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Abstract

This paper studies subsampling hypothesis tests for panel data that are pos-
sibly nonstationary, and cross-sectionally correlated and cross-sectionally coin-
tegrated. The tests include panel unit root and cointegration tests as special
cases. The number of cross-sectional units in the panel data is assumed to be
�nite, and that of time series observations in�nite. Cross-sectional correlation
is allowed for both regressors and error terms. Two types of subsampling, non-
centered and centered, are considered. It is shown that empirical distributions
using subsamples uniformly converge to corresponding limiting distributions. For
the non-centered subsampling, the result is shown in the mode of almost sure
convergence and discontinuous limiting distributions are allowed. For the cen-
tered subsampling, the uniform convergence result is obtained in the mode of
convergence in probability and only for continuous limiting distributions. Test
consistency using the critical values from the empirical distributions is also es-
tablished. These results are applied to panel unit root and stationarity tests.
The panel unit root tests considered are Levin, Lin and Chu (2002)�s t-test, Im,
Pesaran and Shin�s (2003) averaged t-test and Choi�s (2001) Z test. For the
null of stationarity, Hadri�s (2000) test is used. Block sizes of subsamples are
chosen by stochastic calibration. Simulation results show that the subsampling
distributions of the panel unit root tests using the stochastic calibration provide
reasonably good approximations to the �nite sample distributions of the tests.

1 Introduction

Recently there has been much research interest in nonstationary panels. The initial
motivation of using panel data was higher power of unit root tests using them. Levin,
Lin and Chu�s (2002) tests and other subsequent panel unit root tests like Im, Pesaran
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and Shin (2003) and Choi (2001) con�rm power advantages of using panel data.
Cointegration tests using panel data have also been proposed by Kao (1999), Pedroni
(1995), McCoskey and Kao (1998), Larsson, Lyhagen and Löthgren (2001) and Groen
and Kleibergen (2003). Linear regression methods for nonstationary panel data are
developed in, among others, Pedroni (2000), Kao and Chiang (2000), Phillips and
Moon (1999), Kauppi (2000) and Choi (2002a). More references can be found in
survey articles by Baltagi and Kao (2000), Banerjee (1999) and Phillips and Moon
(2000).

However, all the aforementioned work except Groen and Kleibergen (2003) as-
sume cross-sectional independence that may be inappropriate for applications. In
response to this, researchers have developed various methods that can be applied
to cross-sectionallly correlated panels. Bootstrap methods are used for panel unit
root tests in Maddala and Wu (1999) and Chang (2003). Taylor and Sarno (1998)
study the multivariate augmented Dickey�Fuller test. O�Connell (1998) considers a
GLS-based unit root test for homogeneous panels. Error component model allowing
cross-sectional correlation is used in Choi (2002b). Dynamic factor modelling is used
in Bai and Ng (2002), Moon and Perron (2003), Phillips and Sul (2003) and Pesaran
(2003). Last, Groen and Kleibergen (2003) use the vector autoregressive model.

This paper studies subsampling to devise approximations to the �nite-sample dis-
tributions of hypothesis tests for possibly nonstationary, cross-sectionally correlated
and cross-sectionally cointegrated panels. The subsampling method has mainly been
developed by Dimitris Politis, Joseph Romano and Michael Wolf, and their major
research results are summarized in Politis, Romano and Wolf (1999). Initial ap-
plications of the subsampling methods have been to the construction of con�dence
intervals. But their usefulness for hypothesis testing is also demonstrated in Delgado,
Rodríguez-Poo and Wolf (2001), Gonzalo and Wolf (2002) and Choi (2004), among
others. The main idea of subsampling is closely related to the generalized jackknife
method of Wu (1990). In addition, Sherman and Carlstein (1996) also use subsam-
ples to estimate sampling distributions. But their study is con�ned to stationary
time series.

In the subsampling approach, the statistic of interest is computed at subsamples of
the data (consecutive sample points in the case of the time series), and the subsampled
values of the statistic are used to estimate its �nite sample distribution. It has
pro�tably been used for time series analysis, although its application to unit root
nonstationary time series can be found only in Romano and Wolf (2001) and Choi
(2004). The major strength of the subsampling method is that it can work even when
the bootstrap method fails, as illustrated in Romano and Wolf (1999, 2001) and Choi
(2004). In applying the subsampling method to time series, subsamples should use
consecutive sample points in order to retain the structure of serial correlation.

The subsampling approach to hypothesis testing for possibly nonstationary panel
data is new and have several advantages. First, the regressors in the panel data model
may be stationary, or nonstationary with unit roots, or both types mixed. Specifying
the order of integration for the regressors is not required. Second, cross-sectional
correlation is allowed and parameters related to the cross-sectional correlation need
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not be estimated. Third, cross-sectional cointegration is also allowed. Knowledge
on the cointegration coe¢ cients and ranks are not required. The cross-sectional
cointegration may bring di¢ culties if conventional asymptotic methods are used.
Fourth, as will be shown, the subsampling approach is able to provide tests with
reasonably sound �nite-sample properties.

The tests we consider for the panel data model are general enough to include
existing panel unit root tests like Levin, Lin and Chu (2002), Im, Pesaran and Shin
(2003) and combination tests in Maddala and Wu (1999) and Choi (2001). The
tests also include panel stationarity tests like Hadri (2000) and tests for the nulls of
cointegration and non-cointegration. Tests on structural coe¢ cients for panel data
models are also examples of our tests.

When computing the panel tests with subsamples, we use the tests of the orig-
inal form and the tests with the subsample OLS coe¢ cient estimates centered at
the full-sample estimates. Subsampling using the former will be called non-centered
subsampling; and that using the latter centered subsampling. It is shown that em-
pirical distributions using subsamples uniformly converge to corresponding limiting
distributions. For the non-centered subsampling, the result is shown in the mode
of almost sure convergence and discontinuous limiting distributions are allowed. For
the centered subsampling, the uniform convergence result is obtained in the mode of
convergence in probability and only for continuous limiting distributions. Test con-
sistency using the critical values from the empirical distributions is also established.

The general results of subsampling for panel tests are applied to panel unit root
and stationarity tests. The panel unit root tests considered are Levin, Lin and Chu
(2002)�s t-test, Im, Pesaran and Shin�s (2003) averaged t-test and Choi�s (2001)
inverse normal test. For the null of stationarity, Hadri�s (2000) test is used. Block
sizes of subsamples are chosen by stochastic calibration. Simulation results show
that the subsampling distributions of the panel unit root tests using the stochastic
calibration provide reasonably good approximations to the �nite sample distributions
of the tests.

This paper is organized as follows. Section 2 introduces the model, hypothesis
and tests and establishes the asymptotic validity of the tests using the non-centered
and centered subsamplings. Section 3 applies the results of Section 2 to panel unit
root and stationarity tests. Section 4 reports simulation results for the empirical
size and power of the tests studied in Section 3. All the proofs are contained in the
Appendix.

2 Subsampling tests for cross-sectionally correlated pan-
els

2.1 The model, hypotheses and tests

Consider the model for panel data

yit = f(xit; uit; �i); (i = 1; :::; N ; t = 1; :::; n); (1)
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where �i is a parameter vector related to both xit and uit, xit a random regressor of
dimension k; and uit an error term. In model (1), the index i denotes households,
individuals, countries, etc., and the index t time. The number of cross-sectional units
N is assumed to be �xed.

Let the j-th component of xit be xitj (j = 1; :::; k); and the collection of xitj over
the cross-sectional units is denoted as xtj (i.e., xtj = [x1tj ; :::; xNtj ]

0). We assume
(I �B)�xjxtj is mixing where �xj = 0 or 1 and B denote the lag operator. Detailed
mixing conditions will be given later. Here (I �B)�xj denotes a transformation that
makes xtj mixing. If xtj is an integrated process, �xj = 1. On the other hand, if xtj
is a mixing process, �xj = 0. Under this set-up, regressors are allowed to have mixed
orders of integration. But each regressor has the same order of integration across
cross-sectional units. For I(1) regressors, cross-sectional cointegration is allowed as
long as Assumption 1 below is satis�ed. In other words, there may exist N by 1
vectors c1; :::; cr (r < N) such that c0kxtj = I(0) for all k = 1; :::; r when xtj = I(1):

Letting ut = [u1t; :::; uNt]0; cross-sectional dependence for vt = [(I�B)�x1x0t1; :::; (I�
B)�xkx0tk;u

0
t]
0 is assumed to take the form

Cov(vt) = [�ij ]i;j=1;:::(k+1)N (2)

where �ij < 1 for all i and j: Time series dependence between xit and uit may be
allowed. If some of xit are mixing and correlated with uit, instrumental variables
zit of size l are assumed to be available. The number of the instrumental variables
is assumed to be larger than that of the mixing regressors correlated with the error
term. For the instruments, we use the notation ztj = [z1tj ; :::; zNtj ]0 (j = 1; :::; l). For
I(1) regressors, instruments are not required.

More detailed conditions on xit; zit and uit will be required for Assumption 1
below to be satis�ed. These should be given in each application.

