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Abstract

We propose a novel estimator for the stochastic discount factor (SDF) in a panel-data context.

Under general conditions it depends exclusively on appropriate averages of asset returns,

and its computation is a direct exercise, as long as one has enough observations to Þt our

asymptotic results. We identify the SDF using the fact that it is the �common feature�

in every asset return of the economy. Moreover, it does not depend on any assumptions

about preferences, or on consumption data, which allows testing directly different preference

speciÞcations, as well as the existence of the equity-premium puzzle. Preliminary results are

encouraging.



1 Introduction

Despite their shortcomings, Þnance theories, such as the Capital Asset Pricing model (CAPM)

� and its variants � and the Arbitrage-Pricing Theory (APT), have been work horses in Þ-

nance and macroeconomics for a long time. Using mostly time-series (aggregate) data, early

research has shown that these models failed to explain data regularities generating some

important puzzles; see Hall (1978), Flavin (1981), Hansen and Singleton (1982, 1983, 1984),

Mehra and Prescott (1985), Campbell (1987), Campbell and Deaton (1989), Epstein and

Zin (1991), and Fama and French (1992, 1993). However, subsequent research in macro,

using panel data, has convincingly shown that at least some of the early rejections were

due to aggregation problems; see Runkle (1991), Attanasio and Browning (1995), and At-

tanasio and Weber (1995). Recent research conÞrmed that the gap between some of these

models and the data narrows considerably once their cross-sectional dimension is taken into

account. This has happened both in the Þnance and in the macro literatures: Lettau and

Ludvigson (2001) propose �Resurrecting the Consumption-Based CAPM� (CCAPM) and

Mulligan (2002) sustains that the problem with the low estimates of the intertemporal elas-

ticity of substitution was the lack of proper cross-sectional aggregation for asset returns used

in regressions, which has led him to use of the return on aggregate capital. Regarding the

evolution of the literature over time, it seems that only considering the time-series dimension

of the data may be the cause of the early rejections of these models.

In this paper, we propose a novel estimator for the stochastic discount factor (SDF), or

pricing kernel, that exploits both the time-series and the cross-sectional dimensions of the

data. Under very general conditions it depends exclusively on appropriate averages of asset

returns. This makes its computation a simple and direct exercise, as long as one has enough

time-series and cross-section observations to Þt our asymptotic results. The identiÞcation

strategy employed here to recover the SDF relies on one of its basic properties, following

from the linearized version of the set of euler equations in the representative consumer�s op-

timization problem � it is the �common feature,� in the sense of Engle and Kozicki (1993), in

every asset return of the economy. In the CCAPM context, this happens because the repre-

sentative consumer must equate current asset prices to expected future payoffs appropriately

discounted by the intertemporal marginal rates of substitutions. However, in the context of

a representative consumer with a single good, the latter is the same for every asset in the

economy.
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Our SDF estimator does not depend on any assumptions about preferences, or on con-

sumption data, being in this sense preference-free, which enables its use to test directly

different preference speciÞcations which are commonly used in the Þnance and in the macro

literatures. Moreover, since our approach does not assume a priori that any type of Þnance

theory is appropriate, it could be used more generally to test directly the implications of

some of them. Because of the close relationship between the SDF and the risk-free rate,

a consistent estimator for the latter can be based on a consistent estimator for the former,

allowing the discussion of important issues in Þnance, such as the equity-premium and the

risk-free rate puzzles.

Our approach is related to research done in three different Þelds. From econometrics,

it is related to the common-features literature after Engle and Kozicki (1993) and to the

latest addition to it in Engle and Marcucci (2003). It is also related to the spirit of the

work on common factors of Geweke (1977), Stock and Watson (1989, 1993) and Forni et

al. (2000). From Þnance, it is related to the stochastic-discount-factor approach initiated

by Harrison and Kreps (1979) and by Hansen and Jagannathan (1991), who use observables

to examine whether different preference speciÞcations were admissible. It is also related to

work that employs factor models within the CCAPM framework, perhaps best exempliÞed by

Fama and French (1992, 1993) and the latest addition of Lettau and Ludvigson (2001). From

macroeconomics, it is related to the work on aggregation bias in estimating the intertemporal

elasticity of substitution in consumption by Attanasio and Weber (1995) and to the lack

of proper cross-sectional aggregation of asset returns that motivates the work of Mulligan

(2002).

The next Section presents basic theoretical results using the CCAPM and our estimation

techniques, discussing Þrst consistency and then efficiency in estimation. Section 3 shows

how to use our estimator to evaluate the CCAPM, using formal and informal statistical

methods. Section 4 presents a simple empirical illustration (not a full empirical application)

of our theoretical results, and Section 5 concludes.
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2 Economic Theory and SDF Estimation

2.1 A Simple Consistent Estimator

Harrison and Kreps (1979) and Hansen and Jagannathan (1991) describe a general framework

to asset pricing that relies on the Pricing Equation1:

Et {mt+1xi,t+1} = pi,t, i ∈ {1, . . . , N}, or (1)

Et {mt+1Ri,t+1} = 1, i ∈ {1, . . . , N} (2)

where Et(·) denotes the conditional expectation given the information available at time t,

mt is the stochastic discount factor, pi,t denotes the price of the i-th asset at time t, xi,t+1

denotes the payoff of the i-th asset in t + 1, Ri,t+1 =
xi,t+1

pi,t
denotes the gross return of the

i-th asset in t+ 1, and N is the number of assets in the economy.

Equation (2) is the central pillar of our estimator and a basic assumption present in virtu-

ally all studies in Þnance and macroeconomics dealing with asset pricing and intertemporal

substitution. It is important to stress that (2) entails very little theoretical structure: it is

essentially equivalent to the �law of one price� � where securities with identical payoffs in

all states of the world must have the same price. There are no assumptions about aggre-

gation or the existence of complete markets. There is also no need to specify a preference

representation for (2) to hold, or the presence of a representative consumer.

The existence of a SDF mt+1 that prices assets in (1) is obtained under very mild condi-

tions. In particular, there is no need to assume a complete set of security markets. However,

the discussion about uniqueness of mt+1 is more subtle. Under the assumption of complete

markets, and a representative consumer, there will be a unique SDF mt+1 pricing all assets,

which is an element of the payoff space. However, if markets are incomplete, i.e., if they

do not span the entire set of contingencies, there will be an inÞnite number of stochastic

discount factorsmt+1 pricing all traded securities. Despite that, there will still exist a unique

discount factor m∗
t+1, which is an element of the payoff space, pricing all traded securities.

Moreover, any discount factormt+1 can be decomposed as the sum ofm∗
t+1 and an error term

orthogonal to payoffs, i.e., mt+1 = m∗
t+1 + νt+1, where Et (νt+1xi,t+1) = 0. The important

fact here is that the pricing implications of any mt+1 are the same as those of m∗
t+1.

1See also Ross(1978), Rubinstein(1976) and Hansen and Richard(1987).
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The discussion about existence an uniqueness of mt+1 is directly related to whether or

not any estimation strategy can identify the SDF in an econometric sense. Of course, under

the assumptions of complete markets, and a representative consumer, it will be possible for

econometric techniques to identify the SDF in (2), which exists and is unique. This happens

because econometric techniques usually deliver unique estimates. Under incomplete markets,

however, where there is an inÞnite number of SDFs pricing assets in (1), this poses a problem

for econometric techniques, which will only be able identify the SDF up to an error term,

i.e., will be able to identify m∗
t+1.

