choice of the smoothing parameters. We 
develop a leave-one-out cross-validation algorithm that minimizes the mean square 
error of the average treatment effect on the treated weighting each comparison unit 
according to their distribution of covariates in the support region. Two main findings 
emerge. First, local constant and nearest-neighbor matching on kernel-based 
propensity score with mixed categorical and continuous data produces a closer 
approximation to the experimental estimates than traditional parametric propensity 
score models do. Second, the regression-discontinuity design emerges as a promising 
method for solving the evaluation problem. When restricted to sample observations 
in the neighborhood of the discontinuity points, the estimates are close 
approximation to the experimental estimates and are robust across different 
subsamples and estimators.  
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Introduction   

Since LaLonde’s (1986) influential paper, several studies have tried to address the 

effectiveness of non-experimental methods to replicate experimental evaluation 

estimates. The main advantage of having access to experimental data is that it solves the 

evaluation problem after balancing the distribution of observable and unobservable 

variables in the treatment and control group. Under the assumptions that randomization 

does not alter both the pool of participants (randomization bias) and their behavior 

(Hawthorne effect), and that close substitutes for the experimental treatment are 

unavailable (substitution bias), it follows that the evaluator can estimate the impact of the 

treatment on the treated through simple difference in outcome means. Therefore, 

experimentally determined impacts allow a unique opportunity to calibrate non-

experimental estimators, visualize strategies for choosing competing alternative non-

experimental estimators, and evaluate the underlying identification assumptions 

justifying the estimators.  

LaLonde’s critique of the use of non-experimental techniques in the evaluation of 

social programs relies on the premise that successful econometric models intend to 

reproduce the experimental estimates. He use the experimental estimates from the 

National Support Work Demonstration Program (NSW) as the benchmark and then, 

setting the controls aside, wed the treated units from the experiment to different sets of 

non-experimental samples – called comparison groups - extracted from national public 

surveys. He concludes that non-experimental estimators would not have yielded accurate 

estimates of the impact of the NSW program. Since then, the search for new answers to 

the old problem of estimating unbiased treatment effects in non-experimental samples has 

produced an impressive development of statistical and econometric methods (see e.g. 

Heckman, LaLonde and Smith, 2000 and Imbens 2003). The power of alignment tests 

(Heckman and Hotz, 1989), semiparametric kernel regressions (Heckman, Ichimura, 

Smith and Todd, 1998), simple matching estimators (Dahejia and Wahba, 1998), bias-

adjusted matching (Abadie and Imbens, 2002) and nonparametric series estimators (Hahn 

1998, Hirano, Imbens and Ridder, 2003) has yield a rich set of new econometric tools 

long away from simple parametric linear methods. 
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One characteristic that may summarize this literature is the lack of consensus in 

the ability of statistical and econometric methods in replicating experimentally 

determined estimates.1 A firm result, however, is that non-experimental estimators can 

not prevail over bad quality data. If the evaluation aim is to compare experimental and 

non-experimental samples the starting point is compare comparable units which supposes 

having geographically-aligned samples (Heckman et al. 1998),  under the same definition 

of outcome and pre-treatment variables and survey instruments (Smith, 1995).  

In this paper, we provide new evidence about the ability of several new 

econometric estimators in replicating average treatment effects from an unusual UI 

experiment, the Kentucky Working Profiling Reemployment Services (KWPRS), that 

provides low intensity reemployment services to treated claimants. The peculiarity of this 

experiment is the profiling mechanism used to select the treated and control units. The 

randomization occurs only to satisfy capacity constrains and at the margin. For each local 

office and each week, claimants starting new spells are ranked by their profiling scores 

and those who have the highest scores receive automatically the reemployment services 

until the exhaustion of the budget for that particular office and week. Only claimants with 

marginal profiling scores are assigned to the experimental treatment or control group 

when they exceed the number of available slots. Importantly, as a consequence of this 

“tie-breaking experiment” a non-experimental comparison group is automatically form 

by those who were not assigned into the experimental sample because of their lower 

profiling scores than that for the marginal score group in each week and local office. The 

underlying idea of this experimental program is to reduce the duration of unemployment 

spells for those with higher probabilities of exhausting the 26 weeks of UI benefits and, 

therefore, to reduce the costs of the UI system. Black, Smith, Berger and Noel (2003) 

find experimental estimates of –2.24 for weeks receiving UI benefits, $-143 for amount 

of UI benefits received and $1,054  for annual earnings.  

We use a set of semiparametric and nonparametric regression functions and 

matching estimators in order to replicate these experimental estimates. In particular, the 

regression approach estimates the functions )1,|( 1 =TXYE  and )0,|( 0 =TXYE  using 

                                                 
1 Dahejia and Wahba (1999, 2002), and Smith and Todd (2003) vividly illustrate two different answers to 
the same problem.  
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local linear kernel methods with mixed categorical and continuous data. Traditional 

nonparametric kernel regression limits their application to continuous variables only. The 

presence of discrete variables is handling by frequency estimation method that splits the 

sample into cells, which implies a loss in finite-sample efficiency. Racine and Li (2003) 

show that kernel regression estimation with mixed data has a rate of convergence that 

depends only on the number of continuous variables involved, it does not split the sample 

into cells  and nicely handles interactions among the discrete and continuous variables. 

One promising application of the proposed regression functions is the estimation of 

regression adjusted matching that is carry out without imposing the stronger assumptions 

of the partially linear model (Heckman et al.,1998) or the linear  regression functions 

(Rubin, 1973b). 

It is documented the usefulness of nonparametric propensity scores for estimating 

average treatment effects in a regression framework. Hahn (1998), and Hirano, Imbens 

and Ridder (2003) show that weighting by the inverse of a nonparametric – series logit - 

propensity score leads to efficient estimates of average treatment effects. We estimate the 

propensity score using a kernel-based probability density function with mixed categorical 

and continuous data. In addition to the natural advantages that offer the interaction of 

mixed data, this nonparametric propensity score can be incorporated smoothly in the 

treatment effect estimators proposed by Hahn (1998) and Hirano et al. (2003) without 

need for using series logit propensity score estimators.  

For the kernel-based regression and kernel-base matching estimators, a crucial 

issue is the choice of the smoothing parameter. The treatment effects literature, however, 

has been largely silent concerning the optimal choice of the soothing parameters. The 

standard approach is to use a fixed smoothing parameter (e.g. Heckman et al. 1998) with 

variations in the selected parameter to determine the sensitivity of the treatment estimates 

(Smith and Todd, 2003). In general, the kernel-based literature has developed some 

methods to find the optimal smoothing parameters using data-driven methods. Hall, 

Racine and Li (2002), Racine and Li (2002) propose least square cross-validation to 

obtain the smoothing parameters of regression and distributional functions with mixed 

categorical and continuous data. It has the ability to automatically remove irrelevant 

regressors by smoothing out such variables, a property not shared by other bandwidth 
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selection rules (e.g., plug- in). We use this approach when estimating the regression-based 

estimators and the nonparametric propensity score. In the case of kernel-based matching 

(local constant and local linear matching), the problem of finding optimal smoothing 

parameters is more complicated because the mean-squared-error criteria weights evenly 

all units even those with distribution of covariates in regions that are not important in the 

estimation of the average treatment  effects. We develop an algorithm base on cross-

validation methods and mean-squared-error criteria weighting each unit by its role in the 

determination of the average treatment effects.   

The unique design of the KWPRS allows us to identify discontinuities in the 

assignment mechanism that makes it similar to a quasi-experimental design originally 

introduced by Thistlethwaite and Campbell (1960) and named “tie-breaking” experiment.  

We exploit the discontinuity assignment to the experimental and non-experimental 

samples using a regression-discontinuity approach in order to solve the evaluation 

problem. Previous evidence shows its usefulness in identifying causal relationships in 

self-selected samples (e.g. Angrist and Lavy, 1996; van der Klauuw 2001), although there 

is no empirical evidence about its effectiveness in replicating experimental estimates.  

The paper proceeds as follows: Section1 explains some key characteristics of the 

KWPRS program and gives a description of the experimental and non-experimental data. 

Section 2 reviews the methodological aspects of the program evaluation. Section 3 

describes the set of parametric, semiparametric, and nonparametric estimators that intend 

to replicate the experimental estimates. Section 4 shows the empirical results, and Section 

5 concludes.      

 

1. The Kentucky UI Experiment: Working Profiling and Reemployment Services  

In November 1993, President Clinton signed into law the Unemployment Compensation 

Amendments of 1993 that offered a variety of low-intensity reemployment services to UI 

claimants that were identified through a profiling statistical model as potential exhaustees 

of UI benefits. In June of 1994, the Commonwealth of Kentucky was selected as a 

prototype state for implementing the Working Profiling and Reemployment Services 
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(KWPRS).2 The underlying idea of this program is to reduce the duration of 

unemployment spells for those with higher probabilities of exhausting the 26 weeks of UI 

benefits and, thereby, to reduce the costs of the UI system.  

A great concern with the UI benefits is the potential distortionary behavior of the 

UI claimants that may extend the unemployment spell beyond what it would be in the 

absence of UI benefits, either by subsidizing additional job search or by subsidizing the 

consumption of leisure.3 In order to deter these undesirable effects some policies, such as 

the UI Bonus experiments offer cash rewards to UI beneficiaries who find a job rapidly, 

and, thereby reduce the incentives for excess benefit receipt without punishing workers 

for whom a longer search is optimal. 4  Likewise, alternative UI experiments used “sticks” 

instead of “carrots” by enforcing the job search requirements together with job search 

assistance. The KWPRS program combines aspects of both types of UI reforms. One 

week after the UI claimants receive the first UI check, the experimental treatment group 

received a notification letter that informed them about the mandatory reemployment 

services.5 Conditional on receiving these services they collect the next checks until the 

point of benefit exhaustion. Therefore, the treatment is not the services themselves but 

the notification of mandatory participation in such services that may cause changes in 

their behavior. Depending on each individual, this UI program can be a “carrot” or a 

“stick”. For those who see this program as an opportunity to increase their human capital 

skills, this program increase the value of being unemployed prior to the start of the 

services as they anticipated higher wage offers. For those who see this program a “leisure 

tax”, the program lowers the value of remains unemployed before and during the period 

of service receipt. The net effect of this program depends on the signs and magnitudes of 

these two effects.  

                                                 
2 The Kentucky profiling statistical model was estimated thorough a double-limit Tobit model using 140 
covariates, including variables representing characteristics of the local and state economy as well as the 
workers characteristics such as past earnings, participation in welfare programs, past UI recipiency, past job 
characteristics, education, etc. It is against the law to profile based on gender, veteran status, ethnicity, and 
age.   
3 See Mortensen (1970) and McCall (1970) for earlier works in job search models and UI; Ashenfelter 
(1978a) and Moffitt and Nicholson (1982) for labor supply models and UI.  
4 See Meyer (1995) for a comprehensive survey, Woodbury and Spiegelman (1987) for a detailed analysis 
of Illinois Bonus experiment. 
5 Employment counseling, job search workshops, labor market information, job referral and placement, 
relocation assistance, education and training opportunities of modest duration.   



 7 

 The Experimental Sample   

 The peculiarity of the KWPRS program is the random assignment that occurs at 

the margin. The statistical profiling model assigns to each UI claimant a continuous score 

based on the probability of exhausting UI benefits. These continuous estimates are 

collapsed into a discrete profiling score ranging from 1 to 20 such that potential 

participants predicted by the profiling system to exhaust between 95 and 100 percent of 

their unemployment benefits received a score of 20; potential participants predicted to 

exhaust between 90 and 95 percent of their unemployment benefits receive 19 and so on. 

