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Summary

We study an economy where there are two types of assets. Consumers’
promises are the primitive defaultable assets secured by collateral chosen by
the consumers themselves. The purchase of these personalized assets by fi-
nancial intermediaries is financed by selling back derivatives to consumers.
We show that nonarbitrage prices of primitive assets are strict submartin-
gales, whereas nonarbitrage prices of derivatives are supermartingales. Next
we establish existence of equilibrium, without imposing bounds on short sales.
The nonconvexity of the budget set is overcome by considering a continuum
of agents.

Keywords: Endogenous Collateral; Non Arbitrage.
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1 Introduction

1.1 Motivation

Housing mortgages stand out as the most clear and most common case
of collateralized loans. In the past, these mortgages were entirely financed
by commercial banks who had to face a serious adverse selection problem in
addition of the risks associated with concentrating investments in the hous-
ing sector. More recently, banks have managed to pass these risks to other
investors. The collateralized mortgage obligations (C.M.O.) developped in
the eighties and nineties are an example of a mechanism of spreading risks
of investing in the housing market. These obligations are derivatives backed
by a big pool of mortgages which was split into different contingent flows.

Collateralized loans were first addressed in a general equilibrium setting
by Dubey, Geanakoplos and Zame [9]. Collateral was modelled by these au-
thors as a bundle of durable goods, purchased by a borrower at the time
assets are sold and surrendered to the creditor in case of default. Clearly, in
the absence of other default penalties, in each state of nature, a debtor will
honor this commitments only when the debt does not exceed the value of the
collateral. Similarly, each creditor should expect to receive the minimum be-
tween his claim and the value of the collateral. This pionnering work studied
a two-period incomplete markets model with default and exogenous collat-
eral coefficients and discussed also the endogenization of these coefficients,
allowing for some coefficients to prevail in equilibrium, out of a possible finite
set of strictly positive values, but for a fixed composition in terms of durable
goods. Araujo, Páscoa and Torres-Martinez [5] extended the exogenous col-
lateral model to infinite horizon economies with one-period assets and showed
that Ponzi schemes can be avoided without imposing transversality or debt
constraints.

Araujo, Orrillo and Páscoa [3] studied existence of equilibria in an econ-
omy where borrowers may choose collateral bundles under the restriction
that the value of the collateral, per unit of asset and at the time when it is
constituted, must exceed the asset price by some arbitrarily small amount
exogenously fixed. Under this requirement the loan can only finance up to
some certain fraction of the value of the house. Lenders were assumed not
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to trade directly with individual borrowers, but rather to buy obligations
backed by a weighted average of the collaterals chosen by individual borrow-
ers, with the individual sales serving as weights. Borrowers sell at different
prices depending on the collateral choice, as there is a spread which is a dis-
counted expectation of default given in the future. Hence, borrowers choose
the composition of the collateral in terms of durable goods and the collateral
margin (which is not necessarily equal to the exogenous lower bound as more
collateral reduces the spread).

However, the model suffered from three important drawbacks that we try
to overcome in the current paper. First, short sales were bounded due to
the above exogenous lower bound on the difference between the value of the
collateral and the asset price ( in fact, first period budget feasibility implies
that short sales must be bounded by the upper bound on endowments di-
vided by the exogenously fixed lower bound on the difference between the
value of the collateral and the asset price). It is hard to accept the existence
of an exogenous uniform upper bound on the fraction of the value the house
that can be financed by a loan.

Secondly, the payoffs of the derivative were constructed in a way that im-
plied that in equilibrium, in each state of nature, either all borrowers would
honor their debts or all borrowers would default (even though the collateral
bundle might vary across borrower). In fact, derivative’s payoffs were as-
sumed to be the minimum between the debt and the value of the depreciated
weighted average of all collateral bundles. If we require, as we do in this
paper, that the derivative’s payoff in each state is just the weighted average
of borrowers’ repayments (which may be the full repayment of the debt for
some borrowers or the value of the depreciated personalized collateral for
others), then, in equilibrium, some borrowers may default while others will
pay back their loans.

Third, derivative aggregate purchases were required to match, in units,
aggregate short-sales of primitive assets, but this equality should only be
required in value. That is, each financial intermediary should be financing the
purchase of the consumers’ promises on a certain primitive asset by issuing
the respective derivative, thereby making zero profit at the initial date (and
also at any future state of nature due to the above requirement that the
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derivative’s endogenous payoff should be the weighted average of consumers’
effective repayments).

1.2 Results and Methodology

It is well known that in incomplete markets with real assets equilibrium
might not exist without the presence of a bounded short sales condition
(see Hart [14] for a counter-example and Duffie and Shafer [10] on generic
existence). In a model with exogenous collateral this bounded short sales
condition does not need to be imposed arbitrarily but it follows from the
fact that collateral must be constituted at the exogenously given coefficients.
An important question is whether existence of equilibria may dispense any
bounded short sales conditions in a model with endogenous collateral. The
fact that the borrower holds and consumes the collateral discourages him
from choosing the collateral so low that default would become a sure event.
To be more precise, the borrower should always provide enough collateral
so that its depreciated value matches the promised payment in at least one
state. Otherwise, the borrower’s utility could be increased by raising the
collateral without changing net returns and by making the reduced default
spread cancel out the increased collateral costs. If equilibrium levels of the
collateral coefficients are bounded away from zero, then equilibrium aggre-
gate short sales are bounded.

Allowing borrowers to choose their collateral bundles introduces a non-
convexity in the budget set, which is overcome by considering a continuum
of agents. This large agents set is actually a nice set up both for the huge
pooling of individual mortgages and for the spreading of risks across many
investors. However, for a continuum of agents, having established that ag-
gregate short sales are endogenously bounded does not imply that the short
sales allocation is uniformly bounded. But if it were not, short sale prices,
net of collateral costs, would not be uniformly bounded away from zero and
all agents would respond by choosing low margins and arbitrarily large short
sales, contradicting the already established bounded aggregated short sales.
Then, short sales allocations are endogenously uniformly bounded, as de-
sired to prove existence using a multi-dimensional version of Fatou’s lemma
applied to a sequence of equilibria of truncated auxiliary economies whose
bundles and portfolios are bounded.
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1.3 Arbitrage and Pricing

The existence argument uses a pricing formula suggested by a study of
the nonarbitrage conditions for asset pricing in the context of a model where
purchases of the collateralized derivatives and sales of individual assets yield
different returns. This nonarbitrage analysis was absent in the earlier work
by Araujo, Orrillo and Páscoa [3], where budget feasible short sales were
bounded.

Our analysis of the nonarbitrage conditions is close to the study made by
Jouini and Kallal [16] in the presence of short sales constraints. In fact, the
individual promises of homeowners are assets that can not be bought by these
agents and the collateralized derivatives bought by investors is an asset that
can not be short sold by these agents. These sign constraints determine that
purchase prices of the the collateralized derivatives follow supermartingales,
whereas sale prices of homeowners promises follow submartingales. Actually,
the latter must be strict submartingale when collateral is consumed by bor-
rowers, since short sales generate utility returns also, and in this respect, our
analysis differs from Jouini and Kallal [16].

The nonarbitrage conditions identify several components in the price of
a consumer’s promise: a base price common to all consumers, a spread that
depends on the future default, a positive term reflecting the difference be-
tween current and future collateral values, a nonnegative tail due to the sign
constraints and a negative tail on the sale price due to utility returns from
consumption of the collateral. We also show that the price of the minimal
cost superhedging strategy is the supremum over all discounted expectations
of the claim, with respect to every underlying probability measure (and sim-
ilarly, the price of a maximal revenue subhedging strategy is instead the in-
fimum over those expectations, in the spirit of the Cvitanic and Karatzas [7]
and El Karoui and Quenez [12] approaches to pricing in incomplete markets).

In equilibrium agents will face price functions, as in Araujo, Orrillo and
Páscoa [3], rather than price vectors. More precisely, we propose price for-
mulas both for the primitive assets and the derivatives which are suggested
by our arbitrage analysis. The state prices entering in these equilibrium price
functions and the negative tail of the primitive asset prices are both taken
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as given and common to all agents. That is, equilibrium prices of deriva-
tive or primitive assets are given by super or sub martingales, respectively,
with respect to a common measure, but can also be written as super or sub
martingales for consumer specific measures implied by the personal choice of
collateral and effective returns (namely using the Kuhn-Tucker multipliers as
deflators).

1.4 Relation to Other Equilibrium Concepts

We close the paper with a discussion of the efficiency properties of equi-
libria. We show that an equilibrium allocation is undominated by alloca-
tions that are feasible and provide income across states through the same
given equilibrium spot prices, although may be financed in the first period
in any other way (possibly through transfers across individuals). This re-
sults extends usual constrained efficiency results to the case of default and
endogenous collateral. An implication is that the no-default equilibrium, the
exogenous collateral equilibrium or even the endogenous collateral equilib-
rium with bounded short sales are concepts imposing further restrictions on
the welfare problem and should be expected to be dominated by the proposed
equilibrium concept.