We are interested in testing the null hypothesis

H0 : R�i = r for all i; (3)

where �i is a subvector of �i:When �i are heterogeneous across cross-sectional units,
tests for the null hypothesis (3) are assumed to take the form

�Nn = g
�
(R�̂1n � r)0�1n(R�̂1n � r); :::; (R�̂Nn � r)0�Nn(R�̂Nn � r)

�
; (4)

where �̂in and �in are a consistent estimator of �i and the corresponding weight
matrix, respectively, that use the whole demeaned1 time series sample for the i-th
individual. Using the demeaned data is appropriate, because xit rarely has zero mean
for each i.

When �i are �xed throughout individuals (�i = � for all i), tests based on the
pooled data are assumed to take the form

�Nn = h(
�
R�̂pNn � r)

0�pNn(R�̂
p
Nn � r)

�
; (5)

1 In some cases, detrending is also required. The additional detrending does not bring any changes
to the arguments of this section. For simplicity, "demeaning" in this section is understood to be
"demeaning and detrending if necessary."
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where �̂pNn and �
p
Nn are a consistent estimator of � and the corresponding weight ma-

trix, respectively, using the pooled panel data. The data are assumed to be demeaned
before being used for �Nn:

In some applications (e.g. tests for the null of stationarity), null hypotheses
cannot be written like (3). Instead, it is more appropriate to put the null hypotheses
for some constants a and b as

H0 : a < �ik < b for all i, (6)

where �ik is the k�th element of �i: The test for this null hypothesis is assumed to
take the form

'Nn = k(�1n; :::; �Nn) (7)

where �in is a test statistic for the null hypothesis a < �ik < b using the demeaned
data of the i�th individual. Using pooled data for the null hypothesis (6) does not
seem to be appropriate because parameter �ik may take di¤erent values for each i:

2.2 Subsampling

The tests considered in the previous subsection are likely to have asymptotic dis-
tributions involving nuisance parameters due to the cross-sectional correlation (2).
The subsampling method can provide approximations to the limiting distributions of
the tests by computing the tests using smaller blocks of consecutively observed time
series and formulating empirical distribution functions out of the computed values of
the tests. Notably, the method does not require estimating the nuisance parameters.

Let
wt = [x

0
t1; :::;x

0
tk; z

0
t1; :::; z

0
tl;u

0
t]
0

and
�bs = [ws;ws+1; :::;ws+b�1](1 � s � n� b+ 1):

Here, �bs denotes a consecutive subsample that starts from s and has sample size b:
Parameter b is also called the block size.

2.2.1 Non-centered subsampling

Let �̂1bs; :::; �̂Nbs; �̂
p
Nbs be parameter estimators using the demeaned subsample

��bs = [ws � �wbs;ws+1 � �wbs; :::;ws+b�1 � �wbs] (1 � s � n� b+ 1);

where �wbs = 1
b

Ps+b�1
k=s wk; and let �1bs; :::;�Nbs;�

p
Nbs be corresponding weight ma-

trices. Subsample versions of tests (4) and (5) are, respectively,

�Nbs = g
�
(R�̂1bs � r)0�1bs(R�̂1bs � r); :::; (R�̂Nbs � r)0�Nbs(R�̂Nbs � r)

�
(8)

and
�Nbs = h

��
R�̂pNbs � r

�0
�pNbs

�
R�̂pNbs � r

��
: (9)

5



Subsample version of test (7) is

'Nbs = k(�1bs; :::; �Nbs): (10)

There are n� b+ 1 subsample tests that will be used to estimate the liming distrib-
utions of the tests.

Using the subsample tests (8), (9) and (10), empirical distributions

L�Nnb(x) =
1

n� b+ 1

n�b+1X
s=1

1f�Nbs � xg (11)

L�Nnb(x) =
1

n� b+ 1

n�b+1X
s=1

1f�Nbs � xg (12)

and

L'Nnb(x) =
1

n� b+ 1

n�b+1X
s=1

1f'Nbs � xg (13)

are formulated.
It will be shown that the empirical distributions (11), (12) and (13) converge to

the limiting distributions of the tests (4), (5) and (7), respectively. To this end, we
require a few assumptions. Let J�Nn(x) = Pf�Nn � xg; J�Nn(x) = Pf�Nn � xg and
J'Nn(x) = Pf'Nn � xg: These are �nite sample distribution functions of the tests
(4), (5) and (7), respectively. Regarding the �nite sample distributions, assume

Assumption 1 (i) Under the null hypothesis (3), J�Nn(x) ! J�N (x) and J
�
Nn(x) !

J�N (x) for every continuity point x of J
�
N (�) and J�N (�); respectively, as n ! 1.

Under the null hypothesis (6), J'Nn(x)! J'N (x) for every continuity point x of J
'
N (�)

as n!1:
(ii) Under the null hypothesis (3), J�Nn(x�)! J�N (x�) and J�Nn(x�)! J�N (x�)

for every discontinuity point x of J�N (�) and J�N (�); respectively, as n ! 1. Under
the null hypothesis (6), J'Nn(x�)! J'N (x�) for every discontinuity point x of J

'
N (�)

as n!1:

Part (i) of this assumption requires that the tests have limiting distributions, and will
be satis�ed in most cases. Part (ii) introduces a condition for discontinuous limiting
distributions. Under this assumption, it follows from Lemma 3 of Chow and Teicher
(1988, p.265) that

sup
x
jJaNn(x)� JaN (x)j ! 0 (a = �; � or ') as n!1:

The following assumption assumes that the subsample tests have the same distri-
butions regardless of the starting point of the subsamples. One way of satisfying this
assumption is to assume strict stationarity for rt in Assumption 3 below.

Assumption 2 The sampling distributions of �Nbs; �Nbs and 'Nbs are invariant to
s at any �xed b and n:
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Temporal dependence structure of the data is assumed to be:

Assumption 3 rt = [(I �B)�x1x0t1; :::; (I �B)�xkx0tk; z0t1; :::; z0tl;u0t]0 is either strong
mixing with its mixing coe¢ cients �r;m satisfying for � > 0

1X
m=1

�
�=(2+�)
r;m <1

or uniform mixing with its mixing coe¢ cients �r;m satisfying

1X
m=1

�
1=2
r;m <1:

The following theorem reports asymptotic properties of LaNnb (a = �; � and ')
under the null hypotheses (3) and (6).

Theorem 1 Suppose that Assumptions 1-3 hold. Also, assume b=n! 0 and b!1
as n!1: Then, under the null hypotheses (3) and (6),

(i) supx j LaNnb(x)� JaN (x) j
a:s:�! 0 as n!1; where a = �; � or ';

(ii) For � 2 (0; 1), let caNnb(1 � �) = inffx : LaNnb(x) � 1 � �g: If JaN (�) is
continuous at caNnb(1� �), for a = �; � or ';

PfaNn � caNnb(1� �)g ! 1� � as n!1:

Several aspects of this theorem deserve our attention. First, part (i) of Theorem
1 establishes that the subsample distribution LaNnb(x) becomes closer to the limiting
distribution of aNn for every point x of JaN (�). The limiting distributions are allowed
to be discontinuous as long as the discontinuity points satisfy part (ii) of Assumption
1. In the literature of subsampling, uniform convergence results have been available
only for continuous limiting distributions and only in the mode of convergence in
probability.

Second, part (ii) justi�es using the percentiles from the subsample distribution
LaNnb(�) for hypothesis testing in the sense that the aNn test using the subsample
critical values caNnb(1� �) has correct asymptotic size.

Third, without part (ii) of Assumption 1, we can obtain almost sure convergence
of the empirical distributions only at the continuity points.2

Fourth, if the limiting distribution is continuous, the uniform convergence result
of part (i) can be obtained in the mode of convergence in probability using Lemma
A.1. This allows us to relax the mixing condition Assumption 3 to Assumption 6
that follows in next subsubsection.

2Uniform convergence of BNb(�) in the proof of Theorem 1 cannot be obtained without part (ii)
of Assumption 1, though that of ANb(�) can be without it.
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2.2.2 Centered subsampling

For the null hypothesis (3), we may use the subsample tests centered at the full-
sample parameter estimates. This may bring higher power as observed in Choi (2004).
Centered versions of tests (8) and (9) are, respectively,

��Nbs = g
�
(�̂1bs � �̂1n)0R0�1bsR(�̂1bs � �̂1n); :::; (�̂Nbs � �̂Nn)0R0�NbsR(�̂Nbs � �̂Nn)

�
(14)

and
��Nbs = h

��
�̂pNbs � �̂

p
Nn

�0
R0�pNbsR(�̂

p
Nbs � �̂

p
Nn

�
: (15)

Using the subsample tests (14) and (15), empirical distributions

L��Nnb(x) =
1

n� b+ 1

n�b+1X
s=1

1f��Nbs � xg

L��Nnb(x) =
1

n� b+ 1

n�b+1X
s=1

1f��Nbs � xg

are formulated.
For the centering at the full-sample parameter estimates to be innocuous under

the null hypothesis (3), the following assumption is required.

