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Abstract

Much of the statistical analysis for poverty measurement regards the data employed
to estimate poverty statistics as error-free observations. However, it is amply recognized
that surveys responses are not perfectly reliable and that the quality of the data is often
poor, especially for developing countries. Robust estimation addresses this problem by
searching for poverty measures that are not highly sensitive to errors in the data. How-
ever, given the assumptions of robust estimation, the rationale for point estimation is
not apparent. In the present study we tackle the problem by implementing a different
strategy. Since a particular poverty measure is not point identified under the assump-
tions of robust estimation and some outcomes that are possible ex ante are ruled out ex
post, we apply a fully non-parametric method to show that for the family of additively
separable poverty measures it is possible to find identification regions under very mild
assumptions. We investigate the sensitivity of the bounds of these identification regions
to contamination for the class of Pα poverty measures, showing that there exists an
”α-ordering” for the elasticities of these bounds with respect to the amount of contami-
nation. We apply two conceptually different confidence intervals for partially identified
poverty measures: the first type of confidence interval covers the entire identification
region, while the other covers each element of the identification region with fixed prob-
ability. The methodology developed in the paper is applied to analyze rural poverty in
Mexico.
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1 Introduction

Since the appearance of Sen’s seminal paper [21], research on poverty measurement

has focused on the theoretical properties of aggregate poverty measures. Much of the

statistical analysis of poverty measurement regards the data employed to estimate a specific

poverty measure as error-free observations, implicitly assuming that the real problem to be

concerned about is sample size1. However, it is amply recognized that surveys responses

are not perfectly reliable. Financial and technological constraints may affect the quality of

the data, something that is particularly relevant for developing countries, making ”truth”

very difficult to measure. [1, 24, 22]

Measurement error has several dimensions for poverty estimation. For example, the

poverty line is set for heterogenous groups of people without considering idiosyncratic dif-

ferences in the cost of basic needs [18], arbitrary imputations are made when missing and

zero outcomes appear in the sample, and the variable of interest is misreported by an

important subset of survey respondents. [25]

Often the methodologies applied to solve these problems are arbitrary; at the same

time, the results are highly sensitive to such adjustments. For instance, Szekely, Lustig,

Cumpa and Mejia [25] applied several techniques to adjust for misreporting. In the case of

Mexico, they found that, depending on the method for performing the adjustment, either

14 percent or 76.6 percent of the population is below the poverty line (in absolute terms

it implies a difference of 57 million individuals). This has important policy implications

since, depending on which of these numbers is used as a reference, the amount of resources

directed to social programs can be considered either appropriate or totally insufficient.

Several approaches have been developed in order to set about this problem in a more

structured way. One of these approaches, robust estimation, aims at developing point

estimators that are not highly sensitive to errors in the data.2. The objective is to guard

against worse-case scenarios that errors in the data could conceivably produce. In that
1There are some exceptions. For example, Chesher and Schulter [2] investigate the sensitivity of poverty

measures to alternative amounts of measurement error.
2See Hampel et al [8] and Huber [10] for a comprehensive treatment of robust inference.
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sense it takes an ex-ante perspective of the problem. Cowell and Victoria-Feser [3] apply

this approach to poverty measurement by using the concept of the influence function: a

statistical tool to assess the influence of an infinitesimal amount of contamination upon

the value of a statistic [7]. They found that poverty measures that take as their primitive

concept poverty gaps rather incomes of the poor are in general robust under this criterion.

In particular, they proved that the class Pα of poverty measures developed by Foster, Greer

and Thorbecke [6] is robust under data contamination.

In the present study we tackle the problem by implementing a different strategy. Since

the population parameters of interest are not point identified under the assumptions of

robust estimation and some outcomes that are possible ex ante are ruled out ex post, we

follow Horowitz and Manski [9] and apply a partial identification approach for poverty

measurement3. By using a fully non-parametric method, we show that for the family of

additively separable poverty measures it is possible to find identification regions under very

mild assumptions.

The paper is organized as follows. Section 2 introduces some important concepts for

poverty measurement. Section 3 states the problem formally, presenting both the contami-

nated and corrupted sampling models within the context of poverty measurement. Section

4 investigates the identification region for poverty measures belonging to the additively sep-

arable class. It is shown that, by using some stochastic dominance properties, we can find

upper and lower bounds for poverty measures within that class. In section 5, we analyze

the sensitivity of the bounds to contamination for the class of Pα poverty measures, show-

ing that there exists an ”α-ordering” for the elasticities of these bounds with respect to

contamination. Section 6 applies two conceptually different kinds of confidence intervals for

partially identified poverty measures. Section 7 provides an empirical illustration by apply-

ing the methodology to the measurement of rural poverty in Mexico. Section 8 concludes.

