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Abstract

This paper investigates how conditional quantiles of a given distri-
bution relate to each other. Given two conditional quantiles estimated
nonparametrically, we investigate their relation by linking them through
a parametric transformation. Asymptotic normality of the associated pa-
rameter vector is established, and the method is illustrated with data
from the Family Expenditure Survey (FES) of UK households. The FES
records expenditures of households on six broad categories of goods (alco-
hol, clothing, food, fuel, transport, and "other goods"), and the method-
ology is applied by estimating and comparing the conditional quantiles of
the Engel relation. The only category for which expenditure can explain
the shift in the quantile curves is for "other goods" relationship, indicating
an increase in heterogeneity for better off households, suggesting a "taste
for variety" effect as the expenditure level increases. For the remaining
categories one cannot reject the null of a parallel shift of the quantile
curves.

Keywords: Quantile Regression, Semiparametric Estimation, Speci-
fication Testing, Engel Curve, Household Expenditure, Budget Shares.

JEL Classification: C12 (Hypothesis Testing), C13 (Estimation),
C14 (Semi- and Nonparametric Methods), D12 (Consumer Economics:
Empirical Analysis).

∗I am very grateful to Oliver Linton for guidance throughout this project.
†Email address: C.Huse@lse.ac.uk. Correspondence address: Financial Markets Group,

London School of Economics, Houghton Street, London WC2A 2AE, United Kingdom.

1



1 Introduction

When compared to the standard regression model, quantile regression (Koenker
and Basset, 1978) enables one to go beyond the study of the conditional mean
E(y|X = x), obtained by applying least squares to a regression equation y =
Xβ + u, and investigating the whole conditional distribution F (y|X = x) by
estimating its quantiles, thus obtaining a more general picture of the behav-
iour of the data at hand. In effect, quantile regression techniques have been
used extensively in areas such as microeconometrics with great success [see, for
instance, Powell (1994) for a thorough review of the methods].

The standard approach in quantile regression is, as it is in classical lin-
ear regression, to specify a linear model y = Xβ + u and, when interested in
estimating a conditional quantile τ , assuming that the τ−th quantile of the er-
ror distribution is zero [see Buchinsky (1998) and Koenker and Hallock (2001)
for nice introductions]. Extensions to nonlinear models parallel those in least
squares methods. Although in early days computing the quantile regression es-
timator was a considerable burden, nowadays this is far from being an issue [see
Koenker and D’Orey (1987), and Portnoy and Koenker (1997) for developments
in computational methods]. Misspecification issues were addressed recently by
Kim and White (2002) − using the fact that any misspecification in the condi-
tional quantile is a form of conditional heteroskedasticity in the error term, thus
implying violation of the information matrix equality, their approach parallels
White (1980), but now in the L1−world.

There are situations, however, where the reasearcher would like to allow
data to "speak for themselves" instead of imposing a parametric specification
on the regression function. A classical example is in Engel curve estimation
[Bierens and Pott-Butter (1990), Blundell, Duncan, and Pendakur (1998), Blun-
dell Browning, and Crawford (2003)]. In this particular application, the use
of nonparametric techniques results in shapes hard to mimic using parametric
methods due to the flexibility offered by the former.

Given a pair of quantile regression curves, it might be of interest to compare
them in order to get a more accurate idea of the behaviour of the conditional
distribution F (y|X = x). In this paper we compare nonparametric quantile
curves by relating them through a parametric function φ which links them.
In the simplest case possible, φ is just a parallel shift, but general nonlinear
parameterizations are also allowed, subject to regularity conditions. Relaxing
the assumption of a parametric regression function specified a priori yields a
more general method − less prone to specification error and more suited to
deal with situations where the researcher has no idea about how the regression
equation should be specified.

The paper is divided as follows. In Section 2 I briefly discuss quantile re-
gression techniques and some potential problems of the standard model, such as
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the inconsistency result coming from heteroskedasticity. Section 3 presents the
model and discusses identification, estimation, and testing. Section 4 illustrates
the method by estimating quantile Engel curves, whereas Section 5 concludes.
Proofs and derivations are deferred to the Appendix.

2 Comparing Quantiles

Consider an independent and identically distributed random vector (X,Y ),
where both X and Y are real-valued, and whose realizations are denoted by
(x, y). A parametric linear quantile regression model reads

yi = xiβ + ui

by assuming that the q−th quantile of ui is zero (0 < q < 1), one obtains
the q − th quantile of F (y|X = x). One key assumption of the model above is
the linearity of the conditional quantile function, not always supported by the
data. An immediate consequence of this specification is the homoskedasticity
of the conditional distribution − besides being linear, the quantiles are also
parallel to each other − a rather stringent assumption in many situations. Vio-
lating the null of homoskedasticity is much worse in this case than in the least
squares world since, instead of raising only efficiency issues, heteroskedasticity
in quantile regression models implies inconsistency of the parameter estimates.
This is explored by Kim and White (2002) who, based on this fact, propose
specification tests for quantile regression. Given the possible pitfalls involved
in misspecifying the regression model, one may well advocate the use of general
nonlinear specifications of the regression function, but this might involve more
knowledge about the phenomenon under study that what researchers typically
have.

In this paper we attempt to avoid misspecification issues in quantile regres-
sion by estimating nonparametric quantile curves. Nonparametric techniques
have been applied to a variety of problems and offer a great deal of flexibility, as
opposed to traditional parametric methods. The price to be paid is a slower rate
of convergence, thus the need of larger samples when compared to parametric
techniques but, depending on the type of application, the benefits might well
outweigh the costs.

Given a set of quantile curves, one has a broad picture of how the conditional
distribution F (Y |X = x) behaves. It might also be of interest to investigate how
the different quantiles relate eg. how does heterogeneity behave for different val-
ues of X, in particular, whether the quantile curves are parallel. Alternatively,
one might be interested in the behaviour of the tails of the distribution, giving
special attention to either lower or upper quantiles, as in finance and hidrology,
respectively. In all these examples, the fundamental question summarizing the
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different interests is whether, and how, the different quantiles relate, and what
drives the relationship among them.

Recently, Koenker and Xiao (2002) investigated the relation between the
same quantile, say q, of two distributions. In the context of the treatment-
efffects problem, they compare the same quantile of the distribution of the
treated and non-treated, assuming the regression models are linear. In what
follows, however, we investigate the features of a conditional distribution by
studying how its (nonparametrically estimated) quantiles relate. To fix ideas,
consider our application, which uses data from a sample of households. The
data consists of a cross section of UK households reporting their expenditure
patterns. The Engel relation compares the expenditure level of a household to
the expenditure shares of different (categories of) goods purchased. However,
the widely used Engel curve is a conditional mean of budget shares given expen-
diture levels, thus neither giving a broad picture of the whole distribution, nor
accounting properly for the huge asymmetry in the data, besides being subject
to be driven by outlying observations.

Nonparametric Engel curves have been studied extensively in the literature
[see Bierens and Pott-Butter (1990) for a seminal contribution, and Blundell,
Duncan, and Pendakur (1998), and Blundell Browning, and Crawford (2003)
for recent studies] and shown to have desirable properties when compared to
their parametric counterparts. Estimating nonparametric quantile curves is
then expected to bring together the flexibility of nonparametric methods and
the broader picture enabled by using quantile methods. Once the quantile Engel
curves are estimated, they are linked by using suitable parameterizations in
order to study whether − and how − they relate. For instance, comparing two
quantile curves of the distribution of household budget shares conditioned on
expenditure levels would provide insights on how consumer heterogeneity evolves
for each different good under study, and whether heterogeneity is related to the
expenditure level.

3 The Model

The model we consider can be summarized in a two-stage procedure. The
first stage consists on the estimation of nonparametric quantile curves. Then,
given a parameterization linking the quantile curves, the second step consists
on estimating the associated parameter vector, θ.

The first stage consists on estimating nonparametric quantile curves. To this
end, consider the regression model

wij = mqj (xi) + uij , i = 1, ..., N, j = 1, 2
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where (X,W ) is an independent and identically distributed random vector,
where both X and W are real-valued, and whose realizations are denoted by
(x,w) and with the qj−th quantile of uj being zero (0 < qj < 1).

The qj − th quantile (local linear) regression estimator at the point x0 is
defined as

mqj (x0) ≡ a0 = arg mina0,a1

1

N

N

i=1

ρqj (t).K
xi − x0
b

where ρqj (.) is the check function, with t = |wij−a0−a1.(xi−x0)|.+(2qj−
1).(wij − a0 − a1.(xi − x0)).