Our strategy to derive the main results in this paper will be constructive. We start

by using the very restrictive assumption that mt+1Ri,t+1 is log-Normal and Homoskedastic,

which is later relaxed in different directions. Surprisingly, the initial results obtained under

these assumptions are later conÞrmed under much more general conditions. In order to

make our Þnal results applicable to a wide range of asset returns, we carefully match our

Þnal assumptions on their behavior to the stylized facts of these extensively investigated

data.

It is well known that for any log-Normal random variable zt+1:

lnEt (zt+1) = Et (ln zt+1) +
1

2
Et

©
[ln zt+1 − Et (ln zt+1)]

2ª . (3)

Also, we can always decompose any random variable ln zt+1 as the sum of the space spanned

by its conditional expectation and an unpredictable error term:

ln zt+1 = Et (ln zt+1) + εi,t+1. (4)

Using the two properties in (3) and (4), allows rewriting (2) as:

lnRi,t+1 = − lnmt+1 − lnχim,t + εi,t+1, i ∈ {1, . . . , N} (5)

where:

lnχim,t =
1

2

¡
δ2
m,t + 2δim,t + δ

2
i,t

¢
δ2
m,t ≡ Et [lnmt+1 − Et (lnmt+1)]

2

δ2
i,t ≡ Et [lnRi,t+1 − Et (lnRi,t+1)]

2

δim,t ≡ Et {[lnmt+1 − Et (lnmt+1)] [lnRi,t+1 − Et (lnRi,t+1)]}
Et (lnmt+1 + lnRi,t+1) = −1

2

¡
δ2
m,t + 2δ

i
m,t + δ

2
i,t

¢
.
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Notice that, by construction, Etεi,t+1 = 0. As a consequence, Eεi,t+1 = 0 as well, where

E(·) denotes the unconditional expectation operator. This implies that the cross-sectional

distribution of εi,t+1 will also have a zero mean, which is a key ingredient to prove consistency

of our estimator.

We now state our Þrst basic result:

Proposition 1 If the sequence {mtRi,t} with (i, t) ∈ {1, ...,N} × {1, ..., T} is conditionally
homoskedastic ∀i and log-Normal ∀t, the SDF mt can be consistently estimated for all t, as

N, T →∞, at the same rate, using:

bmt =
R
G

t

1
T

TP
t=1

³
R
G

t R
A

t

´ ,

where R
G

t =
QN
i=1

h
(Ri,t)

− 1
N

i
and R

A

t =
1
N

NP
i=1

Ri,t are respectively the geometric and arith-

metic averages of all asset returns.

Proof. See Appendix.

Remark 1 Under the assumptions of a complete set of security markets, and a representa-
tive consumer (innocuous), the SDF mt is identiÞed and a consistent estimator of it will

be given by cmt in Proposition 1. Under incomplete markets, we can only identify m∗
t ,

mt = m∗
t + νt, Et−1 (νtxi,t) = 0, which has the same pricing implications of mt. A con-

sistent estimator of m∗
t will be given by cmt in Proposition 1.

There are two interesting features of bmt. First, it is a simple function of the geometric

and the arithmetic average of asset returns, which makes its computation straightforward.

Second, no more than (2), log-Normality, and Homoskedasticity of {mtRi,t} were assumed in

constructing it. In particular, no assumptions whatsoever about preferences were needed. In

this sense, the estimator bmt is model-free, and can be later used to test or validate different

preference speciÞcations in the same spirit of Hansen and Jagannathan (1991).

From (5) and (20) it becomes clear that lnmt is the �common feature,� in the sense of

Engle and Kozicki (1993), of all asset returns: every term in it is indexed by i, with the

exception of lnmt+1. It will generate all the �serial correlation common feature� in asset

returns and, for any two assets i and j, lnRi,t+1 − lnRj,t+1 will not have serial correlation,
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which makes (1,−1) a �cofeature vector� for all asset pairs, which can be further exploited

to construct alternative estimators of lnmt.

The assumption of conditional homoskedasticity plays a key role in the proof, since it

implies that emt andmt differ by a multiplicative constant χm, which otherwise would be time

varying. At this stage, because of the overwhelming empirical evidence of heteroskedastic

returns, e.g., Bollerslev, Engle and Nelson (1994), it seems natural to Þrst relax this assump-

tion. As discussed in our second basic result below, we may allow for as many heteroskedastic

returns as one wants. Indeed, if the number of heteroskedastic returns is bounded by N1−δ,

with δ > 0, however small, our result in Proposition 1 is still unaltered.

Proposition 2 If the sequence {mtRi,t} with (i, t) ∈ {1, ...,N} × {1, ..., T} log-Normal ∀t,
and Homoskedastic apart from a subset, whose number of elements is bounded by N1−δ, with

δ > 0, all with unconditional variance uniformly bounded in N , then the SDF mt can be

consistently estimated for all t, as N, T → ∞, at the same rate, using the same expression
in Proposition 1:

bmt =
R
G

t

1
T

TP
t=1

³
R
G

t R
A

t

´ .
Proof. See Appendix.

A key element of the proof of Proposition 2 is that the proportion of assets with ho-

moskedastic (heteroskedastic) returns is Þxed as the number of assets grows to inÞnity. In

principle, for large N , this requires having a large number of assets whose returns are ho-

moskedastic, which may be a restrictive condition, especially if we consider high frequency

data such as daily, weekly or even monthly observations.

An alternative to Proposition 2 is to work with time-aggregated data, where conditional

heteroskedasticity fades away; see Drost and Nijman (1993) and Drost and Werker (1996). In

the panel-data context above, time aggregation can be implemented considering an increasing

large number of cross-section observations, while keeping Þxed the number of time-series

observations, with the time span S and the level of time aggregation h growing at the same

rate, so as to keep the number of time-series observations constant. Hence, N →∞, S →∞
and h = S/T with T Þxed, however large.

Time-varying second moments are considered here by assuming that the error term εi,t

in (5) follows a discrete-time square-root stochastic autoregressive volatility (SR-SARV)
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process of order p with respect to an increasing Þltration Ji,t = σ(εi,τ , Fτ ; τ ≤ t), t ∈ Z, as

in Meddahi and Renault (2002). Hence, {εi,t; t ∈ Z} is a stationary square-integrable process

such that E (εi,t+1| Ji,t) = 0 and the conditional variance process fi,t+1|t = V (εi,t+1| Ji,t) is

a marginalization of a stationary VAR(1) of dimension p:

fi,t+1|t = a0iFt > 0

Ft+1 = Λ+ ΓFt + Ut+1,

where E (Ut+1| Jt) = 0, ai ∈ Rp, Λ ∈ Rp, and all the eigenvalues of Γ have modulus smaller

than one.

Modelling εi,t as a SR-SARV process is appealing for two reasons. First, discrete- and

continuous-time versions of SR-SARV processes are consistent with each other, because the

exact discretization of the continuous-time SR-SARV belongs to the class of discrete-time

SR-SARV models. This is interesting since continuous-time models of asset returns play

a major role in asset pricing. Second, the SR-SARV process encompasses many popular

volatility models used in the Þnancial econometric literature, e.g., the GARCH(1,1) and

GARCH diffusion processes.