For each local office and each week, claimants starting new spells are ranked by their 

scores, those who have the highest scores receive mandatory reemployment services 

automatically until the budget for that particular office, and week is exhausted. Only the 

claimants with marginal profiling scores are assigned to the experimental treatment and 

control groups when they exceed the number of available slots in a given week and local 

office. Because of this “tie-breaking experiment” (Campbell, 1969), 1,236 and 745 

claimants are in the treatment and control groups. Black, Smith, Berger and Noel (2003) 

call these sets of claimants “profiling tie groups” (PTG’s).  

The Non-Experimental Sample 

The UI claimants with profiling scores below the (week/local office specific) 

marginal scores are not profiled into the KWPRS treatment and, therefore, they constitute 

the non-experimental sample. From June 1994 to October 1996, 8629 claimants fall in 

this category. It is important to highlight that the experimental and non-experimental 

samples are composed of individuals living in the same local labor market at the same 

time and who provided all the socio-economic, demographic, and labor information 

following the same battery of pre-program and follow-up instruments. Furthermore, we 

only use administrative data that minimizes the risk of randomization bias and attrition 

bias. This high quality data is very appropriate for econometric methods that intend to 

correct selection on observables because the mandatory assignment into treatment is base 

on a score derived from observable characteristics for each individual.      

In order to determine if the observations from the experimental sample were 

drawn from the same population, we perform a kernel-based nonparametric test for 

equality of distributions. It is more stringent than simple tests for equality of means, it 
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can be applied to both categorical and continuous data, and it allows obtain p-values 

using bootstrap methods (Li and Racine 2003b). The test is based on an empirical test 

statistic *( )I  the integrated squared density differences between two distribution 

functions 2[ ( ) ( )]I f x g x dx= −∫ . It uses the empirical distribution of B bootstrap statistics 

{ }*

1

B

i i
I

=
to approximate the null distribution of I.   

Table 1 presents the first two moments of the distributions of some pre-treatment 

covariates together with the p-value statistics for differences in the distributions for both 

the experimental and non-experimental samples. It is clear from column (4) that the null 

hypothesis of equality of distributions for the experimental sample is not rejected, which 

suggests that the treatment and control groups were drawn from the same population. 

Unsurprisingly, column (5) shows that for the non-experimental treatment and 

comparison sample the nonparametric test for equality of distributions rejects the null 

hypothesis for most of the covariates. We reinforce this result by observing the 

standardized differences between the covariates in column (6). It reveals systematic 

differences between treatment and comparison units. The huge difference in annual and 

quarterly earnings before the program between the experimental and non-experimental 

sample is remarkable.   

 

 2) The Evaluation Problem 

The main goal of evaluating social programs is find consistent and unbiased 

estimates of the program impacts on the treatment group. Yet in a world where it is 

extremely difficult implement experiments within social programs (see Heckman and 

Smith, 1995) the construction of adequate counterfactuals is the Gordian knot of the 

evaluation problem. The problem arises because the evaluators observed mutually 

exclusive states for the individuals: treatment (T=1, associate to outcome Y1) or non-

treatment (T=0, associate to outcome Y0), but not both states at the same time. Therefore, 

estimating the outcomes that would have been observed for participants in the program 

had they not participated,Y0, is the evaluator’s task. Denoting i∆ as the individual gain of 

moving from state 0 to state 1, we cannot identify for anyone the impact of participating 

in the program iii YY 01 −=∆  because of the missing data problem.   
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We can only identify mean or distributional gains under some exogeneity 

assumptions. In this paper, we focus in the mean impact of treatment on the treated 

(subsequently, TT∆ ) that estimates the average impact  among those participating in the 

program: 

  )1,|()1,|()1,|( 0101 =−===−=∆ TXYETXYETXYYETT . (1) 

While )1,|( 1 =TXYE may be estimated from the observed treated sample, the right-hand 

side of the equation (1) contains the missing data 0( | 1, )E Y T X= . If we know for certain 

the outcome that would have been observed for participants in the program had they not 

participated, 0 | 1Y T = , we have solved the evaluation problem. In this context, using non-

participants outcomes, 0 | 0Y T = , to approximate the counterfactual missing participant’s 

outcomes originates the mean selection bias because those who participated in the 

program may have different levels of 0Y  even in the absence of receiving any program 

services,  

     ),0|(),1|( 00 XDYEXDYESB =−== .   (2) 

Having access to an experimental control group solves the problem of mean 

selection bias, under certain behavioral and statistical assumptions.6 Denote * 1T =  for 

individuals who would participate in the random assignment, * 0T =  for everyone else. 

Also, define 1r =  for randomization into the treatment group and 0r =  for 

randomization into the control group. The crucial assumption for identifying the mean 

impact of treatment on the treated is,  

 ),0,1*|(),1,1*|(),1|( 0101 XrTYEXrTYEXTYYE ==−====− . (3)   

If this condition holds, the mean selection bias is equal to zero because the control group 

outcomes are unbiased estimates of the outcomes that would have been observed for 

participants in the program had they not participated. Under this condition and assuming 

that the outcome functions are represented by a general functional form: 

     1 1 1

0 0 0

( ) .

( ) .
i i i

i i i

Y X

Y X

ϕ ξ

ϕ ξ

= +

= +
    (4) 

                                                 
6 Under the assumptions that randomization does not alter the pool of participants (randomization bias) , or 
their behavior (Hawthorne effect), and that close substitutes for the experimental treatment are unavailable 
(substitution bias); see Heckman and Smith (1995).   
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where 0)()( 01 == itit EE ξξ , the observed outcome equation can be represented by: 

    0 0(1 ) ( )i i i i i i i iY D Y D Y X Tϕ δ ε= + − = + +  .  (5) 

 where iiii XX 0101 )()( ξξϕϕδ −+−= is the treatment effect and 0 1(1 )i iiT Tε ξ ξ= − +  the 

error term.7 The random assignment guarantees that )0|,()1|,( === TXfTXf ξξ  

from which two important results emerge: )0|)(()1|)(( === TXETXE ijij ϕϕ and 

)0|()1|( === TETE jiji ξξ for the treated and untreated states j . Therefore, the 

fundamental result for experimental samples is obtained straightforwardly:      

0,1),|(),0|(),1|( ===== jXYEXTYEXTYE jjj . (6) 

Random assignment does not remove selection bias by setting 0)|( =TE ε , but instead 

balances the bias in the treatment and control samples such that it cancels out when 

estimating the mean impact estimate. Now the treatment effect on the treated can be 

estimated using simple mean differences: 01 YYTT −=∆ .8 Moreover, the experimental 

sample solves one of the main source of bias in the non-experimental samples, the lack of 

common support. The experimental data guarantee a full common support by balancing 

the distribution of observable and unobservable variables between the treated and control 

groups.  

 Selectivity bias may be a major problem whenever the assignment to treatment 

and comparison groups is not random. The realization that estimates based on selected 

samples are troublesome can be traced to earlier work of Gronau (1974) and Heckman 

(1976). The selection bias arises from the dependence between T  and ε  that under the 

separable framework is represented by,   

)0,|()1,|()( 00 =−== TXETXEXB ξξ  .   (7) 

 The conventional econometric approach to solve this endogeneity problem considers the 

partition of X into two not necessarily disjoint sets: },{ 21 XXX = where 1X  is the set of 

                                                 
7 This is a random effect model where

1 0( ) ( )i iX Xϕ ϕ− is the treatment effect common to all units with a 
given value of iX and 

1 0i iξ ξ− is the random component of the treatment effect. If we assume that
1 0i iξ ξ= , a 

common effects model of treatment effect emerges. See Heckman and Robb (1985) and Robinson (1989) 
for a detailed discussion.   
8 Heckman , LaLonde and Smith (1999) point out that even if assumption (3) does not hold, we still can get 
unbiased estimates in two special cases: (1) under the "common effect" case. ( 2) if individual decisions 
about participating in the program are not affected by the forcasted  gain from participating in the program.     
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covariates in the outcome equation and 2X  is the set of covariates in the participation 

equation that includes some exclusion restrictions. The latent index model (Heckman and 

Robb, 1986) further restricts the model so that the bias only depends on 2X through a 

scalar index (the probability of participation). Denote iii XHT µ+= )( 2
*  where *

iT is a 

latent index variable such as 1)( 2 =ii XT  if 0* ≥iT  for participants in the program and 

0)( 2 =ii XT  if 0* <iT  for non-participants in the program; γii XXH 22 )( =  is the mean 

difference in utilities between the treatment and non-treatment states; and iµ  is the 

unobservable white noise error variable independent of 2X with a distribution denoted by 

))(()|1( 22 γXHFXTP == . If F is strictly monotonic, )())|1(( 22
1 γXHXTPF ==−  

and, therefore, the bias depends only on P :  

)0),(|()1),(|())(( 20202 =−== TXPETXPEXPB ξξ . (8) 

The classical selection model assumes that ),( 21 XX  is independent of ε  and the 

dependence between T and ε  arises through the correlation between the outcome 

equation unobservable )(ε and the participation equation unobservable )(µ . Heckman and 

Hotz (1989) refer to this case as selection on unobservables. For instance, individuals 

with high unobservables in their participation equation are most likely to participate in 

the program. If the unobservable in earnings and participation equations are negatively 

correlated, these individuals are likely to have relatively low earnings, even after 

conditioning on 2X . On the other hand, dependence between T and ε , that arises through 

the correlation between 2X and T , is called selection on observable (Barnow, Cain and 

Goldberger, 1980). Non-experimental estimators that intend to estimate unbiased and 

consistent treatment effect estimates invoke different identification assumptions 

depending on the nature of the selection process they are dealing with. In the case of 

selection on unobservables, it is necessary to form assumptions about the distributions of 

unobserved variables ε  and u  as well as the functional form relating ε  and µ  to 2X . In 

the case of selection on observables, it is necessary to identify, quantify, and include the 

variables that determine both participation in the program and outcomes in the absence of 

treatment. The empirical failure of the assumptions justifying any non-experimental 
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estimator results in estimates that strongly differ from the corresponding experimental 

estimates.  

 

3. Non-Experimental Estimators for Average Treatment Effects on the Treated.  

Assumption 1. (Exogeneity)  

 XTY |0 ⊥ . 

This assumption is known in the literature as the ignorable treatment assignment 

(Rosenbaum and Rubin, 1983) or conditional independence assumption (Lechner, 1999). 

It refers to the independence of the counterfactual outcome from program participation 

conditional on a set of observable variables. Assumption 1 implies that systematic 

differences in outcomes between the treatment and comparison groups are attributable to 

the treatment once some observable variables are held constant. It assures the 

identification of the regression functions: ],|[),|)([]|)([ XTYEXTTYEXTYE ==  and, 

therefore, the average treatment effects on the treated for a subpopulation with 

covariates X : ]).1,|[(]1,|[][ 0
1|

1
1|

=−==∆=∆
==

TXYEETXYEE
TX

TT
TX

TT   This treatment 

effect can only be estimated in the common support of the X covariates because for any 

particular X x=  out of the support there would be either treated or only comparison 

units. Therefore, it is necessary to invoke the second fundamental assumption:  

Assumption 2. (Common Support)  

 1)|1Pr( <= XT . 