Early approaches to this estimation problem were proposed by Härdle and
Gasser (1984), and Tsybakov (1986) for the local constant fitting method ie.
a1 = 0. More recently, Chaudhuri (1991) and Welsh (1996) consider the local
polynomial case, which exhibits better properties at the boundary of x.

In the second stage we investigate whether the quantile curves can be related
by means of a parametric transformation φ. Put formally, we consider the model

mq1(xi) = φ(θ,mq2(xi), yi) + ei, i = 1, ..., N (1)

where mq1(xi) and mq2(xi) are estimates of the quantile curves at the point
xi, φ is a parameterization linking the quantile curves, θ is the parameter vector
of interest, yi is a set of explanatory variables, and ei is an error term.

In a related paper, Härdle and Marron (1990) investigated the relation be-
tween two nonparametric (mean) regression functions, establishing the asymp-
totic normality of the parameter vector of the function linking the curves. In
their study, however, they do not aim at explaining what actually drives the
relation between the curves, not considering explanatory variables yi, besides
restricting themselves to an affine φ ie. a pure location-scale shift model.

Example (Pure location shift). The simplest case is the pure (location)
shift viz.

mq1(xi) = α0 +mq2(xi) + ei, i = 1, ..., N

where α0 ≡ α0(q1, q2) is the shift parameter depending on quantiles (q1, q2).

The pure location shift model reflects a situation where the quantile curves
− regardless of their shapes − are parallel shifts of one another.

Even such a simple model as the pure location shift sheds light on interesting
questions. For instance, given J quantile curves and two curves j and j∗, one
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might be interested in testing wether α0 ≡ α0(qj , qj∗) = α0(|qj−qj∗ |), which can
be phrased as whether the parallel shifts are of the same magnitude regardless
of the quantiles considered.

Example (Location shift). A slightly more general case is given by

mq1(xi) = α0 + yiα1 +mq2(xi) + ei, i = 1, ..., N

where yi is a k−dimensional column vector of variables one believes should
account for the parallel shift − in particular, yi = xi.

Location shifts can well be thought of as too simplistic to explain the inter-
action among quantile curves, so that we consider other cases of interest.

Example (Location-scale shift). Introducing a scale component in the
parameterization allows for the quantile curves to drift apart from each other
as the covariate values change. This allows for an heteroskedastic behaviour of
the distribution, conditional on the value taken by the covariate. As before, it
might be of interest to investigate what makes the curves drift apart, so that
we write the location-scale shift model as

mq1(xi) = α0 + yiα1 + (β0 + yiβ1).mq2(xi) + ei, i = 1, ..., N

In what concerns estimation of the parameter vector θ, a standard way of
tackling the problem would be to assume the error term ei in (1) to be mean
zero and then consider its (weighted) integrated squared distance. There are,
however, two reasons to consider alternatives to this approach. First, in the case
of highly asymmetric distributions, one might be willing to consider a broader
view of the picture than the conditional mean. Second, in the case of outlying
observations, squared distances are known not to be robust, being driven by
these outlying observations. For instance, in our application, it is known a
priori that the data under study are highly asymmetric, possibly with outlying
observations in the lower and, especially, higher expenditure levels. This is
further documented and discussed in the empirical section.

It then follows that we consider a quantile regression problem also in the
second stage of our procedure. The corresponding moment condition1 is

1A particular case of which is given by

GτN (θ,m) ≡
1

N

N

i=1

τ − 1

2
+
1

2
sign [mq1 (xi)− φ(θ,mq2 (xi), yi)] .Dθφ(θ,mq2 (xi), yi).w(xi),

using the empirical measure.
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Gτ
N(θ,m) ≡ τ − 1

2
+
1

2
sign [mq1(xi)− φ(θ,mq2(xi), yi)] .Dθφ(θ,mq2(xi), yi).w(xi).dx

where w(xi) is a weighting function which can be used for trimming obser-
vations in regions of data scarcity, where kernel estimates are expected to be
rather unstable.

The estimator of θ is then defined as

θ = argmin
θ∈Θ

Gτ
N(θ,m) .Ω

−1.Gτ
N(θ,m)

where Ω−1 is a weighting matrix.

Asymptotic properties of this general class of estimators have been studied
in Andrews (1994), Newey (1994) and, more recently, by Chen, Linton, and van
Keilegom (2003, CLK hereafter).

Example (Location-scale shift). The moment condition in this case reads

Gτ
N(θ,m) ≡ τ − 1

2
+
1

2
sign [mq1(xi)− α0 − yiα1 − (β0 + yiβ1).mq2(xi)] .zi.w(x).dx

with zi = 1 yi mq2(x) yi.mq2(x) .

In what follows I discuss identification, estimation, and testing issues.

3.1 Identification

Identification is verified by checking whether the population moment condition
Gτ (θ,m) is zero at (θ,m) = (θ0,m0), and that its derivative Hτ

1 (θ,m) is non-
zero at (θ0,m0) = (θ,m) on a non-negligible set.

As shown in the Appendix,

Gτ (θ,m) = E τ − 1
2
+
1

2
sign(ei) .Dθφ(θ,mq2(xi), yi).w(xi)

now setting (θ,m) = (θ0,m0) one obtains that it is zero givenE [Dθφ(θ,mq2(xi), yi)]
bounded, continuous and of full (column) rank, and w(.) bounded . Moreover,

Hτ
1 (θ0,m0) = −1

2
E [fe(0|z).Dθφ(θ0,m0q2(xi), y0i).Dθφ(θ0,m0q2(xi), y0i) .w(xi)]
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which is negative definite given E [Dθφ(θ0,m0q2(xi), y0i)] bounded, continu-
ous, and of full (column) rank in a neighbourhood of the true parameter value,
a bounded weighting function, and an error density bounded away from zero.

In what follows, these conditions will be assumed for the general case, al-
though I carefully discuss and justify them for the specifications we adopt in the
empirical section, showing that they imply mild restrictions easy to be verified
in practice.

3.2 Estimation

The estimation problem can be understood as a two-stage GMM problem, with
the first stage consisting on the estimation of nonparametric quantile regression
functions, and the second, on the minimization of a chosen distance between
these two curves, given a pre-specified parameterization linking them.

The moment condition of the second stage is given by

Gτ
N(θ,m) ≡ τ − 1

2
+
1

2
sign [mq1(xi)− φ(θ,mq2(xi), yi)] .Dθφ(θ,mq2(xi), yi).w(x).dx

The estimator of θ is then defined as

θ = argmin
θ∈Θ

Gτ
N(θ,m) .Ω

−1.Gτ
N(θ,m)

where Ω−1 is a weighting matrix.

The following result establishes the asymptotic normality of θ. It relies on
methods developed in CLK and holds under mild primitive conditions which
are discussed below. As is usual in quantile regression methods, boundedness
conditions on the error densities are imposed, besides smoothness of the non-
parametric quantile regression functions. The conditions on the kernel and the
bandwidth are standard, and the smoothness condition is imposed on the pop-
ulation instead of the sample moment condition.

Proposition. Assume that:
1. The compactly supported variable x has absolutely continuous density

f(.) bounded away from zero and infinity.
2. The nonparametric quantile regression mqj (.) is k times differentiable

with respect to x on its support in a neighbourhood of the true parameter value
θ0.
3. The bandwidth sequence {bn} is such that Nb3N

log N →∞ and Nb4N → 0.

4. The kernel function K(.) of order k is a symmetric pdf with support
[−1, 1].
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5. Each of the error terms uj , j = 1, 2 and ε are independent, independent
of each other and of finite variance. The error densities fuj (.), j = 1, 2 and
fε(.) are absolutely continuous, and bounded away from zero and infinity.
6. The moment function Gτ (θ,m) is twice continuously differentiable in

(θ,m), and the derivatives E ∂Gτ (θ,m)
∂θ and E ∂2Gτ (θ,m)

∂θ2
are bounded, con-

tinuous and of full (column) rank in a neighbourhood of the true parameter
value.
7. The weighting function w(x) is bounded, non-negative, and non-identically

zero.
Then the asymptotic distribution of θ is

√
N θ − θ0 →d N (0,Φ) , with Φ = (Hτ

1 )
−1 .V τ

1 . (H
τ
1 )
−1

where Hτ
1 is the derivative of the moment function with respect to the pa-

rameter θ, and V τ
1 is the variance of the moment conditions plus the variance

of their functional derivatives evaluated at the direction [m−m0].
Proof. See Appendix.