Most of the mathematical details are in the Appendix.
3Examples of applications of this approach in other settings are Molinari [17] and Dominitz and Sher-

man [5]. See Manski [16] for an overview of this literature
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2 Poverty Measurement: Conceptual Framework

Let A denote the σ−algebra of Lebesgue measurable sets on <. Let P denote the set

of all probability distributions on (<,A). Thus for any P ∈ P the triple (<,A, P ) is a

probability space. Let z ∈ <++ be the poverty line.

A person is said to be in poverty if her income, y ∈ < or any other measure of her economic

status is strictly below z. An aggregate poverty index is defined as a functional of P defined

on P. Formally.

Definition 1 A Poverty Index is a functional Π(P ; z) : P × <++ → < that indicates the

degree of poverty when a particular variable has distribution P and the poverty line is z.

An important type of poverty measures is the Additively Separable Poverty class4, which is

defined as follows:

Π(P ; z) =
∫
π(y; z)dP (1)

Where π(y; z) : <++×< → <, is the poverty evaluation function for an individual, indicating

the severity of poverty for a person with income y when the poverty line is fixed at z.

Since the axiomatic approach to poverty measurement proposed by Sen [21], most

economists interested in the phenomenon of poverty have quantified poverty in a man-

ner consistent with those principles. One of those principles, the focus axiom, requires a

poverty measure to be independent of the income distribution of the non poor. The second

axiom proposed by Sen says that, everything else equal, a reduction in the income of a poor

individual must increase the poverty measure; formally:

MONOTONICITY AXIOM: If y1 < y2, then π(z; y1) > π(z; y2)

Sen’s third axiom emphasizes the positive effect of a regressive transfer on the poverty mea-

sure:

TRANSFER AXIOM: Given other things, a pure transfer of income from a poor indi-

vidual to any other individual that is richer must increase the poverty measure.
4Members of this class of poverty measures are the FGT, the Watts, and the Clark, Hemming and Ulph

poverty measures. See Seidl [20] for a survey of poverty measures.
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Kakwani [13] has proposed a 4th property that emphasizes transfers taking place down in

the distribution, other things being equal; formally:

TRANSFER SENSITIVITY AXIOM: If a transfer t > 0 of income takes place from

a poor individual with income y to a poor individual with income y + δ (δ > 0), then the

magnitude of the increase in poverty must be smaller for larger yi.

3 Statement of the Problem

Let each member j of population J be characterized by the pair of outcomes (yj
1, y

j
0) in

the space <×< where yj
1 denote the ”true” equivalent income (or expenditure) for a given

poverty line z. Let the random variable (y1, y0) : J −→ <× < have distribution P (y1, y0).

Let a random sample be drawn from P (y1, y0). Let’s assume that instead of observing y1,

one observes a random variable y defined by:

y ≡ wy1 + (1− w)y0 (2)

Realizations of y with w = 0 are said to be data errors, those with w = 1 are error-

free, and y itself is a contaminated version of y1. Let Q(y) denote the distribution of

the observable y. Let Pi = Pi(yi) denote the marginal distribution of yi. Let Pij =

Pij(yi | w = j) denote the distribution of y conditional on the event w = j for i = 0, 1

and j = 0, 1. Let p = P (w = 0) be the marginal probability of a data error. With data

errors, the sampling process does not identify P1 (the object of interest) but only Q(y), the

distribution of the observable y. By the law of total probability, these two distributions can

be decomposed as follows:

P1 = (1− p)P11 + pP10 (3)

Q(y) = (1− p)P11 + pP00 (4)

This problem can be approached from different perspectives. In robust estimation P1 is
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held fixed and Q(y) is allowed to range over all distributions consistent with both equations.

In the context of poverty measurement, the objective would be to estimate the maximum

possible distance between Π(Q; z) and Π(P1; z). In identification analysis Q(y) is held

fixed because it is identified by the data, and P1 is allowed to range over all distributions

consistent with (3) and (4). This approach recognizes that the parameter of interest might

not be point identified, but it can often be bounded.

The sampling process reveals only the distribution Q(y). However, informative iden-

tification regions emerge if knowledge of the empirical distribution is combined with a

non-trivial upper bound, λ, on p.