Rosenbaum and Rubin (1993) shows that if the exogeneity assumption holds, the 

problem of “curse of dimensionality” inherent in the dimension of X can be simplified. 

Let define the propensity score as )|1Pr()( xXTxP ===  and let )(Xb  be a function of 

attributes at least as "fine" as the propensity score. They show that the assignment and 

potential outcomes are independents once the balancing score (instead of the finest X) is 

held constant. Then, assumptions 1 and 2 are replaced by )()(|0 xbXbTY =⊥  and 

1))()(|1Pr( <== xbXbT . 

 The relevance of the second assumption varies across different estimators. In the 

context of average treatment effect on the treated, the existence of treated units and 

comparison units with “singular” covariates (propensity score) values have asymmetric 
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consequences for the precision of the estimates. Adding "singular" treated units have 

more adverse consequences for the precision of the estimates than adding "singular" 

comparison units since these last units are irrelevant for the average treatment effect for 

the treated. How considerable is this lack of precision depends on the type of estimator 

used. In the context of parametric regression functions that rely on extrapolation the 

presence of out of support treated units lead to an increase of variance although 

comparison units out of the support lead to an spurious increase in the precision of the 

estimates.9 The nonparametric regression functions are better equipped to deal with 

limited overlapping since the out of support observations received smaller weights. 

Simple matching and propensity score matching are sensitive to the presence of treated 

units with outlying values. The quality of the matching can be severely affected leading 

to possible biased estimates. In fact, Heckman et al. (1998) find that limited overlap 

region produces biased matching treatment effects. 

3.1 Matching Estimators  

Matching estimators have been widely studied in the program evaluation literature (e.g., 

Heckman et al. 1997; Heckman et al. 1998; Dahejia and Wahba 1998; Abadie and 

Imbens 2002; Smith and Todd 2003). To estimate the treatment effect on the treated the 

matching estimator imputes the counterfactual for each treatment unit using a weighted 

average of the comparison units outcomes over the common support region and, then, 

estimates a simple means difference between the two samples. In that sense, matching 

resembles an experiment, no functional assumptions for the outcome equation is required: 

)}),(({
1

0
11

1
CS

j

N

i

CS
N

i
i

T

M
TT IYjiWIY

N

c

C

T

T

∑∑
==

−=∆ .   (9)  

where iY1  is the outcome for treated units; ∑
jc

jYjiW 0),( is the estimated counterfactual 

mean with ),( jiW  representing the weights and 0Y  the outcome for comparison units; 

CSI is an indicator function that takes the value 1 if the unit is in the common support 

region, 0 otherwise; TN and CN  are the sample of treated and comparison units. 

Four factors determine the methodological differences among matching 

estimators in theory and practice: weights, sample repetition, metric, and common 
                                                 
9 The increase in the precision is not spurious if the functional form is correct.  
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support, all of which may lead to differences in judging the effectiveness of matching in 

solving the evaluation problem. The weights determine the type of matching estimator to 

be use by the evaluator. Dahejia and Wahba (1998) use the nearest–neighbor matching 

that match each treated unit to the closest – in terms of a parametric propensity score – 

unit in the comparison group. In this case the weights take only two values  1),( =jiW  

for the nearest-neighbor unit and 0),( =jiW otherwise. They find that this approach yield 

estimates very similar to the experimental ones using a subsample of LaLonde's data for 

the NSW program. 10 Three caveats have to be address when using this approach. First, in 

the presence of multiple ties in the propensity score, the estimates could be very sensitive 

to the seed used for the random number generator to break ties (Smith and Todd, 

rejoinder 2003). Second, the literature does not have any solid indication about the 

optimal number of neighbors to use, which may affect the robustness of these results. 

Abadie and Imbens (2002), show that bias-corrected matching estimates are more robust 

to different number of neighbors than simple matching. Third, matching with and without 

replacement may have important consequences in the estimation of the treatment effects. 

Matching with replacement allows comparison units be reused in the matching process 

which allows many treated units to be matched to the same comparison unit. This process 

has two potential effects. First, the precision of the estimates is improved (less variance) 

because of the larger sample but at the cost of greater variability (higher bias). Second, it 

is possible, however, that matching with replacement improves (worsens) the quality of 

the matching if a large (small) overlapping region is present, which leads to a lower 

(higher) bias and higher (lower) variance. What of these two effects will dominate is an 

empirical problem.   

The kernel matching reuses the comparison units differently for each treated unit 

by a “smooth” kernel density function. Heckman, et al. (1998) propose the use a local 

linear kernel matching approach that define the weight function as,  

                                                 
10 The NSW was a federal employment program developed in the mid-1970s that assigned qualified 
applicants to temporal training positions randomly. It was carrying out in ten cities: Atlanta, Chicago, 
Hartford, Jersey City, Newark, New York, Oakland, Philadelphia, San Francisco and Wisconsin.      
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where [( ) / ]ij j iK K P P h= − is the kernel function that depends on the distribution of the 

propensity score jP  and iP  in the comparison and treated units; and h  is the smoothing 

parameter that plays the same role as the number of neighbors in the nearest-neighbor 

matching case.11 They reject empirically the assumption justifying matching when 

evaluating the JTPA training program.12  

The caveat when evaluating this result is the choice of the smoothing parameters. 

The statistical literature (e.g., Marron, 1988; Jones, Marron and Sheather, 1996; 

Silverman, 1986) shows there is a price to be paid for the greater flexibility of the kernel-

based method: the selection of the smoothing parameter h . When insufficient smoothing 

is done ( h quite narrow) there are not enough observations appearing in each window for 

stability of the counterfactual average, resulting in matching estimates too rough and 

subject to sample variability. When excessive smoothing is done (h quite wide), the 

window is so large that the conterfactual average includes outcomes of distant 

comparison units that important features of the underlying structure is smoothed away. 

Thus, the implicit problem in the selection of the bandwidth is the trade-off between bias 

and variance. The evaluation literature, however, has been silent in the selection of the 

smoothing parameter in the context of average treatment effects.13 

 One difficulty in dealing with the integrated mean square error criteria is the 

presence of regions with irrelevant comparison units – those that receive zero or low 

weights in the matching process – that may mislead the results. We develop a leave-one-

out cross-validation algorithm that minimize the mean square error of the average 

                                                 
11 The local linear matching can be though as a kernel weighted regression of 

0 jY on an intercept and a 
linear term in iP  where the estimated intercept is the missing counterfactual. This estimator is base on Fan’s 
(1992) work that shows superior properties under boundaries bias with respect to the local constant kernel 
that is estimated without the linear term in iP .`  
12 The JTPA is a federal funded program that provides a variety of employment, training, and services 
designed for economically disadvantaged adults and youth.  
13 An exception is Ichimura and Linton (2001) who derived a theoretically optimum smoothing parameter 
for the estimator proposed by Hirano, Imbens and Ridder (2003) in a kernel framework.    
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treatment effect on the treated weighting each comparison unit according to their 

distribution of covariates in the support region. The leave-one-out validation drops the 

ith  unit in the comparison group and forms the counterfactual iY −0̂ for that unit using the 

remaining 1−cN  observations. The process is repeated cN times until a counterfactual 

for each comparison unit is find. As each estimation does not include the ith  unit, it 

represents an "out-of-sample" forecast that replicates well the essential features of the 

estimation problem.14 Then, we minimize the mean square error of the average treatment 

effect on the (leave-one-out counterfactual) treated, weighting each unit with the overall 

kernel weights they would receive in the matching process. Following Frölich (2004), 

and Black and Smith (2003) we use in all the estimations the Epanechnikov kernel 

function because of its  limited support that causes a faster rate of convergence than the 

Gaussian kernel and implicitly imposes the common support condition depending on the 

size of the smoothing parameter.             

 The metric used in the nearest-neighbor matching process can play a role in the 

size of the treatment effect estimates. Dahejia and Wahba (1998), for instance, use the 

standard Euclidean distance || ij
E PPd −=  based on a parametric propensity score. In an 

earlier study, Rosenbaum and Rubin (1985) find that incorporating additional information 

in the metric yields a better balance in the distribution of observable covariates between 

the treated and comparison units. In particular, they propose to use the Mahalanobis 

distance metric with caliper, ∑ −−= − )()'( 1
ijXij

M xxxxd , where ∑ −1
X is the covariance 

matrix of the vector x that incorporates the propensity score.15 This metric has the nice 

property of balancing the covariates in all directions within matched pairs. In the 

presence of high correlation among the covariates, however, this metric can give 

misleading results (Imbens, 2003). Abadie and Imbens (2002) modify the Mahalanobis 

metric to ∑ −−= − ))(()'( 1
ijXij

AI xxdiagxxd where ∑ − )( 1
Xdiag is the diagonal of the 

inverse of the covariance matrix, and it may overcome the problems cause by having high 

correlations between the covariates. Something missing in the evaluation of non-

                                                 
14 Hall et al. (2003) proves that cross validation without leave-one-out produces an optimal h=0.  
15 The calipers are defined by the propensity score and they are selected following the method proposed by 
Cochran and Rubin (1973).  
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experimental estimators in replicating experimental estimates is the robustness of the 

results to the adoption of different distance metrics. We use alternative metrics to analyze 

the sensitivity of the treatment effects in finite samples.  

 Similarly, there are differences in the way the common support region is 

constructed. The predominant method is based on an estimate parametric propensity 

score. The advantage of using the scalar propensity score instead of a higher dimensional 

vector X is that allows to detect and to depict problems with the common support easily. 

Regions with limited support can be difficult to identify in high dimensional space as it 

can be masked for any single covariate. Heckman et al. (1998) and Smith and Todd 

(2003) proposes a trimming method base on the estimation of a kernel density function 

for a parametric propensity score, 

})0|(ˆ&)1|(ˆ:{ qq
HIST CTPfCTPfSCS >=>== .  (11)   

where 
1ˆ( | ) [( ) / ]k

k N

f P T t K P P h
Nh ∈

= = −∑ is the kernel density function evalua ted at all 

observed data points for both the treated and comparison units, and qC is the density cut-

off level below 5%. The determination of the smoothing parameter is critical here. It is 

widely documented that the distribution of the empirical common support is highly skew 

to the right for the comparison units and highly skew to the left for the treated units. 

Therefore, assuming a normal distribution for the selection of the smoothing parameter 

may mislead the finding of the empirical common support region. In fact, using the 

Silverman’s rule-of-thumb, based on the normal assumption, or using a least-square 

cross-validation process for selecting the optimal smoothing parameter yield two very 

different empirical support regions in our data that strongly affect the estimation of the 

treatment effects. Dahejia and Wahba (1998) use a simpler approach. They drop all units 

with parametric propensity scores below the maximum of the minima and above the 

minimum of the maximums: 

         )}}max(),min{max(,&)}min(),max{min(,:{ jiji
DW PPjiPPjiSCS <>= .      (12)   

A potential problem with this approach is the existence of one comparison unit with high 

propensity score and a treated unit with low propensity score that make impossible to 
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drop any unit even when many comparison and treated units are concentrated in the left 

and right extremes of the propensity distribution.   

            Lechner (2000) focus only in the distribution of the treated units and define the 

common support as the region where at least k potential comparison units are available, 

dropping all the treated units with parametric propensity scores higher than that for the 

kth larger comparison unit, 

                           { : , [ max ( ), ]}L k
jCS S i j i P j= = < .                                         (13) 

All of these approaches drop observations in the tails of the propensity score distributions 

although the trimming method also allows gaps in the empirical support region. Large 

differences in the treatment estimates based on these empirical support regions may 

reveal lack of robustness of non-experimental estimates in replicating experimental 

estimates. In addition, any misspecification in the estimation of a parametric propensity 

score can mislead the identification of the support.  