To consider how the level of temporal aggregation affects the conditional variance, we

Þrst establish some notation. High frequency observations are on εi,t and the Þltration reads

Ji,t = σ(εi,τ , Fτ ; τ ≤ t), with t = 1, . . . , T . Because (log) returns and the SDF are ßow

variables, low frequency observations are on ε(h)
i,th ≡

Ph−1
j=0 εi,th−j. The Þltration J (h)

i,th for

the time-aggregated process is then σ
³
ε(h)
i,τ , Fτh; τ ≤ t

´
. The result below shows that the

SR-SARV model is closed under time aggregation.

Proposition 3 Let {εi,t; t ∈ Z} follow a SR-SARV(p) process with respect to the increasing
Þltration Ji,t = σ(εi,τ , Fτ ; τ ≤ t), with conditional variance fi,t+1|t = e0iFt > 0. For a given

integer h, the process ε(h)
i,th ≡

Ph−1
j=0 εi,th−j also follows a SR-SARV(p) process with respect to

the increasing Þltration J (h)
i,th = σ

³
ε

(h)
i,τ , Fτh; τ ≤ t

´
. In particular:

f
(h)
i,th+h|th = V

³
ε

(h)
i,th+h

¯̄̄
Ji,th

´
= e0i

£
A(h)Fth +B

(h)
¤
,

where A(h) =
Ph−1

j=0 Γ
h−j−1 and B(h) =

Ph−1
j=0

³Ph−j−2
k=0 Γk

´
Λ. In the event that e0iA

(h) 6= 0,
then f (h)

i,th = e
(h)0
i F

(h)
th with e(h)

i = A(h)0ei and:

F
(h)
th = Fth + e

(h)
i

³
e

(h)0
i e

(h)
i

´−1

e0iB
(h).
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Moreover, F (h)
th is a VAR(1) with an autoregressive matrix Γ(h) = Γh.

Proof. See Meddahi and Renault (2002).

The fact that the autoregressive matrix Γ(h) is exponential on the level h of time ag-

gregation implies that the persistence increases exponentially with the frequency. Hence,

conditional heteroskedasticity vanishes as the frequency decreases. Therefore, for a large

enough number of assets N , time span S, and a high enough aggregation level h (low enough

frequency of observations), the conditional homoskedasticity assumption may be justiÞed,

if not for all assets at least to subset of them, which shows that the assumptions in either

Propositions 1 or 2 are feasible in this context.

Regardless of which of the two results are used � either Proposition 1 or 2 � the next

proposition suggests that an estimate of the risk-free rate is straightforward once we have a

consistent estimator of the SDF:

Proposition 4 Using bmt+1 as in Propositions 1 or 2 above offers a consistent estimate of

the risk-free rate, Rft+1: dRft+1 =
1

Et
©

[mt+1

ª .
Proof. See Appendix.

Although dRft+1 will be a consistent estimate of Rft+1, its computation is not as straight-

forward as that of bmt, since to implement it we need to compute the conditional expectation

of cmt. For that we need an econometric model. It may be a very general non-parametric

econometric model, for example, but we will need an econometric model nevertheless. De-

spite that, we still do not need any assumptions on preferences to compute d
Rft+1, or any

Þnance theory, which shows that this estimator is �model free� in the sense given above.

A key assumption made above to obtain cmt in Propositions 1 and 2 was that {mtRi,t} with

(i, t) ∈ {1, ..., N} × {1, ..., T} was log-Normal ∀t. This assumption was imposed because its

is algebraic convenience, since log-Normal returns have a conditional mean that is a function

of the Þrst two moments of the associated Normal distribution. In general, Et {mt+1Ri,t+1}
will also be a function of higher moments as well.

Relaxing log-Normality does not present a problem in the context above. The only

difference is how we interpret lnχim,t in (5). Under log-Normality, lnχim,t will include only

the second moments and cross-moments of lnmt+1 and of lnRi,t+1. Without log-Normality,
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it will include higher-order moments as well. Hence, we can regard (5) as a result of a full

functional expansion on mt+1Ri,t+1. As long as all of these higher-order moments are Þnite

and time invariant, we are back to Proposition 1, and the only difference is that lnχim now

captures not just the effect of the variances and covariances but of the higher-order moments

as well. Even if we allow for Þnite but time-varying higher-order moments, we can still use

Proposition 2. Again, the only difference is how to interpret the Þrst term of lnχm,t in (21).

2.2 A Simple Efficient Estimator (Incomplete)

Taking logs of the both sides of the Pricing Equation (2), and further applying a Taylor

expansion yields, for every i ∈ {1, . . . , N},

Et(ln mt+1 + ln Ri,t+1) +
1

2
Vt(ln mt+1 + ln Ri,t+1) ' 0, (6)

where Vt(·) denotes the conditional variance given the available information at time t. No-

tice that (6) holds exactly only under log-Normality. However, the approximation error is

negligible as long as the higher-order moments are time-invariant.

As in Proposition 3, we further assume that the sampling frequency is low enough, which

allows writing,

ln Ri,t+1 + ln mt+1 = Et(ln Ri,t+1 + ln mt+1) + ²i,t+1, (7)

where ²i,t+1 has mean zero and a constant variance σ2
i , which is the conditional variance

Vt(ln mt+1 + ln Ri,t+1).

Notice that, under log-Normality, ²i,t+1 ∼ N (0, σ2
i ), which allows

From (6) and (7), it follows that:

ln Ri,t+1 + ln mt+1 = −1
2
σ2
i + ²i,t+1. (8)

In the context of panel-data regression, (8) corresponds to a standard unobserved Þxed-

effects model with no explanatory variables other than time dummies. The coefficients of the

time dummies then provide the estimates for the log of the SDF, whereas the Þxed-effects

capture the individual heterogeneity that stem from the variances of the log-returns.

Remark 2 The approximation given by (6) is exact only under log-normality. If the log-
returns display skewness, for instance, then the Þxed effects are not necessarily negative. We

therefore interpret nonnegative Þxed effects as departures from log-normality.
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Averaging (8) over t = 1, . . . , T yields the cross-section equation

1

T

TX
t=1

ln Ri,t = − 1
T

TX
t=1

lnmt − 1
2
σ2
i +

1

T

TX
t=1

²i,t. (9)

Subtracting (9) from (8) gives way to the Þxed-effects transformed equation

ln Ri,t+1 − 1

T

TX
t=1

ln Ri,t = −
Ã
ln mt+1 − 1

T

TX
t=1

lnmt

!
+ ²i,t+1 − 1

T

TX
t=1

²i,t

= −
TX
τ=1

lnmτ

µ
δτ,t − 1

T

¶
+ ²i,t+1 − 1

T

TX
t=1

²i,t,

where δτ,t (τ = 1, . . . , T ) denotes the indicator function that takes value one at time τ and

zero otherwise.

Under the assumption that ²i,t+1 ∼ N (0, σ2
i ), a fully-efficient estimate of the (log of the)

SDF can be obtained by using pooled OLS, so as to retrieve the estimated series of the

log-SDF by stacking the Þxed-effects estimates of the coefficients of the time dummies. This

will be equivalent to maximum likelihood. If normality is not assumed, this estimate will

still be consistent but not fully-efficient.

