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Abstract

Within the independent private-values paradigm, we demonstrate nonpara-

metric identification of Dutch and first-price, sealed-bid auction models when

bidders are asymmetric. We also demonstrate that, in the presence of a bind-

ing reserve price, methods for estimating the distributions of valuations from

data at Dutch auctions differ from those at first-price, sealed-bid auctions.

The differences are illustrated by comparing the kernel-smoothed nonpara-

metric estimators for each auction format.



1 Introduction and Motivation

During the last four decades, economists have made considerable progress in

understanding the theoretical structure of strategic behavior under market

mechanisms, such as auctions, when a small number of potential participants

exists; see Krishna (2002) for a comprehensive presentation and evaluation

of progress.

One analytic device commonly used to describe bidder motivation at auc-

tions is a continuous random variable which represents individual-specific

heterogeneity in valuations. The conceptual experiment involves each po-

tential bidder’s receiving an independent draw from a distribution of valu-

ations. Conditional on this random variable, the bidder is assumed to act

purposefully, maximizing either the expected profit or the expected utility

of profit from winning the auction. Another frequently-made assumption

is that the bidders are ex ante symmetric, their independent draws coming

from the same distribution of valuations, an assumption that then allows

the researcher to focus on a representative agent’s decision rule when de-

scribing equilibrium behavior. However, at many real-world auctions and in

many economic environments, the valuations across bidders are often bet-

ter represented by draws from different distributions; i.e., asymmetries are

important.

Investigating equilibrium behavior in the presence of asymmetries has

challenged researchers for some time. Only under the most commonly-used

informational assumptions, the independent private-values paradigm (IPVP)

described above, has much progress been made. In particular, under some

auction mechanisms, such as the oral, descending-price (also known as Dutch)

and the first-price, sealed-bid auction, asymmetries can induce inefficient

allocations, while under other mechanisms, such as the oral, ascending-price
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(also known as English) and the second-price, sealed-bid (also known as

Vickrey) auction, efficient allocations obtain. Moreover, when asymmetries

are present, the well-known Revenue Equivalence Proposition no longer holds.

Most structural econometric research devoted to investigating equilib-

rium behavior at auctions has involved single-unit auctions within the sym-

metric IPVP. Examples include Paarsch (1992,1997); Donald and Paarsch

(1993,1996,2002); Laffont, Ossard, and Vuong (1995); Guerre, Perrigne, and

Vuong (2000); Haile and Tamer (2003); and Li (2003). Bajari (1997) was one

of the first to investigate asymmetric auctions, analyzing low-price, sealed-

bid, single-unit procurement auctions with independent cost draws from dif-

ferent distributions; his approach was Bayesian and thus parametric. Jofre-

Bonet and Pesendorfer (2003) have investigated the effects of capacity con-

straints at sequential, low-price, sealed-bid procurement auctions with sym-

metric independent private costs, again using parametric methods, where

the capacity constraints make bidders asymmetric. Building on the research

of Brendstrup (2002), Brendstrup and Paarsch (2003) developed a nonpara-

metric private-values framework within which asymmetries in valuations at

multi-unit, sequential, English auctions could be investigated. In this paper,

building on the pioneering research of Guerre et al. (2000), we develop a

strategy of nonparametric identification and estimation to recover the dis-

tributions of latent valuations for different classes of bidders from data con-

cerning single-unit Dutch as well as first-price, sealed-bid auctions.

In the standard theoretical analysis of Dutch and first-price, sealed-bid

auctions, researchers typically note that the two auction formats are strate-

gically equivalent. From an econometrician’s perspective, however, Dutch

auctions are quite different from first-price, sealed-bid auctions in two im-

portant respects: First, at Dutch auctions only the winning bid is observed,
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while at first-price, sealed-bid auctions all bids of participants are observed.

This obvious point is well-known. A second and, to our knowledge, unnoticed

point is related to the fact that, in the presence of a binding reserve price,

participation is endogenous: Only those potential bidders for whom the ob-

ject on sale is worthwhile choose to attend the auction, to participate. At

Dutch auctions, this participation information is revealed to those bidders

present at the auction. The revelation of additional information, which is

absent at first-price sealed-bid auctions, makes the decision problem solved

by participants at Dutch auctions different. Moreover, in the presence of

asymmetries, it matters who has chosen to attend the auction. Thus, the

distinction between the number of potential bidders N and the number of

actual bidders n is particularly important when asymmetries exits. To our

knowledge, this second observation has not been incorporated into the empir-

ical literature concerned with analyzing field data from auctions; we believe

this to be a potential source of mis-specification.