Example (Location-scale shift continued). The moment condition for
the location-scale shift model reads

Gτ
N(θ,m) ≡ τ − 1

2
+
1

2
sign [mq1(xi)− α0 − yiα1 − (β0 + yiβ1).mq2(xi)] .zi.w(x).dx

with zi = 1 yi mq2(x) yi.mq2(x) . As shown in the Appendix, the
covariance matrix takes the sandwich form, Φ = (Hτ

1 )
−1 .V τ

1 . (H
τ
1 )
−1, where

Hτ
1 (θ0,m0) = −E [fε(0|z).zizi.w(x)]

and

V τ
1 = E[G

τ
N(θ0,m0).G

τ
N(θ0,m0) +H

τ
2N(θ0,m0).H

τ
2N(θ0,m0).[m−m0]]

The outer terms have the same form as in standard quantile regression,
whereas the inner term is somewhat different due to the Hτ

2N terms, which
account for the preliminary nonparametric estimation step. This can be un-
derstood as the "price to be paid" for having used nonparametric estimation
beforehand. The components of V τ

1 are

Gτ
N(θ0,m0) ≡ τ − 1

2
+
1

2
sign(vi0 − zi0θ) .zi0.w(xi).dx

with v = mq1(x1) ... mq1(xN) , and

Hτ
2N(θ,m)[m−m0] =

⎡⎢⎢⎣
δ(εi).{ζ1 − (β0 + xiβ1).ζ2}.w(xi).dx
xi.δ(εi).{ζ1 − (β0 + xiβ1).ζ2}.w(xi).dx

(ζ2.sign(εi) +mq2(xi).δ(εi).{ζ1 − (β0 + xiβ1).ζ2}) .w(xi).dx
(xi.ζ2.sign(εi) + xi.mq2(xi).δ(εi).{ζ1 − (β0 + xiβ1).ζ2}) .w(xi).dx

⎤⎥⎥⎦
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where δ(.) is the delta function, obtained by differentiating the sign function,
and

ζj = mqj (xj)−mqj (xj) =
1

fuj (0)
.
1

Nj

Nj

i=1

[qj − 1{uj ≤ 0}] , j = 1, 2

Discussion of the Conditions.

I now discuss the conditions with special attention to the application. Condi-
tion 1 amounts to assuming that the logarithm of total expenditure has compact
support and density bounded away from zero. But it is certainly bounded below
from zero, so that it remains assuming it has an upper bound, a mild restriction.
Conditions 2, 4, and 6 are standard regularity conditions, requiring smoothness
of the preliminary nonparametric step. Note that smoothness is imposed on
the population rather than the sample moment condition, a much weaker re-
quirement. Condition 3 is needed in order to obtain uniform consistency in the
first stage estimation. Condition 5 is a standard regularity condition in quantile
regression, and is needed in order to obtain a well-defined covariance matrix.
Condition 6 is immediately satisfied, since 0 < mqj (.) < 1 for every x. Con-
dition 7 is satisfied by a trimming function such as the indicator function or
by a function of the density of x, which may be of use to eliminate unstable
estimates.

3.3 Hypothesis Testing

Given estimates θ of θ, it may be of interest to test whether the model can
be reduced. Assuming the existence of a θ ∈ Θ such that mq1(x) = mq2(x),
consider the general nonlinear null hypothesis

H0 : ϕ(θ) = 0

against the two-sided alternative

H1 : ϕ(θ) = 0

The rationale to obtain the asymptotic distribution of the test stems from
the classical Wald testing principle. Once established that θ →d N (θ0,Φ),
where →d stands for convergence in distribution, under the null one obtains
ϕ(θ)→d N 0,Dθϕ(θ).Φ.Dθϕ(θ) using the delta method, so that

W = ϕ(θ). 0,Dθϕ(θ).Φ.Dθϕ(θ)
−1
.ϕ(θ) →d χ2r
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In practice, when calculating the test statistic, Φ is replaced with a consistent
estimate Φ. This generates a decision rule according to which the null is rejected
whenever W exceeds the (1 − γ)−th percentile of the χ2r distribution, given a
significance level γ.

Example. As in the application, we consider the linear case. More specif-
ically, given two estimated quantile curves of the Engel relation, one might be
interested in testing whether the covariate x has any explanatory power in what
regards the joint behaviour of mq1(.) and mq2(.) ie. α1 = β1 = 0. Further,
one might be interested in testing whether one quantile curve is just a shifted
version of the other ie. α1 = β1 = 0 and β0 = 1. These tests can be written as

H0 : Rθ − c = 0
against

H1 : Rθ − c = 0
where R, θ, and c are of dimensions (r×p), (p×1), and (r×1), respectively,

r being the number of restrictions involved. The test statistic then reduces to

W = (Rθ − c).(RΦR )−1.(Rθ − c) →d χ2r

4 Application

In this section we apply the above methodology to compare conditional quantiles
of the Engel relation, which expresses the budget share spent on a particular
good (or group of goods) as a function of the expenditure level. Engel curves
can be used to classify goods into luxuries, necessities, and inferior goods [see
Deaton and Muellbauer (1980) for a thorough discussion]. Luxuries are goods
that take up a larger budget share for better-off households, the opposite holding
for necessities, whereas inferior goods are those the purchase of which decreases
absolutely, and not only in relative terms, as the expenditure level increases.

To account for the fact that nonparametric tests might perform poorly even
for samples of moderate size, the test statistics will be computed not only from
the original sample, but also from its bootstrapped version. By doing so one
should expect these problems to be mitigated, given the connection of the boot-
strap and higher-order asymptotic expansions.

In what regards the Engel relation, one widely used functional form is the
Working-Leser specification

wij = mj(ln xi) + uij
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where wij is the budget share of the j− th good for individual i, ln xi is the
natural logarithm of total expenditure, and uij is an error term usually assumed
to satisfy E(uij |xi) = 0.
To illustrate the method the 1980-82 British Family Expenditure Survey

(FES) dataset2 is used, as in Blundell, Duncan and Pendakur (1998, BDP here-
after). For this study only the subset of households having only one child is
considered, resulting in 594 observations3. The FES considers six broad cat-
egories of goods - food, domestic fuel, clothing, alcohol, transport and other
goods. Total expenditure and income are measured in British pounds (£) per
week. Table 1 displays some sample statistics.

TABLE 1 - Sample Statistics of the FES data
Variable Mean Std Deviation JB p-value

food share 0.343 0.109 2 x 10−3

fuel share 0.093 0.053 < 2 x 10−16

clothing share 0.106 0.098 < 2 x 10−16

alcohol share 0.067 0.069 < 2 x 10−16

transport share 0.138 0.109 < 2 x 10−16

other goods share 0.253 0.104 < 2 x 10−16

total expenditure 94.74 45.84 < 2 x 10−16

total net income 134.22 70.45 < 2 x 10−16

log total expenditure 4.46 0.41 6 x 10−7

log net income 4.81 0.40 < 2 x 10−16

Note: The last column displays the p-values for the Jarque-Bera
test statistic.

Following the tradition in the literature, BDP assumed E(uij |xi) = 0 and
estimated mj(.) nonparametrically. Although nonparametric estimation of En-
gel curves yields desirable estimates, this only enables one to address the study
of the conditional mean of the Engel relation. Although theory is usually based
on the behaviour of the conditional mean of the budget shares given the expen-
diture level, it would be desirable to study its entire distribution, in order to
have a broader picture of the Engel relation. Nonparametric quantile regres-
sion allows one to investigate the behaviour of the distribution function of the
budget shares conditional on total expenditure, which is likely to give insights
on issues such as the behaviour of consumer heterogeneity conditioned on the
expenditure level. To address this issue, in what follows we provide estimates of
quantile Engel curves (QEC) comparing them in order to assess their behaviour

2Both the dataset and its documentation can be freely downloaded from the Journal of
Applied Econometrics webpage.

3Most of the computations were done writing programs using the quantreg library by
Roger Koenker, and the sm library by Adrian Bowman and Adelchi Azzalini, both for the
freely available software R.
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4.1 Estimating Mean Engel Curves

In this section we estimate Engel curves with the Working-Leser specification
wij = mj(ln xi) + uij under E(uij |xi) = 0 for all the six categories of goods.
Figures 1-6 display nonparametric Engel Curves estimated using the local linear
estimator with the Gaussian kernel.

In this particular application, bandwidth choice is an especially critical issue.
We started by using the cross-validation criterion available in the sm library.
When using the full sample, the cross-validation criterion computed over a grid
of points on the interval [0, 30] was usually remarkably flat, with the location
of (local) minima at very small values − resulting in very wiggly estimates far
from how one expects an Engel curve to behave − and global minima at very
large values. Given theses preliminary findings, we performed bandwidth choice
after trimming the data. After defining µ and σ2 as, respectively, the mean and
variance of the logarithm of total expenditure of a household, we defined the first
trimming function as 1{µ− 2σ < log(Total Expenditure)< µ+2σ}, where 1{.}
denotes the indicator function, and the second one as 1{µ − 1.5σ < log(Total
Expenditure)< µ+ 1.5σ}. Table 2 displays the results.