In this paper we simplify the mixing of individual promises by assuming
that each collateralized derivative mixes the promises of all sellers of a certain
primitive asset. Since the collateral choice personalizes the asset the result-
ing derivative represents already a significative mixing across assets with
rather different default profiles. Further work should address the composi-
tion of derivatives from different primitive assets and certain chosen subsets
of debtors. We do not deal also with the case of default penalties entering the
utility function and the resulting adverse selection problems. The penalty
model was extensively studied by Dubey, Geanakoplos and Shubik [8], ex-
tended to a continuum of states and infinite horizon by Araujo, Monteiro and
Páscoa [1, 2] and combined with the collateral model by Dubey, Geanakoplos
and Zame [9]. Our default model differs also from the bankruptcy models
where agents do not honor their debts only when they have no means to
pay them, or more precisely, when the entire financial debt exceeds the value
of the endowments that creditors are entitled to confiscate (see Araujo and
Páscoa [4]).
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The paper is organized as follows. Section 2 presents the basic model
of default and collateral choice. Sections 3 and 4 address arbitrage and
pricing. Section 5 presents the definition of equilibrium and the existence
result. Section 6 contains the existence proof and Section 7 discusses the
efficiency properties. A mathematical appendix contains some results used
in the existence proof.

2 Model of Default and Collateral Choice

We consider an economy with two periods and a finite number S of states
of nature in the second period. There are L physical durable commodities
traded in the market and J real assets that are traded in the initial period
and yield returns in the second period. These returns are represented by a
random variable R : S 7→ IRJL

+ such that the returns from each asset are not
trivially zero, that is , Rsj > neq0 ∀s, j. In this economy each sale of asset j
(promise) must be backed by collateral. This collateral will consist of goods
that depreciate at some rate Ys depending on the state of nature s ∈ S that
occurs in the second period.

Each seller of assets chooses also the collateral coefficient for the different
assets that he sells and we suppose that the mean collateral coefficients can
be known by consumers. For each asset j denote by Mj ∈ IRL

+ the choice
of collateral coefficients. The mean collateral coefficients will be denoted by
C ∈ IRJL

+ . Each agent in the economy is a small investor whose portfolio is
(θ, ϕ) ∈ IRJ

+× IRJ
+ , where the first and second components are the purchase

of the derivative and sale of the primitive assets, respectively. The collateral
bundle choosen by borrower will be Mϕ and his whole first period consump-
tion bundle is xo + Mϕ.

Denote by xs ∈ IRl
+ the consumption vector in state of nature s. Agent´s

endowments are denoted by ω ∈ IR
(S+1)L
++ . Let π1 and π2 be the vectors

of purchase prices of the derivatives and of sale prices of primitive assets,
respectively. Then, the budget constraints of each agent will be the following

poxo + poMϕ + π1θ ≤ poωo + π2ϕ (1)
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psxs +
J∑

j=1

Dsjϕj ≤ psωs +
J∑

j=1

Nsjθj +
J∑

j=1

psYsMjϕj + psYsxo, ∀s ∈ S (2)

Here Dsj ≡ min{psR
j
s, psYsMj} and Nsj are what he will paid and received

with the sale and purchase of one unit of the primitive asset j and one unit
of its derivative, respectively. Now we will represent equations (1) and (2) in
matrix form:

p 2(x̃− ω) ≤ A(xo, θ, ϕ) (3)

where x̃ = (0, x1, . . . , xS), ω = (ωo, ω1, . . . , ωS), p 2(x̃ − ω) is the column
vector whose components are ps · (x̃s − ωs) for s = 0, 1, . . . , S and

A =




−po −π1 π2 − poM
p1Y1 N1 p1Y1M −D1

p2Y2 N2 p2Y2M −D2

· · ·
· · ·
pSYS NS pSYSM −DS




3 Arbitrage and Collateral

Now we will define arbitrage in our context where both sales of collateral-
ized assets and additional purchases of durable goods have utility returns that
have to be taken into account together with pecuniary returns. Moreover,
agents’ preferences are assumed to be monotonic.

Definition 1 We say that there exist arbitrage opportunities if
∃ Mj > 0, j = 1, .., J, θ ≥ 0 and (xo, ϕ) such that

T (xo, θ, ϕ) > 0 (4)

where

T =




A
I 0 0
0 0 I




Notice that even when there are no pecuniary net returns and zero net cost
the agent may still gain from the utility returns of consuming durable goods,
serving or not as collateral, that is, through a collateralized short sale (ϕj >
0) or a non financed purchase (xo > 0).
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Theorem 1 There are no arbitrage opportunities if and only if there exists
β ∈ IRS

++ such that for each j = 1, 2, .., J

πj
1 ≥

S∑
s=1

βspsN
j
s (5)

πj
2 <

S∑
s=1

βspsR
j
s −

S∑
s=1

βs(psR
j
s − psYsMj)

+ + (poMj −
S∑

s=1

βspsYsMj) (6)

and

po >

S∑
s=1

βspsYs (7)

Proof:
Let B = {T (xo, θ, ϕ) : θ ≥ 0} and B̃ = {T (xo, θ, ϕ) : θ = 0}, which are a
convex cone and a linear subspace, respectively. Let K = IR+× IRS

+× IRL+J
+ .

Absence arbitrage is equivalent to K ∩B = {0}. By the theorem of sep-
aration of convex cones, we have that K ∩ B = {0} if and only if ∃f 6= 0
linear: f(z) < f(y), ∀z ∈ B, y ∈ K\{0}.

Now f(z) = 0, ∀z ∈ B̃, since B̃ is a linear subspace. Then f(y) >
0, ∀y ∈ K\{0} and it follows that f(z) ≤ 0 ∀z ∈ B. Hence ∃ (α̃, β̃, µ̃, η̃) >>
0 : f(v, c, xo, ϕ) = α̃ + β̃c + µ̃xo + η̃ϕ ≤ 0, ∀(v, c, xo, ϕ) ∈ B. Take
β = β̃/α, µ = µ̃/α and η = η̃/α, and we have (5) when (xo, ϕ) = 0. To
obtain (6) and (7) let θ = 0 and recall that f(z) = 0, ∀z ∈ B̃, implying

poMj − πj
2 =

∑
s

βs(psYsMj −Dsj) + ηj

and
po =

∑
s

βspsYs + µ. ¥

Comment

Durable goods prices (p0) and net prices (p0M
j−πj

2) of the joint operation of
constituting collateral and short-selling a primitive asset are both superlinear
functions of pecuniary returns, by the Theorem above, due to the additional
utility returns from consumption (of x0 and of M jϕj, respectively).
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Corollary 1

poMj − πj
2 > 0 when Mj 6= 0, ∀j

Since short-sales lead to nonnegative net yields in the second period (once
we add the depreciated collateral to returns) and also to consumption of the
collateral bundle in the first period, nonarbitrage requires the net coefficient
of short-sales in the first period budget constraint to be positive.

If we had considered the collateral as being exogenous, we would have
the following result:

Corollary 2 There are no arbitrage opportunities if and only if there exists
β ∈ IR

(S)
++ such that

S∑
s=1

βsDsj ≤ πj <

S∑
s=1

βsDsj + (po −
S∑

s=1

βspsYs)Cj

, which implies

(po −
S∑

s=1

βspsYs)Cj > 0, and poCj − πj > 0, ∀j ∈ J.

For more details on the implications of the absence of arbitrage in the
exogenous collateral model see Fajardo [13].

In contrast with the fundamental theorem of asset pricing in frictionless
financial markets, we can obtain an alternative result for the default model
with collateral where discounted nonarbitrage asset prices are no longer mar-
tingales with respect to some equivalent probability measure. This result is
presented in the next section.

4 Pricing

4.1 A Pricing Theorem

Let IR be the real line and IR = IR ∪ {−∞, +∞} the extended real line.
Let Ω = {1, 2, .., S}, (Ω,F , P ) be a probability space and X = IRS. We say
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that f : X 7→ IR is a positive linear functional if ∀ x ∈ X+, f(x) > 0, where
X+ = {x ∈ X/P (x ≥ 0) = 1 and P (x > 0) > 0}. The next result follows
in spirit of the result in Jouini and Kallal [16].

Let πj
2 = πj

2 − poMj < 0, ∀j which will be refered to as the net sell price
and let Dsj = Dsj − psYsMj, ∀j and ∀s.