2 Theoretical Model

We consider the sale of a single object at auction assuming that each of the

N (≥ 2) potential bidders is from one of J different classes where J is less

than or equal to N . To admit full generality, hereafter we set J equal to N .
A potential bidder of class j draws his individual-specific valuation indepen-

dently from the cumulative distribution function Fj(v) having corresponding

probability density function fj(v) which is strictly continuous.

For the moment, consider an equilibrium to the first-price, sealed-bid

auction game at which a bidder of class j follows the strategy βj which is

strictly increasing and differentiable in v, having inverse function φj defined
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to be β−1j . Given that, together, the bidders follow the strategy vector β,

which collects the strategies for each of the N potential bidders, the expected

payoff of bidder i when his valuation is vi and he bids b is

Πi (b, vi) = Hi (b) (vi − b)

where Hi (b) is his probability of winning, given a bid of b. However, except

in the symmetric case, calculating Hi (b) is difficult because it is a function

of all opponents’ distribution functions as well as all their inverse functions.

Our contribution is as follows: First, we note that, for bidder i who is of

type j and has valuation Vi, his bid Bji equals βj (Vi). Now, the probability

density function of this bid gj (b) equals fj
£
φj (b)

¤
φ0j
£
φj (b)

¤
so, if bidder i

has a winning bid of y, then we know that

max
h6=i

Bjh < y.

Now, the probability of maxh6=iBjh is given by

Hi
¡
y|f1, . . . , fi−1, fi+1, . . . , fN , β1, . . . , βi−1, βi+1, . . . , βN

¢
=
Y
h6=i
Gh (y) ,

so the corresponding probability density function, following the notation of

Balakrishnan and Rao (1998), is

H 0
i

¡
y|f1, . . . , fi−1, fi+1, . . . , fN ,β1, . . . ,βi−1, βi+1, . . . , βN

¢

=
1

[(N − 1)− 1]!Perm


G1(y) · · · Gi(y) Gi+1(y) · · · GN (y)
...

. . .
...

...
. . .

...

G1(y) · · · Gi(y) Gi+1(y) · · · GN (y)

g1(y) · · · gi(y) gi+1(y) · · · gN (y)

 .

The above matrix on the right is [(N − 1) × (N − 1)] where each column
represents a collection of (N − 2) cumulative distribution functions and one
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probability density function for a particular bidder, excluding bidder i. Here,

the symbol “Perm” outside the matrix above denotes the permanent opera-

tor. The permanent is similar to the determinant except that all the principal

minors have positive sign. An example of the permanent for a (3×3) matrix
is

Perm


a b c

d e f

g h i

 = a(ei+ fh) + b(di+ fg) + c(dh+ eg).
Unlike the determinant, which in the transformation of random variables

ensures that a probability density function integrates to one, the permanent

is a counting device, like the permutation formula. It is especially useful

when finding combinations from different types of distributions.

To see that the above equation collapses to the probability density func-

tion of the highest order statistic when the Gjs are identical, recall that

H 0(y), the probability density function of Y , the highest order statistic from

(N − 1) independently and identically distributed draws from G(b) is

H 0(y) = (N − 1)G(y)N−2g(y).

With some loss of generality, consider an example when N is four and focus

on bidder 1. Thus, (N − 1) is three and

H 0
1(y) =

1

(3− 1)!Perm


G2(y) G3(y) G4(y)

G2(y) G3(y) G4(y)

g2(y) g3(y) g4(y)



=
1

2


G2(y) [G3(y)g4(y) +G4(y)g3(y)]

+G2(y) [G3(y)g4(y) +G4(y)g3(y)]

+g2(y) [G3(y)G4(y) +G4(y)G3(y)]


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which one can show, by direct substitution, is

H 0(y) = 3G(y)2g(y)

when Gj equals G(y) for j = 2, 3, 4. The purpose of introducing the equation

above and the example is to illustrate that H 0
i(y), the probability density

function of the highest competing bid at the auction, is a “mixture” of the

probability density function, the fjs, where the “mixing” weights vary with

y. Thus, the model is nonparametrically unidentified when only data on

the number of potential bidders N and the winning bid are observed; see

Athey and Haile (2002) who apply the research of Meilijson (1981) as well

as Prakasa Rao (1992). Thus, we assume that the researcher can determine

the identity of each potential bidder and, if necessary, assign collections of

potential bidders to particular classes.