2.3 Comparisons with the Literature

As far as we are aware of, studies in Þnance and macroeconomics dealing with the SDF do

not try to obtain a direct estimate of it as we propose above. Usually, the SDF is estimated

indirectly as a function of consumption data, through the use of a parametric function to

represent preferences; see Hansen and Singleton (1982, 1984), Brown and Gibbons (1985)

and Epstein and Zin (1991).

Hansen and Jagannathan (1991) avoid dealing with a direct estimate of the SDF, but

note that the SDF has its behavior (in particular its variance) bounded by two restrictions.

The Þrst is the moment restriction:

Et {mt+1Ri,t+1} = 1, i ∈ {1, . . . ,N}. (10)

The second is the restriction thatm is always positive, since, for a non-satiated representative

consumer with utility function U (·), U 0 (·) > 0, and discount factor β, 0 < β < 1, mt+1 =

β U
0(ct+1)
U 0(ct) , where ct is aggregate consumption.
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Hansen and Jagannathan exploit the fact that it is always possible to project m onto the

space of payoffs. Denoting by m∗ the least-squares projection of m onto the space of payoffs,

they show that it is directly related to the portfolio with the smallest second moment R∗ by:

m∗
t+1 =

R∗t+1

Et
n¡
R∗t+1

¢2
o . (11)

It is then straightforward to express m∗ only as a function of observables:

m∗
t+1 = ι

0 £Et ¡Rt+1R
0
t+1

¢¤−1
Rt+1, (12)

where ι is a N × 1 vector of ones.

Although they do not discuss it at any length, equation (12) shows that it is possible

to identify m∗
t+1 in the Hansen and Jagannathan framework. A similar expression for mt+1

could be obtained under the assumption of a complete set of security markets, when all the

information on m will be contained on payoffs. In this case, (12) will identify mt+1.

It is important to compare our results above with those of Hansen and Jagannathan. If

one regards, (12) as a means to identify either m or m∗, which Hansen and Jagannathan did

not discuss at all, it is apparent that both approaches face similar identiÞcation problems:

they identify mt+1only up to an error term, unless there is a full set of security markets.

However, using (12) has important limitations that are not present in our approach. First, it

is obvious from (12) that a conditional econometric model is needed to implement an estimate

for m∗
t+1, since one has to compute the conditional moment Et

¡
Rt+1R

0
t+1

¢
, something not

present in our direct estimate. Second, while our method beneÞts from an increasing number

of assets (N →∞), the use of (12) will suffer numerical problems in computing an estimate

of
£
Et

¡
Rt+1R

0
t+1

¢¤−1
. These problems will have two different sources: possible singularities

in Et
¡
Rt+1R

0
t+1

¢
, as the number of assets becomes large, and instability in inverting a high-

dimensional matrix. Third, in the use of (12) one has to worry about how to impose the

constraint that m > 0. Of course, our estimator in Proposition 1 and 2 faces an identical

problem. However, this constraint can be imposed by employing instead the log-linearized

version of (10), where we can use the fact that the exponential function has a positive range

to get a positive estimate for m.

Although our approach exploits the panel data structure of asset returns in constructing

an estimator formt, being in this sense disaggregate, it is related to the approach of Mulligan

(2002), where return data is super-aggregated to compute the return to aggregate capital. For
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algebraic convenience, in illustrating the similarities between these two approaches, we use

the log-utility assumption for preferences � where mt+j = β
ct
ct+j

� as well as the assumption

of no production in the economy.

Since asset prices are the expected present-value of the dividend ßows, and since with

no production dividends are equal to consumption in every period, the price of the portfolio

representing aggregate capital p̄t is:

p̄t = Et

( ∞X
i=1

βi
ct
ct+i

ct+i

)
=

β

1− β ct.

Hence, the return on aggregate capital Rt+1 is given by:

Rt+1 =
p̄t+1 + ct+1

p̄t
=
βct+1 + (1− β)ct+1

βct
=
ct+1

βct
=

1

mt+1
, (13)

which is the reciprocal of the SDF. Therefore there is a duality between the approach in

Mulligan and ours� in the context above.

Taking logs of both sides of (13):

lnRt+1 = − lnmt+1,

shows that the common feature in (5) is indeed the return of aggregate capital. Hence,

we can decompose the return on every asset in the economy into an aggregate return and

idiosyncratic terms:

lnRi,t+1 = lnRt+1 − lnχim,t + εi,t+1, i ∈ {1, . . . ,N}. (14)

Of course, it may not be so simple to derive this duality result under more general

conditions but it can still be thought of as an approximation. Although similar in spirit,

the work of Mulligan and ours� follow very different paths in empirical implementation: here

our goal is to extract − lnmt+1 from a large data set of asset returns, whereas Mulligan uses

national-account data to construct the return to aggregate capital. Because national-account

data is prone to be measured with error, which will be increased as the level of aggregation

increases, the approach taken by Mulligan may generate measurement error in the estimate

of Rt. However, our approach may avoid these problems for two reasons. First, we work

with asset return data, which is more reliable than national-account data. Second, averaging

returns in the way we propose factors out idiosyncratic measurement error in our estimate

of mt.

12



Factor models within the CCAPM framework have a long tradition in Þnance and in

Þnancial econometrics; see, for example, Fama and French (1993), Lettau and Ludvigson

(2001), and Engle and Marcucci (2003). Fama and French and Lettau and Ludvigson propose

respectively a three- and a two-factor model where, in the former, factors are related to

Þrm size, book-to-market equity and the aggregate stock market, and, in the latter, with

a time-varying risk premium and deviations to the long-run consumption-wealth ratio. In

Engle and Marcucci, the focus is on common volatility for asset returns, where �common

conditional variances� imply the existence of linear combinations of two (or perhaps more)

heteroskedastic returns, lnRi,t+1−eα lnRj,t+1, such that the time-varying variance term drops

out. Hence,

lnχim,t − eα lnχjm,t,
is not time-varying.

Compared to these papers our approach is to focus on only one factor (or feature) in (5),

− lnmt+1 � the SDF. Although there may be higher-order factors coming from superior mo-

ments as in Fama and French, Lettau and Ludvigson, and Engle and Marcucci, we disregard

their dynamic structure. Nevertheless, we do not disregard their effect on the mean of mt,

which are included in lnχim,t.

In our view, the important question is whether or not different Þnance theories are at

odds with the data once we consider only the Þrst order factor − lnmt+1, i.e., a parsimonious

representation. The discussion in Cochrane (2001, ch. 7) shows that increasing the number

of factors for the CCAPM does not necessarily generate a better model, since the risk of

overÞtting and of instability across different samples is always there. Our effort was to

Þnd a parsimonious factor model, where the factor has a straightforward macroeconomic

explanation � it is the stochastic discount factor for all assets, or the return on aggregate

capital.

3 Using our Estimator to Evaluate the CCAPM

3.1 Testing Preference SpeciÞcations within the CCAPM

An important question that can be addressed with our estimator of mt is how to test and

validate speciÞc preference representations using it. Because cmt is constructed from asset-

13



return data alone, without any information about preferences whatsoever, it can be used to

examine the appropriateness of different preference speciÞcations.