TABLE 2 - Bandwidths obtained using cross-validation
Food Fuel Clothing Alcohol Transport Other Goods

hfull sample − 0.7251 − 0.4738 − −
hµ±2σ 2.037 − − 0.1703 0.4264 0.2071
hµ±1.5σ 0.1172 0.5204 0.1226 0.1723 0.2459 0.1507

Note: "−" denotes non-convergence of the cross-validation criterion
to a global minimum in the interval [0, 30].

Once obtained the bandwidth values, we experimented the values by esti-
mating each Engel curve. In what regards the food Engel curve, the second and
third schemes yielded, respectively, over- and undersmoothed Engel curves −
a bandwith value of one still showed a high degree of oversmoothing, whereas
values between 0.5 and 0.75 showed a more satisfactory behaviour. For the fuel
Engel curve, the values obtained produced fairly similar (both of them satis-
factory) behaviour. The bandwidth obtained for the clothing Engel curve was
expectedly too low, resulting in a very wiggly estimate, the same happening for
the estimates of the "other goods" Engel curve. For the both the alcohol and
the transport Engel curves, the largest values generated reasonable estimates.

Given the above findings I estimate the Engel curves using bandwidths 0.5
and 0.75 for all categories of goods. As one can see from Figures 1-6, in some
cases one cannot even discern between the thin (bandwidth = 0.5) and the
thick lines (bandwidth = 0.75). Actually, their behaviour tends to differ in a
noticeable way for extreme observations only.
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FIGURES 1-6 ABOUT HERE

As shown in Figures 1-6, the shape of the mean Engel curves for food, fuel,
and clothing are downward-sloping, although the slope of the former is much
more remarkable. This reflects the fact that they are considered necessities.
Visual inspection of the alcohol mean Engel curve suggests a non-monotonic
relation − slightly upward-sloping up to a threshold expenditure level, and
slightly downward-sloping thereafter. On the other hand, the mean Engel curves
for transport and "other goods" reflect the fact that they are luxury goods.
The upward-sloping "other goods" Engel curve can be interpreted as "taste for
variety/diversity", whereas the one for transport can be seen as a consequence
of the fact that better-off households would be willing to use private means of
transportation instead of public transport.

It is worth noticing, however, that due to scarcity of observations, estimates
for the higher expenditure levels seem to be heavily influenced by outliers, re-
sulting in somewhat abrupt changes in shape in this region. This provides
justification for the introduction of trimming or weighting observations when
estimating θ, so as to exclude those extreme observations and obtain estimates
both more stable and in consonance of what one would expect from economic
theory.

4.2 Estimating Quantile Engel Curves

Having investigated the behaviour of the conditional mean of the Engel relation
we now investigate their quantiles. In what follows we consider a measure of
dispersion of the distribution of budget shares conditional on expenditure levels
by estimating its 75th and 25th quantiles4. Intuitively, this can be seen as a way
to study heterogeneity of expenditure patterns among households. Following our
notation, we set q1 = 0.75 and q2 = 0.25 and compare the quantile curves testing
whether the location-scale shift can be explained by the expenditure level.

Bandwidth choice seems to play a much bigger role in quantile estimation
than when estimating mean Engel curves. Bandwidth values between 0.5 and
0.75 usually resulted in extremely wiggly estimates, especially for the upper
quantile curve mq1(.). After experimenting with several values we decided to
use bandwidth values 1 and 1.5. This amount of oversmoothing is certainly

4More extreme quantiles were also experimented, but were not as well behaved as the ones
chosen. It seems much harder to find nonparametric estimates with desirable properties as
one estimates more extreme quantiles. In particular, the amount of oversmoothing needed is
remarkable, especially due to the scarcity of data in the upper quantiles. The figures with
the quantile Engel curves illustrate this issue, whereas Welsh (1996) discuss similar findings
in different applications.

14



responsible for delivering estimates much closer to linearity than one would ex-
pect but, to our knowledge, theory is silent about how to implement sensible
choices in such a setting. Figures 7-12 display estimates for the 25th and 75th
quantiles (together with the 50th quantile, for the sake of completeness), which
were computed using the Epanechnikov kernel. Thin lines are estimates ob-
tained using the smaller bandwidth (bandwidth =1), whereas thick lines are
estimates obtained using larger bandwidth values (bandwidth=1.5). Vertical
lines show the threshold values obtained by applying the trimming function
1{µ − 2σ < log(Total Expenditure)< µ + 2σ} to the data, which eliminates 2
and 20 observations in the lowest and highest income levels, repectively. Inter-
estingly, as opposed to parametric quantile regression models, the nonparametric
quantile curves do not cross, for a given value of the bandwidth parameter.

FIGURES 7-12 ABOUT HERE

By estimating QEC’s one is able to address heterogeneity issues instead of
being restricted to measures of central tendency such as the conditional mean.
In the case of the food share, for instance, one can observe that heterogenenity
tends to slightly decrease with the expenditure level, instead of restricting one-
self to the fact that the mean (or median) Engel curve is downward-sloping. For
the fuel share, the mean Engel curve is also downward-sloping, but heterogeneity
tends to decrease at a much faster rate.

In what regards the alcohol budget shares, inspection of the QEC’s sug-
gests that there is a non-monotone relation between the 25th and 75th quantile
curves, whereas the transport quantile curves seem to be parallel. For the "other
goods" relation, the quantile curves tend to drift apart as the expenditure level
increases, suggesting an increase in heterogeneity. The more interesting behav-
iour of how considering only the mean Engel curve can be misleading seems to
come for the clothing relation − although the mean Engel curve is downward-
sloping, the quantile curves are upward-sloping, and visual inspection of their
shapes suggests that heterogeneity tends to increase with the expenditure level.
Moreover, the slight departures from linearity in most of the cases can be at-
tibuted to the great deal of oversmoothing imposed.

4.3 Comparing Quantile Engel Curves

Once estimated the pair of quantile curves, the next step is to investigate the
relation between them. Our strategy is as follows. First, we consider ei =
mq1(xi)−α0−xiα1− (β0+xiβ1).mq2(xi) ie. the location-scale shift model (or
the "full model"). We then focus on whether this specification can be reduced
to a more parsimonious one. Specifically, we are interested in testing whether
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(i) α1 = β1 = 0 ie. whether the expenditure level can explain the changes in
heterogeneity; and (ii) α1 = β1 = 0 and β0 = 1 ie. whether the quantile curves
can be seen as parallel shifts of one another.

The parameter vector θ ≡ (α0,α1,β0,β1) is then estimated for each pair of
quantile curves. For all of the following computations, the trimming function
1{µ−2σ < log(Total Expenditure)< µ+2σ} (illustrated in Figures 7-12) is used.
Given the need of nonparametric estimation in the preliminary step in order to
obtain estimates of θ, one might well expect the asymptotic covariance matrix to
be poorly estimated for small samples. In order to mitigate this inconveniences,
we compare the asymptotic values with bootstrapped ones [see Horowitz (2001)
for a thorough discussion and Buchinsky (1994, 1998) for its application to
quantile regression] using the Design Matrix Bootstrap Estimator5. Table 3
displays the results for the full model.

The results in Table 3 show a number of interesting results:

LS1. for a relatively small sample such as ours (less than 600 observations),
the bootstrap delivers much sharper standard errors than the asymptotic ones;
LS2. when taken individually, the coefficients α1 and β1 are not found to

be statistically significant for the food, fuel, clothing, alcohol, and transport
relationships. If this is confirmed when testing the null H0 : α1 = β1 = 0, this
suggests that the expenditure level cannot explain neither location not scale
shifts of the QEC’s;
LS3. the coefficients α1,β0,β1 of the "other goods" relation are all found to

be statistically significant, reflecting changes in heterogeneity as the expenditure
level increases;
LS4. when taken individually, the estimates for β0 are not found to be sta-

tistically different from unity for any of the relationships. As a result, assuming
the joint null H0 : α1 = 0,β1 = 0 is not rejected, one cannot reject that the
QEC’s (for clothing, alcohol, and transport) are parallel shifted versions of one
another.