This investigations analyzes two different cases of data errors. In the first case, we will

assume that the occurrence of data errors is independent of the sample realizations from

the population of interest; formally:

P1 = P11 (5)

This particular model of data errors is known as ”contaminated data” or ”contaminated

sampling” model. [10] In the other case, (5) does not hold and it is only assumed that there

exists a non-trivial upper bound on the error probability. Horowitz and Manski [9] refer to

this case as ”corrupted sampling”.

Define the sets

P1(p) ≡ P ∩ {(1− p)φ11 + pφ10 : (φ11, φ10) ∈ P11(p)× P} (6)

P11(p) ≡ P ∩
{
Q− pφ00

1− p
: φ00 ∈ P

}
(7)

If there exists a non-trivial upper bound, λ, on the probability of data errors, then

it can be proved that P11 and P1 belong to the sets P11(λ) and P1(λ) respectively, where

P11(λ) ⊂ P1(λ). These restrictions are sharp in the sense that they exhaust all the available

information, given the maintained assumptions. [9]
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4 Partial Identification of Poverty Measures

Suppose now that a proportion p < 1 of the data is erroneous. Furthermore, assume

there exists a non-trivial upper bound, λ, for p, so p ≤ λ < 1.5 From the analysis above,

we know that the distribution of interest P1 is not identified.

Even though P1 is not identified, it is partially identified in the sense that it belongs to

the identification region P1(λ). There is a mapping from this set into the set of values in < of

a given poverty measure. So the natural question is if there is a way to bound such values.

As we will see below, it is possible to do it for the class of additively separable poverty

indices for which the poverty evaluation function is decreasing by ordering the distributions

in Pλ according to a stochastic dominance criterion. Such criterion is defined as follows:

Definition 2 Let F,G ∈ P. Distribution F First Order Stochastically (FOD) dominates

distribution G if

F ((−∞, x]) ≤ G((−∞, x])

for all x ∈ <.

There is a well-known equivalent result for FOC that will be helpful to obtain some of

the results in this study:

Lemma 1 The Distribution F first-order stochastically dominates the distribution G if and

only if, for every non decreasing function ϕ : < → <, we have

∫
ϕ(x)dF (x) ≥

∫
ϕ(x)dG(x) (8)

Let me introduce a basic concept that is a building block for identification regions.

Definition 3 For α ∈ (0, 1], the α-quantile of Q(y) is r(α) = inf{t : Q((−∞, t]) ≥ α}.

Following Horowitz and Manski [9] we can construct identification regions for ASP measures.
5In practice, upper bounds on the probability of data errors can be estimated from a validation data set

or by the proportion of imputed data in the sample. See Kreider and Pepper [15] for an application of a
validation model.
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Proposition 1 Let it be known that p ≤ λ < 1. Define probability distributions Lλ and Uλ

on < as follows:

Lλ =


Q(y≤t)

1−λ for t < r(1− λ)

1 otherwise

Uλ =

 0 for t < r(λ)
Q(y≤t)−λ

1−λ otherwise

If Π(P ; z) belongs to the family of Additively Separable Poverty Measures and the poverty

evaluation function is non-increasing in y, then identification regions for Π(P11; z) and

Π(P1; z) are given by:

H[Π(P11; z)] = [Πl(Uλ; z),Πu(Lλ; z)] (9)

and

H[Π(P1; z)] = [(1− λ)Πl(Uλ; z) + λψ0, (1− λ)Πu(Lλ; z) + λψ1] (10)

where ψ0 and ψ1 are the lower and upper bounds of the poverty evaluation function respec-

tively.

Proof : See appendix.

Example 1 Assume P1 = P11. Let Q(y) = U [0, 1], 0 < p < λ < z < 1−λ. Let the poverty

measure be given by ϕ =
∫∞
0 1(y < z)dφ. Then, ϕ(P1; z) ∈ [ z−λ

1−λ ,
z

1−λ ]. If P1 6= P11 then

ϕ(P1; z) ∈ [z − λ, z + λ]. Notice that ϕ(Q; z) belongs to both intervals.

5 Sensitivity of the Bounds to Contamination: An α-Ordering

Recent years have witnessed an emphasis in the axiomatic approach for poverty mea-

surement. Following Sen [21], there has been a widely use of distributive-sensitive poverty

measures. This new trend is epitomized by the class Pα of poverty measures developed by

Foster et al [6], which is not only a member of the class of ASP poverty measures, but also
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one of the most widely-used in applied work.