First, even for consistent estimates, as is the case of cmt, we can always write:

lnmt+1 = \lnmt+1 + ηt+1, (15)

where ηt+1 is the approximation error between lnmt+1 and its estimate \lnmt+1. The prop-

erties of ηt+1 will depend on the properties of mt+1 and Ri,t+1, and, in general, it will be

serially dependent and heterogeneous.

Economic theory provides a number of preference representations that are frequently used

in empirical studies. Table 1 below summarizes three of the most popular ones, where Ct
denotes the external consumption, in the case of External Habit preferences, Ut represents

the recursive utility function and Bt represents the optimal portfolio in the case of Kreps-

Porteus preference representation.

Using (15) and the expressions for the (log) SDF in Table 1, we arrive at:

\lnmt+1 = ln β − γ∆ ln ct+1 − ηt+1, (16)

\lnmt+1 = ln β − γ∆ ln ct+1 + κ (γ − 1)∆ ln ct − ηt+1, (17)

\lnmt+1 = θ ln β − θγ∆ ln ct+1 − (1− θ) lnBt+1 − ηt+1, (18)

which can be used to estimate the parameters of the CRRA, External Habit and Kreps-

Porteus preference representations respectively, and to test these them using standard spec-

iÞcation tests.

Perhaps the most appealing way of estimating (16), (17) and (18), simultaneously test-

ing for over-identifying restrictions, is to use the generalized method of moments (GMM)

proposed by Hansen (1982). Lagged values of regressors can be used as instruments in this

case. Since (16) is nested into (17), we can also perform a redundancy test for ∆ ln ct in (16).

3.2 Informal Testing

Writing in full the euler equation (5):

Et

½
β
U 0(ct+1)

U 0(ct)
Ri,t+1

¾
= 1.
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It is well known that it implies that assets with pro-cyclical (counter-cyclical) returns will

pay a positive (negative) risk premium, since:

Et {Ri,t+1}−Rft+1 = −
covt {U 0(ct+1), Ri,t+1}

Et {U 0(ct+1)} . (19)

Therefore, on average, the sign of
³
Ri,t+1 −Rft+1

´
and of

³
ct+1

ct
·Ri,t+1 − ct+1

ct
·Ri,t+1

´
must

coincide, where the last term is demeaned. Of course, this is an informal test since signs can

coincide but magnitudes can be very different. Nevertheless, this is an important instance

where the CCAPM has failed in previous studies, and for that reason alone it is worth being

investigated. Notice that we only need an estimate of the risk-free rate to implement such a

test.

4 Empirical Illustration

4.1 Data

As a simple illustration of the approach described above � not a full empirical discussion

� we apply our techniques to U.S. data, on quarterly frequency, from 1979:1 to 1998:4, all

extracted from the DRI database. In computing cmt using the results of Propositions 1 and

2, we employ 15 portfolio and individual returns: 6 of these portfolios returns are returns for

international stock markets � Germany, Canada, France, UK, Italy and Japan; 6 are returns

to domestic stock markets � the returns computed using the NYSE common price indices

for Þnance, transportation and utility and the returns computed using the S&P common

stock price indices for capital goods, composite and utilities. There is also the return on the

3-month T-Bill, the return on Gold and the national average contract mortgage rate. These

returns cover a wide spectrum of alternative assets that are available to the typical U.S.

household. Because some of these returns are portfolio returns, our Þnal estimate of cmt is

ultimately an average of the returns of hundreds of different assets, which Þts an important

aspect of our asymptotic results.

In choosing data frequency, we preferred using quarterly data to reduce the proportion

of heteroskedastic returns on overall returns, since it is well known that time aggregation

reduces conditional heteroskedasticity. Consumption data used to test preferences is season-

ally adjusted real total private consumption per-capita, following early research by Campbell

(1987), among others.
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4.2 Results

Figure 1 below shows our estimate of the SDF cmt for the period 1979:1 to 1998:4. It is

close to unity most of the time and bounded by the interval [0.8, 1.2]. Moreover, it shows

little signs of heteroskedasticity, which is perhaps a consequence of our choice of frequency.

When we project our estimate on lagged returns, in order to get a conditional model for it,

this group of regressors turn out only to be marginally signiÞcant. The adjusted R2 of the

conditional model is only 5%; see Table 2.

In constructing the estimate of the risk-free rate Rft+1 we take the reciprocal of the

predicted value of the conditional model in Table 2, which is plotted in Figure 2. Next,

using dRft+1, we perform the informal sign test of the CCAPM using (19): surprisingly, it

correctly predicts the sign of the risk premium for all assets at least 80% of the time; see

results in Table 3.

It is worth reporting that the average risk-free return for the period 1979:1 to 1998:4 is

7.2% per year. Of course, this is much higher than the return of the T-Bill, which was used

as the risk-free rate by Mehra and Prescott (1985) to compute the equity premium. Once

our estimate of the risk-free rate is considered, the average equity premium of 6.1% a year,

computed by Mehra and Prescott, is reduced dramatically, which may hint that there is no

equity-premium puzzle. It seems that the problem there lied in thinking about the T-Bill as

a risk-free asset. Despite the fact that the T-Bill is a relatively safe asset, what constitutes

a risk-free asset is its measurability with respect to the current information set � a property

which most people would agree the T-Bill does not have. Despite this shortcoming, it is

still interesting how one would classify the T-Bill. We suggest that it can be thought of as

a hedge against the extremely unlikely event that �all goes wrong� in the U.S. or World

economy.

Next we investigate the behavior of different preference representations in Table 1 by

means of GMM estimation of equations (16), (17) and (18). For each equation, we use as

a basic instrument list the two lags of \lnmt+1, two lags of ln ct+1

ct
, and two lags of lnBt+1,

which is further reduced in two or three elements to check the robustness of initial results.

Varying instruments did not change initial results at all, therefore we present only median

estimates in Table 4 in order to save space.

The Þrst thing to notice in Table 4 is that there is no evidence of rejection in over-

identifying-restriction tests. Moreover, this is true not only for median estimates but to all
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estimates we produced. Second, results for the CRRA and the External Habit speciÞcations

yielded sensible estimates for the discount rate and the risk-aversion coefficient: bβ = 0.98

and bγ ∈ [2.1, 2.5]. Compared to the estimates in Hansen and Singleton (1982, 1984), the

estimates for bγ are closer to what can be expected a priori. Our estimates resurrect the

CCAPM, even with CRRA utility � notice that they are ten times those in Hansen and

Singleton, who provided formal statistical evidence against the CCAPM. Moreover, they

are in line with the panel-data estimates in Runkle (1991), which are about 2.2, and are

consistent with the conÞdence interval of the intertemporal elasticity estimates of Attanasio

and Weber (1995). They are slightly higher than the estimates in Mulligan (2002) with

time-series data, which are in the range [0.5, 1.7]. Third, estimates for the Kreps-Porteus

speciÞcation cannot be labelled �sensible,� especially in light of an estimate of β higher than

unity.