5As opposed to the Error Bootstrap Estimator, the Design Matrix Bootstrap Estimator
does not rely on the independence assumption to yield a consistent estimator of the asymptotic
covariance matrix [see Buchinsky (1998) for a thorough discussion]. The basic idea is to
randomly sample (y∗i , x

∗
i ) with replacement from the original sample in order to form B

(artificial samples) of size N (B = 1000 in this application). After obtaining m∗qj ,b(.), j =

1, 2 and θ
∗
b , b = 1, ..., B, the bootstrap estimator of the covariance matrix Φ is obtained as

ΦB = N
B

B

b=1
(θ
∗
b − θ

∗
)(θ
∗
b − θ

∗
) . Although one could use θ

∗
= 1

B

B

b=1
θ
∗
b as the pivotal value,

Buchinsky shows that plugging θ yields better small-sample properties, and this is followed in
our application.
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TABLE 3 - Parameter Estimates - Full Model
Variable α0 α1 β0 β1

food share 0.0429 0.0000 1.2693 −0.0002
(19.68) (3.73) (66.09) (12.48)
[0.144] [0.046] [0.631]∗∗ [0.174]

fuel share 0.0001 −0.0029 1.9863 0.0388
(298.75) (67.49) (5110.78) (1156.41)
[0.043] [0.002] [0.680]∗∗∗ [0.030]

clothing share 0.0697 −0.0007 2.4797 0.0117
(30.79) (7.03) (880.70) (199.26)
[0.006]∗∗∗ [0.018] [1.028]∗∗ [0.663]

alcohol share 0.06776 −0.0000 2.4842 −0.0018
(100.81) (22.93) (8037.51) (1819.10)
[0.029]∗∗ [0.010] [1.960] [0.842]

transport share 0.1461 −0.0006 0.5930 0.0177
(237.28) (47.07) (4258.30) (848.47)
[0.031]∗∗∗ [0.005] [0.743] [0.110]

other goods share −0.1900 −0.0175 2.7060 0.0971
(595.81) (134.94) (3226.86) (730.36)
[0.171] [0.004]∗∗∗ [0.911]∗∗∗ [0.019]∗∗∗

Note: (i) Standard errors of the estimates appear in parenthe-
ses, whereas their bootstrapped versions (B = 1000) appear inside
square brackets. (ii) "∗∗∗","∗∗", and "∗" denote individual rejection
of α0 = 0, β1 = 0, α1 = 0, and β0 = 0, at the 1, 5, and 10%
significance levels, respectively.

In what follows we explore the plausibility of LS2-4 by testing whether the
location-scale shift model can be reduced.

4.3.1 Can Expenditure Explain Shifts ?

Given the results for the full model, the first natural question is whether expen-
diture can explain the changes in heterogeneity. This can be done by considering
the null H0 : α1 = 0,β1 = 0 of "pure" location-scale shifts against a two-sided
alternative. Table 4 displays the results.
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TABLE 4 - Testing for Pure Location-Scale Shifts
Variable H0: α1= 0,β1= 0

food share 1.5 x 10−5

[1.75]
fuel share 3.3 x 10−8

[0.002]
clothing share 3.4 x 10−9

[1.70]
alcohol share 9.4 x 10−13

[1.75]
transport share 4.3 x 10−10

[1.34]
other goods share 1.8 x 10−8

[13.47]∗∗∗

Note: (i) Bootstrapped versions (B = 1000) of the test statistics
appear inside square brackets. (ii) Rejection of the null, should it
occur, is denoted by ∗, ∗∗, and ∗∗∗, which denote rejection at the 10,
5 and 1% significance level, respectively.

From the results of Table 4, the only category of goods for which the null of
the pure location-scale shift model is rejected is the "other goods" relation, for
which − as already shown in Table 3 − the expenditure level plays a key role in
explaining the location-scale shift. For the remaining relations, the main lesson
from Table 4 is that changes in heterogeneity − should they occur − cannot be
explained by the expenditure level.

4.3.2 Are There Any Parallel Quantile Curves ?

The second natural question one might ask is whether the quantile curves can
be seen as parallel shifts of one another ie. the null H0 : α1 = 0,β0 = 1,β1 = 0
against a two-sided alternative. We investigate the null of parallel quantile
curves for the remaining categories other than the "other goods" one. Table 5
displays the results.
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TABLE 5 - Testing for Parallel Quantile Engel Curves
Variable H0: α1= 0,β0= 1,β1= 0

food share 1.5 x 10−3

[2.95]
fuel share 2.5 x 10−5

[0.016]
clothing share 2.5 x 10−6

[5.44]
alcohol share 3.1 x 10−8

[3.84]
transport share 8.6 x 10−9

[0.61]

Note: (i) Bootstrapped versions (B = 1000) of the test statistics
appear inside square brackets. (ii) Rejection of the null, should it
occur, is denoted by ∗, ∗∗, and ∗∗∗, which denote rejection at the 10,
5 and 1% significance level, respectively.

From the results in Table 5 one cannot reject the null according to which
the quantile curves are parallel (location) shifts of one another, considering the
standard significance levels. In other terms, one cannot reject the null of a
"pure" location-scale shift model. We then estimate this specification for all
categories of goods for which the null of parallel curves is not rejected. For
each pair of quantile curves we consider ei = mq1(xi)−α0−β0.mq2(xi) and the
corresponding estimation problem. Table 6 displays the results.

The estimates in Table 6 once again allow us to confront asymptotic and
bootstrapped standard errors − which are connected to higher-order asymptot-
ics, thus reflecting more accurately the properties of the estimators. In general,
asymptotic values would lead to rejection of the null of parallel quantile curves,
except for the transport relation, whereas bootstrapped estimates would not
reject the null, suggesting no changes in heterogeneity as expenditure increases.
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TABLE 6 - Parameter Estimates - Pure Location-Scale Shift Model
Variable α0 β0

food share 0.0430 1.2685
(0.0644) (0.0039)∗∗∗

[0.0168]∗∗ [0.9795]
fuel share −0.0126 2.1562

(0.2089) (0.2270)∗∗∗

[0.0518] [1.5919]
clothing share 0.0668 2.5290

(0.1125) (0.2381)∗∗∗

[0.0159]∗∗∗ [1.8469]
alcohol share 0.0677 2.4762

(0.1746) (0.2771)∗∗∗

[0.0221]∗∗∗ [1.8461]
transport share 0.1433 0.6744

(0.0784)∗ (0.2055)∗∗∗

[0.0797]∗ [0.3246]∗∗∗

Note: (i) Standard errors of the estimates appear in parenthe-
ses, whereas their bootstrapped versions (B = 1000) appear inside
square brackets. (ii) "∗∗∗","∗∗", and "∗" denote individual rejection
of α0 = 0 and β0 = 0, at the 1, 5, and 10% significance levels,
respectively.

5 Conclusion

In this paper we compare nonparametrically estimated conditional quantiles
by linking them using a parametric transformation and testing whether they
could be related as "location-scale shifts" of one another. Being nonparametric,
the quantile curves are less prone to misspecification than standard parametric
methods, besides offering more flexibility.

The method is illustrated with a microeconometric application. Using data
from a sample of UK households from the FES (Family Expenditure Survey),
we estimate and compare quantile Engel curves. That is, instead of restricting
ourselves to the (mean) Engel curve, we consider the Engel relation in a much
broader sense by analysing features of the distribution function of budget shares
conditioned on (the logarithm of) the expenditure level. This enables one to test
the relation between different quantiles in order to study how household hetero-
geneity evolves as the expenditure level increases, as well as whether changes in
heterogeneity can be explained by the expenditure level.

When applying the methodology to the FES dataset, the main findings are
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(i) for food, fuel, clothing, alcohol, and transport, the expenditure level
cannot explain the shifts of the quantile budget shares;
(ii) for the same five categories of goods in (i) for which the expenditure

cannot explain the shift in the quantile curves, the null of parallel quantile curves
cannot be rejected, suggesting that heterogeneity does not change significantly
as the expenditure level increases;
(iii) for the "other goods" category, expenditure can explain the both the

loication and scale shifts of the quantile curves, thus reflecting the increase in
heterogeneity for better-off households.

The methods here presented combine results from quantile regression and
smoothing techniques, and can be extended to consider other problems of in-
terest in the quantile literature, such as quantile treatment effects, as in the
application of Koenker and Xiao (2002). This is left for further research.
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6 Appendix 1: The CLK Theorems

In what follows we denote the data by {Zi}, i = 1, ..., n, Zi = (xi, yi), with
support Z ⊂ Rd, the finite-dimensional compact parameter set by Θ ⊂ Rk,
the infinite-dimensional parameter set by M, assuming also that the latter is
a vector space of functions endowed with a pseudo-metric ||.||M (meaning that
||a(x) − b(x)||M = 0 does not necessarily imply a = b). The true finite- and
infinite-dimensional parameters are denoted respectively by θ0 ∈ Θ andm0 ∈M
and, given a matrix A, its norm is defined as ||A|| = (tr(A WA))1/2, with W
being a symmetric positive definite matrix.