Denote by ι(x) the smallest amount necessary to get at least the payoff
x for sure by trading in the underlying defaultable assets. Then no investor
is willing to pay more than ι(x) for the contingent claim x. The specific
expression for ι is given by

ι(x) = inf
(θ,ϕ)∈Θ

{π1θ − π2ϕ > 0
/

G(θ, ϕ) ≥ x a.s.}

where

G(θ, ϕ) =
J∑

j=1

[Njθ
j −Djϕ

j]

Theorem 2 i) There are no arbitrage opportunities if and only if there
exist probabilities β∗s , s = 1, .., S equivalent to P and a positive γ such
that the normalized (by γ) purchase prices of the derivatives are super-
martingales and the normalized (by γ) net sale prices of the primitive
assets are submartingales under this probability. when the collateral is
consumed by the borrower, the net sale price is a strict submartingale

ii) Let Q∗ be the set of β∗ obtained in (i) and Γ be the set of positive linear
functionals ξ such that ξ|M ≤ ι, where M is a convex cone representing
the set of marketed claims. Then there is a one-to-one correspondence
between these functionals and the equivalent probability measures β∗

given by:

β∗(B) =
S∑

s=1

β∗s1B(s) = ξ(1B) and ξ(x) = E∗(
x

γ
)

where E∗ is the expectation taken with respect to β∗

iii) For all x ∈M we have

[−ι(−x), ι(x)] = cl{E∗(
x

γ
) : β∗ ∈ Q∗}
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Proof:

(i) Let βo =
∑S

s=1 βs and β∗s = βs

βo
in theorem 1, we obtain:

πj
1/βo ≥

S∑
s=1

β∗sNsj

and

πj
2/βo ≤

S∑
s=1

β∗spsR
j
s −

S∑
s=1

β∗s (psR
j
s − psYsMj)

+

+(poMj/βo −
S∑

s=1

β∗spsYsMj)

Take γ = 1/βo. From the above equations it follows that πj
1 and

πj
2 − p0Mj are super and sub martingales, respectively.

Now, if there is a probability measure and a process γ such the nor-
malized prices are sub and supermartingales, we have

E∗
(

J∑
j=1

[N jθj −D
j
ϕj]

)
≤ γ[π1θ − π2ϕ]

Then there can not exists arbitrage opportunities.

(ii) Given β∗ ∈ Q∗ define ξ(x) = E∗(x
γ
), then

ξ(x) =
∑

s

(
xs

γ

β∗s
Ps

)

it is a continuous linear functional. Since β∗ is equivalent to P and
taking the infimum over all supereplicating strategies :

E∗(x) ≤ E∗
(

J∑
j=1

[N jθj −D
j
ϕj]

)
≤ γ[π1θ − π2ϕ]

we have ξ ∈ Γ.
Now take ξ ∈ Γ and define β∗(B) =

∑S
s=1 β∗s1B(s) = ξ(1B). Since S is
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finite, β∗ is equivalent to P .

Now since ξ(1S) = 1, we have β∗(S) = 1 =
∑S

s=1 β∗s , so β∗ is a proba-
bility.

(iii) By part (ii) take a ξ ∈ Γ then ∀x ∈M
ξ(x) ≤ ι(x) ⇒ −ξ(−x) ≤ ι(x)

then replacing x by −x we have

ξ(x) ≥ −ι(−x)

Hence

cl{ξ(x)/ξ ∈ Γ} ⊂ [−ι(−x), ι(x)]

For the converse, −ι(−x) = ι(x) the proof is trivial. Then we suppose
that −ι(−x) < ι(x). Now it is easy to see that ι is l.s.c. and sublinear.
Then the set K = {(x, λ) ∈ M × IR : λ ≥ ι(x)} is a closed convex
cone. Hence ∀ε > 0 we have that (x, ι(x) − ε) /∈ K. Applying the
strict separation theorem we obtain that there exist a vector φ and
there exists real number α such thatφ · (x, ι(x)− ε) < α and φ · (x, λ) >
α ∀(x, λ) ∈ K. Then we can rewrite these inequalities as:

φo · x + φS+1(ι(x)− ε) < α

φo · x + φS+1λ > α ∀(x, λ) ∈ K

where φo = (φ1, ..., φS) and, since K is a convex cone, we must have
α < 0. This implies φo · x + φS+1(ι(x) − ε) < 0 and φo · x + φS+1λ ≥
0 ∀(x, λ) ∈ K. Hence φS+1 > 0 and we can define ν(x) = − φo

φS+1
· x.

It is easy to see that ν is a continuous linear functional and ν(x) ≤
ι(x), ∀x ∈ M, since (x, ι(x)) ∈ K. Also ν(x) > ι(x) − ε. Now for all
x ∈ X+, we have ν(−x) ≤ ι(−x) ≤ 0, so ν(x) ≥ 0. With an analoguous
argument, we obtain ν ′(x) ∈ Γ such that ν ′|M ≤ ι and

−ι(−x) ≤ ν ′(x) ≤ −ι(−x) + ε

Since {ν ∈ Ξ/ν|M ≤ ι} is a convex set and {ν(x)/ν|M ≤ ι , ν ∈ Γ} is
an interval we obtain the inclusion.¥
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Remark

• Our definition of maximal willingness to pay ι(x) is in the spirit of the
super replication approach of El Karoui and Quenez [12] and Cvitanić
and Karatzas [7] to pricing in incomplete markets. We consider as su-
perhedging strategies the defaultable assets.

Theorem 2, (ii) establishes a one to one correspondence between linear
pricing rules, bounded from above by ι(x), and measures β∗, considered
in the sub and supermartingale pricing formulas
Our result (iii) implies

[ inf
β∗∈Q∗

E∗(
x

γ
), sup

β∗∈Q∗
E∗(

x

γ
)] = [−ι(−x), ι(x)]

5 Equilibria

In this section borrowers (sellers of assets) will choose the collateral coeffi-
cients. We assume that there is a continuum of agents H = [0, 1] modeled by
the Lebesgue probability space (H,B, λ). Each agent h is characterized by
his endowments ωh and his utility Uh. Each agent sells in the initial period
J assets that will be backed by a chosen collateral bundle and purchases also
the derivatives; in the second period will receive the respective returns.

The allocation of the commodities is an integrable map x : H → IR
(S+1)L
+ .

The derivative purchase and primitive assets short sale allocations are rep-
resented by two integral maps; θ : H → IRJ

+ and ϕ : H → IRJ
+, respectively.

Each borrower h will choose the collateral coefficients for each portfolio sold
.The allocation of collateral coefficients chosen by borrowers is described by
the function M : H → IRJ

+.

Consumers short-sell and collateralize the primitive assets but can only
buy a derivative issued by a financial intermediary that buys the primitive
assets. The value of the derivative’s aggregate purchases must match the
value of the primitive asset’s aggregate short-sales (and the value of the ag-
gregate respective returns should also be equal in any state of nature in the
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future). Each buyer of assets (lender) will take as given the derivatives’ pay-
offs Nsj and a mean collateral coefficients vector C ∈ IRJL

+ as given. Let
xh
−o = (xh

1 , . . . , x
h
S) be the commodity consumption in the several states of

the world in the second period.

Sale prices of primitive assets are assumed to consist of a base price
minus a discounted expected value of future default plus a term reflecting the
collateral requirements (which entail a cost but yield a depreciated collateral
bundle) and an addicional negative tail δj ≡ −(p0 −

∑
s γspsYs)Cj which is

independent of the collateral choice. More specifically we assume

π2j = qj −
∑

s

γs(psRsj − psYsMj)
+ + (po −

∑
s

γspsYs)(Mj − Cj) (8)

The state prices γs are common to all agents and taken as given together
with the base price q. The vector of prices for the collateralized derivatives,
whose returns are given by Ns, is π1j. We will show that for an asset j which
is traded we have qj =

∑
s psRsj and the price of the respective derivative

π1j =
∑

s γsNsj.

Then the individual problem is

max
(xh,θh,ϕh,Mh)∈Bh

Uh(xh
o + Mhϕh, xh

−o) (9)

where Bh is the budget set of each agent h ∈ H given by:

Bh(p, π1, q, γ, C, N) =
{
(x, θ, ϕ, M) ∈ IRL(S+1)+2J+JL : (1) and (2) hold for

π2 given by (8)}

Definition 2 An equilibrium is a vector ((p, π1, π2, C, N), (xh, θh, ϕh,Mh)h∈H)
such that:

•
(xh, θh, ϕh,Mh)

solves problem (9)
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• ∫

H

(
xh

o +
∑
j∈J

Mh
j ϕh

j

)
dh =

∫

H

ωh
o dh (10)

∫

H

xh(s)dh =

∫

H

(
ωh(s) +

∑
j∈J

(YsM
h
j ϕh

j + Ysx
h
o)

)
dh (11)

• ∫

H

Mh
j ϕh

j dh = Cj

∫

H

ϕh
j dh ∀ j ∈ J (12)

•
Nsj

∫

H

θh
j dh =

∫

H

Dsjϕ
h
j dh, ∀j ∈ J, ∀s ∈ S (13)

•
πj

1

∫

H

θh
j dh =

∫

H

πjh
2 ϕh

j dh. (14)

Some Remarks

• Equations (10) and (11) are the usual market clearing conditions. Equa-
tion (12) says that in equilibrium the anonymous collateral coefficient
Cj is anticipated as the weighted average of the collateral coefficients
allocation Mj.