Assumption 4 (i) (R�̂in�r)�ibs(R�̂in�r)
p�! 0 and (R�̂ibs�r)�ibs(R�̂in�r)

p:�!
0 as n!1 for all i and s:

(ii) (R�̂pNn � r)0�
p
Nbs(R�̂

p
Nn �R)

p�! 0 and (R�̂pNbs � r)0�
p
Nbs(R�̂

p
Nn �R)

p�! 0
as n!1 for all s:

This assumption can be shown to hold in applications using the requirement that
b=n! 0 as n!1:

In relation to the centering, we also require

Assumption 5 (i) First-order partial derivatives of the function g exist and satisfy
@g
@xi jxi=fin

= Op(1) for all i where fin = op(1):

(ii) First-order partial derivative of the function h exists and satisfy @h
@x jx=fn =

Op(1) where fn = op(1):

For the centered subsampling, our results are in the mode of convergence in
probability. Corresponding results in the mode of almost sure convergence can be
obtained using Lemma A.2 in the Appendix. But these require almost sure relations
in Assumptions 4 and 5, which are cumbersome to verify in applications. Thus,
we are content with developing theory for the centered subsampling in the mode of
convergence in probability. Using the mode of convergence in probability instead of
almost sure convergence does not bring any practical di¢ culties as long as limiting
distributions are continuous.

Using the mode of convergence in probability allows us to relax Assumption 3 to
the following:
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Assumption 6 rt = [(I �B)�x1x0t1; :::; (I �B)�xkx0tk; z0t1; :::; z0tl;u0t]0 is either strong
mixing with its mixing coe¢ cients �r;m satisfying

1X
m=1

m�1�
�=(2+�)
r;m <1

or uniform mixing with its mixing coe¢ cients �r;m satisfying

1X
m=1

m�1�
1=2
r;m:

The following theorem reports asymptotic properties of L�aNnb (a = � or �) under
the null hypotheses (3).

Theorem 2 Suppose that Assumptions 1, 2, 4, 5 and 6 hold. Also, assume b=n! 0
and b!1 as n!1: Then, under the null hypotheses (3),

(i) L�aNnb(x) � JaN (x)
p�! 0 as n ! 1; where a = � or � and x is a continuity

point of JaN (�);
(ii) If JaN (�) is continuous, supx j L�aNnb(x)�JaN (x) j

p�! 0 as n!1; where a = �
or � ;

(iii) For � 2 (0; 1), let c�aNnb(1 � �) = inffx : L�aNnb(x) � 1 � �g: If JaN (�) is
continuous at c�aNnb(1� �), for a = � or � ;

PfaNn � c�aNnb(1� �)g ! 1� � as n!1:

This theorem shows that L�aNnb(�) has essentially the same asymptotic properties
as LaNnb(�) under the null hypothesis (3) as long as the limiting distribution JaN (�) is
continuous. But they have di¤erent implications for the power of tests as will be dis-
cussed later. In addition, note that L�aNnb(x) will be indeterminate at a discontinuity
point x:3 Thus, the assumption of continuity in part (i) is essential, and the uniform
convergence result can be obtained only for continuous limiting distributions.

2.3 Test consistency

Suppose that the alternative hypothesis against the null hypothesis (3) can be written
as

HA : R�i = r
� (6= r) for at least one i: (16)

The alternative hypothesis against the null hypothesis (6) is assumed to be

HA : �ik � a or �ik � b for at least one i: (17)

This subsection studies consistency of tests (4), (5) and (7) under the alternative
hypotheses (16) and (17) that use critical values from the subsamplings of the previous
subsections.

For the consistency of the tests, assume under the alternative hypotheses:
3Equation (A.11) in the Appendix shows that L�aNnb(x) will be in between J

a
N (x�) and JaN (x+)

in the limit at the discontinuity point x; which makes L�aNnb(x) indeterminate in the limit.
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Assumption 7 (i) �Nn=n��
p�! �N ; �Nn=n

�� p�! �N ; and 'Nn=n
�' p�! 'N ; where

�a > 0 for a = �; � or ':
(ii) If aNn (a = �; � or ') rejects the relevant null hypothesis ((3) or (6)) when

aNn is less (greater) than a critical value from its limiting distribution, P [aN < 0]
(P [aN > 0]) = 1:

Part (i) of this theorem should be satis�ed by all tests. Otherwise, the tests are
inconsistent. Part (ii) is easy to verify in applications as will be shown in next
section.

The following theorem reports that the probability of rejection under the alterna-
tive hypotheses (16) and (17) converges to one as the sample size n grows when the
�-level critical values caNnb(1� �) and c�aNnb(1� �) from the subsamplings are used.

Theorem 3 (i) Suppose that Assumption 7 holds. Under the alternative hypotheses
(16) and (17), for a = �; � or ';

PfaNn � caNnb(1� �)g (PfaNn � caNnb(1� �)g)! 1 as n!1 as n!1:

(ii) Suppose that Assumptions 4 with r� replacing r and 7 hold. Under the alter-
native hypothesis (16), for a = � or � ;

PfaNn � c�aNnb(1� �)g (PfaNn � c�aNnb(1� �)g)! 1 as n!1:

The aNn test of part (i) of this theorem is consistent because it diverges faster
than the subsample critical value caNnb(1 � �). Since c�aNnb(1 � �) is stochastically
bounded under the alternative, the power of the test in part (ii) will diverge faster
than that of part (i).

3 Applications

3.1 Unit root tests for panel data

Consider the autoregressive model

�yit = �iyi;t�1 +

piX
j=1

'ij�yi;t�j + �i + uit; (i = 1; :::; N ; t = p+ 2; :::; n); (18)

where [u1t; :::; uNt]0 � iid(0;�) (� > 0); every element of matrix � is �nite and
p = max1�i�N pi: O¤-diagonal elements of the matrix � are allowed to be non-zero,
which introduces cross-sectional correlation in the panel data. Obviously, this is an
example of model (1). We assume pi are known, though in practice these can be
estimated by using information criteria and sequential testing. Since the index t
starts from p; every cross-sectional unit has the same sample and subsample sizes.
For the autoregressive process (18), the number of time series observations is n�p�1;
and the number of subsamples with block size b is n� b�p: Thus, all the subsample
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empirical distributions for the panel unit root tests should involve n � b � p in the
denominator rather than n� b+ 1:

It will be convenient to write model (18) in matrix notation as

�yin = �iyi;�1;n +Qin
i + uin; (i = 1; :::; N);

where�yin = [�y1;p+2; :::;�yN;n]0;Qin=(1;�yi;�1;n;�yi;�2;n; :::;�yi;�pi;n) with 1 =
[1; :::; 1]0 and 
i = ('i1; :::; 'ipi ; �i):

The null and alternative hypotheses for panel unit root tests are:

H0 : �i = 0 for all i (19)

H1 : �i < 0 for at least one i: (20)

Under the null hypothesis, it is assumed that �i = 0 for all i:
In addition to the iid assumption on [u1t; :::; uNt]0, we assume

Assumption 8 [�y1t; :::;�yNt]0 satis�es Assumption 3.

Under the null hypothesis, [�y1t; :::;�yNt]0 is a strictly stationary linear process.
Still, it requires extra conditions in order to be mixing. We do not state them here
for brevity, but the reader may consult Davidson (1994, pp.219-228) for su¢ cient
conditions that make a linear process mixing. These involve assumptions on the
probability density functions of the underlying process as well as those on the coe¢ -
cients of the linear process.

This section considers Levin, Lin and Chu�s (2002; hereafter LLC), Im, Pesaran
and Shin�s (2003; hereafter IPS) and combination tests for the null hypothesis (19).
The combination tests have independently been developed by Maddala andWu (1999)
and Choi (2001). Tests using model (18) with an additional linear time trend are
easy to understand once those for model (18) are fully explored, and will be discussed
later.

3.1.1 The LLC test

LLC pool the data and propose the t-test

tNn =
�̂pNnr

�̂2Nn

�PN
i=1 y

0
i;�1;nMQinyi;�1;n

��1 (21)

for the null hypothesis (19), where �̂pNn is a pooled OLS estimator of �1 de�ned

by �̂pNn =
PN
i=1 yi;�1;nMQin

�yinPN
i=1 yi;�1;nMQin

yi;�1;n
with MQin = I � Qin (Q0inQin)

�1Q0in and �̂
2
Nn =

1
N

PN
i=1

1
n�pi�2

�
MQin�yin � �̂

p
NnMQinyi;�1;n

�0 �
MQin�yin � �̂

p
NnMQinyi;�1;n

�
esti-

mates 1
N

PN
i=1 �

2
i : They use a modi�cation of test (21) when N is in�nite such that it

has a standard normal distribution in the limit, but this is not required here because
N is �xed.
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Under the null hypothesis (19), as n!1;

tNn )
PN
i=1 �li�i

R 1
0
�Wi(r)dWi(r)qPN

i=1 �
2
li

R 1
0
�W 2
i (r)dr

1
N

PN
i=1 �

2
i

; (22)

where �W (r) = W (r) �
R 1
0 W (s)ds is the demeaned standard Brownian motion and

�2li is the long-run variance of �yit: Even when �
2
i and �

2
li do not change over individ-

uals, this distribution depends on the nuisance parameters due to the cross-sectional
correlation and cannot be simulated unless the matrix � is known.