Propensity Score Model and the Common Support Region  

One of the most intriguing results in the evaluation literature is the specification of the 

parametric propensity score and its effect on the estimation of average treatment effects. 

It is show that different specifications lead to different magnitudes of the treatment 

effects (Heckman et al. 1998; Lechner 2000) which, may affect the relevance of matching 

in solving the evaluation problem (Dahejia 2003; Smith and Todd 2003). Parametric 

models that pass standard balancing tests are regard as valid because they balance the 

distribution of pre-treatment covariates between matched units conditional on the 

propensity score (Rosenbaum et al. 1985; Lechner 2000). One potential problem, 

however, is that different standard balancing tests may yield different answers (Smith and 

Todd 2003). Henceforth, the adoption of a nonparametric approach gives a robust 

approach to dealing with the misspecification problem: it allows a clean identification of 

the support region; and, as it is show by Hahn (1998), and Hirano et al. (2003), it leads to 

efficient estimators.  

 Following the work of Li and Racine (2002) we estimate a nonparametric kernel 

conditional probability density function, )(/),()|( 1 XfXTfXTf = , where ),( XTf is 
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the joint density function and )(1 Xf is the marginal density function of X. The joint PDF 

is estimated by, 

),,(
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where n is the number of observations and izmK , is the multivaria te kernel constructed by 

"hybrid" product kernels where each univariate kernel corresponds to each data type: 
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where dK and cK are the univariate kernel function for categorical and continuous data; 

d  and c  are the number of categorical and continuous covariates; and h is the smoothing 

parameter.16 We use the Epanechnikov kernel function for continuous data:     

21 3 1
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and the Aitchison and Aitken (1976) kernel function for c-categorical data: 

1 , .
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One advantage of this method over the conventional frequency estimator is that it does 

not split the data into cells avoiding a potential small number of observations in each cell 

that may cause inaccurate nonparametric estimation of the PDF of the remaining 

continuous variables in finite sample applications.17 The identification of the optimal 

smoothing parameters is carry out by least-square minimization of a cross-validation 

function with mixed data,  
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.  (18) 

                                                 
16 The marginal probability density function for X is derived following exactly the same definitions.   
17 It is very common to find small datasets in the evaluation of labor market programs. For instance, the 
JTPA dataset use in Heckman et al. (1998) has less than 1,000 observations.  
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that has a rate of convergence that depends only on the number of continuous variables 

involved and smooth away irrelevant regressors.18   

Given that the identification of the treatment effect relies on Assumption 1, 

covariates influencing both the decision to participate in the KWPRS program and future 

potential outcomes of the UI beneficiaries should be included in the estimation of the 

conditional density function. As the participation decision is entirely based on the 

profiling score, this variable is a crucial component of the model. Standard human capital 

and search models suggest that when predicting future outcomes of UI beneficiaries, it is 

important to take into account opportunity costs such as lost earnings and lost leisure that 

differ across individuals according to tastes, socioeconomic factors, and personal labor 

market history. Common variables that have been used in empirical analysis and can 

approximate these categories are sex, education, age, race, region of residence. Following 

Ashenfelter (1978), we include past earnings (annual earnings) as a key variable for 

predicting participation. In addition, Heckman and Smith (1995b) emphasize the 

importance of considering labor force status transitions in the participation model. 

Unfortunately, we do not have information to identify unemployed or inactive persons, 

only participation status. Consequently, we include a set of dummy variables to indicate 

transitions between four and one quarter before the program: Employed→ Employed, 

Employed→ No Employed, No Employed→ Employed, and No Employed→ No 

Employed. Also, we consider a set of dummy variables indicating each one of the 32 

local offices where the individuals receive the UI benefits. Its inclusion, however, 

worsens the support region and it is correlated to residence dummy variables.19 For these 

reasons, we decide to drop this variable from the participation model. It is worth notice 

that we have only one continuous covariate, therefore, we get a consistent nonparametric 

propensity score having one-dimensional rate of convergence.   

 Panel A of Figure 1 shows the distribution of the kernel-based propensity scores.  

For the treated units it has distribution values over the entire support [0,1] ranging from 

0.033 to 0.991 with a mode close to 0.15. The comparison units present a thinner support 

                                                 
18 Li and Racine (2002) also show the consistency and asymptotic normality of this estimator. 
19It affects adversely the quality of the matches: there are some comparison units that are used as  matches 
up to 56 times, whereas without include this variable, some comparison units are use as  matches up to 16 
times.   
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with values ranging from 0.008 to 0.831 and a mode close to the minimum value. It 

implies that 25% of the comparison units have propensity scores less than the minimum 

for the treated units and 8.4% of the treated units have propensity scores higher than the 

maximum for those in the comparison group. One of the features of smoothing 

categorical variables using Hall et al.’s (2003) data-driven cross-validation method is its 

ability to remove irrelevant covariates. In equation (17) we obtain a uniform weight 

function when h attains its upper bound value
c

c
h

1−
=+ . It means that those covariates 

that have their cross-validated smoothing parameters equal to their upper bound are in 

fact irrelevant predictors and will be automatically removed.20 In Table 2 we observe that 

for age the upper bound coincides with the cross-validated optimal smoothing parameter, 

which implies that this covariate is irrelevant for the conditional probability estimator. 

Only sex, race, region of residence, labor market transitions, profiling scores and past 

earnings are relevant predictors for participation and to a lesser extent schooling. This is 

similar to Ashenfelter’s (1978) and Heckman et al.’s (1995b) findings about the 

importance of including past earnings and labor market transitions as key predictors for 

participation in labor market programs. In order to assess the misspecification issue, we 

consider the in-sample predictions for the kernel method and its parametric counterpart 

model (Table 3) that is estimated using the same covariates – including higher order 

terms for age and profiling score – and pass balancing tests as those describe in Smith 

and Todd (2003).21 Table 4 shows the confusion matrix for kernel and probit models. 

)()(ˆ TEXP >  and )()(ˆ TEXP ≤ are use to predict 1=T  and 0=T . The nonparametric 

model gives an overall rate of 78% correct predictions whereas the parametric model 

correctly predicts 69%. The predictions results indicate that kernel-based approach with 

mixed data makes a better job in predicting the probability of participation (non-

                                                 
20 ∞→h is the upper bound in the case of irrelevant continuous covariates.  
21 The parametric model pass the standardized differences test (Rosenbaum and Rubin 1985) that considers 
the size of the weighted difference in means of pre-treatment covariates between the treated and matched 
comparison units, using the standard deviation of each covariate in the raw data as the scale. The weighted 
differences range from 0.15% for labor market transitions to -8.9% for region of residence (metropolitan 
area) with a median value of 2.85% for all covariates. Also, it pass for 6 out of 12 variables the regression-
based parametric test proposed by Smith and Todd (2003) that examine whether T provides any 
information for each covariate conditional on a quartic in the estimate propensity score.     
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participation) in the program for those that participate (non-participate); and it indicates 

that the parametric model may suffer misspecification.     

 This better specification performance, however, implies a slightly thinner support 

region than that for the parametric model. Panel B in Figure1 show the distribution of the 

propensity score values for the probit participation models. In the case of the parametric 

model, the propensity score values are not over the ent ire support [0,1] but in the range 

[0.003, 0.77] yielding a thicker overlapping region than in the case of the kernel-based 

model. Any misspecification in this model, however, masks the true overlapping region. 

Panel C and D in Figure 1 show the distributions after imposing an empirical common 

support region using the trimming method described in Heckman et al. (1997) and least-

square cross-validation for selecting the smoothing parameters. The imposition of the 

Silverman’s rule-of-thumb for selecting the smoothing parameters may mislead the 

empirical overlapping region if the estimated propensity score (Panel A) does not follow 

a normal distribution. 22 In fact, under the kernel propensity model and 2% trimming 

method, the least squares cross-validation shrinks 24% and 27% of treated and 

comparison units with 64% of out-of-support treated units having 75.0)(ˆ >XP  and 97% 

of out-of-support comparison units having 05.0)(ˆ <XP . On the other hand, using the 

Silverman’s rule-of thumb shrinks 19% and 3% of the treated and comparison sample 

with 76% of out-of-support treated units having 75.0)(ˆ >XP  and 83% of out-of-support 

comparison units having 05.0)(ˆ <XP . In the case of the probit model, that imposes a 

normal distribution of the errors terms, the differences between least-square cross-

validation and the Silverman’s rule-of-thumb yield almost similar results. Panel E and F 

in Figure 1 show the distribution of the propensity score after imposing the kth larger 

comparison unit criterion, which drops 18% of treated units with 752.0)(ˆ >XP  in the 

kernel model; and 21% of treated units with 54.0)(ˆ >XP in the probit model. 

 

 

                                                 
22 Silverman’s rule -of-thumb is define as: 1 / 51.06h An−= with min( , )A R σ= , where  R is the interquartile range/ 

1.34 and σ is the standard deviation.   
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3.2. Regression-Approach Estimators   

The regression-based approach for estimating the average treatment effect for the treated 

relies on the consistency of the counterfactual regression )(],1|[ 00 XXTYE µ== . 

Invoking Assumption 1 we can identify this conditional expectation and estimate the 

treatment effects by averaging the difference between the actual outcome for the treated 

and their estimated counterfactual outcomes: 
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We use a training/evaluation framework to estimate the regression-based treatment 

effects. First, we estimate the conditional expectation )(ˆ 0 Xµ using only the comparison 

units (training data) with local linear kernel regression function with mixed categorical 

and continuous data. Then, we predict the counterfactual outcomes for each treated unit 

evaluating the estimated conditional expectation function in the sample realization of the 

treated units (evaluation data). Finally, a simple means difference between the observed 

outcomes for the treated units and the estimated counterfactuals outcomes gives the 

treatment effect on the treated. The obvious advantage of this method over the classical 

parametric approach (e.g., Rubin 1977) is its greater flexibility that helps to solve some 

problems caused by parametric assumptions in sample-selectivity models (Moffitt, 1999). 

For instance, if the differences between the treated and comparison mean covariates are 

large, the predictions based on parametric linear models can be very sensitive to changes 

in the specification. Furthermore, the adoption of the "hybrid" product kernels proposed 

by Racine and Li (2001) allows a nice interaction between discrete and continuous 

covariates without need for splitting the sample into cells. We denote the conditional 

expectation )(ˆ 0 Xµ by a local linear regression function, 
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where ),,( hxxK im is the “hybrid” product kernel defined in (15), and 0n is the number of 

comparison units. Likewise, to the case of the kernel density function, the smoothing 
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parameters are chosen by least-square minimization of a cross-validation function with 

mixed data,  

∑ ∑
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that has a rate of convergence that depends only on the number of continuous variables 

involved, and, as in the case of kernel distribution estimation, smooth away irrelevant 

covariates.     

A promising application of the kernel regression-approach with mixed data is the 

estimation of regression-adjusted matching. Abadie and Imbens (2002) show that the bias 

of the nearest-neighbor matching can dominate the variance if the dimension of the 

covariates is large, so additional bias correction through regression can be very useful. 