Define Γ = {F (y) : F (y) = P ((−∞, y]);P ((−∞, y]) = 0,∀y < 0}, Γ ∈ P, i.e. the support

of y is on <+. The Pα measure is given by

Pα(F ; z) =
∫

1(y < z)
(
z − y

z

)α−1

dP (11)

Where α ≥ 1 can be viewed as a measure of poverty aversion: The larger α, the greater

the relative importance of the poorest individuals. Since Pα belongs to the class of ASP

measures and its evaluation function is non-increasing in y, we can find its identification

region in presence of contamination by Proposition 1. Define Φ(y; z) = 1(y < z)
( z−y

z

)α−1,

PL
αλ =

∫
Φ(y; z)dUλ, and PU

αλ =
∫

Φ(y; z)dUλ. From Proposition 1, the identification region

for Pα when the data is contaminated is given by:

H[Pα] =
[
PL

αλ, P
U
αλ

]
(12)

It is relevant to investigate the effects of contaminated data on the bounds of the identifi-

cation region when the FGT poverty measure is more distributive-sensitive: ie larger values

of the parameter α. A natural conjecture would be that the bounds are more sensitive to

contamination, the larger the parameter α is. An approach to verify this conjecture is to

perform a relative comparison of the influence that infinitesimal changes in contamination,

represented by the parameter λ, have on the bounds for different values of α. To accomplish

this task, I will make use of the concept of elasticity.

Definition 4 For the family Pα of poverty measures, the elasticities of the lower and upper

bounds with respect to λ are defined, respectively, as

ξL
αλ =

∣∣∣∣∣∣λ
dP L

αλ
dλ

PL
αλ

∣∣∣∣∣∣ (13)

ξU
αλ =

∣∣∣∣∣∣λ
dP U

αλ
dλ

PU
αλ

∣∣∣∣∣∣ (14)
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Assume F (x) is differentiable at r(1−λ) and r(λ) with F ′(r(1−λ)) 6= 0 and F ′(r(λ)) 6= 0.

Proposition 2 ξU
αλ ≥ ξU

βλ, and ξL
αλ ≥ ξL

βλ whenever α > β ≥ 1

Proof : See appendix

Proposition 2 provides a very important insight: there is a positive relationship between

the sensitivity of a poverty measure to the way income is distributed and the effects of

changes in contamination on the bounds. This is particularly relevant if we think of the

distributive considerations of the axiomatic approach. For example, it can be shown that

for α > 1, Pα satisfies the Monotonicity Axiom, the Transfer Axiom for α > 2, and the

Transfer Sensitivity axiom for α > 3. Therefore, if the ”precision” of a poverty estimator is

measured by the ”reaction” of the bounds to small changes in contamination, its usefulness

might be limited even if it possess some desirable properties.6

6 Confidence intervals for Partially Identified Poverty Mea-

sures

Let (<,A, P ) be a probability space, and let P be a space of probability distributions.

The distribution P is not known, but a random sample y1, y2, . . . , yN is available.

In the point identified case, a consistent estimator of the class of ASP measures is given

by

Π̂ =
1
N

N∑
i=1

1(yi < z)π(yi; z) (15)

where π(y; z) is a measurable function. By applying The Central Limit Theorem, the

standard 100 · γ% confidence interval for Π(P ; z) is given by:

CIΠ
γ =

[
Π̂− z γ̂+1

2

σ√
N
, Π̂ + z γ+1

2

σ̂√
N

]
(16)

6Notice the difference between this problem and the construction of confidence intervals. For example,
under the assumption of no data-errors, Kakwani [14] argues that ”if the sample size is large enough, one
can always estimate any poverty measure with precision”. In identification analysis the issue of precision
does not disappear even when the sample size is large enough.
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where zτ is the τ quantile of the standard normal distribution.7

I will apply two conceptually different methodologies to estimate confidence intervals

when data is contaminated. The first methodology considers symmetric confidence inter-

vals for the entire identification region H[Π(P1; z)]. The second type of confidence interval,

developed by Imbens and Manski [11], rather than cover the entire identification region

with fixed probability γ, asymptotically covers the true value of the parameter with this

probability. Besides, this type of confidence interval ensures that its exact coverage proba-

bility does converge uniformly to its nominal values. By doing so, one is able to avoid the

problem of having wider confidence intervals when the parameter is point identified that

when is set-identified.