If yit is cross-sectionally cointegrated, the distribution (22) should change and it
depends on cointegrating vectors that are unknown. Simulating such distributions in
each application will be quite cumbersome. For example, if N = 2 and y1t � cy2t =
I(0); we have W1(r) = cW2(r) and this relation should be in (22). But still, note
that Assumption 1 continue to hold in either case. Thus, we may ignore the case of
cross-sectional cointegration for the LLC test.

The LLC test (21) is an example of the �Nn test given in (5) and Theorems 1, 2
and 3 can be applied to it as reported in the following corollary. In this corollary, Xbs
denotes a submatrix of Xn that is made up of consecutive b rows of Xn beginning
from the s-th row. Meanings of tNbs; �̂

p
Nbs and �̂

2
Nbs should be obvious from the

previous discussions. In addition, we set pi = p in calculating the subsample tests in
the following corollary, and this also applies to the tests in Corollary 5 and 6 below.

Corollary 4 Let �Nbs = tNbs and ��Nbs =
�̂pNbs��̂

p
Nnq

�̂2Nbs(
PN
i=1 y

0
i;�1;bsMQibs

yi;�1;bs)
�1 :

(i) Under the null hypothesis (19), conclusions in Theorems 1 and 2 hold with
a = � if Assumption 8 holds.

(ii) Under the alternative hypothesis (20), conclusions in Theorem 3 hold with
a = � .

Since the limiting distribution of the tNn test is continuous, we may obtain the
uniform convergence result in part (i) of Theorem 1 in the mode of convergence in
probability using Assumption (6) in Assumption (8) instead of Assumption (3) that
is stronger (see the fourth comment after Theorem 1). The same is true of Corollaries
5 and 6 that follow.

3.1.2 The IPS test

Let tin be the augmented Dickey-Fuller test for the null hypothesis H0 : �i = 0, i.e.,

tin =
�̂inr

�̂2in

�
y0i;�1;nMQinyi;�1;n

��1 ;
where �̂in is the OLS estimator of �i using the time series data for the i-th individ-
ual and �̂2in =

1
n�pi�2 (MQin�yin � �̂inMQinyi;�1;n)

0 (MQin�yin � �̂inMQinyi;�1;n) :

12



The IPS t�bar statistic is de�ned as the average of the individual augmented Dickey-
Fuller test as

�tNn =
1

N

NX
i=1

tin: (23)

For a �xed N; as T !1;

�tNn )
1

N

NX
i=1

R 1
0
�Wi(r)dWi(r)qR 1
0
�W 2
i (r)dr

(24)

under the null hypothesis (19). Though the limiting distribution appears to be free of
nuisance parameters, indeed it involves them due to the cross-sectional correlation.
The limiting distribution (24) prevails even if yit is cross-sectionally cointegrated,
because the test is the average of the individual Dickey-Fuller test that is not a¤ected
by cross-sectional cointegration.

Test (23) is an example of the �Nn test given in (4) and Theorems 1, 2 and 3 can
be applied to it.

Corollary 5 Let �Nbs = �tNbs and ��Nbs =
1
N

PN
i=1 t

�
ibs(pi; 'i) with tibs(pi; 'i) =

�̂ibs��̂inr
�̂2ibs

�
y0i;�1;bsMQi;bs

yi;�1;bs
��1 :

(i) Under the null hypothesis (19), conclusions in Theorems 1 and 2 hold with
a = � if Assumption 8 holds.

(ii) Under the alternative hypothesis (20), conclusions in Theorem 3 hold with
a = �.

3.1.3 Combination tests

A unit root test is applied to each cross-sectional unit and the resulting p-values are
combined to formulate combination tests. Choi (2001) uses Elliott, Rothenberg and
Stock�s (1996)�s Dickey-Fuller GLS test as an underlying unit root test.4 To calculate
the Dickey-Fuller-GLS tests, let ai = 1 � ci=n; �cyin = (yi1;yi2 � aiyi1; :::; yin �
aiyi;n�1)0 and wain = (1; 1 � ai; :::; 1 � ai)0: Then, using ci = �7 as suggested in
Elliott, Rothenberg and Stock, run the OLS regression

�cyin = wain�̂ + f̂ain: (25)

Next, formulate the GLS-detrended series ygit = yit� �̂ by using �̂ from equation (25)
and run the augmented Dickey-Fuller regression

4ygin = �̂
g
iny

g
i;�1;n + '̂

g
i1n4y

g
i;�1;n + :::+ '̂

g
ipin
4ygi;�pi;n + ĝin;

4The Dickey-Fuller-GLS test provides better empirical size and power than the Dickey-Fuller test
according to some unreported simulation results.
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where ygin = [yi;pi+2 � �̂; :::; yi;n � �̂]0 and y
g
i;�k;n are similarly de�ned. The Dickey-

Fuller-GLS test is de�ned by

dfg�in =
�̂ginr

�̂g2in

�
yg0i;�1;nMQgin

ygi;�1;n

��1 ;

where �̂g2in =
1

n�pi�2

�
MQgin

�ygin � �̂
g
inMQgin

ygi;�1;n

�0 �
MQgin

�ygin � �̂
g
inMQgin

ygi;�1;n

�
with MQgin

= I �Qgin(Q
g0
inQ

g
in)

�1Qg0in and Q
g
in=(1;�y

g
i;�1;n;�y

g
i;�2;n; :::;�y

g
i;�pi;n):

The asymptotic p-value for the Dickey-Fuller-GLS test is de�ned as

pin = F (dfg
�
in)

where F (�) denotes the Dickey-Fuller-GLS test�s limiting cumulative distribution
function.

There are various combination tests (cf. Hedges and Olkin, 1985). The most
desirable one, according to the results in Choi (2000), appears to be the inverse
normal test de�ned by

ZNn =
1p
N

NX
i=1

��1(pin) (26)

where �(:) is the standard normal cumulative distribution function. Under the null
hypothesis (19),

ZNn )
1p
N

NX
i=1

zi

as n ! 1; where zi � N(0; 1) and zi are dependent due to the cross-sectional
correlation. This distribution is also valid even if yit is cross-sectionally cointegrated
for the same reason as for the IPS test.

The ZNn test is an example of the �Nn test, and the following results are deduced
from Theorems 1, 2 and 3.

Corollary 6 Let �Nbs = ZNbs and �
�
Nbs =

1p
N

PN
i=1�

�1(p�ibs) with p
�
ibs = F (dfg

��
in )

and dfg��in =
�̂gibs��̂

g
ins

�̂g2ibs

�
yg0i;�1;bsMQ

g
ibs
ygi;�1;bs

��1 :
(i) Under the null hypothesis (19), conclusions in Theorems 1 and 2 hold with

a = � if Assumption 8 holds.
(ii) Under the alternative hypothesis (20), conclusions in Theorem 3 hold with

a = �.

3.2 Stationarity test for panel data

Consider the linear panel regression model

yit = �i + uit; uit = �iui;t�1 + vit; (i = 1; :::; N ; t = 2; :::; n); (27)
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which is a special case of model (1). Assuming that vit are I(0) for all i and that vit
are cross-sectionally correlated, we are interested in testing the null hypothesis

H0 : j�ij < 1 for all i (28)

against the alternative hypothesis

HA : �i = 1 for at least one i: (29)

We will use Hadri�s (2000) Lagrange Multiplier test for the null hypothesis (28).
Letting sit =

Pt
k=1(yik � �yi) with �yi = 1

n

Pn
t=1 yit; it is de�ned as

�Nn =
1

N

NX
i=1

1

n2�̂2i

nX
t=1

s2it; (30)

where �̂2i is an estimator of the long-run variance of yit de�ned by �̂
2
i =

Pl
j=�l Ci(j)k(

j
l )

with Ci(j) = 1
n

Pn�j
t=1 (yit� �yi)(yi;t+j� �yi) and k(�) being a lag window. This test may

be considered as the average of Kwiatkowski, Phillips, Schmidt and Shin�s (1992) test
of level-stationarity for each individual.

Assume under the null hypothesis (28):

Assumption 9 (i) uit is strictly stationary, satis�es Assumption 3 for all i and

1p
n

[nr]X
t=1

uit ) �iWi(r) as n!1:

(ii) �̂2i
p�! �2i for all i as n!1:

More primitive conditions for this assumption to hold are well documented in the
literature. See, for example, Kwiatkowski, Phillips, Schmidt and Shin (1992).

Under Assumptions 9, it follows that

�Nn )
1

N

NX
i=1

Z 1

0
(Wi(r)� rWi(1))

2 dr as n!1: (31)

Since vit are cross-sectionally correlated, Wi(r) are not independent.
Under the alternative hypothesis (29), assume

Assumption 10
1

n2�̂2i

nX
t=1

s2it = Op(l=n):

Note that this assumption is proven in Kwiatkowski, Phillips, Schmidt and Shin
(1992) based on more primitive conditions. Obviously, this assumption holds even
when yit is cross-sectionally cointegrated under the alternative.