Heckman et al. (1998) show that regression-adjusted local linear matching helps in 

reducing the size of the selection bias when estimating treatment effects with non-

experimental data. The basic idea is to remove 0βX  from 0Y  where 0β̂ is estimated using 

a parametric linear model (Rubin 1973b) or semiparametric linear model (Heckman et al. 

1998) defined by iiiiiii TPXEXTPYEY εβ +−=− 0)],|([),|( , where ),|( iii TPYE  and 

),|( iii TPXE are univariate kernel conditional expectations on the parametric propensity 

score. The outcomes iY1 and iY0 in the equation (9) are replaced by 01 β̂ii XY −  and 

001 β̂iXY − . This process assumes, however, that the slope coefficients 0β come from an 

adjusted linear model and are constant across all units and across time.23 It imposes, also, 

the linearity of the adjusted factor 0β̂iX . We relax these assumptions using a multivariate 

kernel regression with mixed data for the comparison units, which allow us to estimate 

unit-varying i0β  without imposing both the linearity of the regression function and the 

linearity of the adjusted factor; and without relying on a parametric propensity score. 

Then, we evaluate the results in the treated sample and replace the outcomes iY1 and iY0 in 

the equation (9) by )|(ˆ
11 iii XYEY −  and )|(ˆ

00 iii XYEY − .  

Although adjusting only for differences in the propensity score removes bias, it 

needs not be as efficient as adjusting for differences in all covariates. Hahn (1998), and 

                                                 
23 For further details, see Robinson (1988). 



 25 

Hirano et al. (2003) show that the estimated nonparametric propensity score is a valuable 

source of information for estimating average treatment effects in a regression framework. 

They advocate the use of all comparison units to adjust for covariate imbalances by 

weighting the estimate treatment effects by the probability of participating in the 

program. Units with low (high) 0( )if X density relative to 1( )if X are under (over) 

represented in the comparison sample. Hence, weighting the comparison units by 

1 0( ) / ( )i if X f X corrects this unbalance. We follow this approach by using a 

nonparametric propensity score as the weight variable in a regression-framework for 

average treatment effect on the treated:  
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It achieves the semiparametric efficiency bound, which only requires a conditional mean 

estimation )|( XPE . Our estimation approach, however, is different to Hahn's and 

Hirano’s et al. To estimate the propensity score, we use kernel-based approach with 

mixed categorical and continuous data instead of the proposed series logit estimator. The 

optimal smoothing parameters are found by least-square cross validation.      

 

3.3 The Regression-Discontinuity Approach 

The design of the Kentucky UI program is based on an experiment where the random 

assignment occurs at the margin only to satisfy capacity constraints. This assignment rule 

has discontinuities that naturally identify a non-experimental group: those with profiling 

scores below the marginal score. This idiosyncratic feature in the participation process is 

similar to a quasi-experimental design originally introduced by Thistlethwaite and 

Campbell (1960) and named “tie-breaking” experiment. Under some conditions, this 

design can be use to estimate unbiased and consistent non-experimental results without 

imposing arbitrary exclusion restrictions, index assumptions on the selection process, 

functional forms, and distributional assumptions on errors through a regression-

discontinuity approach. This method combines distinctive features of social experiments 

(there is a known rule that assign persons in or out of the treatment) with features of non-

experimental designs (the rule is not random by nature) that makes it a powerful and 

interesting method of evaluation.     
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Earlier parametric applications of this method exploit discontinuities in the 

relationship between two endogenous variables in order to identify parameters of interest. 

Thistlethwaite and Campbell (1960) estimate the effect of receiving a National Merit 

Scholarship Award on student’s scholar success. Angrist and Lavy (1996) measure the 

effect of classroom size on student test scores using a nonlinear and nonmonotonic 

relationship between grade enrollment and class size in Israeli public schools. We owe to 

van der Klaauw (1986, 2001), and Hahn, Todd, and van der Klaauw (1999) the 

integration of the regression-discontinuity design in a kernel-based nonparametric 

estimation. They take advantage of the discontinuities in the relationship between average 

aid offer and student’s ability index to estimate the effect of colleges’ financial aid offers 

on student enrollment decisions, and features (discontinuities) in the law to estimate the 

effect of firm size on minority employment using one-side kernel regressions.  

The regression-discontinuity approach is based on the total or partial dependence 

of the treatment assignment on an observed variable ( iS ) such that the probability of 

participating in the program is a discontinuous function of this variable at the cutoff score 

( iS ). Depending on the nature of the observed variable, iS , the literature distinguish 

between sharp and fuzzy designs. In the first case, individuals are assigned to treatment 

solely on the basis of a known and quantifiable observed measure of iS  – selection on 

observables -. On the other hand, if the assignment to treatment is based on known and 

unknown variables (i.e., variables observed by the administrator but not for the evaluator) 

we are in a fuzzy design world that entails both selection on observables and selection on 

unobservables.24    

Our case in one of sharp design where the selection rule ( iS ) is the profiling score 

( )iρ  and the cutoff score ( iS ) is the (week/local office specific) marginal profiling score 

( ρ ) which assigns into the treatment to those units with equal or higher profiling scores 

than the marginal profiling score: ( ) 1{ )i i i iT T ρ ρ ρ= = ≥ . The selection bias comes from 

the potential relationship between iρ  and the outcome variable iY that causes a correlation 

between the treatment indicator )( iiT ρ and the unobservables. We can solve the selection 
                                                 
24 van der Klaauw (1986, 2001) provides an excellent discussion and empirical application of the fuzzy 
design.  
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issue if we assume there is a locally continuous relationship between the outcome and the 

selection variable (see van der Klaauw 2001; Hahn et al. 1999): 

Assumption 3.  

 ( | )E ε ρ is continuous at ρ  .  

It is equivalent to assuming that for those individuals just above and just below the 

marginal profiling score, we expect similar average outcomes because they share almost 

identical observable characteristics. Therefore, for any arbitrary small bandwidths )(Ω  

we expect that )|()|( Ω−∆=Ω+∆ ρρ TTTT EE . It implies that the treatment effect on the 

treated will be identify by mean differences of the outcomes for those units immediately 

above and below of the marginal profiling scores,  

    ))|((lim))|((lim ρρ
ρρρρ

ii
RDD
TT YEYE

↓↑
−=∆ .  (23) 

In this sense, the regression-discontinuity approach resembles matching by balancing the 

distribution of observable covariates in the selected units. A key difference, however, is 

the absence of the region of common support since by constructionPr( 1| ) {0,1}T ρ= ∈ .  

 The estimator (19) can be estimated by extrapolation through parametric fixed-

effect models or by flexible kernel-based approaches. In the parametric regression-

approach, it is possible to purge any correlation between T and ε if the variables that 

determined the assignment are known, quantify and include in the regression (Barnow, 

Cain and Goldberger, 1980; Heckman and Robb, 1985; Heckman and Hotz, 1989). It is 

worth noticing, the Kentucky UI program does not have a simple discontinuity region. 

Since the data includes 32 local offices and 87 weeks of program's length, it counts for 

2,784 potential cutoff scores. Given that for some week/offices interactions we have 

empty cells, the actual data includes 286 "'discontinuity" groups with at least one treated 

and comparison units, and an average of 36.8 units per group ranging in size from 2 to 

134. Therefore, a parametric approach relies on the following specification,   

iiiii
PRDD
TT FTY ξηρβαβ ++++==∆ )(:  .  (24) 

where Yi  is the outcome variable, Ti  is a dummy variable 1/0 for  selection into the 

treatment, ( )iF ρ is a control function, iη is a week/offices fixed effect variable and 

( | , )i i i i iY E Y Tξ ρ= − is the error term. We consider different specifications for the control 
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function assuming that the true conditional mean function ( | )E ε ρ  belongs to the class 

of polynomial functions (constant, linear or quadratic). Following van der Klaauw 

(2001), we also adopt a cross-validation method to select the optimal number of terms in 

the control function based on a power series approximation 
1

( ) ( )
J

j
j

i

F ρ λ ρ
=

≅ ∑ where the 

size of the polynomial is determined by a data-driven process.  

 A more flexible method to estimate the treatment effects is provided by the 

kernel-based approach that avoids any risk of misspecification of the functional form in 

the outcome equation. Hahn et al (1999) proposed estimate lim( ( | ))iE Y
ρ ρ

ρ
↑

and 

lim( ( | ))iE Y
ρ ρ

ρ
↓

 by one-sided kernel or local linear kernel regression which is proved to be 

numerically equivalent to a local Wald estimator under some conditions.25  Although the 

identification of the treatment effects only requires Assumption 3, there is a cost of using 

this nonparametric approach: we cannot identify the treatment effect over the full support 

of ρ but for values just above and below the cutoff score ρ . The estimation of separate 

one-side kernels regressions for each one of the 286 “discontinuity-groups" is not 

possible because of the small sample size for many of them. Therefore, we adopt a 

simpler non-parametric approach by comparing treated units (directly above the cutoff 

score) and comparison units (directly below the cutoff score) through a weighted sample 

mean difference,  

    ∑∑∑
===
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n
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n
w .     (25) 

where jw are the cell-weighs; iY1  and iY0  are the treated and comparison outcomes;  

)(hI D is an indicator function that depends on a selected bandwidth  )(h  and takes the 

value 1 for those units in the vicinity of the marginal profiling scores, 0 otherwise. 

  

 

 

                                                 
25 It assume a uniform kernel function over the subsample +− +− hph i 00 ρρ pp , where h is the 

bandwidth. 
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4. Empirical Estimates  

Two direct measures of the KWPRS treatment effects are the spell duration and the 

amount of UI subsidizes received. Black’s et al. (2003) experimental estimates show that 

the threat of mandatory reemployment services can be more effective than the services 

themselves. Likewise, they estimate annual and quarterly earnings with results suggesting 

that the shorter spells induced by the KWPRS program does not result in less favorable 

match between workers and jobs. It is important to mention that these experimental 

results are not estimated by simple mean differences of outcomes between the treated and 

control samples as it usually happens in the context of simple random assignment. Indeed 

the KWPRS experiment ensures a random assignment only within each PTG. Therefore, 

the identification of the parameters of interest needs additional structure such as the 

"common effect" assumption or heterogeneous impacts across persons but only as a 

function of observed covariates )( iXββ = . Under the common effect world, the 

experimental treatment effects are estimated by unweighted least squares using a vector 

of PTG fixed effects to control for differences in expected outcomes in the absence of 

treatment across PTGs. Consequently, the experimental treatment estimates we intent to 

replicate are –2.24 for weeks of UI benefits; -$143 for amount of UI benefits received; 

$1054 for annual earnings; $525 for 1st quarter earnings; $344 for second quarter 

earnings; $220 for 3rd quarter earnings; and $-35 for 4th quarter earnings.  

4.1 Matching Estimates  

As described in section 4, we present the nearest-neighbor matching estimates using both 

kernel-based and parametric (probit) propensity score models. We select the Mahalanobis 

distance as the nearest-neighbor metric because it has the nice property of balancing the 

covariates (including the propensity score) in all directions within matched pairs. In fact, 

our data show lower standardized differences between the treated and matched 

comparison units for all the pre-treatment covariates when using Mahalanobis instead of 

the Euclidian distance on the propensity score. We use the kth  larger comparison unit 

criterion (Lechner 2000) to define the empirical support region in all the estimations. 

Two reasons explain this approach. First, it drops almost the same number of units in 

both kernel-based and probit propensity score models, which allow us to perform a 
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comparability analysis between both models under a common overlapping region. 26 

Second, in the context of treatment effects on the treated, “singular” comparison units are 

less relevant than “singular” treated units.  