We consider a non-randommeasurable vector-valued functionM : Rk×M→
Rp, p ≥ k, with G(θ,m) = E[g(Zi, θ,m)] such that ||G(θ,m0)|| attains its
minimum at θ = θ0, as well as a random vector-valued function GN : Rk×M→
Rp withGN(θ,m) = N−1

N

i=1
g(Zi, θ,m), andGN(θ,m0) close to G(θ,m0). Note

that smoothness assumptions are imposed only on G(θ,m) at (θ0,m0).

The estimation problem under consideration can be stated as follows: The
final aim is to obtain a two-stage estimator θ of a finite-dimensional parameter
θ0 ∈ Θ ⊂ Rp depending on some preliminary nonparametric estimates. In
the preliminary stage, infinite-dimensional parameters m are estimated, say,
nonparametric density or regression estimators. In the final stage, one obtains
θ of θ0 that depends on the previously estimated m and approximately solves
the problem min θ∈Θ||GN(θ,m)||. To develop the asymptotic theory, one will
need to differentiate G(θ,m) with respect to its arguments. Differentiating with
respect to θ is straightforward, but a different notion of differentiability is needed
for the infinite-dimensional part. For any θ ∈ Θ, G(θ,m) is said to be pathwise
differentiable at atm in the direction [m−m] if {m+τ(m−m) : τ ∈ [0, 1]} ⊂M,
and limτ→0[G(θ,m + τ(m −m)) −G(θ,m)]/τ exists, with the limit being the
pathwise derivative.

The conditions needed require the estimator θ to be an approximate min-
imizer of the sample criterion function, to be unique in a neighbourhood of
the true parameter value θ0, the uniform consistency of the preliminary non-
parametric estimator m (under the pseudo-metric ||.||M), as well as a sort of
stochastic equicontinuity condition.

CLK’s Theorem 1. Suppose that θ0 ∈ Θ satisfies G(θ0,m0) = 0, and that
1.1 - ||GN(θ,m)|| ≤ infθ∈Θ ||GN(θ,m)||+ op(1).
1.2 - For all δ > 0, there exists (δ) > 0 such that inf ||θ−θ0||>δn ||GN(θ,m0)|| ≥

(δ) > 0
1.3 - Uniformly for all θ ∈ Θ, GN(θ,m) is continuous [with respect to the

metric ||.||M] in m at m = m0

1.4 - ||m−m0||M = op(1)
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1.5 - For all sequences of positive numbers {δn} with δn = o(1),

sup
||GN(θ,m)−G(θ,m)||

1 + ||GN(θ,m)||+ ||G(θ,m)|| = op(1) (2)

where the sup is taken over ||θ − θ0|| < δn, ||m(x)−m0(x)||M < δn
Then,

θ − θ0 = op(1)

It is worth noticing that Condition (1.5) is implied by an alternative replacing
its fraction with ||GN(θ,m)−G(θ,m)||

For asymptotic normality, further requirement, besides the consistency of the
parameter vector, include regularity conditions on the derivatives of G(θ,m0).

CLK’s Theorem 2. Suppose that θ0 ∈ int(Θ) satisfies G(θ0,m0) = 0,
θ − θ0 = op(1), and that
2.1 - ||GN(θ,m)|| = inf ||θ−θ0||<δn ||GN(θ,m)||+op(N−1/2) for some positive

sequence δn = o(1).
2.2 - The ordinary partial derivative in θ of G(θ,m0), denoted H1(θ,m0),

exists in a neighbourhood of θ0, is continuous at θ = θ0, and is of full (column)
rank
2.3 - The pathwise derivative H2(θ0,m0) of G(θ,m0) exists in all directions

[m−m0] and satisfies

(i) ||G(θ,m)−G(θ,m0)−H2(θ,m0)[m−m0]|| ≤ c.||m−m0||2M
(ii) ||H2(θ,m0)[m−m0]−H2(θ0,m0)[m−m0]|| ≤ c ||θ − θ0||.o(1)

for all θ with ||θ − θ0|| = o(1), all m with ||m −m0||M = o(1), and constants
c, c ∈ [0,∞).
2.4 - With probability approaching one (wpa1), m ∈ M, and c.||m −

m0||2M = op(N
−1/2) uniformly over θ with ||θ − θ0|| = o(1).

2.5 - For all sequences of positive numbers {δn} with δn = o(1),

sup

√
N ||GN(θ,m)−G(θ,m)−GN(θ0,m0)||
1 +
√
N [||GN(θ,m)||+ ||G(θ,m)||]

= op(1) (3)

where the sup is taken over ||θ − θ0|| < δn, ||m(x)−m0(x)||M < δn
2.6 - For some finite matrix V1,

√
N (GN(θ0,m0) +H2(θ0,m0)[m−m0])→d N (0, V1)

Then,

√
N θ − θ0 →d N (0,Ω) , where Ω = (H1WH1)−1.H1WV1WH1.(H1WH1)−1
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Remark. Condition 2.5 is implied by the following condition

sup
√
N ||GN(θ,m)−G(θ,m)−GN(θ0,m0)|| = op(1)

with the sup taken over the same region as before. To verify Condition 2.5,
CLK establish a result relying on more primitive assumptions.

CLK’s Theorem 3. Suppose that each component gj of g = (g1, ..., gl)
takes the form gj(z, θ,m) = gcj(z, θ,m) + glcj(z, θ,m), and satisfies
3.1 - gcj(z, θ,m) is Hölder-continuous with respect to (θ,m) in the sense

|gcj(z, θ1,m1)− gcj(z, θ2,m2)| ≤ bj(z). ||θ1 − θ2||s1j + ||m1 −m2||sjM
for s1j , sj ∈ (0, 1], a measurable function bj(.) with E[bj(.)]r <∞, r ≥ 2
3.2 - glcj(., θ,m) is locally uniformly Lr(P )−continuous (r ≥ 2) with respect

to (θ,m) in the following sense

E sup
(θ∗,m∗):||θ∗−θ||<δ,||m∗−m||M<δ

|glcj(Z, θ∗,m∗)− glcj(Z, θ,m)|
1/r

≤ Kj .δsj

for all (θ,m) ∈ Θ ×M, all small positive value δ = o(1), and for some
constants sj ∈ (0, 1], Kj > 0.
3.3 - Θ is a compact subset of Rk, and ∞

0
logN( 1/sj ,M, ||.||M)d <∞

for j = 1, ..., l.
Then, for all positive δn such that δn = o(1),

sup
√
N ||GN(θ,m)−G(θ,m)−GN(θ0,m0)|| = op(1)

where the sup is taken over ||θ − θ0|| < δn, ||m(x)−m0(x)||M < δn.

Remark. It is worth mentioning that, as discussed in CLK, Condition
3.2 allows for discontinuous moment functions such as sign and indicator func-
tions of (θ,m) (CLK, pp. 1598). Moreover, sj = 1 correspond to the regular
case, when Condition 3.3 is readily verified. If sj < 1, then a higher degree of
smoothness of m is required, so that the class of admissible functionsM has to
be restricted (CLK, pp. 1598).

CLK also show that the bootstrap can provide consistent estimates of the
asymptotic variance. In what follows, let the superscript ∗ denote a probabil-
ity or moment computed under the bootstrap distribution conditional on the
original data set {Zi}Ni=1.

CLK’s Theorem B. Assuming that the conditions of CLK’s Theorem 2
hold with "in probability" replaced by "almost surely"; that conditions 2.2
and 2.3 hold with m0 replaced by m with ||m − m0|| = o(1); that H1(θ,m)
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is continuous [with respect to the metric ||.||M] in m at (θ0,m0). Assuming
further that the following bootstrap conditions hold
4B. With P ∗−probability tending to one, m∗ ∈ M, and ||m∗ − m||M =

oP∗(N−1/4)
6B.
√
N. G∗N(θ,m)−GN(θ,m) +H2(θ,m)[m∗ −m0] = N (0, V1)+oP∗(1)

Then,
√
N(θ

∗ − θ0) converges in distribution to a N (0,Ω) distribution in
P ∗−probability.
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7 Appendix 2: Verifying Conditions

In what follows we derive the asymptotic covariance matrix of θ and provide suf-
ficient conditions for asymptotic normality to hold. To estimate the parameter
vector θ we minimize the absolute distance between mq1(.) and mq2(.) allowing
for unequal weights or trimming through a suitably chosen weight function.

In what follows we compute the covariance matrix of θ. First note that

Gτ
N(θ,m) = τ − 1

2
+
1

2
sign [mq1(xi)− φ(θ,mq2(xi), yi)] .Dθφ(θ,mq2(xi), yi).w(xi).dx

The estimator of θ is then defined as

θ = argmin
θ∈Θ

Gτ
N(θ,m) .Ω

−1.Gτ
N(θ,m)

where Ω−1 is a weighting matrix.