Test (30) is an example of 'Nn test given in (7). Thus, Theorems 1, 2 and 3
provide the following corollary.
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Corollary 7 Let 'Nbs = �Nbs:
(i) Under the null hypothesis (28), conclusions in Theorems 1 hold with a = ' if

Assumption 9 holds.
(ii) Under the alternative hypothesis (29), conclusions in Theorem 3 hold with

a = ' if Assumption 10 holds.

3.3 Extensions

This subsection considers extensions of the unit root and stationarity tests in pre-
vious subsections to more complex models. The models considered are the linear
cointegration model and extensions of models (18) and (27) with a linear time trend.
The extensions are rather straightforward given the results in previous subsections,
and hence discussions on them will be brief.

3.3.1 Panel regression and cointegration tests

We may employ the unit root and stationarity tests in previous subsections to test
for cointegration. Consider the linear panel regression model with I(1) regressors xit

yit = �i + �
0
ixit + uit; uit = �iui;t�1 + vit; (32)

which is a special case of model (1). In order to test for cointegration, we run
OLS on this model using xit as regressors and get residuals ûit: For the null of non-
cointegration (i.e., �i = 1 for all i), we use tests (21), (23) and (26) assuming that
vit follows autoregressive processes. The limiting distributions of these tests change
with the presence of the I(1) regressor and depend on nuisance parameters, but
the subsampling method still work as long as [(�x01t; vit); :::; (�x

0
Nt; vNt)]

0 satis�es
Assumption 3. Thus, critical values of these tests can be estimated using the sub-
sampling method. Similarly, critical values of test (30) for the null of cointegration
can be estimated by using the OLS residuals and the subsampling method. It is well
known in time series regression that e¢ cient estimation method (e.g., lead-and-lags
regression) should be used to make the limiting distributions of stationarity tests free
of nuisance parameters (cf. Choi and Ahn, 1995). However, the OLS regression may
be used for the subsampling, because the nuisance parameters resulting from OLS
can be handled by the subsampling method. In �nite samples, though, using e¢ cient
estimation methods may induce the tests to perform better.

3.3.2 Models with a linear time trend

A linear time trend variable t may be added to models (18), (27) and (32). Limiting
distributions of the unit root and stationarity tests will change, but no doubt the
subsampling method still works since the trend variable is nonstochastic and brings
no meaningful changes.
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4 Simulation for panel unit root tests

4.1 Choice of block sizes

No doubt, choice of block sizes will a¤ect the performance of unit root tests using
subsamplings. Here we devise simulation-based calibration rule for the choice of block
sizes. Choi (2004) shows that this method works better for the VAR causality test
than other existing methods like minimum volatility and bootstrap-based calibration
rules. We assume that an adequate approximation for an optimal block size at each
nominal size � has the following relation to the sample sizes and the common AR
order p+ 15:

bopt;� = exp(�0 + �1 � (p+ 1) + �2 �N)n�: (33)

Other factors (e.g., characteristic roots of the AR model, degree of cross-sectional
correlation, etc.) should also a¤ect optimal block sizes. But relation (33) is simple
to use and provides reasonably good approximations to optimal block sizes according
to simulation results that will be reported. Relation (33) with estimated parameters
provides a calibration rule for the choice of the block size b. In practice, the numbers
of the lagged di¤erence terms will di¤er across cross-sectional units. In this case, one
may use mean or median of fpig: This will not a¤ect the optimal choice of the block
size in any signi�cant way because the e¤ect of parameter p on the choice is minimal
as will be shown in Tables I and II.

In order to estimate the parameters of relation (33), we ran simulations for various
sample sizes and data generating processes, and relate optimal block sizes to these.
The data generating process used is (18) with �i = 0 for all i; N = 5; 10; 20; n =
80; 130; 180 and pi = 0; 2; 4 for all i6:We let all of the o¤-diagonal elements of � be 0.3
and all of the diagonal elements 1.7 In this experimental format, there are 27 di¤erent
data generating processes. The calibration rule was devised separately for the 5%
and 10% signi�cance levels and for the centered and non-centered subsamplings. The
algorithm we used for the calibration rule at each signi�cance level is:

Step 1: Generate each data 1,000 times and calculate the subsample
critical values for every block size from 5 to 0.8�n. In addition, record
the �nite sample critical values of the full-sample unit root tests out of
the 1,000 iterations.

Step 2: Record the median of the 1,000 subsample critical values of Step
2 for each block size.

Step 3: Record the median block size of Step 2 that best approximates
the �nite sample critical values of the full-sample unit root test of Step 1
in terms of absolute discrepancy.

5Here p is the number of lagged di¤erence terms as in model (18). So the AR order is p+ 1:
6For the AR(3) model, the values of the characteristic roots are 1, 0.5 and 0.3. For the AR(5)

model, they are 1, 0.5, 0.4, 0.3 and 0.2.
7We also performed some experiments with the value 0.5 used for the o¤-diagonal elements. These

did not bring any noticeable changes in the optimal block sizes.
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Step 4: Regress the natural logarithm of the median block size from Step
3 on 1, AR order, N and ln(n) to estimate parameters �0; �1; �2 and �:

Steps 1-3 provide median block sizes (out of 1,000 iterations) that produce sub-
sample critical values closest to the corresponding �nite sample critical values of the
unit root tests. The calibration rule obtained from the above algorithm is reported
in Table 1. Table 1 shows that the optimal block sizes are increasing functions of n.
E¤ects of M and p di¤er across the unit root tests. But p does not a¤ect the optimal
block sizes much as the magnitudes of the numbers for �1 in Table 1 show. Table 1
indicates, for example, that the optimal block size of the non-centered subsampling
for the LLC test at the 5% level is the integer nearest to

exp(0:5462 + 0:1441� (p+ 1)� 0:01814�M)� n0:5469: (34)

Table I: Simulation-Based Calibration Rules for Subsampling Panel Unit Root Tests
With an Intercept
(1) The LLC test

Signi�cance level �0 �1 �2 �

Non-centered 5% 0.5462 0.1441 -0.01814 0.5469
10% 0.08549 0.1370 -0.01632 0.6490

Centered 5% -0.4187 0.2211 -0.02256 0.5261
10% 0.01289 0.2260 -0.02267 0.4053

(2) The IPS test
Signi�cance level �0 �1 �2 �

Non-centered 5% 0.2656 -0.01091 -0.02577 0.6391
10% 1.302 -0.06591 -0.03439 0.4456

Centered 5% 0.6402 0.1253 -0.01850 0.3173
10% 0.8806 0.1232 -0.01573 0.2285

(3) The ZNn test
Signi�cance level �0 �1 �2 �

Non-centered 5% 0.03522 -0.02201 0.01485 0.8185
10% 0.1640 -0.01685 0.01098 0.8232

Centered 5% -0.5293 -0.02970 0.003535 0.8607
10% -0.6189 -0.02995 0.002260 0.8898

We follow the same steps as for Table 1 using model (18) with a linear time trend
term added. The coe¢ cient values for the intercept and linear time trend terms were
set at zero for all i: The results for the optimal choice of block sizes are reported in
the following table. Again, the optimal block sizes are increasing functions of n; and
the e¤ects of M and p di¤er across the unit root tests.

Table II: Simulation-Based Calibration Rules for Subsampling Panel Unit Root
Tests With an Intercept and a Linear Time Trend

(1) The LLC test
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Signi�cance level �0 �1 �2 �

Non-centered 5% 0.6321 0.07859 -0.004126 0.6059
10% 1.121 0.06738 -0.007120 0.5238

Centered 5% -0.1063 0.1679 -0.01377 0.5304
10% -0.3636 0.1660 -0.01507 0.5651

(2) The IPS test
Signi�cance level �0 �1 �2 �

Non-centered 5% 1.521 -0.08973 -0.03099 0.4681
10% 2.838 -0.1451 -0.03660 0.1919

Centered 5% 0.8209 0.1012 -0.01641 0.3002
10% 0.9355 0.1084 -0.01460 0.2388

(3) The ZNn test
Signi�cance level �0 �1 �2 �

Non-centered 5% 0.006859 -0.04031 0.009892 0.8350
10% -0.1006 -0.03730 0.008551 0.8854

Centered 5% -0.4720 -0.03896 -0.003550 0.7690
10% -0.5714 -0.04727 -0.003045 0.7944

4.2 Empirical size and power

This subsubsection studies empirical size and power of the panel unit root tests using
subsampling critical values. Data were generated using model (18). A linear time
trend term was added to the model for the unit root tests for the null of a unit
root with drift. The coe¢ cient values for the intercept and linear time trend terms
were set at zero for all i: Other aspects of the data generating scheme are pi = 0; 2;

M = 5; 30; 50; n = 100; 200 and � =

266664
1 ! � � � !

! 1
...

...
. . . !