Table 5 show the estimates using the kernel-based propensity score. Each row 

depicts the treatment effects for each outcome variable and each column represents a 

different matching estimator. Bootstrap standard errors appear in parenthesis below each 

estimate and the number in brackets represents the estimate non-experimental bias.27The 

first important result that comes forward is the ability of the nearest-neighbor matching 

estimator with common support region to approximate the experimental estimates. With 

the exception of 4th quarter earnings, all the outcomes present low bias, ranging from -7% 

(weeks receiving benefits) to -34% (3rd quarter earnings). It is worth noticing that the 

imposition of an empirical common support improves the estimates for all the variables. 

Likewise, the regression-adjusted nearest-neighbor matching produces the best results 

among all the matching estimators. It combines matching with nonparametric regression-

adjusted functions without imposing both the linearity of the regression function and the 

linearity of the  adjusted factor. The estimate bias drops to -4% for the weeks receiving UI 

benefits; -16% for amount of UI benefits; -12% for annual earnings; -13% for 1st quarter 

earnings; -28% for 2nd quarter earnings, and -33% for 3rd quarter earnings. Columns 6 to 

9 present the local constant and local linear kernel matching estimates using the 

Epanechnikov kernel function with cross-validated optimal smoothing parameters. 

Comparing with the nearest-neighbor estimates, they produce somewhat similar results 

for weeks receiving UI benefits (-7% to -3% bias), amount of UI benefits (0% to 15%), 

and 1st quarter earnings (-26% to -23%); they improve over the nearest-neighbor estimate 

in the case of 4th quarter earnings (-42%); and they get worse for annual, 2nd and 3rd 

quarter earnings. It is important to mention that local constant kernel shows less bias than 

local linear kernel for all the outcome variables. This result is consistent with Frölich’s 

(2004) Monte Carlo analysis.  

                                                 
26 Under the trimming method, both models depict different overlapping regions. Hence, this feature can 
mask any potential difference between the models when analyzing their robustness to alternative number of 
neighbors or metrics.        
27 The bias is define as [( ) / ]*100N o E x p Exp Exp

TT TT TT
−∆ − ∆ ∆   
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 Table 6 shows matching estimates with a probit propensity score as the 

only methodological difference with respect to Table 5. In general, the estimate treatment 

effects present higher bias that its counterpart kernel-based propensity score. Moreover, 

the local linear kernel matching estimates yield for most of the outcome variables 

treatment effects far away from the experimental estimates. Taken together the estimates 

in Table 5 and 6 three basic patterns emerge. First, using a kernel-based propensity score 

with mixed categorical and continuous data and cross-validated smoothing parameters 

produce a much better approximation to the experimental estimates than the traditional 

probit parametric propensity score. This result holds for both the nearest-neighbor and the 

kernel matching. Second, the biggest difference in favor of the kernel-based propensity 

score specification is in the estimation of the earnings treatment effects. Third, for both 

approaches, the nearest-neighbor matching estimator produces lower bias estimates than 

the local linear kernel estimates.  

 In order to investigate the robustness of this result, we estimate treatment effects 

for the earning variables using a different metric (the Euclidian distance) and without 

imposing an empirical common support. Figure 2 shows the new estimates and clearly 

reinforce our previous findings. An additional sensitivity check is performed using 

alternative number of neighbors. We use five sets of neighbors ranging from 1 to 5.28 We 

estimate treatment effects for each neighbor set and then we average the absolute value of 

the resulting bias across the five different sets. Table 7 shows the average bias for each 

earning variable with their respective coefficient of variation. Again, we obtain for the 

kernel-based propensity score a lower bias (global average of 51%) than that for the 

parametric probit model (global average of 88%), although the coefficient of variation 

shows a higher dispersion for the kernel-based nearest-neighbor estimates. A final 

sensitivity test considers a different specification for the parametric model. Following 

Heckman et al. (1998) we consider the best-predictor parametric model build under two 

restrictions: (1) Minimization of the classification error where )()(ˆ TExP >  predicts 

participation and )()(ˆ TExP <  predicts nonparticipation; and (2) Inclusion of only 

statistical significant covariates. Table 8 shows treatment effect estimates for the kernel-

                                                 
28Abadie and Imbens (2002) suggest choose in practice a fairly small number. Their simulations show that 
four matches perform well in terms of mean square error.   
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based and the best predictor parametric model using nearest-neighbor matching on the 

propensity score and the kth  larger comparison unit criterion to define the empirical 

support region. The estimates show again a better approximation of the kernel-based 

propensity score to the benchmark estimates. Therefore, our results hold independently of 

the metric, number of neighbors, empirical support region, and specification of the 

parametric model.   

 

4.2 Regression-Based Estimates  

In Table 9, we explore the ability of regression-based functions in replicating the 

experimental estimates. We use a parametric and nonparametric training/evaluation 

framework based on the same set of covariates –age, schooling, sex, race, region of 

residence -. The number in parenthesis gives the standard errors and the number in 

brackets the estimated bias. Three major patterns emerge. First, the parametric model 

makes a good job in replicating the earning outcomes. In particular, annual, 1st and 3rd 

quarter earnings present low bias (less than 10%). These estimates, however, are very 

sensitive to changes in the specification of the regression function, and therefore should 

be taken with reserve. Second, the nonparametric regression function gives estimates 

close to the experimental ones for most of the earnings outcomes. For instance, annual 

earnings present -7% bias; 1st quarter earnings -12%; 2nd quarter earnings -41%; and 3rd 

quarter earnings -16%. It is worth noticing that these estimates do not suffer from 

misspecification and in that sense are robust. Likewise, the weighted regression (Hirano 

et al. 2003) use the kernel-based propensity score and gives somewhat similar bias for the 

earnings variables and produces the best approximation to the experimental estimate for 

weeks receiving UI benefits (-16% bias). Third, all the regression-based estimates 

perform poorly for amount of UI benefits and 4th quarter earnings. Not only the bias 

exceeds somehow acceptable regions but also the estimates are qualitatively different to 

the experimental estimates (opposite sign). In this sense, a clear result comes forward 

when contrasting the regression-based estimates with those for the nearest-neighbor 

matching. The implicit “common support” condition inherent in the pair matching 

method increases the ability of non-experimental estimators in replicating experimental 
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estimates. In particular, the amount of UI benefits and 4th quarter earnings variables are 

much better estimate with matching than with regression methods. 

 

4.3 Regression-Discontinuity Estimates 

In this section we present the regression-discontinuity estimates.  In particular, Table 10 

presents the nonparametric treatment effects for those units just above and below the 

week/local offices marginal profiling scores. The rows represent each of the outcome 

variables of interest and the columns represent alternatives distances (bandwidth) from 

the marginal profiling score. The numbers in parenthesis are the standard errors, and the 

non-experimental bias is shown in brackets. It is clear that for most of the earning 

estimates, the regression-discontinuity approach show a close approximation to the 

experimental treatment effects. In particular, 1st and 2nd quarter earning present estimates 

with low bias (around 5%). The treatment effects for annual and 3rd quarter earnings are 

still reasonably close approximations to the experimental estimates with a bias around 

40%. A different picture, however, takes place for amount of UI benefits and 4th quarter 

earnings that present highly biased treatment effects. This result is consistent with the 

regression-based estimates that also show a poor performance in replicating the 

experimental estimates for these two variables. An interesting, result observed for all 

outcome variables, is the stability of the treatment effect estimates to alternative 

bandwidth sizes. The variation in the estimates is less than 5% across three different 

definitions for the bandwidths.    

Table 11 shows the fixed-effect parametric estimates using the same sets of 

observations as Table 10. As before, the treatment effects for most of the earnings 

variables have a relative small bias. In particular, the treatment effects for annual and 3rd 

quarter earnings improve over the nonparametric case. For instance, the treatment effect 

for annual earnings with a +/- 3 bandwidth replicates almost exactly the experimental 

estimates (1% bias). On the other hand, the treatment effects for 4th quarter earnings and 

amount of UI benefits are again badly biased respect to the benchmark experimental 

estimates. The assumption of a correct specification for the control function in a 

parametric setting allows the expansion of the sample size beyond the units just above or 

below the cutoff points. Taking all units in the non-experimental sample and using 
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week/local office fixed-effects, we obtain parametric estimates for a constant, linear, and 

quadratic specification of the profiling score. As we observe in Table 12, the treatment 

effects do not improve over the estimates founded using only the units in the 

neighborhood of the discontinuity points. In addition, the treatment effects reinforce the 

previous results about the inability of the regression-discontinuity design to replicate the 

experimental estimates for amount of UI benefits and 4th quarter earnings. They present 

opposite signs and bias estimates over 200%.  

Taking together all these results, we can conclude that the regression-

discontinuity design is a promissory method for solving the evaluation problem. When 

restricted to sample observations in the neighborhood of the discontinuity points, this 

method does not only replicate well the experimental estimates for weeks receiving UI 

benefits and most of the earnings categories, but also they show a strong consistency 

across different subsamples and across different estimators. In this sense, the regression-

discontinuity design shows more stable results than matching estimates that present 

higher variability depending on the number of neighbors, the specification of the 

propensity score, empirical support region, etc.  

 

5. Conclusions   

Our analysis of the data from the Kentucky Working Profiling Reemployment Services 

(KWPRS) yields five main conclusions. First, a fully nonparametric matching approach 

using kernel methods with mixed categorical and continuous variables and cross-

validation methods for selecting the optimum bandwidths gives closer approximations to 

experimental estimates than semiparametric matching estimators do. This result is 

consistent across different metrics, empirical support region, number of neighbors and 

different specification for the parametric propensity score model. Second, we find that 

nonparametric adjusted-regression with nearest-neighbor matching produces the best 

results among all matching estimators. It relaxes the linearity of the regression function 

and the linearity of the adjusted factor implicit in other applications (e.g., Heckman 1998; 

Abadie and Imbens 2002). Third, the regression-based estimators provide mixed evidence 

about their ability to replicate experimentally determine results. They fail completely to 

replicate the treatment effects for two out of seven outcome variables. Four, the 
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regression-discontinuity approach proves the usefulness of econometric methods with 

underlying identification properties beyond the traditional methods that are widely used 

in the program evaluation literature. Finally, our results confirm the importance of having 

high quality data that allows the evaluator to construct “comparable” comparison groups 

using the same local labor market and the same survey instruments for both the treatment 

and the comparison groups. 
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Table 1. Sample Means of Earnings and Demographic Characteristics 

Kentucky WPRS Experiment, October 1994 to June 1996 
 Mean Values for CovariatesA Nonparametric test for 

differences in distributions for 
experimental sampleB 

Nonparametric test for differences in 
distributions for non-experimental 

sampleB   
 (1) (2) (3) (1) – (2) (1) – (3) (1) – (3) 
Covariates Treatment 

Group 
Control 
Group 

Comparison 
Group 

p-value p-value Standardized 
differenceC (%) 

Age  37.07 
(11.05) 

36.99 
(10.86) 

36.67 
(11.51) 

0.86 0.62 3.47 

Education level 12.40 
(2.62) 

12.28 
(2.28) 

11.80 
(3.51) 

0.78 0.00 19.5 

Annual earnings before program 19,046 
(13,636) 

19,758 
(13,676) 

16,553 
(12,754) 

0.001 0.00 19.0 

One quarter before program 4,555 
(3,815) 

5,008 
(4,072) 

3,984 
(3,653) 

0.85 0.02 15.2 

Two quarters before program 4,461 
(3,832) 

4,680 
(3,745) 

3,862 
(3,586) 

0.16 0.00 16.1 

Three quarters before program 4,898 
(3,789) 

4,967 
(3,514) 

4,179 
(3,519) 

0.26 0.00 19.6 

Four quarters before program  
 

5,131 
(3731) 

5,102 
(3,608) 

4,506 
(3,404) 

0.28 0.49 17.4 

White female ( %) 37.21 35.16 36.40 
 

0.37 0.63 1.68 

White male  (%) 51.77 56.37 53.93 
 

0.04 0.18 -4.30 

Black female (%) 5.50 4.29 
 

4.40 
 

0.24 0.08 5.04 

Black male (%) 5.09 3.89 4.86 
 

0.21 0.72 1.08 

A Sample standard deviation in parenthesis.  
B It uses the empirical distribution of 499 bootstrap statistics Ii to approximate the null distribution of I where  2[ ( ) ( )]I f x g x dx= −∫  
C  The standardized difference is the mean difference as a percentage of the average standard deviation: 2/122 ]2/)/[()(100 CTCT ssxx +−   where 

Tx  and 
Cx are the sample means for each variable in 

the treatment group and comparison group and, 2
Ts  and 2

Cs  are the sample variances in both groups 
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Table 2.  