Note that

Gτ
N(θ0,m0) = τ − 1

2
+
1

2
sign [m0q1(xi)− φ(θ0,m0q2(xi), y0i)] .Dθφ(θ0,m0q2(xi), y0i).w(xi).dx

converging to

Gτ (θ0,m0) = E τ − 1
2
+
1

2
sign(e0i) .Dθφ(θ0,m0q2(xi), y0i).w(xi)

We start by verifying consistency.

Condition 1.2 is verified by showing that Gτ (θ,m) is zero at (θ,m) =
(θ0,m0), and that H1 < 0 at θ = θ0 on a non-negligible set. But

Hτ
1N(θ0,m0) = −1

2
δ(m0q1(xi)− φ(θ0,m0q2(xi), y0i)).

.Dθφ(θ0,m0q2(xi), y0i).Dθφ(θ0,m0q2(xi), y0i) .w(xi).dx

+ τ − 1
2
+
1

2
sign(m0q1(xi)− φ(θ0,m0q2(xi), y0i)) .

.Dθθφ(θ0,m0q2(xi), y0i).w(xi).dx

which converges to

Hτ
1 (θ0,m0) = −1

2
E [fe(0|z).Dθφ(θ0,m0q2(xi), y0i).Dθφ(θ0,m0q2(xi), y0i) .w(x)]

26



which is negative definite given E [Dθφ(θ0,m0q2(xi), y0i)] bounded, continu-
ous, and of full (column) rank in a neighbourhood of the true parameter value
(Condition 6), a bounded weighting function (Condition 7), and an error density
bounded away from zero (Condition 5)

Condition 1.3 follows from smoothness of m (Condition 2).

Condition 2.4 of CLK is satisfied by Assumptions 3 and 4. In particular, by
K(.) is a symmetric pdf with support [−1, 1] - for instance, the Epanechnikov
kernel.

Condition 1.5 will be dealt with when discussing Condition 2.5.

To verify CLK’s Theorem 2, note that one needs H1, and V1, the asymptotic
covariance matrix described in condition 2.6. The former was obtained as

Hτ
1 (θ0,m0) = −E [fε(0|z).Dθφ(θ0,m0q2(xi), y0i).Dθφ(θ0,m0q2(xi), y0i) .w(x)]

Sufficient conditions for Condition 2.2 to be satisfied areE [Dθφ(θ,mq2(xi), yi).Dθφ(θ,mq2(xi), yi) ]
being of full rank in a neighbourhood of the true parameter value, and the error
density being bounded away from zero (Condition 6).

Condition 2.3 will be dealt with when considering Condition 2.6.

Condition 2.4 of CLK is satisfied by Assumptions 3 and 4. In particular, by
K(.) is a symmetric pdf with support [−1, 1] - for instance, the Epanechnikov
kernel.

To verify Condition 2.5 we use CLK’s Theorem 3. To check Conditions 3.1

and 3.2 of this result. First, define Gτ
N(θ,m) =

1
N

N

i=1
gi(θ,m), Then note that

|gj(θ∗,m∗)− gj(θ,m)| =
τ − 1

2 +
1
2sign(e

∗
j ) .Dθφ(θ

∗,m∗q2(xi), y
∗
j ).w(xj)

− τ − 1
2 +

1
2sign(ej) .Dθφ(θ,mq2(xi), yj).w(xj)

= τ − 1
2
+
1

2
sign(e∗j ) .Dθφ(θ

∗,m∗q2(xi), y
∗
j ).w(xj)

+ τ − 1
2
+
1

2
sign(ej) .Dθφ(θ,mq2(xi), yj).w(xj)

= τ − 1
2
+
1

2
sign(e∗j ) + Dθφ(θ

∗,m∗q2(xi), y
∗
j ) + |w(xj)|

+ τ − 1
2
+
1

2
sign(ej) + |Dθφ(θ,mq2(xi), yj)|+ |w(xj)|

The first and fourth terms are bounded by definition, whereas the third and
sixth term are bounded by Condition 7. The second and fifth terms are bounded
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by Condition 6. It then follows that Conditions 3.1 and 3.2 of CLK are satisfied
for sj = 1, Kj <∞. In what concerns the remaining condition we refer to the
remark after CLK’s Theorem 3 (or to CLK, pp. 1598) and argue that since
sj = 1, Condition 3.3 is satisfied. As a result, Condition 2.5 is satisfied.

To verify Condition 2.6 one needs to obtain V1. First consider

Gτ
N(θ,m) = τ − 1

2
+
1

2
sign(ei) .Dθφ(θ,mq2(xi), yi).w(xi).dx

Now recall that sign(ei0) = sign(m0q1(xi) − φ(θ0,m0q2(xi), y0i)) is a bino-
mial random variable with zero mean and unit variance. Thus, given ei indepen-
dent, of finite variance, and independent of x, applying a Central Limit Theorem
results in asymptotic normality of this term. The second term concerning 2.6
is Hτ

2 (θ0,m0)[m−m0]. Note that

Hτ
2N(θ,m)[m−m0] =

∂Gτ
N(θ,m+ γζ)

∂γ
|γ=0

where ζj =mqj −m0qj , j = 1, 2. But

Gτ
N(θ,m+ γζ) = τ − 1

2
+
1

2
.sign(mq1(xi) + γζ1 − φ(θ,mq2(xi) + γζ2, yi))

.Dθφ(θ,mq2(xi) + γζ2, yi).w(xi).dx

Differentiating with respect to γ yields

∂Gτ
N(θ,m+ γζ)

∂γ

=

1
2 .δ(mq1(xi) + γζ1 − φ(θ,mq2(xi) + γζ2, yi)).{ζ1 −Dγφ(θ,mq2(xi) + γζ2, yi).ζ2}

.Dθφ(θ,mq2(xi) + γζ2, yi).w(xi).dx
+ τ − 1

2 +
1
2 .sign(mq1(xi) + γζ1 − φ(θ,mq2(xi) + γζ2, yi))

.Dγθφ(θ,mq2(xi) + γζ2, yi).ζ2.w(xi).dx

setting γ = 0 results in

Hτ
2N(θ,m)[m−m0] =

1
2 .δ(mq1(xi)− φ(θ,mq2(xi), zi)).{ζ1 −Dγφ(θ,mq2(xi), zi).ζ2}

.Dθφ(θ,mq2(xi), zi).w(xi).dx
+ τ − 1

2 +
1
2 .sign(mq1(xi)− φ(θ,mq2(xi), zi))

.Dγθφ(θ,mq2(xi), zi).ζ2.w(xi).dx

evaluating at (θ,m) = (θ0,m0) in the direction m−m0 yields

Hτ
2N(θ0,m0)[m−m0] =

1
2 .δ(ei0).{ζ1 −Dγφ(θ,mq2(xi), yi).ζ2}.Dθφ(θ,mq2(xi), yi).w(xi).dx
+ τ − 1

2 +
1
2 .sign(ei0) .Dγθφ(θ,mq2(xi), yi).ζ2.w(xi).dx
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but the second term is zero, so that

Hτ
2N(θ0,m0)[m−m0] =

1

2
.δ(ei0).{ζ1−Dγφ(θ,mq2(xi), yi).ζ2}.Dθφ(θ,mq2(xi), yi).w(xi).dx

It then follows that

Gτ
N(θ0,m0) = τ − 1

2
+
1

2
sign [m0q1(xi)− φ(θ0,m0q2(xi), y0i)] .Dθφ(θ0,m0q2(xi), y0i).w(xi).dx

Hτ
2N(θ0,m0)[m−m0] =

1

2
.δ(ei0).{ζ1−Dγφ(θ,mq2(xi), yi).ζ2}.Dθφ(θ,mq2(xi), yi).w(xi).dx

where

ζj = mqj (xj)−mqj (xj) =
1

fuj (0)
.
1

Nj

Nj

i=1

[qj − 1{uj ≤ 0}] , j = 1, 2

the latter being the local Bahadur representation of Chaudhuri (1991). The
term Gτ

N(θ0,m0) + H
τ
2N(θ0,m0)[m − m0] is asymptotically normal with zero

mean and finite variance under regularity conditions such as fuj (.) and fε(.)
being bounded away from both zero and infinity and i.i.d. observations. The
corresponding covariance matrix V τ

1 is then obtained as

V1 = E (G
τ
N(θ0,m0).G

τ
N(θ0,m0) +H

τ
2N(θ0,m0).H

τ
2N(θ0,m0).[m−m0])

Proposition 1 summarizes the results.