• Equation (13) says that aggregate yields of each derivative must be
equal to aggregate actual payments of the underlying primitive assets.
This implies that aggregate default suffered must be equal to aggregate
default given, for each state and each promise:

∫

h∈Sj
s

(psR
j
s−Nsj)

+θh
j dh =

∫

h∈Gj
s

(psR
j
s−psYsM

h
j )+ϕh

j dh ∀s ∈ S, ∀j ∈ J

Where Sj
s = {h ∈ H : psR

j
s > Nsj} is the set of agents that suffered

default in state of nature s on asset j and Gj
s = {h ∈ H : psR

j
s >

psYsM
h
j } is the set of agents that give default in state of nature s on

asset j. Note that Sj
s is equal to H or φ, since psR

j
s and Nsj do not

depend on h.
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• The above equilibrium concept portraits equilibria in housing mort-
gages markets where individual mortgages are backed by houses and
then huge pools of mortgages are split into derivatives.

In our anonymous and abstract setting, any agent in the economy may
be simultaneously a homeowner and an investor buying a derivative.
The above equilibrium concept assumes the existence of J financial
institutions, each one buying the pool of mortgages, written on prim-
itive asset j, from consumers at prices πh

2j and issuing the respective
derivative, which is sold to consumers at prices π1j. These financial
institutions make zero profits in equilibrium both at the initial date
and at any future state of nature.

To simplify, we mix promises of different sellers of a same asset but
do not mix different assets into derivatives. This simplification is not
too strong, since different sellers of a same asset end up selling person-
alized assets due to different choices of collateral. A more elaborate
model should allow for the mix of different primitive assets and for
the strategic choice of the mix of assets and debtors by the issuer of
the derivative. Putting together in a same model the price-taking con-
sumers and investments banks composing the derivatives strategically
may be a difficult task, since the latter would have to anticipate the
Walrasian response of the former.

We will now fix our assumptions on preferences.

Assumption (P) : preferences are time and state separable, monotonic,
representable by smooth strictly concave utility functions uh

Theorem 3 If consumers’s preferences satisfy assumption (P) and the en-

dowments allocation ω belongs to L∞(H, IR
(S+1)L
++ ), then, there exist equilibria

where borrowers choose their respective collateral coefficients.

6 Proof of the Existence Theorem

Let us first address the case where bundles and portfolios are bounded
from above. More precisely, nonfinanced consumption bundles xh, portfolios

18



(θh, ϕh) and collateral coefficients Mh
j are bounded by n in each coordinate.

Then we will let n go to ∞.

Truncated Economy

Define a sequence of truncated economies (En)n such that the budget set
of each agent h is

Bh
n(p, π1, q, γ, C, N) := {(xh

n, θ
h
n, ϕh

n,Mh
n ) ∈ [0, n]L(S+1)+2J+JL : xh

0n+Mh
nϕh

n ≤ n1,

(1) and (2) hold }
We assume that C ∈ [0, n]LJ . We denote by 1 the vector (1,. . . ,1).

Generalized Game

For each n ∈ N we define the following generalized game played by the
continuum of consumers and some additional atomic players. Denote this
game by Jn which is described as follows:

• Each consumer h ∈ H maximizes Uh in the constrained strategy set
Bh

n(p, q, π1, C, γ).

• The auctioneer of the first period chooses po ∈ 4L−1 in order to maxi-
mize

po

∫

H

(xh
o +

∑
j

Mh
j ϕh

j − ωh
o )dh

• The auctioneer of state s of the second period chooses ps ∈ 4L−1 in
order to maximize

ps

∫

H

(xh
s − Ys(

∑
j

Mh
j ϕh

j + xh
o)− ωh

s )dh.

• The first JL fictitious agents chooses Cjl ∈ [0, n] in order to minimize

(
Cjl

∫

H

ϕh
j dh−

∫

H

Mh
jlϕ

h
j dh

)2

.
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• Another fictitious agent chooses π1j ∈ [0, 1] , qj ∈ [0, γ maxs,k Rsjk] ,
Nsj ∈ [0, n] and γs ∈ [0, γ] for every j and s in order to minimize

∑
j

(
(π1j

∫

H

θh
j dh−

∫

H

πh
2jϕ

h
j dh)2 + (qj −

∑
s

γspsRsj)
2

∫

H

θh
j dh

+
∑

s

(Nsj

∫

H

θh
j dh−

∫

H

min
{
psRsj, psYsM

h
j

}
ϕh

j dh)2

)

This game has an equilibrium in mixed strategies (see lemma 8) and, by
Liapunov’s Theorem (see lemma 9), there exists a pure strategies equilibrium.

Now let us define a free disposal equilibrium for the truncated econ-
omy as a pair consisting of a price vector (p, π1, γ, C, N) and an allocation
(x, θ, ϕ, M)H) such that (x, θ, ϕ, M)(h) maximizes consumer h’s utility Uh on
the constrained budget set of the truncated economy given the price vector
and

∫
H

(xh
0 + Mhϕh − ωh

0 )dh = 0

∫
H

(xh
s − ωh

s − Ysx
h
0 − YsM

hϕh)dh ≤ 0

Nsj

∫
H

θh
j dh ≤ ∫

H
Dh

sjϕ
h
j dh

πj
1

∫
H

θh
j dh =

∫
H

πjh
2 ϕh

j dh

Cj

∫
H

ϕh
j dh =

∫
H

Mh
j ϕh

j dh

∫
H

ϕh
j dh = 0 ⇐⇒ ∫

H
θh

j dh = 0

Lemma 1 For n large enough, there exists a free-disposal equilibrium for the
truncated economy.
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Proof:
Let z = (xh, θh, ϕh,Mh) : H → [0, n]L(S+1)+2J+LJ , (po, q, π1,γ, ps, C) be

an equilibrium in pure strategies for Jn. Now, Cj

∫
H

ϕh
j dh =

∫
H

Mh
j ϕh

j dh.
In fact, the equality holds trivially when

∫
H

ϕhdh = 0 and, otherwise, notice
that

∫
H

Mh
j ϕh

j dh/
∫

H
ϕh

j dh ≤ n and therefore Cj can be chosen in [0, n] to
make this equality hold.

Claim: (1) π1

∫
H

θhdh =
∫

H
πh

2ϕhdh, (2) qj =
∑

s γspsRsj when∫
H

θh
j dh 6= 0, (3)

∫
H

θhdh = 0 if and only if
∫

H
ϕhdh = 0.

In fact, if
∫

H
θh

j dh 6= 0 the financial intermediary sets qj =
∑

s γspsRsj

and chooses π1j ∈ [0, 1] and γ ∈ [0, γ]S so that

π1j

∫

H

θh
j dh =

∫

H

πh
2jϕ

h
j dh

=
∑

s

γs

∫

H

Dh
j ϕh

j dh

If ϕh
j = 0 for a.e. h but

∫
H

θh
j dh 6= 0, then Nj and π1jare set equal to

zero, implying that θh
j could be instead set equal to zero, for a.e. h, without

affecting any of the strategic equilibrium conditions.

If
∫

H
θh

j dh = 0 the financial intermediary sets γ so that p0 ≥
∑

s γspsYs

and makes qj =
∑

s γs(psRsj − psYsMj)
+ implying

πh
2j = (p0 −

∑
s

γspsYs)(Mj − Cj).

Notice that this agent may not be able to make p0 =
∑

s γspsYs as γ may
have to be low enough so that π1k

∫
H

θh
kdh =

∑
s γs

∫
H

Dh
kϕh

kdh holds with
π1k ≤ 1 for other assets with

∫
H

θh
kdh > 0.

When p0 =
∑

s γspsYs all borrowers choose ϕh
j = 0 and when p0 >∑

s γspsYs all borrowers choose Mh
j ≥ Cj and Cj

∫
H

ϕhdh =
∫

H
Mhϕh

j dh
implies Mh

j = Cj. Then, πh
2j = 0 and ϕh

j = 0,∀h.¤.