Least-Square Cross-Validation Selected Smoothing ParametersA 

 Kentucky WPRS Experiment, October 1994 to June 1996 
 

Covariate opth  Upper BoundB 

Sex 0.245 0.5 
Schooling  0.905 1.00 
Race 0.141 0.5 
Region of residence 0.018 0.75 
Profiling scores 0.001 0.94 
Age 1.000 1.00 
Labor market transitions 0.485 0.75 
Past annual earnings 6871 ∞  

                    AThe optimal smoothing parameter is obtained by least-square minimization of the cross-validation  

function 2

1

)}(),,(
1

{)( zfhzzK
n

hCV
n

i
im −= ∫ ∑

=

. 

BThe upper bound for categorical data is defined by cch /)1( −=+
.  
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Table 3. 
Coefficient Estimates and p Values from Participation Probit Model  

Dependent Variable:1 for Treated Units, 0 for Comparison Units 
Kentucky WPRS Experiment, October 1994 to June 1996 

 
Variable Coefficient Std. Error p-ValueA 

    
Intercept -1.460 0.325 0.000 
Profiling scores -0.199 0.037 0.000 
Profiling scores2  0.016 0.001 0.000 
Appalachian AreaB -0.387 0.066 0.000 
Metropolitan Area -0.101 0.054 0.060 
RMSA Area 0.415 0.079 0.000 
Sex 0.004 0.038 0.907 
Age 0.004 0.009 0.664 
Age2 -0.000 0.000 0.645 
High School & VocationalB 0.381 0.234 0.104 
High School & GED -0.053 0.127 0.677 
Some College 0.448 0.140 0.001 
Bachelor  0.206 0.086 0.017 
Master 0.266 0.199 0.182 
Ph.D. 0.655 0.366 0.074 
Race (1=white, 0 otherwise) -0.108 0.059 0.066 
Previous Annual earnings -0.000 0.000 0.052 
Employed →EmployedB -0.072 0.114 0.523 
No Employed →No employed -0.133 0.416 0.749 
Employed →No Employed -0.154 0.128 0.228 

AMaximum likelihood probit estimation. Reported p-values are for two-tailed test of the null hypothesis that the true coefficient equals 
zero.  
BThe omitted category for region of residence is west; the omitted schooling category is less than high school; the omitted category for 
labor market transitions is No Employed → Employed. 
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Table 4. 

Confusion Matrix and Classification rates for Propensity Score ModelsA 

Kentucky WPRS Experiment, October 1994 to June 1996 
  

Kernel Propensity Score Model  Parametric Propensity Score Model 
 Treated  Comparison   Treated  Comparison  
Treated  927 295  Treated 874 375 
       
Comparison 1798 6831  Comparison 2603 6026 
       
% Correct  78.7%   % Correct  69.9%  
% CCR (0) 79.1%   % CCR (0) 69.8%  
% CCR (1) 75.8%   % CCR (1) 71.1%  

AP(x)>0.14 is used to predict T=1 and P(x) ≤ 0.14 is used to predict T=0.  
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Table 5 . 
Comparison of Average Treatment Effects on the Treated 

Under Alternative Matching Estimators and Kernel Propensity ScoreA  
Kentucky Experiment, October 1994 to June 1996. 

 
 

 
 
 
 
Variables 

Experimental 
Estimates 

Nearest-
neighbor 
matching 
without 
CSB,C  

Nearest-
neighbor 
matching  
with 
CSB,C 

Regression-
adjusted 
nearest 
neighbor  
matching 
with CSB,C   

Local 
constant  
kernel 
matching 
with CSC,D 

Regression-
adjusted local 
constant 
kernel 
matching 
with CSC,D 

Local 
linear 
kernel 
matching 
with CSC,D 

Regression
-adjusted 
local linear 
kernel  
matching 
with CSC,D 

Weeks 
receiving 
UI  

-2.24 
(0.50) 

-1.90 
(0.56) 
[-15 ] 

-2.08 
(0.58) 
[-7] 

-2.14 
(0.56) 
[-4] 

-2.14 
(0.51) 
[-4] 

-2.13 
(0.49) 
[-4] 

-2.07 
(0.57) 
[-7] 

-2.17 
(0.57) 
[-3] 

         
Amount 
of UI 
benefits 

-143.1 
(100) 

-90.1 
(106) 
[-37] 

-117 
(101) 
[-18] 

-119 
(101) 
[-16] 

-143 
(87.0) 

[0] 

-153 
(79.8) 

[7] 

-144 
(99) 
[0] 

-165 
(91.1) 
[15] 

         
Annual 
earnings 

1054 
(588) 

762 
(646) 
[ -27 ] 

908 
(490) 
[-13] 

920 
(469) 
[-12] 

704 
(621) 
[33] 

645 
(609) 
[-38] 

373 
(587) 
[-64] 

386 
(574) 
[-63] 

         
1st quarter 
earnings 

525 
(192) 

422 
(223) 
[-19] 

453 
(166) 
[-13] 

454 
(162) 
[-13] 

388 
(202) 
[-26] 

399 
(198) 
[-24] 

394 
(170) 
[-24] 

402 
(166) 
[-23] 

         
2nd quarter 
earnings 

344 
(161) 

109 
(189) 
[-68] 

255 
(144) 
[ -25] 

246 
(138) 
[-28] 

61.2 
(174) 
[-82] 

70.3 
(174) 
[-79] 

38.0 
(163) 
[-88] 

43.0 
(154) 
[-87] 

         
3rd quarter 
earnings  

220 
(181) 

164 
(175) 
[ -25] 

145 
(153) 
[-34] 

147 
(149) 
[-33] 

88.3 
(195) 
[-59] 

71.8 
(193) 
[-67] 

13.4 
(200) 
[-93] 

8.10 
(193) 
[-96] 

         
4th quarter 
earnings 

-35.6 
(176) 

66 
(173) 
[-285    

] 

54.7 
(180) 
[-253] 

59.7 
(28.7) 
[-267] 

-91 
(192) 
[160] 

 

-53 
(193) 
[51] 

-15.0 
(196) 
[-57] 

-20.5 
(192) 
[-42] 

 ABootstrap standard errors are shown in parenthesis. They are based on 50 repetitions. Non-experimental bias 100]/)[( expexpexp
TTTT

non
TT ∆∆−∆ − is shown in 

brackets   
  BThe nearest -neighbor matching is estimated using Mahalanobis metric including the propensity score.  
 CThe empirical common support region is defined by the kth criterion: we drop all the treated units with  propensity scores higher that the 15 th highest 
score for the comparison units.     
  DA weighted MSE with leave-one-out cross-validation is used to find the optimal smoothing parameters. 

.  
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Table 6 . 
Comparison of Average Treatment Effects on the Treated 

Under Alternative Matching Estimators and Parametric Propensity ScoreA  
Kentucky Experiment, October 1994 to June 1996. 

 
 
 
 
 
Variables 

Experimental 
Estimates 

Nearest-
neighbor 
matching 
without 
CSB,C  

Nearest-
neighbor 
matching  
with 
CSB,C 

Regression-
adjusted 
nearest 
neighbor  
matching 
with CSB,C   

Local 
constant  
kernel 
matching 
with CSC,D 

Regression-
adjusted local 
constant 
kernel 
matching 
with CSC,D 

Local 
linear 
kernel 
matching 
with CSC,D 

Regression-
adjusted 
local linear 
kernel  
matching 
with CSC,D 

Weeks 
receiving 
UI  

-2.24 
(0.50) 

-2.04 
(0.48) 
[-9] 

-1.99 
(0.51) 
[-11] 

-2.01 
(0.50) 
[-10] 

-2.17 
(0.48) 
[-3] 

-1.91 
(0.42) 
[-59] 

-0.76 
(0.49) 
[-66] 

-0.71 
(0.47) 
[-68] 

         
Amount 
of UI 
benefits 

-143.1 
(100) 

-97.4 
(77.6) 
[-32] 

-145 
(91.9) 

[1] 

-140 
(91.6) 
[ -2] 

-179 
(97.1) 
[25] 

-154 
(86.2) 

[6] 

-482 
(97.6) 
[236] 

-363 
(95.5) 
[153] 

         
Annual 
earnings 

1054 
(588) 

949 
(452) 
[-10] 

627 
(550) 
[-40] 

629 
(536) 
[ -40] 

168 
(513) 
[-84] 

120 
(512) 
[-88] 

31.3 
(578) 
[-97] 

-14.0 
(553) 
[-101] 

         
1st quarter 
earnings 

525 
(192) 

490 
(156) 
[-6] 

439 
(152) 
[-16] 

436 
(151) 
[-17] 

285 
(151) 
[-45] 

268 
(149) 
[-49] 

141 
(165) 
[-73] 

115 
(161) 
[-78] 

         
2nd quarter 
earnings 

344 
(161) 

174 
(135) 

[-49   ] 

100 
(179) 
[-71] 

90.9 
(175) 
[-73] 

-2.53 
(158) 
[-100] 

-20.3 
(157) 
[-106] 

52 
(163) 
[-84] 

60.7 
(156) 
[-82] 

         
3rd quarter 
earnings  

220 
(181) 

157 
(147) 
[ -28] 

53.8 
(170) 
[-75] 

54.3 
(167) 
[-75] 

-51.6 
(167) 
[-123] 

-67.3 
(167) 
[-130] 

-36.4 
(177) 
[-116] 

-63.4 
(-58.5) 
[-128] 

         
4th quarter 
earnings 

-35.6 
(176) 

126 
(173) 
[-453] 

33.9 
(187) 
[-195] 

59.7 
(166) 
[-267] 

-111 
(147) 
[217] 

-77 
(170) 
[120] 

-95.6 
(187) 
[165] 

-58.0 
(172) 
[64] 

  ABootstrap standard errors are shown in parenthesis. They are based on 50 repetitions. Non-experimental bias 100]/)[( expexpexp
TTTT

non
TT ∆∆−∆ − is shown in 

brackets   
  BThe nearest -neighbor matching is estimated using Mahalanobis metric including the propensity score.  
 CThe empirical common support region is defined by the kth criterion: we drop all the treated units with          propensity scores higher that the 15 th 
highest score for the comparison units.     
  DA weighted MSE with leave-one-out cross-validation is used to find the optimal smoothing parameters. 