! � � � ! 1

377775 : For the AR(1) model,
we used the data generating scheme (1� �L)yit = uit where L denotes the usual lag
operator. For the AR(3) model, we used (1��L)(1�0:5L)(1�0:3L)yit = uit: The null
of a unit root corresponds to � = 1. For the alternative of stationarity, � = 0:97 and
� = 0:95 were considered. Random numbers were generated by [u1t; :::; uNt]0 � iid
N(0;�) for t = 1; :::; n + 30 and the last n vectors were used for data generation.
Empirical size was calculated using ! = 0:3 and ! = 0:6: Empirical power used
! = 0:3 only. Note that the data generating scheme for the empirical size and power
is chosen to be di¤erent from that for the calibration rule except that M = 5 and
! = 0:3 are used. The purpose is to check the validity of the calibration rule for
di¤erent data generating processes. The numbers of iterations are 5,000 for empirical
size and 2,000 for empirical power. The nominal size used was 5%.

Empirical size of the panel unit root tests using subsample critical values under
the calibration rule is reported in Table III, and empirical power in Table IV. Results
in the Table III can be summarized as follows.
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� The LLC test using critical values from the non-centered subsampling keep
empirical size reasonably well both in the cases ! = 0:3 and ! = 0:6: Di¤erences
between the two cases are minimal.

� The IPS and ZNn tests using critical values from the non-centered subsampling
keep empirical size reasonably well both in the cases ! = 0:3 and ! = 0:6 unless
M = 50: Again,the two cases ! = 0:3 and ! = 0:6 do not show any noticeable
di¤erences.

� Excluding the caseM = 50; the three tests show similar size performance when
critical values from the non-centered subsamplings are used. In fact, the mean
empirical sizes of the LLC, IPS and ZNn tests excluding the case M = 50 are
0.039, 0.040 and 0.041, respectively, which are reasonably close to the nominal
size 0.05.

� The centered subsamplings tend to bring size distortions for all the tests, though
these are mild for the LLC test. In particular, the ZNn test using the centered
subsampling tend to overreject.

� In empirical practice, when M is not large relative to n; all the tests with
the non-centered subsamplings may be used. When M is large relative to n;
the LLC test with the non-centered subsampling is recommended. Using the
centered subsampling for the ZNn test is not recommended in any case.

Results in Table IV are summarized as follows.

� All the tests show signi�cantly improved empirical power when the centered
subsamplings are used. But note that the centered subsamplings bring size
distortions especially for the ZNn test as we have seen in Table III.

� Comparing the power of the tests using non-centered subsamplings, the LLC
and ZNn tests tend to be more powerful than the IPS test.

� Empirical power improves as the sample sizes increase, though there are a few
exceptions.

� In practice, if keeping the nominal size is utmost important, it is appropriate to
use the LLC and ZNn tests with the non-centered subsamplings because these
tests are more powerful than the IPS test and keep the nominal size well. But
if risking a slight degree of size distortion is allowed, using the LLC test with
the centered subsampling appears to be a proper choice because this test keeps
the nominal size relatively well and is reasonably powerful.

5 Applications to the PPP hypothesis

To be written.
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Table III: Empirical Size
Notes: 1. For the AR(1) model, the data generating scheme (1� �L)yit = uit was used: For

the AR(3) model, we used (1� �L)(1� 0:5L)(1� 0:3L)yit = uit:
2. Random numbers were generated by [u1t; :::; uNt]

0 � iid N(0;�) for t = 1; :::; n + 30
and the last n vectors were used for data generation.

3. The o¤-diagonal elements of � are all !; and the diagonal elements are ones.
4. The number of iterations is 5,000.

(1) ! = 0:3
AR order n N Non-centered (5%) Centered (5%)

LLC IPS Z LLC IPS Z

100 5 0.033 0.038 0.019 0.069 0.084 0.105
30 0.040 0.027 0.018 0.060 0.034 0.116
50 0.035 0.009 0.093 0.028 0.000 0.171

p = 1 200 5 0.044 0.042 0.029 0.063 0.060 0.110
30 0.042 0.034 0.028 0.055 0.030 0.123

Demeaned 50 0.043 0.027 0.056 0.042 0.003 0.165
100 5 0.037 0.033 0.017 0.058 0.068 0.099

30 0.022 0.044 0.011 0.061 0.019 0.112
50 0.026 0.007 0.078 0.053 0.000 0.147

p = 3 200 5 0.038 0.051 0.025 0.053 0.066 0.104
30 0.027 0.055 0.030 0.034 0.058 0.120
50 0.022 0.043 0.068 0.036 0.000 0.151

100 5 0.049 0.054 0.040 0.102 0.112 0.120
30 0.033 0.033 0.030 0.066 0.060 0.106
50 0.032 0.005 0.066 0.022 0.000 0.077

p = 1 200 5 0.057 0.053 0.046 0.091 0.074 0.105
Demeaned 30 0.046 0.038 0.052 0.054 0.038 0.080
and 50 0.037 0.015 0.075 0.017 0.001 0.048

Detrended 100 5 0.040 0.037 0.035 0.066 0.073 0.101
30 0.031 0.053 0.026 0.043 0.026 0.103
50 0.025 0.000 0.035 0.019 0.000 0.078

p = 3 200 5 0.052 0.051 0.048 0.078 0.060 0.098
30 0.038 0.057 0.042 0.042 0.077 0.072
50 0.033 0.027 0.054 0.019 0.000 0.040
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(2) ! = 0:6
AR order n N Non-centered (5%) Centered (5%)

LLC IPS Z LLC IPS Z

100 5 0.027 0.032 0.023 0.055 0.069 0.116
30 0.040 0.023 0.053 0.033 0.024 0.152
50 0.023 0.008 0.141 0.007 0.000 0.204

p = 1 200 5 0.051 0.049 0.033 0.060 0.054 0.117
30 0.039 0.037 0.058 0.036 0.022 0.149

Demeaned 50 0.031 0.022 0.010 0.017 0.003 0.193
100 5 0.029 0.031 0.018 0.045 0.054 0.103

30 0.017 0.020 0.022 0.018 0.011 0.129
50 0.017 0.004 0.092 0.007 0.000 0.172

p = 3 200 5 0.034 0.041 0.034 0.045 0.050 0.115
30 0.024 0.030 0.059 0.016 0.021 0.148
50 0.014 0.015 0.092 0.006 0.000 0.168

100 5 0.056 0.053 0.054 0.104 0.090 0.113
30 0.036 0.028 0.077 0.044 0.032 0.101
50 0.028 0.006 0.125 0.011 0.000 0.083

p = 1 200 5 0.053 0.053 0.062 0.071 0.065 0.106
Demeaned 30 0.044 0.031 0.094 0.036 0.019 0.090
and 50 0.040 0.012 0.141 0.012 0.002 0.063

Detrended 100 5 0.041 0.036 0.040 0.058 0.059 0.091
30 0.027 0.025 0.059 0.024 0.012 0.102
50 0.021 0.000 0.062 0.005 0.000 0.087

p = 3 200 5 0.051 0.051 0.059 0.068 0.049 0.105
30 0.037 0.027 0.071 0.020 0.023 0.082
50 0.033 0.006 0.097 0.007 0.000 0.062
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Table IV: Empirical Power
Notes for Table III apply here too except that the number of iterations is 2,000 and that only

! = 0:3 was used.
(1) � = 0:97

AR order n N Non-centered (5%) Centered (5%)
LLC IPS Z LLC IPS Z

100 5 0.137 0.098 0.157 0.287 0.254 0.512
30 0.439 0.309 0.287 0.595 0.433 0.863
50 0.502 0.218 0.275 0.522 0.006 0.904

p = 1 200 5 0.473 0.441 0.417 0.668 0.587 0.810
30 0.920 0.864 0.657 0.970 0.892 0.982

Demeaned 50 0.959 0.893 0.493 0.971 0.712 0.989
100 5 0.101 0.081 0.129 0.182 0.186 0.465

30 0.188 0.296 0.239 0.372 0.183 0.839
50 0.251 0.083 0.258 0.407 0.000 0.892

p = 3 200 5 0.354 0.352 0.376 0.537 0.508 0.799
30 0.810 0.847 0.678 0.879 0.872 0.979
50 0.852 0.871 0.558 0.908 0.043 0.983

100 5 0.086 0.087 0.080 0.175 0.187 0.235
30 0.125 0.103 0.127 0.248 0.185 0.374
50 0.115 0.026 0.199 0.096 0.000 0.343

p = 1 200 5 0.232 0.209 0.279 0.371 0.303 0.519
Demeaned 30 0.526 0.446 0.522 0.656 0.464 0.791
and 50 0.609 0.413 0.569 0.554 0.155 0.793

Detrended 100 5 0.060 0.060 0.064 0.109 0.121 0.175
30 0.092 0.125 0.112 0.138 0.067 0.324
50 0.084 0.000 0.111 0.074 0.000 0.301

p = 3 200 5 0.199 0.180 0.247 0.307 0.217 0.465
30 0.416 0.470 0.470 0.498 0.503 0.722
50 0.467 0.341 0.522 0.414 0.000 0.746
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(2) � = 0:95
AR order n N Non-centered (5%) Centered (5%)