Claim: (1) Nsj

∫
H

θh
j dh ≤ ∫

H
min

{
psRsj, psYsM

h
j

}
ϕh

j dh, ∀s and
(2) π1j ≥

∑
s γsNsj

21



In fact, these inequalities hold as equalities when
∫

H
θh

j dh = 0 (as seen
above) or when

∫
H

Dh
sjϕ

h
j dh/

∫
H

θh
j dh does not exceed n, for every s. Other-

wise, the strict inequalities hold in (1) for some s and in (2).¤

Now, the optimality conditions of the auctioneers’ problems imply that
∫

H

(xh
o − ωh

o + Mhϕh)dh ≤ 0 (15)

∫

H

(xh
s − ωh

s − YsM
hϕh − Ysx

h
o)dh ≤ 0 (16)

After integrating the budget constraint of the second period, we obtain

ps

∫

H

(xh
s − ωh

s − YsM
hϕh − Ysx

h
o)dh ≤ 0,∀s ∈ S (17)

For n larger enough, we must have pol > 0,∀l ∈ L. Otherwise, every con-
sumer would choose xh

ol = n and we would have contradicted (15) But when
pol > 0 we must have

∫

H

(xh
ol − ωh

ol + (Mhϕh)l)dh = 0 ∀l ∈ L (18)

since the aggregate budget constraint of the first period is a null sum of non
positive terms and therefore a sum of null terms. ¥

Asymptotics of truncated free-disposal equilibria

Now let {(xh
n, θ

h
n, ϕh

n, (Mh
n ){h∈H}), pn, π1n, qn, γn, Cn, Nn} be the sequence

of free-disposal equilibria corresponding to En. Let n →∞ and examine the
asymptotic properties of the sequence.

Lemma 2 pn
sl 9 0 ∀s,l

Proof:
Suppose pn

sl → 0 for some (s, l). Since
∫

xhn
sl dh is bounded it follows, by

Fatou’s lemma, that for h in a full measure set F0the sequence
{
xhn

sl

}
has a

cluster point. Moreover for each n there is a full measure set Fn of consumers

that are optimizing in the equilibrium of the economy En. Let F =
∞⋂

n=0

Fn
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which is a full measure set and take h ∈ F . Passing to a subsequence if
necessary, we can take xhn

sl < n− v for every n, where v = minl $
h
sl , and let

x̂n ∈ <L(S+1)
+ be such that x̂n

sl = xhn
sl + v < n and x̂n

ki = xhn
ki for (k, i) 6= (s, l).

Now, by monotonicity of preferences

uh((1−pn
sl)x̂+vesl,M

hn(1−pn
sl)ϕ

hn) > uh(xhn,Mhnϕhn) for n large enough.

Moreover, the vector (1− pn
sl)(x̂, θhn, ϕhn) together with Mhn is budget fea-

sible since (1− pn
sl)p

n
s $h

s + pn
slv ≤ pn

s $
h
s . This contradicts the optimality of

(xhn, θhn, ϕhn,Mhn).¥
The sequences {Mhn

jl }n and {Chn
jl }nadmit (maxs,k,j Rj

sk)/(mins pslYsl) as
an upper bound. In fact, any choice of collateral coefficients beyond this
bound determines sure repayment and would be equivalent to constituting
collateral just up to this bound and consuming the remaining in the form of
a bundle not serving as collateral (that is, as part of xn

0 ).

Lemma 3 Cn
j 6→ 0 as n → ∞. Actually, there exist uniform positive lower

bounds, across consumers, for the sequence Mhn of equilibrium collateral co-
efficients

Proof:
Let Shn

j = {s ∈ S : pn
s R

j
s > pn

s YsM
hn
j } be the set of states where agent

h gives default in promise j and let
(
Shn

j

)′
be it’s complement. Now,

(
Shn

j

)′
6= ∅ ∀ h, j for n large enough, when asset j is traded. Otherwise,

the Kuhn-Tucker first order necessary condition in Mjl(see section 9.4 in the
appendix where the necessity is established) would become u′olϕj ≤ 0, which
is impossible.

Now let T n
sj =

{
z ∈ Rl

+ : pn
s Ysz ≥ pn

s Rsj

}
and T n

j =
S⋃

s=1

T n
sj. Then, for

each n, ∀h, Mhn
j ∈ T n

j and Cn
j ∈ conT n

j . Notice that for n large enough

pn
sl 6= 0 and therefore 0 /∈ conT n

j . Define the corresponding sets at the cluster

point (ps)
S
s=1 À 0 : Tsj =

{
z ∈ IRl

+ : psYsz ≥ psRsj

}
and Tj =

S⋃
s=1

Tsj. We

must have the cluster point Cj of the sequence Cn
j belonging to conTj which
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does not contain the origin, hence Cj 6= 0. This completes the proof of lemma
3.¥

The intuition behind the claim in the above proof that consumers never
choose collateral coefficients so low that they end up defaulting in every state
lies in the fact that, by increasing the collateral coefficients up to the point
where the depreciated value of the collateral exactly matches the promised
payment in some state, consumers still have a zero net return, from the
joint operation of short selling and constituting collateral (as they keep on
surrending the value of the depreciated collateral), and manage to mantain
also the same net price of this joint operation as the short sale price increase
(due to reduced default spread) equals the increase in collateral costs, but
utility has meanwhile gone up as more collateral is being consumed. In fact,
let the collateral coefficients rise from Mh1

j to Mh2
j . The short sale price πh

2j

is given by qj −
∑

s γsdefsj + (p0 −
∑

s γspsYs)(M
h
j −Cj), where defsj is the

default on asset j in state s. Then, the increase in πh
2j is equal to p0∆Mh

j

since ∆defsj = psRsj − psYsM
2h
j − (psRsj − psYsM

1h
j ) = −psYs∆Mh

j .

Lemma 4 {∫
H

(xh
n, ϕh

n,M
h
nϕh

n)dh} is a bounded sequence.

Proof:
By definition of equilibrium,

∫
H

xh
nodh ≤ ∫

H
ωh

o dh and
∫

H
Mh

nϕh
ndh ≤ ∫

H
ωh

o dh.

So ∫

H

xh
nsdh <

∫

H

(ωh
s + 2Ysω

h
o )dh, ∀s ∈ S. (19)

For each l ∈ L the following holds∫

H

Mh
lnjϕ

h
ndh = Clnj

∫

H

ϕh
jndh (20)

and therefore

Cjnl

∫

H

ϕh
njdh ≤

∫

H

ωh
oldh, ∀l ∈ L (21)

Then, by lemma 3,
∫

H
ϕh

njdh is bounded. ¥
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Lemma 5 The aggregate purchase of the derivative can also be taken as
bounded, along the sequence of equilibria for the truncated economies.

Proof:

Let N(n) = maxs Nn
sj and use the homogeneity of degree -1 of demand

for the derivative with respect to (Nj, π1j) to replace Nn
j , πn

1j and θnh
j by

Ñn
sj = Nn

sj/N(n), π̃n
1j = πn

1j/N(n) and θ̃hn
j = θhn

j N(n). Then, Ñn
sj has a clus-

ter point also,∀s and actually, passing to a subsequence if necessary, Ñn
sj is

equal to one for some s and every n. Now,

Ñsj

∫

H

θ̃h
j dh ≤

∫

H

min
{
psRsj, psYsM

h
j

}
ϕh

j dh ≤ psRsj

∫

H

ϕh
j dh

and therefore
∫

H
θ̃hn

j dh 9∞.

In the rest of the proof, to simplify the notation, let us take θn to be
actually the allocation θ̃n.¥

Lemma 6 the sequence of allocations {xn, θn, ϕn,Mn} is uniformly bounded.

Proof:
By the two preceding lemmas, the sequence zh

n ≡ (xh
n, θh

n, ϕh
n,M

h
n ) satisfies

the hypothesis of the weak version of Fatou’s Lemma. Therefore ∃z integrable
such that

zh ∈ cl{zn(h)} for a.e h

Notice also that pn, π1n, qn, γn have cluster points.

Claim zh ≡ (xh, θh, ϕh,Mh) maximizes Uh at the cluster point of
(pn, qn, γn, Cn, Nn), for almost every h.

In fact, zh is budget feasible at (p, q, π1, γ, C, N) = limn→∞(pn, qn, πn
1 , γn, Cn, Nn),

passing to a subsequence if necessary and consumers’ optimal choice corre-
spondences are closed (see appendix).2
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Individual optimality at the cluster points implies that pn
0l 9 0 (l = 1, ..., L)l

and πn
1j 9 0 (j = 1, ..., J). It follows immediately that

xhn
ol , θhn

j ≤ (ess sup
h,l

ωh
ol)/(min

l,j

{
lim

n→∞
pn

ol, lim
n→∞

πn
1j

}
). ¥

Lemma 7 The short sales allocation is also uniformly bounded

Proof:

Suppose not, then there is a sequence h(n) of agents such that ϕ
h(n)
n →∞,

even though ϕh
n 9∞ for almost every h ∈ {h(n)}n. Now:

pn
oM

h(n)
j − π

h(n)
2j = −qn

j +
∑

s

γn
s (pn

s Rsj − pn
s YsM

h(n)
j )+ +

∑
s

γn
s pn

s YsM
h(n)
j

+(pn
o −

∑
s

γn
s pn

s Ys)C
n
j

equivalently
pn

oMh(n)j − π
h(n)
2j = an

j + b
h(n)
j

where

an
j ≡ −qn

j + (pn
o −

∑
s

γn
s pn

s Ys)C
n
j +

∑
s

γn
s pn

s Rsj

b
h(n)
j ≡

∑
s

γn
s pn

s YsM
h(n)
j −

∑
s

γn
s D

h(n)
j

and
D

h(n)
j ≡ min

{
pn

s Rsj, p
n
s YsM

h(n)
j

}

Claim qk <
∑

s γspsRsk + (po −
∑

s γspsYs)Ck, for any asset k
Otherwise any agent could make poMk − π2h

k = limn→∞ an
k ≤ 0 for Mh

k

sufficient small but different from zero so that default occurs in every state
(or the payment exactly matches the value of the depreciated collateral).
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Such a choice for Mh
k would be accompanied by choosing ϕk arbitrary large,

which can not occur since there is a finite optimal choice znh for almost every
h (see the claim in the proof of lemma 6). 2

Now, for any asset k, b
h(n)
k ≥ 0 and, for n large enough, the above

claim implies that an
k > 0, so that pn

o (M
h(n)
k − π

2h(n)
k ) > 0 for any asset

k and n large enough. Then, the first period budget constraint implies that
pn

o (M
h(n)
j − π

2h(n)
j )ϕ

h(n)
j is bounded by suph,l $

h
0l. Hence ϕ

h(n)
n → ∞ implies

(pn
oM

h(n)
j − π

2h(n)
j ) → 0 and therefore an

j → 0, contradicting the above claim.
¥

Then, {Mh
jlnϕh

jn} is uniformly bounded and, from (2), {xh
sln} is also uni-

formly bounded. All these facts imply that the sequence (xn, θn, ϕn,Mnϕn)
is uniformly bounded.

We can now continue the proof of existence of equilibria for the economy
E using the strong version of Fatou’s lemma (see Appendix):

∫
H

xhdh = limn→∞
∫

H
xh

ndh,
∫

H
θhdh = limn→∞

∫
H

θh
ndh,

∫
H

ϕhdh = limn→∞
∫

H
ϕh

ndh and

∫

H

Mhϕhdh = lim
n→∞

∫

H

Mh
nϕh

ndh

Thus all markets clear in the E . We also have Cjl

∫
H

ϕh
j dh =

∫
H

Mh
jlϕ

h
j dh.

Moreover, Nsj

∫
H

θh
j dh =

∫
H

min
{
psRsj, psYsM

h
j

}
ϕh

j dh. Suppose not,
then, using the notation in the proof of lemma 5, we would have for all n
large enough

∫
H

Dhn
j ϕhn

j dh/(N(n)
∫

H
θhn

j dh) > n , for some (s, j), implying∫
H

Dhn
j ϕhn

j dh/
∫

H
θhn

j dh > nN(n). If N(n) < n, then the inequality would
hold as equality. If N(n) = n, then n2

∫
H

θhn
j dh would be bounded, implying

that
∫

H
θ̃hn

j dh = n
∫

H
θhn

j dh → 0. Now, π̃n
1j

∫
H

θ̃hn
j dh =

∑
s γn

s

∫
H

Dhn
sj ϕhn

j dh
where π̃n

1j = πn
1j/N(n) is bounded. Hence γn → 0 or

∫
H

Dhn
j ϕhn

j dh → 0, but
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the former implies the latter, since we would have πh
2j = p0(Mj − Cj) which

would lead every agent to choose Mh
j ≥ Cj,∀h, and, therefore, Mh

j = Cj,
implying that πh

2j = 0 and ϕh
j = 0,∀h, contradicting the supposed strict

inequality.
Moreover, π1j =

∑
s γsNsj when asset j is traded, since

π1j

∫

H

θh
j dh =

∫

H

πh
2jϕ

h
j dh =

∑
s

γs

∫

H

Dh
sjϕ

h
j dh =

∑
s

γsNsj

∫

H

θh
j dh.

7 Efficency

In this section we prove that an equilibrium allocation is constrained effi-
cient among all feasible allocations that provide income across states through
the same spot prices (the given equilibrium prices). In comparison with the
equilibrium obtained by Araujo, Orrillo and Páscoa [3], we can say that
our equilibrium is Pareto superior, since we are not impossing any kind of
bounded short sale.

As in the work of Magill and Shafer [18], we compare the equilibrium
allocation with one feasible allocation whose portfolios do not necessarily
result from trading competitively in asset markets. That is, in alternative
allocations agents pay participation fees which may differ from the market
portfolio cost. Equivalently, we allow for transfers across agents which are
being added to the usual market portfolio cost.

Proposition 1 Let ((x, θ, ϕ, M), p, π1, π2, C, N) be an equilibrium. The al-
location (x, θ, ϕ, M) is efficient among all allocations (x, θ, ϕ, M) for which
there are transfers T h ∈ IR across agents and a vector C ∈ IRJL

+ , such that

(i)
∫

H
(xh

o + Mhϕh)dh =
∫

H
ωh

o dh,
∫

H
xh

s =
∫

H
(ωh

s + YsM
hϕh + Ysx

h
o)dh,

π1

∫
H

θhdh =
∫

H
π2ϕ

hdh

(ii)

ps(x
h
s − ωh

s − Ysx
h
o) +

∑
j∈J

min{psR
j
s, psYsM

h
j }ϕh

j

=
∑
j∈J

N
j

sθ
h
j +

∑
j∈J

psYsM
h
j ϕh

j , ∀s, a.e. h
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(iii) po(x
h
o + Mhϕh − ωh

o ) + π1θ
h − π2ϕ

h + T h = 0

(iv)
∫

H
T hdh = 0

(v) Cj

∫
H

ϕh
j dh =

∫
H

Mh
j ϕh

j , ∀j
where the equilibrium prices are given by

π1 = q −
∑

s

γsg1s

and

π2 = q −
∑

s

γsg2s + (po −
∑

s

γspsYs)M j − (po −
∑

s

γspsYs)Cj

Proof:
Suppose not, say (x, θ, ϕ, M,C) together with some transfer fraction T

satisfies (i) through (v); uh(xh
o +Mhϕh, xh

−o) ≥ uh(xh
o +M

h
ϕh, x−o) for a.e h

and uh(xh
o +Mhϕh, xh

−o) > uh(xh
o +M

h
ϕh, x−o) for h in some positive measure

set G of agents. Then, for h ∈ G, the first period constraint must be violated,
that is,

po(x
h
o + Mhϕh − ωh

o ) + π1θ
h − π2ϕ

h > 0 (22)

Now remember that

gh
s = (psRs − psYsM

h)+ϕh − (psRs −Ns)
+θh

= (psRs −Dh
s )ϕh − (psRs −N s)θ

h

By continuity of preferences and monotonicity we can take G = H, without
loss of generality. Then

∫
H

gh
s dh > 0 for some s, by (22) and (i), implying∫

H
Nsθ

hdh >
∫

H
Dh

s ϕhdh. Now, by (ii),

ps.

∫

H

(xh
s − ωh

s − Ys(M
hϕh + xh

o))dh =

∫

H

Nsθ
hdh−

∫

H

Dh
s ϕhdh

where the right hand side is strictly positive, contradicting∫
H

(xh
s − ωh

s − Ys(M
hϕh + xh

o))dh = 0 .¥
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The above weak constrained efficiency property is in the same spirit as
properties found in the incomplete markets model without default (see Magill
and Shafer [18]) and also in the exogenous collateral model (without utility
penalties) of Dubey, Geanakoplos and Zame [9]. As in these models, it does
not seem to be possible to show that equilibrium allocations are undominated
when prices are no longer assumed to be constant at the equilibrium levels.
However equilibria with default and endogenous collateral, as proposed in
this paper, is Pareto superior to the no-default equilibria, to the exogenous
collateral equilibria and even to the bounded short-sales endogenous collat-
eral equilibria of Araujo, Orrillo and Páscoa [3], since our equilibria is free of
any of the constraints which are used in the definition of these equilibrium
concepts (that is, absence of default, exogeneity of collateral and bounded
short-sales).