For the first class of confidence intervals, I will make use of a result on L-statistics due to

Stigler [23], who explores the asymptotic behavior of trimmed means. Define the confidence

interval CI [ΠL,ΠU ]
γ as

CI [ΠL,ΠU ]
γ =

[
Π̂L − z γ+1

2

σ̂L√
n
, Π̂U + z γ+1

2

σ̂U√
n

]
(17)

Where σ̂2
L and σ̂2

U are, respectively, consistent estimators for

σ2
L =

V arUλ
(π(y; z)) + (π(r(1− λ))−ΠL)λ

1− λ
(18)

σ2
U =

V arLλ
(π(y; z)) + (π(r(λ))−ΠU )λ

1− λ
(19)

Proposition 3 Let λ < 1 be known. Assume E(π(y; z)2) < ∞. Let r(1 − λ) and r(λ) be

continuity points of F (x). Let the poverty evaluation function, π(y; z), be a non-increasing

function that is continuous at r(1− λ) and r(λ). Then

lim
n→∞

Pr([PL, PU ] ⊂ CI [ΠL,ΠU ]γ) ≥ γ (20)

Proof : See appendix.
7Kakwani [14] describes this methodology for ASP indices
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For the second type of confidence interval, define ∆ = ΠU −ΠL and ∆̂ = Π̂U − Π̂L and

consider the following set of assumptions:

Assumption 1 F (y) ∈ F , where F is the set of distribution functions for which E(|

π(y; z) |3) <∞ and σ2 ≤ σ2
l , σ

2
u for some positive and finite σ2

Assumption 2 Πu −Πl ≤ ∆ <∞

Assumption 3 For all ε > 0 there are ν > 0, K and N0 such that N ≥ N0 implies

Pr
(√

N | ∆̂−∆ |> K∆ν
)
< ε, uniformly in P ∈ P.

Define the confidence interval CIΠ
γ as:

CI
Π
γ =

[
Π̂l −

CN σ̂l√
N

, Π̂u +
CN σ̂u√
N

]
(21)

where CN satisfies

Φ

(
CN +

√
N

∆̂
max(σ̂l, σ̂u)

)
− Φ

(
−CN

)
= γ (22)

Proposition 4 Suppose assumptions 1,2 and 3 hold. Then

limN→∞infP∈PPr
(
Π ∈ CIΠ

γ

)
≥ γ (23)

Proof : See appendix.

7 An Application to Rural Poverty in Mexico

The methodology developed in this paper is applied to the data obtained from the 2002

Encuesta Nacional de Ingreso y Gasto de los Hogares (ENIGH) held by INEGI [12]. This

household income and expenditure survey is one of a series of surveys that are carried out

under the same days of each year using identical sampling techniques.

The households are divided into zones of high and low population density. Low density

population zones are those areas with fewer than 2500 inhabitants. It is common to identify
11



these areas as rural ones. The rest of the zones (those with more than 2500 inhabitants)

are identified as urban areas. The sample is representative for both urban and rural areas

and at the national level. For the purposes of this study, we will just concentrate on the

rural sub-sample which includes 6753 observations.

We have considered the extreme poverty line for rural areas constructed by INEGI-

CEPAL for the 1992 ENIGH, following the methodology applied by SEDESOL [19] to

inflate both the poverty line and all of the data into August 2000 prices. The rural poverty

line is equal to 494.77 monthly 2002 pesos. In this paper we have used per capita current

disposable income as indicator of economic welfare8 . It is divided into monetary and non-

monetary income. The monetary sources include wages and salaries, entrepreneurial rents,

incomes from cooperatives, transfers and other monetary sources. Non-monetary incomes

include gifts, autoconsumption, imputed rents and payments in kind.

The identification regions and the three different 95% confidence intervals for the class of

FGT poverty measures are presented for both the contamination and the corruption models

in Figures 1 and 2 respectively9. The contamination model applies if the occurrence of events

that produces data errors is statistically independent of y1, the outcome of interest. The

corruption model applies if the occurrence of those events is not statistically independent of

y1. The first confidence interval corresponds to the point identified case (λ = 0). It is based

on the point estimator ± 1.96 times its standard error. The second confidence interval is

equal to the estimator of the lower bound minus 1.96, and the estimator of the upper bound

plus 1.96 times their standard errors. The third confidence interval is the adjusted interval

for the parameter CN .