If we compare the results for the CRRA speciÞcation with that of the External Habit

speciÞcation, because lagged consumption growth is not signiÞcant in the latter, we would

prefer the former. Hence, one quantitative and qualitative result that emerges is that we

cannot rule out the CRRA speciÞcation for the CCAPM for U.S. data: not only it is not

rejected in direct speciÞcation testing, but it also yielded more parsimonious and sensible

results compared to reasonable alternatives proposed in the literature. These results are

really new, because they were obtained with aggregate data, with which the CCAPM has

had an extensive record of rejections.

5 Conclusions

In this paper, we propose a novel estimator for the stochastic discount factor (SDF), or pricing

kernel, that exploits both the time-series and the cross-sectional dimensions of the data. It

depends exclusively on appropriate averages of asset returns, which makes its computation a

simple and direct exercise. The identiÞcation strategy employed to recover the SDF relies on

one of its basic properties, following from the linearized version of the set of euler equations

in the representative consumer�s optimization problem � it is the �common feature,� in the

sense of Engle and Kozicki (1993), in every asset return of the economy.

Because our SDF estimator does not depend on any assumptions about preferences, or

on consumption data, we are able to use it to test directly different preference speciÞcations
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which are commonly used in the Þnance and in the macro literatures. We could also have

tested directly alternative Þnance theories using it, but we did not. Our estimator offers an

immediate estimate of the risk-free rate, allowing us to discuss important issues in Þnance,

such as the equity-premium and the risk-free rate puzzles.

The techniques discussed above are applied to a small but representative data set of asset

returns in the U.S. economy to illustrate the potential of applying them to a broader data set.

Our estimate of the SDF cmt is close to unity most of the time and bounded by the interval

[0.8, 1.2], showing little signs of heteroskedasticity. The estimate of the risk-free rate Rft+1

performs well in informal and formal tests of the CCAPM: surprisingly, it correctly predicts

the sign of the risk premium for all assets at least 80% of the time, and, using the CRRA

speciÞcation, we cannot reject the model in standard over-identifying-restriction tests.

Estimates of the risk-aversion coefficient using cmt are close to what can be expected a

priori � about 2.2 � showing that we can resurrect the CCAPM, even with CRRA utility.

Moreover, these estimates are in line with the estimates in Mulligan (2002) using time-series

data, and to the panel-data estimates in Runkle (1991) and Attanasio and Weber (1995).

References

[1] Abel, A., 1990, �Asset Prices under Habit Formation and Catching Up with the Jone-

ses,�American Economic Review Papers and Proceedings, 80, 38-42.

[2] Araujo, F., 2003, �IdentiÞcação do fator estocástico de descontos e algumas implicações

sobre testes de modelos de consumo,� M.A. dissertation, EPGE-FGV.

[3] Attanasio, O., and M. Browning, 1995, �Consumption over the Life Cycle and over the

Business Cycle,� American Economic Review, vol. 85(5), pp. 1118-1137.

[4] Attanasio, O., and G. Weber, 1995, �Is Consumption Growth Consistent with Intertem-

poral Optimization? Evidence from the Consumer Expenditure Survey,� Journal of

Political Economy, vol. 103(6), pp. 1121-1157.

[5] Bollerslev, Tim, Robert F. Engle and Daniel B. Nelson (1994), �ARCH Models,� in

Chapter 49 of The Handbook of Econometrics, Volume 4, Amsterdam: North-Holland.

18



[6] Brown, D.P. and Gibbons, M.R. (1985). �A Simple Econometric Approach for Utility-

based Asset Pricing Models,� Journal of Finance, 40(2): 359-81.

[7] Campbell, J., 1993, �Intertemporal Asset Pricing without Consumption Data,� Ameri-

can Economic Review, 83, 487-512.

[8] Campbell, J., A. Lo and A. MacKinlay, 1997, The Econometrics of Financial Markets.

Princeton: Princeton University Press.

[9] Campbell, J. and Deaton, A. (1989), �Why is Consumption so Smooth?�. Review of

Economic Studies, 56:357-374.

[10] Campbell, J. and Mankiw, G. (1989), �Consumption, Income and Interest Rates: Rein-

terpreting the Time Series Evidence�, NBER Macroeconomics Annual, 4:185-216.

[11] Campbell, J. (1987), �Does Saving Anticipate Declining Labor Income? An Alternative

Test of the Permanent Income Hypothesis�, Econometrica, 55(6):1249-73.

[12] Cochrane, J.H. (2001). Asset Pricing, Princeton and Oxford: Princeton University

Press.

[13] Drost, F. C. and Nijman, T.E. (1993). �Temporal Aggregation of GARCH Processes�.

Econometrica, 61(4): 909-27.

[14] Drost, F.C. and Werker, B.J.M. (1996). �Closing the GARCH Gap: Continuous Time

GARCH Modeling�, Journal of Econometrics, 74(1): 31-57.

[15] Engle, R.F. and Kozicki, S. (1993). �Testing for Common Features�, Journal of Business

and Economic Statistics, 11(4): 369-80.

[16] Engle, R. and Marcucci, J. (2003), �Common Features: An Overview of Theory and Ap-

plications�, forthcoming in the Annals Issue of the Journal of Econometrics on �Com-

mon Features.�

[17] Epstein, L. and S. Zin, 1989, �Substitution, Risk Aversion, and the Temporal Behavior

of Consumption and Asset Returns: A Theoretical Framework,� Econometrica, 57, 937-

968.

19



[18] Epstein, L. and S. Zin, 1991, �Substitution, Risk Aversion, and the Temporal Behavior

of Consumption and Asset Returns: An Empirical Investigation,� Journal of Political

Economy, 99, 263-286.

[19] Fama, E.F. and French, K.R. (1992).� The Cross-Section of Expected Stock Returns�.

Journal of Finance, 47(2): 427-65.

[20] Fama, E.F. and French, K.R. (1993). �Common Risk Factors in the Returns on Stock

and Bonds�. Journal of Financial Economics, 33(1): 3-56.

[21] Flavin, M. (1981), �The Adjustment of Consumption to Changing Expectations About

Future Income�. Journal of Political Economy, 89(5):974-1009.

[22] Forni, M., Hallin, M., Lippi, M. and Reichlin, L. (2000), �The Generalized Dynamic

Factor Model: IdentiÞcation and Estimation�, Review of Economics and Statistics, 2000,

vol. 82, issue 4, pp. 540-554.

[23] Geweke, J. (1977), �The Dynamic Factor Analysis of Economic Time Series,� Chapter 19

in D.J. Aigner and A.S. Goldberger (eds.) Latent Variables in Socio-Economic Models,

Amsterdam: North Holland.

[24] Gourinchas, J.-O. and J. Parker(2002), �Consumption over the Lifecycle,� forthcoming

in Econometrica.

[25] Hall, R. (1978), �Stochastic Implications of the Life Cycle Permanent Income Hypoth-

esis: Theory and Evidence�. Journal of Political Economy, 86(6), 971-987.

[26] Hall, R., 1988, �Intertemporal Substitution in Consumption,� Journal of Political Econ-

omy, 96, 221-273.

[27] Hall, R. and F. Mishkin, 1982, �The Sensitivity of Consumption to Transitory Income:

Estimates from Panel Data on Households,� Econometrica, vol. 50(2), pp. 461-481.

[28] Hansen, L., 1982, �Large Sample Properties of Generalized Method of Moments Esti-

mators,� Econometrica, 50, 1029-1054.