8 Conclusions

In this paper we have obtained a no arbitrage characterization of the
prices of collateralized promises, where the collateral coefficients are choosen
by borrowers as in Araújo, Orrillo, Páscoa [3]. We also obtained a pricing
result consistent with the observation made by Jouini and Kallal [16] for
the case of short sale constraints, more precisely we have shown that our
buy and net sell prices are supermartingale and submartingales, respectively,
under some probability measures. For these probabilities we have found
lower and upper bounds for the prices of derivatives written on the primitive
defaultable assets. Finally using the nonarbitrage characterization of asset
prices we proposed an equilibrium pricing formula and showed the existence
of equilibrium in the model where borrowers choose the collateral coefficients,
without imposing uniform bounds on short-sales (thus avoiding a drawback of
the work by Araújo, Orrillo and Páscoa [3]) and showed that this equilibrium
is constrained efficient.
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9 Appendix

9.1 Mathematical Preliminarities

• Let C(K) the Banach space of continuous functions on the compact
metric space K. Let L1(H, C(K)) be the Banach space of Bochner in-
tegrable functions whose values belong to C(K). For z ∈ L1(H,C(K)),

||z||1 :=

∫

H

sup
K
|Zh|dh < ∞

Let B(K) denotes the set of regular measures on the Borelians of K.
The dual space of L1(H, C(K)) is L∞ω (H,B(K)), the Banach space
of essentially strong bounded weak ∗ measurable functions from H
into B(K). We say that {µn} ⊂ L∞(H,B(K)) converges to µ ∈
L∞ω (H,B(K)) with respect to the weak * topology on the dual L1(H, C(K)),
if ∫

H

∫

K

zhdµh
ndh →

∫

H

∫

K

zhdµhdh , ∀f ∈ L1(H,C(K))

• We will use in this work the following lemmas ( in m-dimension).
Fatou’s lemma (Weak Version)
Let {fn} be a sequence of integrable functions of a measure space
(Ω,A, ν) into IRm

+ . Suppose that limn→∞
∫
Ω

fndν exists. Then there
exists an integrable function f : Ω 7→ IRm

+ such that:

1. f(w) ∈ cl{fn(w)} for a.e w, and

2.
∫

Ω
fdν ≤ limn→∞

∫
Ω

fndν

Fatou’s lemma (Strong version)
If in addition the sequence {fn} above is uniformly integrable, then the
inequality in 2. holds as an equality.

9.2 Extended Game

We extend the generalized game by allowing for mixed strategies both in
portfolios and collateral bundles. Remember that, for each player a mixed
strategy is a probability distribution on his set of pure strategies. In this
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case the set of measures on the Borelians of Kn = [0, n]J × [0, n]J × [0, n]LJ .
We denote by B the set of mixed strategies of each consumer. Since we are
not interested in a mixed strategies equilibrium, per se, we will extend the
previous game to a game J n over mixed strategies ( that we call extended
game) whose equilibria: 1) exist 2) can be purified and 3) a pure version is
an equilibrium for the original game. First, before extending the game to
mixed strategies, let us rewrite the payoffs of the fictitious agents replacing
consumption bundles by the following function of portfolios and collateral:

dh(θh, ϕh,Mh) = arg max{uh : xh
s ∈ [0, n]L, s = 1, ..., S, xh

0 + Mhϕh ≤ n1,

satisfying (1) and (2)}
That is, function dh solves the utility maximization problem for a given

portfolio (θh, ϕh) and given collateral coefficients Mh
j . By the maximum

theorem and the fact that consumers’ choice correspondences are closed (see
Proposition below), dh is continuous. Secondly, we extend the payoffs to
mixed strategies.

(i) Each consumer h ∈ H chooses (xh, µh) ∈ [0, n]L(S+1) × B in order to
maximize

∫
Kn

Uh(xh
o+Mhϕh, xh

−o)dµh subject to xh
0+

∫
Kn

(Mhϕh)dµh ≤
n1 and the following extended budget constraints:

po(x
h
o − ωh

o ) +

∫

Kn

[π1θ
h + poM

hϕh − πh
2ϕh]dµh ≤ 0

ps(x
h
s −ωh

s −Ysx
h
o) ≤

∫

Kn

∑
j

(N j
s θ

h
j −Dj

sϕ
h
j + psYsM

h
j ϕh

j )dµh for s ∈ S

(ii) The auctioneer of the first period chooses po ∈ 4L−1 in order to maxi-
mize

po

∫

H

∫

Kn

[dh
o(θ

h, ϕh,Mh) +
∑

j

Mh
j ϕh

j − ωh
o ]dµhdh

(iii) The auctioneer of state s in the second period chooses ps ∈ 4L−1 in
order to maximize

ps

∫

H

∫

Kn

[dh
s (θ

h, ϕh,Mh)−
∑

j

YsM
h
j ϕh

j −ωh
s − Ysd

h
o(θ

h, ϕh,Mh)]dµhdh
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(iv) The first JL fictitious agents chooses Cjl ∈ [0, n] in order to minimize

(

∫

H

∫

Kn

[Cjlθ
h
j −Mh

jlϕ
h
jl]dµhdh)2

• Another fictitious agent chooses π1j ∈ [0, 1] , qj ∈ [0, maxs,k Rsjk] , Nsj ∈
[0, n] and γs ∈ [0, γ] for every j and s in order to minimize

∑
j

(
(π1j

∫

H

∫

Kn

θh
j dµhdh−

∫

H

∫

Kn

πh
2jϕ

h
j dµhdh)2

+(qj −
∑

s

γspsRsj)
2

∫

H

∫

Kn

θh
j dµhdh

+
∑

s

(Nsj

∫

H

∫

Kn

θh
j dµhdh−

∫

H

∫

Kn

min
{
psRsj, psYsM

h
j

}
dµhdh)2

)

Lemma 8 J n has an equilibrium, possibly in mixed strategies over portfolio
and collateral together.

Proof:
The existence argument in Ali Khan [17] can be modified to allow for some

atomic players. First, by the Proposition below, consumers’ pure strategies
choice correspondences are closed, and therefore, upper semicontinuous in
the truncated economy. Now, mixed strategies choice correspondences are
the closed convex hull of the pure strategies choice correspondences and,
therefore, will be also upper semicontinuous.

Now, define the correspondence:

α(p, π, C) = {f ≡ (x, µ) ∈ ([0, n]L(S+1) × B)H : f(h) ∈ νh(p, π, C)}

Which is also convex valued and upper semicontinuous . The best re-
sponse correspondences Ri of the r = S + 2 + JL fictitious agents are con-
vex valued and upper semicontinuous on the profile of consumers’ proba-
bility measures on Kn (with respect to the weak * topology on the dual of
L1(H, C(Kn) ). The profiles set is compact for the same topology and Fan -
Glicksberg fixed point theorem applies to α×∏r

i=1Ri. ¥
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Lemma 9 J n has an equilibrium in pure strategies.

Proof:
In this part Liapunov’s theorem will be fundamental. First, notice that

the payoffs of the atomic players in J n depend on the profile of mixed
strategies (µh)h only through finitely many e indicators of the form (e =
L + S + SL + 2JL).

∫

H

∫

Kn

Zh
e (θh, ϕh,Mh)dµhdh where Ze ∈ L(H,C(Kn))

Secondly, let Eh(p, π, C) =
∏

2 νh(p, π, C) and Z = (Z1, . . . , Ze). Now,

∫

Kn

Zh(θh, ϕh,Mh)dEh(p, π, C) = conv

∫

Kn

Zh(θh, ϕh,Mh)d(extEh(p, π, C))

where the integral on the left hand side is the set in IRe of the all integrals
of the form

∫
Kn

Zh(θh, ϕh,Mh)dµh, for µh ∈ Eh(p, π, C). The integral on
the right hand side is defined endogenously. The equality above follows by
linearity of the map

µh 7→
∫

Kn

Zh(θh, ϕh,Mh)dµh

Then, Theorem I.D.4 in Hildenbrand [15] implies

∫

H

∫

Kn

Zh(·)dEh(p, π, C)dh =

∫

H

∫

Kn

Zh(·)d(extEh(p, π, C))dh

Then, given a mixed strategies equilibrium profile (µh)h, there exists
(θh, ϕh,Mh) such that the Dirac measure at (θh, ϕh,Mh) is an extreme point
of Eh (evaluated at the equilibrium levels of the variables chosen by the
atomic players ) and (θh, ϕh,Mh)h can replace (µh)h and keep all equilibrium
conditions satisfied, without changing the equilibrium levels of the variables
chosen by the atomic players but replacing the former equilibrium bundles
by dh(θh, ϕh, Mh) .¥
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9.3 Closedness of consumers’ choice correspondences

Since p0 ∈ 4L−1 consumers’ budget correspondence always has the origin as
an interior point of its values, implying that the interior of the budget corre-
spondence is lower-semicontinuous and, therefore, the budget correspondence
itself is also lower semi-continuous.

Lemma 10 The budget correspondence is lower semicontinuous .

Proof:
Let Bh(p, q, γ, C) be the budget set (of the untruncated economy) and let
Bh

0 (p, q, γ, C) be its subset where all S + 1 budget constraints hold as strict
inequalities.

Claim 1: Bh(p, q, γ, C) is the closure of Bh
0 (p, q, γ, C)

To prove this claim, let z = (x, θ, ϕ, M) ∈ Bh(p, q, γ, C). We want to find
a sequence (zn) such that zn ∈ Bh

0 (p, q, γ, C) and zn → z.