For this particular data set, we found that there is almost no difference between the last

two types of confidence intervals, that is to say, between the confidence interval covering

the entire identification region and the one that provides the appropriate coverage for the

parameter of interest.
8Due to lack of information, a final transformation of the original data was required: we will assume that

each household member obtains the same proportion of total income as the others.
9We have no estimate of the frequency of data errors in the sample, so we present a sensitivity analysis

using different values of λ.
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It is clear from the empirical exercise that only considering random sampling errors

without paying attention to the effects of measurement errors on poverty estimation is very

likely to produce considerable bias in our inferences. For instance, it is remarkable how the

lower bound is much more sensitive than the upper bound to changes in λ, so the event

defined as ”poverty is overestimated” cannot be discarded even if the sample size is ”big

enough”, that is to say, the exact knowledge of a poverty measure cannot be inferred from

any finite number of observations when the data is contaminated.

Figure 1: Identification regions and confidence intervals for FGT poverty measures under
contamination model: Rural Mexico, 2002

λ PL
αλ PU

αλ CIΠ
0.95 CI

[ΠL,ΠU ]
0.95 CI

Π
0.95

α = 0
0 0.287 0.287 [0.276, 0.298]

0.01 0.282 0.289 [0.271, 0.300] [0.272, 0.299]
0.02 0.275 0.292 [0.265, 0.304] [0.266, 0.302]
0.03 0.268 0.294 [0.257, 0.306] [0.259, 0.304]
0.05 0.252 0.299 [0.241, 0.311] [0.243, 0.309]
0.07 0.234 0.304 [0.223, 0.316] [0.225, 0.314]
0.10 0.209 0.312 [0.198, 0.325] [0.200, 0.323]

α = 1
0 0.093 0.093 [0.089, 0.098]

0.01 0.088 0.094 [0.084, 0.099] [0.085, 0.098]
0.02 0.083 0.095 [0.079, 0.100] [0.080, 0.099]
0.03 0.077 0.096 [0.074, 0.101] [0.074, 0.100]
0.05 0.066 0.097 [0.062, 0.103] [0.063, 0.102]
0.07 0.055 0.099 [0.052, 0.106] [0.053, 0.105]
0.10 0.042 0.101 [0.039, 0.109] [0.040, 0.108]

α = 2
0 0.042 0.042 [0.040, 0.045]

0.01 0.038 0.043 [0.036, 0.046] [0.036, 0.045]
0.02 0.034 0.043 [0.032, 0.047] [0.033, 0.046]
0.03 0.031 0.043 [0.029, 0.048] [0.029, 0.047]
0.05 0.024 0.044 [0.022, 0.049] [0.022, 0.048]
0.07 0.018 0.045 [0.016, 0.050] [0.017, 0.050]
0.10 0.011 0.046 [0.010, 0.053] [0.011, 0.052]
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Figure 2: Identification regions and confidence intervals for FGT poverty measures under
corruption model: Rural Mexico, 2002

λ PL
αλ PU

αλ CIΠ
0.95 CI

[ΠL,ΠU ]
0.95 CI

Π
0.95

α = 0
0 0.287 0.287 [0.276, 0.298]

0.01 0.279 0.296 [0.268, 0.307] [0.270, 0.306]
0.02 0.270 0.307 [0.259, 0.318] [0.261, 0.316]
0.03 0.260 0.316 [0.250, 0.327] [0.251, 0.325]
0.05 0.239 0.334 [0.229, 0.345] [0.231, 0.344]
0.07 0.218 0.352 [0.208, 0.364 ] [0.209, 0.362]
0.10 0.188 0.381 [0.179, 0.393] [0.180, 0.391]

α = 1
0 0.093 0.093 [0.089, 0.098]

0.01 0.087 0.103 [0.083, 0.108] [0.084, 0.107]
0.02 0.081 0.113 [0.077, 0.118] [0.078, 0.117]
0.03 0.075 0.123 [0.071, 0.128] [0.072, 0.127]
0.05 0.063 0.142 [0.059, 0.148] [0.060, 0.147]
0.07 0.051 0.162 [0.048, 0.168] [0.049, 0.167]
0.10 0.038 0.191 [0.035, 0.198] [0.036, 0.197]

α = 2
0 0.042 0.042 [0.040, 0.045]

0.01 0.038 0.052 [0.036, 0.055] [0.036, 0.055]
0.02 0.034 0.062 [0.032, 0.066] [0.032, 0.065]
0.03 0.030 0.072 [0.028, 0.076] [0.028, 0.075]
0.05 0.022 0.092 [0.021, 0.097] [0.021, 0.096]
0.07 0.016 0.112 [0.015, 0.117] [0.015, 0.116]
0.10 0.010 0.141 [0.009, 0.147] [0.010, 0.146]

8 Conclusions

In the last decade a growing body of research has studied inference in settings where

parameters of interest are not point identified. The main contribution of this paper has

been to bring about this literature in the context of poverty measurement.