LLC IPS Z LLC IPS Z

100 5 0.284 0.252 0.261 0.536 0.495 0.738
30 0.790 0.662 0.422 0.889 0.770 0.957
50 0.856 0.610 0.325 0.873 0.043 0.978

p = 1 200 5 0.882 0.825 0.604 0.958 0.931 0.933
30 0.999 0.996 0.760 1.00 0.996 0.998

Demeaned 50 1.00 0.997 0.511 1.00 0.985 0.997
100 5 0.184 0.165 0.230 0.357 0.344 0.652

30 0.461 0.556 0.364 0.694 0.419 0.944
50 0.567 0.267 0.308 0.710 0.000 0.963

p = 3 200 5 0.705 0.719 0.549 0.884 0.851 0.926
30 0.986 0.990 0.763 0.995 0.993 0.993
50 0.994 0.991 0.996 0.993 0.411 0.594

100 5 0.166 0.152 0.174 0.312 0.287 0.395
30 0.319 0.276 0.288 0.541 0.406 0.698
50 0.357 0.125 0.383 0.362 0.001 0.699

p = 1 200 5 0.547 0.526 0.535 0.744 0.672 0.844
Demeaned 30 0.915 0.912 0.805 0.962 0.923 0.986
and 50 0.942 0.907 0.784 0.954 0.725 0.983

Detrended 100 5 0.101 0.100 0.137 0.194 0.196 0.319
30 0.196 0.223 0.246 0.292 0.140 0.604
50 0.214 0.001 0.255 0.192 0.000 0.620

p = 3 200 5 0.431 0.419 0.466 0.642 0.497 0.763
30 0.816 0.864 0.770 0.895 0.882 0.955
50 0.836 0.790 0.767 0.848 0.017 0.966

Appendix: Proofs

Functions of a mixing process with a �xed number of arguments are also mixing.
However, functions of a mixing process with a growing number of arguments are not
necessarily mixing and the laws of large numbers for these have not been available.
The following two lemmas prove the weak and strong laws of large number for the
functions. These will be used to prove Theorems 1 and 2. In the lemmas, we use the
notation kakp = (E jaj

p)1=p :

Lemma A.1 Let Yt = f(Xt; Xt+1; :::; Xt+b) where b is an integer satisfying b =
O(n�) with 0 < � < 1: Suppose for some constants c and d that either

(1a) supt�1 kYtk2+� < c <1 ;
(1b) fXtg is strong mixing with its mixing coe¢ cients �X;m satisfying for � > 0

1X
m=1

m�1�
�=(2+�)
X;m <1
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or
(2a) supt�1 kYtk2 < d <1;
(2b) fXtg is uniform mixing with its mixing coe¢ cients �X;m satisfying

1X
m=1

m�1�
1=2
X;m <1

hold. Let Sn�b =
Pn�b
t=1 (Yt � E(Yt)) : Then, as n!1;

1

n� bSn�b
p�! 0:

Proof. Suppose that fXtg is a strong mixing sequence, and let Gt�1 = � (:::; Yt�1; Yt)
and G1t+m = � (Yt+m; Yt+m�1; :::) where �(�) denotes the smallest �-�eld generated
by the random variables in the parenthesis. Since Yt is measurable on any ���eld
on which Xt; Xt+1; :::; Xt+b are measurable, Gt�1 � Ft+b�1 = �(:::; Xt+b�1; Xt+b) and
G1t+m � F1t+m = �(Xt+m; Xt+m+1; :::): For m > b; these relations give

�Y;m � �X;m�b; (A.1)

where �Y;m is the mixing coe¢ cients for fYtg de�ned by �Y;m = supt �
�
Gt�1;G1t+m

�
:

Letting Cov(Yt; Yt+m) = �t;t+m; we have due to the strong mixing inequality for fYtg
(cf. Davidson, 1994, p.212),

j�t;t+mj � 2(21�1=(2+�) + 1)��=(2+�)Y;m kYtk2+� kYt+mk2+� : (A.2)

Choosing m = 0 in (A.2) gives V ar(Yt) = �2t < B < 1 for all t. Now, consider the
following elementary inequality relations

E

�
1

n� bSn�b
�2

� 1

(n� b)2
n�bX
t=1

�2t +
2

(n� b)2
n�b�1X
m=1

n�b�mX
t=1

j�t;t+mj

� B

n� b +
2

(n� b)2
n�b�1X
m=1

(n� b�m)Bm

=
B

n� b +
2

(n� b)2
bX

m=1

(n� b�m)Bm +
2

(n� b)2
n�b�1X
m=b+1

(n� b�m)Bm

� B

n� b +
2B

(n� b)2
bX

m=1

(n� b�m) + 2

(n� b)

n�b�1X
m=b+1

Bm (A.3)

where Bm = supt j�t;t+mj � B: The second term in the last inequality of (A.3)
is O( 1

n1�� ) because b = O(n�): The third term in the last inequality is equivalent
to n�2b�1

n�b
2

(n�2b�1)
Pn�2b�1
m=1 Bm+b: Thus, if limn!1

Pn�2b�1
m=1 m�1Bm+b < 1; Kro-

necker�s lemma implies that the third term is o(1). But inequalities (A.1), (A.2) and
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the given conditions provide

lim
n!1

n�2b�1X
m=1

m�1Bm+b � 2(21�1=(2+�) + 1)c2 lim
n!1

n�2b�1X
m=1

m�1�
�=(2+�)
X;m <1:

(A.4)

Thus, E
�

1
n�bSn�b

�2
= o(1): The conclusion follows from this using the Chebyshev

inequality.
If fXtg is a uniform mixing sequence, we obtain the conclusion using the uniform

mixing inequality (cf. Davidson, 1994, p.214)

jCov(Yt; Yt+m)j � 2�1=2Y;m kYtk2 kYt+mk2 ;

and proceeding as previously.

The following lemma proves the strong law of large number for functions of a
mixing process with a growing number of arguments. This lemma requires more
stringent moment conditions than for Lemma A.1.

Lemma A.2 Suppose that the same assumptions as in Lemma A.1 hold except that

1X
m=1

�
�=(2+�)
X;m <1 and

1X
m=1

�
1=2
X;m <1 (A.5)

replace the corresponding conditions in Lemma A.1. Then, as n!1;

1

n� bSn�b
a:s:�! 0:

Proof. This lemma will be proven by adopting the Borel-Cantelli lemma using
subsequences (see, for example, Chung, 1974). For simplicity, let n � b = l: Using
condition (A.5) for inequality (A.3), we obtain E

�
1
l Sl
�2
= O( 1

l1�� ) as in the proof of
Lemma A.1. Thus, using the notation

P
l2 al2 = a1+a4+a9+ ::: and the Chebyshev

inequality, we have for " > 0X
l2

P
�
jSl2 j > l2"

�
�
X
l2

E(
Sl2

l2
)2
1

"2
<1;

which implies P
�
jSl2 j > l2" i.o.

�
= 0 by the Borel-Cantelli lemma. Thus,

Sl2

l2
a:s:�! 0 as n!1: (A.6)
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Now, we show that Sk is essentially no di¤erent from Sl2 when l
2 � k < (l+1)2: Put

Dl = maxl2�k<(l+1)2 jSk � Sl2 j : Because

E(Sk � Sl2)2 = E

0@ kX
t=l2+1

(Yt � E(Yt))

1A2

=

kX
t=l2+1

�2t + 2

k�1X
m=l2+1

kX
j=m+1

j�m;j j

� (k � l2)B + 2(k � l2 � 1)
1X
i=1

Bi

and because
P1
i=1Bi < 1 due to inequalities (A.1), (A.2) and (A.4) without m�1;

it follows that

E(D2l ) �
(l+1)2�1X
k=l2+1

E(Sk�Sl2)2 �
(l+1)2�1X
k=l2+1

 
(k � l2)B + 2(k � l2 � 1)

1X
i=1

Bi

!
= O(l2):

The Chebyshev inequality gives for " > 0

P
�
Dl > l

2"
�
� E(D2l )

l4"2
= O(

1

l2
):

Using the Borel-Cantelli lemma as above, we obtain

Dl
l2

a:s:�! 0 as n!1: (A.7)

Since jSkj
k � jSl2 j+Dl

l2
for l2 � k < (l + 1)2; the conclusion follows from (A.6) and

(A.7).