In what concerns verifying the validity of CLK’s Theorem B, the reasoning
is analogous. In particular, Condition 4B can be verified in the same fashion
as Condition 4 for a variety of kernel density and regression estimators. In this
case, it is also happens that

√
N.Hτ

2 (θ,m)[m
∗ −m0] is approximately a sum of

mean zero and independent random variables (under P ∗) which can be expected
to satisfy a central limit theorem (CLK, pp. 1596).

Example (Location-scale shift). Let

mq1(xi) = α0 + xiα1 + (β0 + xiβ1).mq2(xi) + ei

Define

z =

⎡⎢⎢⎣
1 ... 1
x1 ... xN

mq2(x1) ... mq2(xN)
x1.mq2(x1) ... xN .mq2(xN)

⎤⎥⎥⎦
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v = mq1(x1) ... mq1(xN) , εi = vi−ziθ, and w(x) = w(x1)
f(x1)

... w(xN)
f(xN )

,

with f(.) being the density of x. We also use hats to denote estimated quanti-
ties, and zi, vi, and w(xi) to represent the i− th row of the respective matrices.
In what follows we compute the covariance matrix of θ. First note that

Gτ
N(θ,m) ≡ τ − 1

2
+
1

2
sign(vi − ziθ) .zi.w(xi).dx

so that

Gτ
N(θ0,m0) ≡ τ − 1

2
+
1

2
sign(vi0 − zi0θ) .zi0.w(xi).dx

converging to

Gτ (θ0,m0) = E [z0.sign(ε0).w(x)]

E τ − 1
2
+
1

2
sign(ε0) .zi0.w(xi)

To verify CLK’s Theorem 2, note that one needs H1, and V1, the asymptotic
covariance matrix described in condition 2.6. The former is given by

Hτ
1 (θ0,m0) = −E [fε(0|z).zizi.w(x)]

Sufficient conditions for Condition 2.2 to be satisfied are E(zizi) being of
full rank and the error density being bounded away from zero - for instance,
neither of xi, mq2(xi), or xi.mq2(xi) can be constant across i. Once this occurs,
E(z z) is positive-definite, continuous, and full rank.

To verify Condition 2.5 we use CLK’s Theorem 3. To check Conditions 3.1
and 3.2 of this result, note that

|gj(θ∗,m∗)−gj(θ,m)| = τ − 1
2
+
1

2
sign(ε∗j ) .z

∗
j .w(xj)− τ − 1

2
+
1

2
sign(εj) .zj .w(xj)

where ε∗ =m∗q1(x)−α∗0−xiα∗1− (β∗0+xiβ∗1).m∗q2(x), and ε = mq1(x)−α0−
xiα1 − (β0 + xiβ1).mq2(x).
The rows of |gj(θ∗,m∗)− gj(θ,m)| are majorated by, respectively
[row 1]: 12 |sign(ε∗j )− sign(εj)|.|w(xj)| ≤ |w(xj)|
[row 2]: 12 |sign(ε∗j )− sign(εj)|.|xj |.|w(xj)| ≤ |xj |.|w(xj)|
[row 3]: 12 |sign(ε∗j ).m∗q2(xj)−sign(εj).mq2(xj)|.|w(xj)| ≤ |m∗q2(xj)−mq2(xj)|.|w(xj)| ≤

|m∗q2(xj)|.|w(xj)|+ |mq2(xj)|.|w(xj)|
[row 4]: 1

2 |sign(ε∗j ).m∗q2(xj) − sign(εj).mq2(xj)|.|xj |.|w(xj)| ≤ |m∗q2(xj) −
mq2(xj)|.|xj |.|w(xj)| ≤ |m∗q2(xj)|.|w(xj)|+ |mq2(xj)|.|xj |.|w(xj)|

Sufficient conditions are given by a bounded weighting function w(xj) (such
as an indicator function), a bounded xj (equivalent to requiring that there is
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an upper bound to the expenditure level), and bounded mq2(.) (which it is
by assumption, since budget shares lie between 0 and 1). It then follows that
Conditions 3.1 and 3.2 of CLK are satisfied for sj = 1, Kj < ∞. In what
concerns the remaining condition we refer to the remark after CLK’s Theorem
3 (or to CLK, pp. 1598) and argue that since sj = 1, Condition 3.3 is satisfied.
As a result, Condition 2.5 is satisfied.

To verify Condition 2.6 one needs to obtain V1. First consider

Gτ
N(θ,m) = τ − 1

2
+
1

2
sign(εi) .zi.w(xi).dx

Now recall that sign(εi0) = sign(vi0 − zi0θ0) is a binomial random variable
with zero mean and unit variance. Thus, given ε independent, of finite variance,
and independent of x, applying a Central Limit Theorem results in asymptotic
normality of this term. The second term concerning 2.6 is Hτ

2 (θ0,m0)[m−m0].
Note that

Hτ
2N(θ,m)[m−m0] =

∂Gτ
N(θ,m+ γζ)

∂γ
|γ=0

where ζ =m−m0. But

Gτ
N(θ,m+ γζ) = τ − 1

2
+
1

2
sign(vi,γζ − zi,γζθ) .zi,γζ .w(xi).dx

where zi,γζ = 1 xi mq2(xi) + γζ2 xi. (mq2(xi) + γζ2) , vi,γζ = mq1(x1)+
γζ, and εi,γζ = vi,γζ − zi,γζθ.

Differentiating with respect to γ yields

∂Gτ
N(θ,m+ γζ)

∂γ

=

⎡⎢⎢⎣
δ(εi,γζ).{ζ1 − (β0 + xiβ1).ζ2}.w(xi).dx
xi.δ(εi,γζ).{ζ1 − (β0 + xiβ1).ζ2}.w(xi).dx

(ζ2.sign(εi,γζ) + {mq2(xi) + γζ2}.δ(εi,γζ).{ζ1 − (β0 + xiβ1).ζ2}) .w(xi).dx
(xi.ζ2.sign(εi,γζ) + xi.{mq2(xi) + γζ2}.δ(εi,γζ).{ζ1 − (β0 + xiβ1).ζ2}) .w(xi).dx

⎤⎥⎥⎦
setting γ = 0 results in

Hτ
2N(θ,m)[m−m0] =

⎡⎢⎢⎣
δ(εi).{ζ1 − (β0 + xiβ1).ζ2}.w(xi).dx
xi.δ(εi).{ζ1 − (β0 + xiβ1).ζ2}.w(xi).dx

(ζ2.sign(εi) +mq2(xi).δ(εi).{ζ1 − (β0 + xiβ1).ζ2}) .w(xi).dx
(xi.ζ2.sign(εi) + xi.mq2(xi).δ(εi).{ζ1 − (β0 + xiβ1).ζ2}) .w(xi).dx

⎤⎥⎥⎦
It then follows that
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Gτ
N(θ0,m0) +H

τ
2N(θ0,m0)[m−m0]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

sign(εi(θ0,m)).w(xi).dx+ δ(εi(θ0,m)).ξi.w(xi).dx

xi.sign(εi(θ0,m)).w(xi).dx+ xi.δ(εi(θ0,m)).ξi.w(xi).dx
mq2(xi).sign(εi(θ0,m)).w(xi).dx+

+ ζ2.sign(εi(θ0,m)) +mq2(xi).δ(εi(θ0,m)).ξi .w(xi).dx

xi.mq2(xi).sign(εi(θ0,m)).w(xi).dx+

+ xi.ζ2.sign(εi(θ0,m)) + xi.mq2(xi).δ(εi(θ0,m)).ξi .w(xi).dx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where

ξi = {ζ1 − (β0 + xiβ1).ζ2}

ζj = mqj (xj)−mqj (xj) =
1

fuj (0)
.
1

Nj

Nj

i=1

[qj − 1{uj ≤ 0}] , j = 1, 2

the latter being the local Bahadur representation of Chaudhuri (1991). The
term Gτ

N(θ0,m0) + Hτ
2N(θ0,m0)[m − m0] is asymptotically normal with zero

mean and finite variance under regularity conditions such as fuj (.) and fε(.)
being bounded away from both zero and infinity and i.i.d. observations. The
corresponding covariance matrix V τ

1 is then obtained as

V τ
1 = E[G

τ
N(θ0,m0).G

τ
N(θ0,m0) +H

τ
2N(θ0,m0).H

τ
2N(θ0,m0).[m−m0]]
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Figures 1-6 – Nonparametric Engel Curves 
 
Thin lines:  bandwidth = 0.5 
Thick lines: bandwidth = 0.75 
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Figures 7-12 – Quantile Engel Curves 
 
Thin lines: bandwidth = 1.0 
Thick lines: bandwidth = 1.5 
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