[29] Hansen, L. and K. Singleton, 1982,�Generalized Instrumental Variables Estimation of

Nonlinear Expectations Models,� Econometrica, 50(5), pp. 1269-1286.

20



[30] Hansen, L. and Singleton, K. (1983), �Stochastic Consumption, Risk Aversion and the

Temporal Behavior of Asset Returns�. Journal of Political Economy, 91(2):249-265.

[31] Hansen, L. and K. Singleton, 1984, Erratum of the article �Generalized Instrumental

Variables Estimation of Nonlinear Expectations Models,� Econometrica, 52(1), pp. 267-

268.

[32] Hansen, L. P. and Jagannathan, R. (1991), �Implications of Security Market Data for

Models of Dynamic Economies�, Journal of Political Economy, 99(2):225-262.

[33] Hansen, L.P. and Scott F. Richard, 1987, �The role of conditioning information in

deducing testable restricions implied by dynamic asset pricing models,� Econometrica,

55:587-613.

[34] Harrison, J.M. and Kreps, D.M. (1979), �Martingales and arbitrage in multiperiod

securities markets�. Journal of Economic Theory, 20, 381�405.

[35] Kreps, D. and E. Porteus, 1978, �Temporal Resolution of Uncertainty and Dynamic

Choice Theory,� Econometrica, 46, 185-200.

[36] Lettau, M. and Ludvigson, S. (2001). �Resurrecting the (C)CAPM: A Cross-Sectional

Test When Risk Premia Are Time-Varying,� Journal of Political Economy, 109(6):

1238-87.

[37] Lucas, R., 1978, �Asset Prices in an Exchange Economy,� Econometrica, 46, 1429-1445.

[38] Lusardi, A. (1996), �Permanent Income, Current Income and Consumption: Evidence

from Two Panel Datasets�, Journal of Business and Economics Statistics, 14(1):81-90.

[39] Meddahi, Nour and Eric Renault, 2002, �Temporal Aggregation of Volatility Models�,

Journal of Econometrics, forthcoming.

[40] Mehra, R., and E. Prescott, 1985, �The Equity Premium: A Puzzle,� Journal of Mon-

etary Economics, 15, 145-161.

[41] Mulligan, C.B., 2002, �Capital, Interest, and Aggregate Intertemporal Substitution,�

NBER Working Paper # 9373, National Bureau of Economic Research.

21



[42] Ross, S.A. (1976), �The arbitrage pricing of capital asset pricing�, Journal of Economic

Theory, 13, pp. 341-360.

[43] Rubinstein, M. (1976), �The Valuation of Uncertain Income Streams and the Price of

Options,� Bell Journal of Economics, 7, 407-425.

[44] Runkle, D. (1991), �Liquidity Constraints and the Permanent Income Hypothesis: Ev-

idence from Panel Data�. Journal of Monetary Economics, 27(1):73-98.

[45] Stock, J. and Watson, M. (1989) �New Indexes of Leading and Coincident Economic

Indicators�, NBER Macroeconomics Annual, pp. 351-95.

[46] Stock, J. and Watson, M. (1993), Eds., �New Research on Business Cycles, Indicators

and Forecasting� Chicago: University of Chicago Press, for NBER.

A Proofs of Propositions in Section 2

Proof of Proposition 1. Averaging across assets:

1

N

NX
i=1

lnRi,t+1 = − lnmt+1 − 1

N

NX
i=1

lnχim +
1

N

NX
i=1

εi,t+1 (20)

ln

Ã
NY
i=1

(Ri,t+1)
1
N

!
= − ln (χmmt+1) +

1

N

NX
i=1

εi,t+1

where lnχm ≡ 1
N

NP
i=1

lnχim and therefore χm ≡
QN
i=1

h
(χim)

1
N

i
.

Because the cross-sectional distribution of εi,t+1 has a zero mean, 1
N

NP
i=1

εi,t+1
p→ 0, as

N →∞. Hence, a consistent estimator for emt ≡ χmmt, as N →∞ is:

bemt =
NY
i=1

h
(Ri,t)

− 1
N

i
.

The only difference between emt andmt is a multiplicative constant that can be estimated

consistently as follows. Multiply the Euler equation by χm to get:

χm = Et {emt+1Ri,t+1} ∀i = 1, ...,N
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Take the unconditional expectation and average out across N :

χm =
1

N

NX
i=1

E {emt+1Ri,t+1}

Under the assumptions above, a consistent estimate for χm as T →∞ is:

bχm = 1

N

NX
i=1

Ã
1

T

TX
t=1

bemtRi,t

!

=
1

T

TX
t=1

Ã bemt
1

N

NX
i=1

Ri,t

!

=
1

T

TX
t=1

"Ã
NY
i=1

h
(Ri,t)

− 1
N

i! Ã
1

N

NX
i=1

Ri,t

!#

Hence, a consistent estimator for mt, as N, T →∞ is:

bmt =
bemtbχm

=
R
G

t

1
T

TP
t=1

³
R
G

t R
A

t

´ .

Proof of Proposition 2. Since bemt = R
G

t is still a consistent estimator of emt ≡ χm,tmt,

it remains to verify that the estimator of χm,t is consistent.

Without loss of generality, suppose that the Þrst kN processes are heteroskedastic. Then:

lnχm,t =
1

N

kNX
i=1

lnχim,t +

µ
N − kN
N

¶
1

N − kN
NX

i=kN+1

lnχim. (21)

Because these Þrst kN processes have uniformly bounded variance, there exist 0 < M <∞
such that

¯̄
lnχim,t

¯̄ ≤M ∀(i, t). Hence, the Þrst term above vanishes:

1

N

kNX
i=1

lnχim,t ≤
1

N

kNX
i=1

M → 0, as N →∞,

because kN ≤ N1−δ, with δ > 0.
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For the behavior of the second term, note that:

N −N1−δ

N
≤ N − kN

N
≤ 1, N ≥ 1.

Taking limits, when N →∞:

lim
N→∞

N −N1−δ

N
≤ lim

N→∞
N − kN
N

≤ 1

1 = lim
N→∞

N

N
(1−N−δ) ≤ lim

N→∞
N − kN
N

≤ 1.
Hence,

lim
N→∞

N − kN
N

= 1,

and lnχm,t has the same asymptotic behavior of 1
N−kN

NP
i=kN+1

lnχim.

Therefore, we look for an estimator which have the same asymptotic behavior of:

1

N − kN
NX

i=kN+1

lnχim.

Notice that we only use now the conditional homoskedastic returns, since i ≥ kN+1 in the

formula above. Hence the problem is the same as before, and a consistent estimator of χm,t
is given by:

ÿχm ≡ 1

T

TX
t=1

"Ã
NY

i=kN+1

h
(Ri,t)

− 1
N−kN

i! Ã
1

N − kN
NX

i=kN+1

Ri,t

!#
.

It is easy to see that, using the same argument as before, bχm has the same asymptotic

behavior of that of ÿχm. Hence, bχm estimates χm,t consistently, and the result in Proposition

1 is still valid.