When the observed data is corrupted or contaminated and without making parametric

assumptions on the distribution from which the data are drawn, a particular poverty mea-

sure is not point identified. By applying the work on contaminated and corrupted samples

developed by Horowitz and Manski [9], and using some properties common to an important

subset of poverty measures, we have been able to identify bounds for the class of additively
14



separable poverty indexes. Moreover, we have shown that for the class of Pα poverty mea-

sures the bounds of its identification regions are more sensitive to changes in contamination,

the larger the parameter α is (ie the more distributive-sensitive the poverty measure is).

We have extended two different confidence intervals to the setting of partially identified

poverty measures. The first type of confidence interval provides coverage for the entire

identification region, while the second one asymptotically covers the true value of the the

poverty measure with fixed probability. We have illustrated the methodology developed in

the paper with an application to rural poverty in Mexico. It is clear from both the theoretical

and the empirical analysis that only considering random sampling errors without paying

attention to the effects of measurement errors on poverty estimation is very likely to produce

considerable bias in our inferences.

In future work, we plan to address questions about the identifying power of validation

and covariate data, and monotonicity restrictions among other factors.

9 Appendix

Proof of Proposition 1: We need to show that Π(Uλ; z) ≤ Π(P ; z) and Π(Lλ; z) ≥

Π(P ; z) for all P ∈ Pλ. Set ψ(y; z) = −π(y; z), so ψ(y; z) is a non-decreasing function. By

lemma 1, it is enough to prove that Uλ stochastically dominates every member of Pλ and Lλ

is stochastically dominated by every member of that set. The rest of the proof is identical

to proposition 4 in Horowitz and Manski [9]�

Before proving Proposition 2 we establish a preliminary result:

Lemma 2 Let Π(F ; z) belong to the ASP class. If the monotonicity axiom holds, then the

upper bound (lower bound),Πu(Lλ; z) (Πl(Uλ; z)), is increasing (decreasing) with respect to

λ. Formally
dΠu

dλ
≥ 0

dΠl

dλ
≤ 0

15



Proof :

I will just prove the result for the upper bound since the proof for the lower bound is

similar. From Proposition 1, the upper bound on H[Π(P1; z)] is given by:

Πu =
1

1− λ

∫ r(1−λ)

−∞
π(y; z)dQ

By Leibnitz’s Rule
d

dλ

∫ r(1−λ)

−∞
π(y; z)dQ = π(r(1− λ); z)

Whence
d

dλ
Πu =

1
1− λ

[Πu− π(r(1− λ); z)]

Define a Dirac measure at r(1− λ)

δ(y) =

 0 if y < r(1− λ)

1 otherwise

Hence

π(r(1− λ); z) =
∫
π(y; z)dδ(y)

Notice that, for any λ < 1, δ(y) stochastically dominates all of the distribution functions

defined by:

Lλ =


Q(y≤t)

1−λ for t < r(1− λ)

1 otherwise

Since π(y; z) is non-increasing on y, the result follows from lemma 1. �

Proof of Proposition 2: By Lemma 2, the derivative of
∫

Φ(y; z)dLλ with respect to λ

is positive for any α ≥ 1, the elasticities ξU
αλ and ξU

βλ can be re-written as follows

ξU
αλ =

λ

1− λ

[
1− 1(r(1− λ) < z)

z1−α(z − r(1− λ))α−1

PU
αλ

]

ξU
βλ =

λ

1− λ

[
1− 1(r(1− λ) < z)

z1−β(z − r(1− λ))β−1

PU
βλ

]
16



Suppose (towards a contradiction) that ξU
βλ > ξU

αλ. Equivalently

1(r(1−λ) < z)
∫ r(1−λ)

0
1(y<z)

(
z − y

z − r(1− λ)

)β−1

dQ(y) > 1(r(1−λ) < z)
∫ r(1−λ)

0
1(y<z)

(
z − y

z − r(1− λ)

)α−1

dQ(y)

If r(1 − λ) ≥ z this is a contradiction. Suppose r(1 − λ) < z. Whence there exists

y∗ ≤ r(1− λ) such that:

(
z − y∗

z − r(1− λ)

)β−1

>

(
z − y∗

z − r(1− λ)