Let zn = (knx, knθ, knϕ,M) where kn = 1− 1/n. Let

h0(x, θ, ϕ, M) = p0x0 + p0Mϕ− π2ϕ + π1θ

and hs(x, θ, ϕ,M) = psxs − Nsθ − psYsMϕ + Dsϕ for s ≥ 1, where
Dsj = min {psYsM, psRsj}. Now hs(x, θ, ϕ, M) = ps$s > 0 for s ≥ 0 and
therefore hs(zn) = knhs(z) < hs(z) for s ≥ 0, that is, zn ∈ Bh

0 (p, q, γ, C), as
desired.2

Claim 2: Bh
0 (p, q, γ, C) 6= φ.

To see this let xh = 0, θh = 0, ϕh = 0 and Mh = 0. The values thus
chosen for these variables satisfy the budget constraint of agent h with strict
inequality, as desired.2

Claim 3: Bh
0 is lower semicontinuous.

To prove this claim let limk→∞(pk, qk, γk, Ck) = (p, q, γ, C) and
(xh, θh, ϕh,Mh) ∈ Bh

0 (p, q, γ, M). Then for every {(xh
k, θ

h
k , ϕh

k,M
h
k )} such
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that
lim

n→∞
(xh

k, θ
h
k , ϕh

k,M
h
k ) = (xh, θh, ϕh,Mh)

and for n large enough, the strict budget inequalities hold. Thus

(xh
k, θ

h
k , ϕh

k, m
h
k) ∈ Bh

0 (pk, qk, γk, Ck)

for k large enough, as desired.2.

Then lemma follows from Hildenbrand [15], pag. 26, fact 4.¥

It can also be verified that budget correspondences of truncated economies
enjoy also the same property. Let us see that choice correspondences of
truncated economies are closed. Consumers’ optimal choice correspondences
are closed at any (p, q, γ, C) satisfying the assumptions of the previous lemma:
if (pk, qk, γk, Ck) → (p, q, γ, C), zk is an optimal choice of consumer h at
(pk, qk, γk, Ck) and zk → z, given any z ∈ Bh(p, q, γ, C), ∃(zk) → z such that
zk ∈ Bh(pk, qk, γk, Ck) and zk is not prefered to zk by consumer h, implying,
by continuity of uh that z is an optimal choice at (p, q, γ, C).

Comment

Consider an economy where derivative and primitive asset aggregates are
also required to match in value ( but not in quantity) but collateral margin
requirements are bounded from below, say p0M

h
j − π2j ≥ ε (or that p0M

h
j −

qj ≥ ε, as in Araujo, Orrillo and Pascoa (2000)), when ϕh
j > 0. Then, the

lower semi-continuity of the budget correspondence holds. In fact, taking
p0 ∈ 4L−1 and πh

2j ≡ qj −
∑

s γs(psRsj − psYsMj)
+ (that is, setting the

negative tail in the equilibrium sale price of primitive assets to be δj ≡
(p0 −

∑
s γspsYs)M

h
j ), the constraint p0M

h
j − qj ≥ ε is always well-defined

and admits an interior solution (with Mh
j large enough) which is compatible

with the interior solution (x, θ, ϕ) = 0 of the other budget constraints.

9.4 On Necessary Conditions for Utility Maximization

We will examine in this section a first order necessary condition for utility
maximization in the budget set of the truncated economy. We will address
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only the case when the consumer defaults on an asset in every state as desired
for the proof of Lemma 3 above (to establish that actually it is never optimal
to default in every state, in a large enough truncated economy). In this case,
a constraint qualification holds and a Kuhn-Tucker necessary condition can
be derived.

Lemma 11 For truncated economies En, with n large enough, if a con-
sumer’s optimal choice would lead to default on asset j in every state, then
the following Kuhn-Tucker condition on Mj should hold: u′olϕj ≤ 0 and
u′olϕjMjl = 0, for every commodity l.

Proof:

Let us modify the problem of maximizing the utility of consumer h in
the budget set Bh

n(pn, πn
1 , qn, γn, Cn, Nn) of the truncated economy by fixing

the values of the variables ϕk and Mk, k 6= j, to be equal to the respec-
tive truncated equilibrium values ϕhn

k and Mhn
k . We will now examine a

constraint qualification that ensures necessity of the Kuhn-Tucker conditions
of this modified maximization problem, with respect to all remaining choice

variables, if the set (Shn
j )

′
were empty at an optimal solution. Notice that in

this case all functions entering the budget constraints become differentiable,
with respect to these remaining choice variables, at the optimal choice vector.
We suppose that n is large enough so that pn

s À 0 for every s ≥ 1, which is
possible due to Lemma 2.

Denote by h(z) = 0 the system of S+1 budget constraints in the variables
z = (x, θ, ϕj,Mj) and denote by g(z) ≤ 0 the system of inequaties given, in
this order, by xs ≥ 0, xs ≤ n1 (s ≥ 1), θ ≥ 0, θ ≤ n1, ϕj ≥ 0, ϕj ≤ n,
Mj ≥ 0, Mj ≤ n1, x0 ≥ 0 and x0 + Mϕ ≤ n1 (where ϕk and Mk for k 6= j
are set equal to ϕhn

k and Mhn
k , respectively.).

Let us check that the Mangasarian-Fromovitz constraint qualification
(also known as the modified Arrow-Hurwicz-Uzawa condition, see Mangasar-
ian (1994) 11.3.5), holds at a vector z for which (Shn

j )′ =∅. We have to show
that ∇h(z) has full row rank and that the system constituted by ∇gI(z)z > 0
together with∇h(z)z = 0 has a solution z ∈ <a, where a = L(S+1)+J+1+L
and I = {i : gi(z) = 0}.

37



First, notice that ∇xh(z) has full row rank since (∇xshs(z))S
s=1 is block

diagonal and nonsingular (by lemma 3).

Secondly, ∇gI(z)z > 0 is equivalent to (i) −zi > 0 if zi = 0, (ii) zi > 0
if zi = n (both (i) and (ii) for zi equal to xsl,θk,ϕj or Mj), (iii) −x0l > 0 if
x0l = 0 and (iv) x0l + Mjϕj + Mjϕj > 0 if x0l + Mlϕ = n. Let us start by
trying to make ∇hs(z)z = 0 for s ≥ 1 and let y be such that z = (xs, y).

(a) If ∇yhs(z)y ≤ 0 let xs be such that psxs = −∇yhs(z)y ≥ 0 which is
possible since xs does not need to have negative components, as xs > 0.

(b) If ∇yhs(z)y > 0, that is, if psYsx0 + Nsθ < 0, then θk < n for some k
or x0l < n for some l.

(b1) When θ = 0 and x0 = 0, let xs be such that psxs = −∇yhs(z)y < 0
which is possible since for some commodity l we can make xsl negative be-
cause xsl

can not be equal to n for every l. Otherwise, hs(z) = 0 implies n ≤
ps$s +

∑
k 6=j psYsMkϕk ≤ maxl $sl + npsYs, that is, psYs ≥ 1 −maxl $sl/n

which can not hold for n large due to lemma 2 and since Ys < 1.

(b2) When θk > 0 for some k or x0l > 0 for some l, then the respective
variable θk or x0l can be chosen positive and large so that psYsx0 + Nsθ ≥ 0
and (b) does not occur, in any state s.

Finally, let us make ∇h0(z)z = 0, or equivalently, p0x0 + π̂jϕj + π1θ = 0,
where ϕj ≥ 0 and π̂j ≡ −qj + (p0 −

∑
s γspsYs)Cj +

∑
s γspsRsj.

If π̂jϕj + π1θ ≥ 0 let x0 be such that p0x0 = −(π̂jϕj + π1θ) ≤ 0, by
choosing x0l < 0 for at least one commodity l. Even when x0l +Mlϕ = n, the
requirement x0l + Mjϕj + Mjϕj > 0 can be fulfilled by making Mjl positive
and large enough.

The case π̂jϕj +π1θ < 0 can be avoided when θk > 0 for some k or π̂j > 0
( by making θk or ϕj positive and large enough) and can be dealt with easily
when x0l > 0 for some l (by making x0l positive and large enough). Suppose
x0 = 0, θ = 0 and π̂j ≤ 0, which implies θ ¿ 0, x0 ¿ 0 and M jlϕj = n for ev-
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ery l. Actually, every agent would respond to π̂j ≤ 0 by choosing Mhn
jl ϕhn

j = n

and Mhn
jl small enough in order to default on asset j in every state (so that

pn
0M

hn
j − πhn

2j = π̂j ≤ 0), implying that
∫

Mhn
jl ϕhn

j dh = n >
∫

$h
0ldh for n

large enough, contradicting a feasibility condition that must hold at an equi-
librium for the truncated economy.

We have shown that the Mangasarian-Fromovitz constraint qualifica-
tion of the utility maximization problem with ϕk and Mk, k 6= j, fixed
at the respective truncated equilibrium values ϕhn

k and Mhn
k is satisfied when

(Shn
j )′ = ∅ at an optimal solution. The necessity of the Kuhn-Tucker con-

dition follows from Proposition 11.3.6 in Mangasarian (1994).
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