Proof of Proposition 3. By deÞnition, Rft+1 is measurable with respect to the sigma

Þeld generated by the information set of the representative consumer. Hence:

1 = Et
n
mt+1R

f
t+1

o
= Rft+1Et {mt+1} , or

Rft+1 =
1

Et {mt+1} ,

which offers an immediate consistent estimator for the risk-free rate Rft+1:d
Rft+1 =

1

Et
©

[mt+1

ª .
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B Tables and Figures

Table 1: Preference Representations and Implied Stochastic Discount Factors

Preference Utility Function SDF

Representation

CRRA U (ct) =
c1−γ
t −1

1−γ mt+1 = β
³
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ct

´−γ
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¶1−γ
−1

1−γ mt+1 = β
³

ct
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´κ(γ−1) ³
γct+1

ct

´−γ
Kreps-Porteus Ut =

h
(1− β) cρt +

¡
EtUαt+1

¢ ρ
α

i 1
ρ
mt+1 =

·
β

³
ct+1
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´−γ¸α
ρ h

1
Bt+1
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Table 2: Conditional Model for the SDF

Adj.R2 F-stat. P-value T Serial Correlation at 5%? ARCH Effect at 5%?

0.049 1.987 0.144 80 No No
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Figure 2

Positive Negative Undetermined
80.0% 6.7% 13.3%

Growth rates of consumption and risk-premia close to zero (+/- 0.1%) are considered undetermined

Agreement between the sign of the risk premium and the covariance between consumption growth and return

Table 3
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C on s ta n t C o e ff

S E

P -v a lu e

d lo g (c ) C o e ff

S E

P -v a lu e

d lo g (c (-1 )) C o e ff

S E

P -v a lu e

lo g (B ) C o e ff

S E

P -v a lu e

S er ia l-C o rr e la t io n L M  te st  a t  5%

A R C H  L M  te st  a t 5%

W a ld  T e st  fo r d lo g (c ( -1 ))

R ed un d a n cy  5 % lo g (B )

T J  te s t  is  S ig n ifica n t a t  5% ?

N um b er  o f O b se rv a t io n s

β
S E

γ
S E

κ
S E

θ
S E

M ed ian  e s t im a t e s  fo r  co n sum p tio n  re g r e sso r .

-

-

0 .0 9 8

0 .8 0 0

1 .0 0 2

0 .3 9 5

0 .5 9 6

4 6 .1 7 1

0 .0 8 3

0 .5 1 2

-
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0 .9 7 5

0 .0 0 5
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-0 .0 2 6

0 .0 0 5

0 .0 0 0
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0 .6 0 5

0 .0 0 0
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0 .0 0 7

0 .0 0 1

-2 .0 8 7
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K rep s -P o rteu s

Table 4

27



B.1 Full Set of Estimates of Consumption Models

Table B.1.1: List of instruments in GMM estimation

TTTT InstrumentsInstrumentsInstrumentsInstruments

CRRACRRACRRACRRA 1111 77 Cte log(m(-1)) log(m(-2)) dlog(c(-1)) dlog(c(-2)) log(B(-1)) log(B(-2))

2222 77 Cte log(m(-1)) log(m(-2)) dlog(c(-1)) dlog(c(-2)) log(B(-1)) 

3333 77 Cte log(m(-1)) dlog(c(-1)) dlog(c(-2)) log(B(-1)) 

Ext.HabExt.HabExt.HabExt.Hab 1111 77 Cte log(m(-1))  log(m(-2))  dlog(c(-1)) dlog(c(-2)) dlog(c(-3)) log(B(-1)) log(B(-2)) 

2222 77 Cte log(m(-1))  log(m(-2))  dlog(c(-1)) dlog(c(-2)) log(B(-1)) log(B(-2)) 

3333 77 Cte log(m(-1))  log(m(-2))  dlog(c(-1)) dlog(c(-2)) dlog(c(-3))  log(B(-1)) 

4444 77 Cte log(m(-1))  dlog(c(-1)) dlog(c(-2)) dlog(c(-3)) log(B(-1)) 

K&PK&PK&PK&P 1111 77 Cte log(m(-1)) log(m(-2)) dlog(c(-1)) dlog(c(-2))  log(B(-1)) log(B(-2)) 

2222 77 Cte log(m(-1)) log(m(-2)) dlog(c(-1)) dlog(c(-2))  log(B(-1)) 

3333 77 Cte log(m(-1)) log(m(-2)) dlog(c(-1)) log(B(-1)) log(B(-2))

4444 77 Cte log(m(-1)) dlog(c(-1)) dlog(c(-2)) log(B(-1)) log(B(-2))

PreferencesPreferencesPreferencesPreferences

Table B.1.2: GMM estimates

CteCteCteCte ProbProbProbProb dlog(c)dlog(c)dlog(c)dlog(c) ProbProbProbProb dlog(c(-1))dlog(c(-1))dlog(c(-1))dlog(c(-1)) ProbProbProbProb log(B)log(B)log(B)log(B) ProbProbProbProb TJ-statTJ-statTJ-statTJ-stat ProbProbProbProb

CRRACRRACRRACRRA 1111 -0.024 0.000 -1.979 0.023 - - - - 1.706 0.888

2222 -0.025 0.001 -2.087 0.042 - - - - 1.667 0.797

3333 -0.025 0.001 -2.186 0.039 - - - - 1.531 0.675

Ext HabExt HabExt HabExt Hab 1111 -0.026 0.000 -2.498 0.000 0.125 0.875 - - 1.959 0.855

2222 -0.024 0.000 -1.998 0.045 0.042 0.957 - - 1.697 0.791

3333 -0.028 0.000 -2.962 0.005 0.531 0.596 - - 1.690 0.793

4444 -0.027 0.000 -2.876 0.006 0.453 0.657 - - 1.303 0.728

K&PK&PK&PK&P 1111 0.003 0.801 -0.602 0.312 - - -0.959 0.032 0.279 0.991

2222 0.005 0.703 -0.557 0.366 - - -1.048 0.039 0.014 1.000

3333 0.002 0.936 -0.596 0.339 - - -0.902 0.263 0.284 0.963

4444 0.006 0.701 -0.529 0.433 - - -1.074 0.064 0.110 0.991

PreferencesPreferencesPreferencesPreferences
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C DRI Data Description

Table C.1: List of assets used to compute returns.

COMMODITIES PRICE:GOLD,LONDON NOON FIX,AVG OF DAILY RATE,$ PER OZ

INDEX RATE: NATIONAL AVERGE CONTRACT MORTGAGE RATE (%)

INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-MO.(% PER ANN,NSA)

NYSE COMMON STOCK PRICE INDEX: FINANCE (12/31/65=50)

NYSE COMMON STOCK PRICE INDEX: TRANSPORTATION (12/31/65=50)

NYSE COMMON STOCK PRICE INDEX: UTILITY (12/31/65=50)

S&P'S COMMON STOCK PRICE INDEX: CAPITAL GOODS (1941-43=10)

S&P'S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10)

S&P'S COMMON STOCK PRICE INDEX: UTILITIES (1941-43=10)

STOCK PRICE INDEX: CANADA

STOCK PRICE INDEX: FRENCE

STOCK PRICE INDEX: GERMANY

STOCK PRICE INDEX: ITALY

STOCK PRICE INDEX: JAPAN

STOCK PRICE INDEX: UNITED KINGDOM
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