)α−1

After some algebraic manipulations we get

r(1− λ) < y∗

which is a contradiction. The proof is analogous for the lower bound. �

Before proving Propositions 3 and 4, we present a number of preliminary results. Let

Y1, Y2, . . . , Yn be i.i.d. random variables with distribution function F (y). Let Y(1), Y(2), . . . , Y(n)

denote the order statistics of the sample. Consider the trimmed mean given by

Sn =
1

(β − α)n

βn∑
i=αn+1

Y(i) (24)

where 0 ≤ α < β ≤ 1. Let F (r(α)) = α and F (r(β)) = β. Further, define

G(y) =


0 if y < r(α)
F (y)−α

β−α if r(α) ≤ y < r(β)

1 otherwise

and set

µ =
∫ ∞

−∞
ydG(y) (25)

17



σ2 =
∫ ∞

−∞
y2dG(y)− µ2 (26)

Lemma 3 (Stigler [23]) Let Y1, Y2, . . . , Yn be i.i.d. random variables with distribution func-

tion F (y). then

n
1
2 (Sn − µ) d−→ N(0, (1− α)−2((1− α)σ2 + (r(α)− µ)2α(1− α))) if β = 1 and

∫∞
0 y2dF (y) <∞

n
1
2 (Sn − µ) d−→ N(0, (β)−2((β)σ2 + (r(β)− µ)2β(1− β))) if α = 0 and

∫ 0
−∞ y2dF (y) <∞

Lemma 4 (Berry-Esseen for trimmed means, de Wet [4]) Let Y1, Y2, . . . , Yn be i.i.d. ran-

dom variables with distribution function F (y). Then

sup
∣∣∣Pr (√N (Sn−µ)

σ < x
)
− Φ(x)

∣∣∣ −→ 0 if β = 1 and
∫∞
r(α) |y|

3dF (y) <∞

sup
∣∣∣Pr (√N (Sn−µ)

σ < x
)
− Φ(x)

∣∣∣ −→ 0 if α = 0 and
∫ r(β)
−∞ |y|3dF (y) <∞

For Lemma 5 define ∆ = θu − θl and let θ̂u and θ̂l and ∆̂ = θ̂u − θ̂l be estimators for θl,

θu and ∆ and consider the following set of assumptions:

i)There are estimators for the lower and upper bound θ̂l and θ̂u that satisfy:
√
N(θ̂l−θl)

d−→

N (0, σ2
l ), and

√
N(θ̂u − θu) d−→ N (0, σ2

u), uniformly in P ∈ P and there are estimators for

σ2
l and σ2

u that converge to the true values uniformly in P ∈ P.

ii) For all P ∈ P, σ2 ≤ σ2
l , σ

2
u ≤ σ2 for some positive and finite σ2 and σ2, θu−θl ≤ ∆ <∞.

iii)For all ε > 0 there are ν > 0,K andN0 such thatN ≥ N0 implies Pr
(√

N | ∆̂−∆ |> K∆ν
)
<

ε, uniformly in P ∈ P.

Define the confidence interval CIθ
γ as:

CI
θ
γ = [θ̂l −

CNσl√
N

, θ̂u +
CNσu√
N

] (27)

where CN satisfies

Φ(CN +
√
N

∆̂
max(σ̂l, σ̂u)

)− Φ(−CN ) = γ (28)

Lemma 5 (Imbens and Manski, 2004) Suppose assumptions i), ii), and iii) hold. Then

limN→∞infP∈PPr
(
θ ∈ CIθ

γ

)
≥ γ (29)

Proof of Proposition 3:
18



Define the events

An =
{

Πl : Πl ≥ Π̂l − z γ+1
2

σ̂l√
n

}

Bn =
{

Πu : Πu ≤ Π̂u + z γ+1
2

σ̂u√
n

}
From the definition of the confidence interval, CI [PL,PU ]

γ

Pr([Πl,Πu] ⊂ CI [Πl,Πu]
γ ) = Pr(A ∩B)

By Bonferroni’s inequality:

Pr(An ∩Bn) ≥ Pr(An) + Pr(Bn)− 1 (30)

By lemma 3 √
n(Π̂i −Πi)

σ̂i

d−→ N (0, 1)

Therefore:

Pr([Πl,Πu] ⊂ CI [Πl,Pu]γ) ≥ 2(
γ + 1

2
)− 1 = γ

asymptotically. �

Proof of Proposition 4:

The result is a direct consequence of lemmas 4 and 5. �
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