.  
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Table 7 . 

Sensitivity of the Non-Experimental Bias under Variations in the Nearest-
Neighbor Set  

Propensity Score Matching Average Treatment Effect on the Treated  
Kentucky Experiment, October 1994 to June 1996. 

 
Variables Kernel Propensity Score   Parametric Propensity 

Score 
 Average  

Bias (%)A 
Coefficient 

of VariationB  
 Average  

Bias (%)A 
Coefficient 

of VariationB 

      
Annual Earnings  23 21  60 6 
      
1st quarter earnings 17 5  26 3 
      
2nd quarter earnings 31 32  123 11 
      
3rd quarter earnings 33 31  60 4 
      
4th quarter earnings 151 45  174 59 
AThe non-experimental average bias is define as 100]/)[()5/1(

5

1

expexpexp∑
=

− ∆∆−∆
j

TTTT
non
TTj

, where j represents the number of 

neighbors used in the estimation of the average treatment effect on the treated.   
B The coefficient of variation is the sample standard deviation of j non-experimental bias. 
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Table 8. 
Comparison of Average Treatment Effects on the Treated 

Under Alternative Specification for the Probit Model and Nearest-Neighbor MatchingA 

 Kentucky Experiment, October 1994 to June 1996. 
 

Variables Experimental 
estimates  

Kernel Propensity 
Score ModelB 

Best Parametric 
Score ModelB,C  

Annual earnings 1054 
(588) 

669 
(665) 
[-36] 

533 
(565) 
[-47] 

    
1st quarter 
earnings 

525 
(192) 

476 
(186) 
[-9] 

375 
(196) 
[-29] 

    
2nd quarter 
earnings 

344 
(161) 

202 
(179) 
[-41] 

95 
(165) 
[-72] 

    
3rd quarter 
earnings  

220 
(181) 

-12.5 
(219) 
[-105] 

82.8 
(180) 
[-62] 

4th quarter 
earnings 

-35.6 
(176) 

-40 
(176) 
[14] 

-29 
(192) 
[-17] 

 ABootstrap standard errors are shown in parenthesis. They are based on 50 repetitions. Non-experimental bias 

100]/)[( expexpexp
TTTT

non
TT ∆∆−∆ − is given in brackets.   

  BThe nearest -neighbor matching is estimated using the Euclidian metric including the propensity score. The empirical common 
support region is obtained using the kth criterion: we drop all the treated units with propensity scores higher that the 15 th highest 
score for the comparison units.     
CThe best-predictor parametric model is build using the hit -and –miss strategy: (1)Minimization of the classification error where 

)()(ˆ TExP >  predicts participation and )()(ˆ TExP <  predicts nonparticipation; and (2) Inclusion of only statistical significant 

covariates.   
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Table 9. 
Average Treatment Effects on the Treated 

Regression-Based EstimatorsA   
Kentucky Experiment, October 1994 to June 1996. 

 
Outcomes Experimental 

Estimates 
 Parametric  Nonparametric  with mixed data 

   Training/ 
Evaluation 

 Training/ 
Evaluation 

  Weighting by 
Propensity 

Weeks 
receiving UI 
benefits  

-2.24 
(0.50) 

 -1.66 
(   ) 

[-25] 

 -1.44 
(  ) 

[-35] 

 -1.87 
(  ) 

[-16] 
        
Amount of UI 
benefits. 

-143.1 
(100) 

 180 
(  ) 

[-225]  

 155 
(    ) 

[-208] 

 14.9 
(  ) 

[-110]   
        
Annual 
earnings. 

1054 
(588) 

 1043 
(   ) 
[-1] 

 976 
(  ) 
[-7] 

 792 
(   ) 

[-24] 
        
1st quarter 
 earnings. 

525 
(192) 

 470 
(   ) 

[-10] 

 458 
(   ) 

[-12] 

 465 
(  ) 

[-11] 
        
2nd quarter 
earnings. 

344 
(161) 

 211 
(    ) 
[-38] 

 200 
(   ) 

[-41] 

 119 
(  ) 

[-65] 
        
3rd quarter 
earnings. 

220 
(181) 

 206 
(   ) 
[-6] 

 184 
(  ) 

[-16] 

 120 
(  ) 

[-45] 
        
4th quarter 
earnings. 

-35.6 
(176) 

 155 
(   ) 

[-542] 

 117 
(   ) 

[-434] 

 87.3 
(  ) 

[-349]  
        
n 1981  9851  9851  9851 

    ABootstrap standard errors are shown in parenthesis. Non-experimental bias 100]/)[( expexpexp
TTTT

non
TT ∆∆−∆ − is given in brackets. 
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Table 10 
Average Treatment Effects on the Treated 

Regression-Discontinuity Design: Weighted Mean DifferencesA 

Kentucky Experiment, October 1994 to June 1996. 
 
Outcomes Experimental Bandwidth  

 Estimates +/- 1 +/- 2 +/- 3 
     
Weeks receiving UI 
benefits. 

-2.24 
(0.50) 

-1.68 
(0.58) 
[-25] 

-1.71 
(0.51) 
[-23]  

-1.67 
(0.49) 
[-25] 

     
Amount of UI 
benefits. 

-143.1 
(100) 

182 
(117) 
[-227] 

183 
(104) 
[-227] 

216 
(99) 

[-251] 
     
Annual Earnings. 1054 

(588) 
1495 
(653) 
[41] 

1490 
(587) 
[41] 

1445 
(558) 
[37] 

     
1st quarter earnings. 525 

(192) 
532 

(220) 
[1] 

586 
(187) 
[11] 

567 
(178) 
[8] 

     
2nd quarter earnings. 344 

(161) 
361 

(179) 
[5] 

332 
(175) 
[-3] 

320 
(165) 
[-7] 

     
3rd quarter earnings. 220 

(181) 
325 

(201) 
[47] 

340 
(178) 
[54] 

310 
(170) 
[40] 

     
4th quarter earnings. -35.6 

(176) 
274 

(195) 
[-882] 

231 
(175) 
[-760] 

247 
(166) 
[-805] 

     
n 1981 2306 3012 3465 
AStandard errors are shown in parenthesis. Non-experimental bias 100]/)[( expexpexp

TTTT
non
TT ∆∆−∆ − is given in brackets .  
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Table 11. 
Average Treatment Effects on the Treated 

Regression-Discontinuity Design: Parametric Fixed-Effect ModelA 

Kentucky Experiment, October 1994 to June 1996. 
 
Outcomes Experimental Bandwidth  

 Estimates +/- 1 +/- 2 +/- 3 
     
Weeks receiving UI 
benefits. 

-2.24 
(0.50) 

-1.74 
(0.42) 
[-22 ] 

-1.72 
(0.37) 
[-23]  

-1.63 
(0.35) 
[-27] 

     
Amount of UI benefits. -143.1 

(100) 
177 

(82.6) 
[-223] 

209 
(71.7) 
[-246] 

255 
(67.8) 
[-278] 

     
Annual Earnings. 1054 

(588) 
1236 
(478) 
[ 17] 

1140 
(425) 
[8 ] 

1045 
(403) 
[0.8] 

     
1st quarter earnings. 525 

(192) 
477 

(166) 
[-9] 

493 
(137) 
[-6] 

457 
(128) 
[-12] 

     
2nd quarter earnings. 344 

(161) 
320 

(131) 
[-6] 

262 
(129) 
[-23] 

227 
(122) 
[-34] 

     
3rd quarter earnings. 220 

(181) 
258 

(148) 
[ 17] 

246 
(129) 
[ 11 ] 

207 
(123.3) 

[-6 ] 
     
4th quarter earnings. -35.6 

(176) 
180 

(143) 
[-614] 

137 
(128) 
[-491] 

153 
(121) 
[-537] 

     
n 1981 2306 3012 3465 
AStandard errors are shown in parenthesis. Non-experimental bias 100]/)[( expexpexp

TTTT
non
TT ∆∆−∆ − is given in brackets .  
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Table 12. 
Average Treatment Effects on the Treated 

Regression-Discontinuity Design: Parametric Fixed-Effect Model for all UnitsA   
Kentucky Experiment, October 1994 to June 1996. 

 
Outcomes Experimental Specification for the Profiling Score 

 Estimation Constant Linear Quadratic 
     
Weeks receiving UI 
benefits. 

-2.24 
(0.50) 

-1.65 
(0.33) 
[-26] 

-1.51 
(0.36) 
[ -32] 

-1.47 
(0.37) 
[-34] 

     
Amount of UI 
benefits. 

-143.1 
(100) 

245 
(65.4) 
[-271] 

171 
(70.9) 
[-219] 

126 
(74.2) 
[-188] 

     
Annual Earnings. 1054 

(588) 
1343 
(369) 
[ 27] 

904 
(400) 
[-14] 

708 
(419) 
[-32] 

     
1st quarter earnings. 525 

(192) 
502 

(103) 
[-4] 

441 
(112) 
[-16] 

378 
(117) 
[-28] 

     
2nd quarter earnings. 344 

(161) 
313 

(111) 
[-9] 

188 
(120) 
[-45] 

171 
(126) 
[-50] 

     
3rd quarter earnings. 220 

(181) 
264 

(114) 
[20] 

159 
(124) 
[-27] 

76.2 
(130) 
[-65] 

     
4th quarter earnings. -35.6 

(176) 
262 

(113) 
[ -848] 

114 
(112) 
[-425] 

82.2 
(128) 
[-334] 

     
n 1981 9851 9851 9851 
AStandard errors are shown in parenthesis. Non-experimental bias 100]/)[( expexpexp

TTTT
non
TT ∆∆−∆ − is given in brackets .  

 



 54 

  
 

Figure 1 
Panel A                               Panel B   

 
          

                          Panel A                                                                      
         
         
                              Panel C        
         
         
         
         
         
         
         

Panel C  Panel D  
 
          
         
         
         
         
         
         
         
         
         
         
         
         
         
                         Panel E  

  
                        Panel F 

 

    
 
      

         
         
         
         
         
         
         
         
         
         

Figure 2 

0
2

4
6

8
D

en
si

ty

0 .2 .4 .6 .8 1
Propensity Score

Treated Comparison

Nonparametric Propensity Score without Common Support

0
2

4
6

8
D

en
si

ty

0 .2 .4 .6 .8
Propensity Score

Treated Comparison

Parametric Propensity Score without Common Support

0
2

4
6

8
10

D
en

si
ty

0 .2 .4 .6 .8
Propensity Score

Treated Comparison

Nonparametric Propensity Score with Trimming Common Support
0

2
4

6
8

D
en

si
ty

0 .2 .4 .6
Propensity Score

Treated Comparison

Parametric Propensity Score with Trimming Common Support

0
2

4
6

8
D

en
si

ty

0 .2 .4 .6 .8
Propensity Score

Treated Comparison

Nonparametric Propensity Score with kth Common Support

0
2

4
6

8
D

en
si

ty

0 .2 .4 .6 .8
Propensity Score

Treated Comparison

Parametric Propensity Score with kth Common Support



 55 

 
 

Figure 2 

-2
00

0
20

0
40

0
60

0
A

TT

1 2 3 4
Quarter

experimental nonparametric
parametric

(Nearest-Neighbor Estimates)
Average Treatment Effect for Earnings

 