Proof of Theorem 1: (i) Using Assumption 2, we obtain an inequality

���L�Nnb(x)� J�N (x)��� �
����� 1

n� b+ 1

n�b+1X
s=1

(1f�Nbs � xg � E1f�Nb1 � xg)
����� (A.8)

+
���E1f�Nb1 � xg � J�N (x)���

= ANnb(x) +BNb(x); say:

We may write 1f�Nbs � xg = f(ws � �wbs;ws+1 � �wbs; :::;ws+b�1 � �wbs): Because
of the time series demeaning, 1f�Nbs � xg is not a¤ected by the initial values of
the I(1) regressors and, therefore, is a function of only rs; :::; rs+b�1. The indicator
function and rt satisfy the conditions of Lemma A.2; and hence ANnb(x) in this in-
equality converges to zero almost surely. This, owing to the Glivenko-Cantelli lemma
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(see Davidson, 1994, p.332)8, leads to supxANnb(x) ! 0: Because of the relation
E1f�Nb1 � xg = J�Nb(x) and Assumption 1, BNb(x) in inequality (A.8) also con-
verges to zero uniformly in x (cf. Lemma 3 of Chow and Teicher, 1988, p.265). Thus,
the proof for L�Nnb is complete. The conclusions for L

�
Nnb and L

'
Nnb can be proven in

the same manner. �
(ii) Since JaN (�) is continuous at caNnb(1 � �); this can be shown using the same

method as in Beran (1987, p.14). �

Proof of Theorem 2: (i) Write for all i

(�̂ibs � �̂in)0R0�ibsR(�̂ibs � �̂in)
= (R�̂ibs � r)0�ibs(R�̂ibs � r)� 2(R�̂in � r)0�ibs(R�̂ibs � r) + (R�̂in � r)0�ibs(R�̂in � r)
= (R�̂ibs � r)0�ibs(R�̂ibs � r) + �i;nbs; say. (A.9)

The mean-value expansion of ��Nbs gives

��Nbs = �Nbs +
NX
�=1

@g

@xi jxi=�i;nbs
�i;nbs; (A.10)

where �Nbs is de�ned in (8) and �i;nbs lies on the line joining �i;nbs and 0 and is op(1).
Using (A.10), write

L��Nnb(x) =
1

n� b+ 1

n�b+1X
s=1

1f��Nbs � xg

=
1

n� b+ 1

n�b+1X
s=1

1f�Nbs � x� %nbsg;

where %nbs =
PN
�=1

@g
@xi jxi=�i;nbs

�i;nbs: As in the proof of Theorem 1 of Romano and

Wolf (2001), we have an inequality for " > 0

L�Nnb(x� ")1fEng � L
��
Nnb(x)1fEng � L

�
Nnb(x+ "); (A.11)

where 1fEng is the indicator of the event fj %nbs j� "g: Because %nbs
p�! 0 for all s

due to Assumptions 4 and 5, the event En holds with probability approaching one as
n goes to in�nity. Thus, (A.11) implies that the relation

L�Nnb(x� ") � L
��
Nnb(x) � L

�
Nnb(x+ ") (A.12)

holds with probability tending to one. Using Lemma A.1 and the same method as
in the proof of Theorem 1, we obtain L�Nnb(x)

p�! J�N (x): Because x is a continuity

8Davidson states the Glivenko-Cantelli lemma for iid random variables. But it is easily veri�ed
that it can be used for dependent random variables as long as the strong law of large numbers for
them holds.

28



point, it also follows that L�Nnb(x � ")
p�! J�N (x): This and (A.12) imply the result

for L��Nnb: The conclusion for L
��
Nnb follows in the same way. �

(ii) If J�N (x) is continuous, the uniform convergence follows from the pointwise
convergence of part (i). See Lemma 3 of Chow and Teicher (1988, p.265). The
conclusion for L��Nnb follows in the same way. �

(iii) The proof of this result is identical with that of part (ii) of Theorem 1. �

Proof of Theorem 3: (i) Suppose without loss of generality that the null hypothesis
(3) is rejected when �Nn is less than a critical value from its limiting distribution.
Since �Nn=n

��
p�! �N ; c

�
Nnb(1� �)=b�� = Op(1) and

b
n ! 0 as n!1;

P [�Nn < c�Nnb(1� �)]

= P [�Nn=n
�� < c�Nnb(1� �)=b

�� �
�
b

n

���
]

= E1

�
�Nn=n

�� < c�Nnb(1� �)=b
�� �

�
b

n

����
! E1 f�N < 0g = P [�N < 0] = 1

by the dominated convergence theorem. The same relation holds for �Nn and 'Nn:
These prove the consistency of the tests using critical values from the non-centered
subsamplings. �

(ii) Using relation (A.9) with r replaced by r�, we �nd that ��Nbs and �
�
Nbs are

Op(1) under the alternative hypothesis. Thus, c�aNnb(1 � �) = Op(1); and it follows
that

P [aNn < c�aNnb(1� �)]

= P [aNn=n
�a < c�Nnb(1� �)�

�
1

n

��a
]

= E1

�
�Nn=n

�a < c�Nnb(1� �)�
�
1

n

��a�
! E1 f�N < 0g = 1

as desired. �

Proof of Corollary 4: (i) Assumption 1 holds due to relation (22). Let [�y1t; :::;�yNt]
0 =

yt Then, tNn is a function of y2; :::; yn; and tNnbs is a function of ys�p; :::; ys+b�1
(s � p + 2): Since yt is strictly stationary under the null hypothesis, tNbs has the
same distribution for each �xed N and b: This implies Assumption 2. Under As-
sumption 8, Assumptions 3 and 6 are obviously satis�ed. Since �̂pNn = Op(n

�1);
�̂pNbs = Op(b

�1) and 1q
�̂2Nbs(

PN
i=1 y

0
i;�1;bsMQibs

yi;�1;bs)
�1 = Op(b); Assumption 4 holds.

Assumption 5 is obviously satis�ed. Thus, the results for �Nbs and ��Nbs follow. �
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(ii) Assumption 7 holds because

tNn=
p
n =

�̂pNn � ��r
�̂2Nn

�PN
i=1 y

0
i;�1;nMQinyi;�1;n

��1 =pn+ ��r
�̂2Nn

�PN
i=1 y

0
i;�1;nMQinyi;�1;n=n

��1
p�! p lim

n!1
��r

�̂2Nn

�PN
i=1 y

0
i;�1;nMQinyi;�1;n=n

��1 (A.13)

as n ! 1 with �� < 0 and because the probability limit in relation (A.13) is
negative almost surely. Since �̂pNn � �� = Op(1=

p
n); �̂pNbs � �� = Op(1=

p
b) and

1q
�̂2Nbs(

PN
i=1 y

0
i;�1;bsMQibs

yi;�1;bs)
�1 = Op(

p
b); part (ii) of Assumption 4 holds with

r� = ��and other relevant changes. �

Proof of Corollary 5: (i) These can be shown using the same arguments as in
the proof of part (i) of Corollary 4. The only notable di¤erences are �̂in = Op(n

�1);
�̂ibs = Op(b

�1) and 1r
�̂2ibs

�
y0i;�1;bsMQi;bs

yi;�1;bs
��1 = Op(b); which imply Assumption 4.

�
(ii) Suppose without loss of generality that the null is violated for i = 1; 2; :::; N1:

Then,

�tNn=
p
n =

1

N

N1X
i=1

tin=
p
n+ op(1);

and the probability limit of 1N
PN1
i=1 tin(pi; 'i)=

p
n is negative almost surely as in the

proof of Corollary 4. Thus, Assumption 7 holds. Part (i) of Assumption 4 also holds
as in the proof of Corollary 4. �

Proof of Corollary 6: (i) Assumptions 1, 2, 3, 4 and 6 hold as in the proof of part
(i) of Corollary 4. To show that Assumption 5 is satis�ed, write

@g

@xi jxi=fin
=

1p
N

 
@�

@yi jyi=F (fin)

!�1
@F

@xi jxi=fin
;

where fin = op(1): Because 0 < @�
@yi jyi=F (fin)

< 1 almost surely and @F
@xi jxi=fin

< 1

almost surely, we have @g
@dxi jxi=fin

= Op(1) as required. The exact formula of the

function F (�) is unknown, but it is continuous. Thus, it can be expressed as the sum
of absolutely continuous and singular parts. The derivative of the former part exists
and is �nite, and that of the latter also exists and equals zero. Using the notation
@F
@xi

is, therefore, justi�able. �
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(ii) A mean value expansion of ��1((F (dfg�in)) gives

��1((F (dfg�in)) =
p
n

= ��1((F (0)) =
p
n+

@��1

@yi jyi=F (vin)

@F

@xi jxi=vin
dfg�in=

p
n

=

 
@�

@yi jyi=F (vin)

!�1
@F

@xi jxi=vin
dfg�in=

p
n+ o(1); (A.14)

where vin lies on the line connecting 0 and dfg
�
in: Now suppose without loss of gen-

erality that the null is violated for i = 1; 2; :::; N1: Then, using relation (A.14), we
obtain

ZNn=
p
n =

1p
N

N1X
i=1

��1((F (dfg�in)) =
p
n+ op(1)

=
1p
N

N1X
i=1

 
@�

@yi jyi=F (vin)

!�1
@F

@xi jxi=vin
dfg�in=

p
n+ op(1):

Because
�
@�
@yi jyi=F (vin)

��1
> 0 and @F

@xi jxi=vin
> 0 with probability one and because

the probability limit of dfg�in=
p
n is a negative constant, Assumption 7 holds. Part (i)

of Assumption 4 also holds as in the proof of Corollary 4 because dfg�in is consistent
against the alternative of stationarity in the form of �i < 0. �

Proof of Corollary 7: (i) Assumption 1 holds due to relation (31). Assumption 9
implies Assumptions 2 and 3. �

(ii) Assumption 7 holds due to Assumption 10. �
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