Having obtained the expected payoff for bidder i, given that his opponents

follow strategies β−i, we can derive the necessary first-order condition of his

decision problem

max
b
Hi (b) (vi − b)

which is

H 0
i (b) (vi − b) = Hi (b) .

A first-order condition like the one above must hold for each bidder; the

solution to this system of differential equations, one for each bidder, together

with the relevant boundary conditions, typically stated in terms of the reserve

price r as well as the upper bound of support v, constitutes an equilibrium

to this first-price, sealed-bid auction game; see Maskin and Riley (2000) as

well as Krishna (2002). Note that the conditions we have assumed on the
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distribution functions imply that we can invoke a theorem of Lebrun (1999)

to assert that an equilibrium exists.

As an illustration, consider the following:

Example 1 Let N be two and assume that bidder 1’s valuation is drawn

from F1, while bidder 2’s valuation is drawn from F2. Denote the strategy

functions by β1 and β2 and their inverse functions by φ1 and φ2, respectively.

Under these assumptions, H1 (b) reduces to F2 [φ2 (b)] and H2 (b) reduces to

F1 [φ1 (b)], so the necessary first-order conditions are

F2 [φ2 (b)] = F 02 [φ2 (b)]φ
0
2 (b) [φ1 (b)− b]

F1 [φ1 (b)] = F 01 [φ1 (b)]φ
0
1 (b) [φ2 (b)− b]

which, when rearranged, yield

F2 [φ2 (b)]

F 02 [φ2 (b)]
1

[φ1 (b)− b]
= φ02 (b)

F1 [φ1 (b)]

F 01 [φ1 (b)]
1

[φ2 (b)− b]
= φ01 (b) .

Below, we shall argue that, when a binding reserve price r exists, it can

be misleading to analyze Dutch and first-price, sealed-bid auctions using the

same extensive-form game because at Dutch auctions participants typically

have additional information in the form of the actual number of bidders

present at the auction; bidders whose valuations are below the reserve price

have no reason to be present at the auction. Thus, endogenous participation,

when present, is observed at Dutch auctions and becomes a predetermined

variable. Actual participation is typically (and reasonably so) assumed un-

observed at first-price, sealed-bid auctions, so the presence of a reserve price

only affects the boundary condition. At Dutch auctions, on the other hand,

the information set is different from that at first-price, sealed-bid auctions.

To illustrate this consider the following:
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Example 2 Let N be two and assume that Fi (v) equals v on [0, 1] for

i = 1, 2 where the reserve price r is strictly positive. Now, the equilibrium

strategy at a first-price, sealed-bid auction for v which weakly exceeds r is

β (v) = E [max(Y, r)|v > Y ]
= r

r

v
+
1

v

Z v

r

ydy

=
1

2

µ
r2 + v2

v

¶
At a Dutch auction, the same bidder will be able to observe whether his

opponent is absent (i.e., had a draw below the reserve price), so it is easy

to see that, when his opponent is absent, his optimal strategy, conditional on

that information, is to bid the reserve price. Hence, when only one bidder

attends the auction, he bids the reserve price

β (v) = r.

The above example illustrates that Dutch and first-price, sealed-bid auc-

tions are not strategically equivalent in the presence of a binding reserve price

when actual participation is known at Dutch auctions, a common feature

at these auctions. In the following two sections, we develop a structural-

econometric framework within which to identify and to estimate the primi-

tives of the economic model, specifically the underlying distributions of latent

valuations, in the two informational settings.

3 First-Price, Sealed-Bid Auctions

3.1 Nonparametric Identification

In this section, we demonstrate that the underlying distributions of latent

valuations are nonparametrically identified from the bids tendered at first-
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price, sealed-bid auctions. Our strategy relies on the fact that the observed

bids contain information concerning both the corresponding valuation and

the equilibrium strategy. To see this, note from the first-order condition that

vi = bi +
Hi (bi)

H 0
i (bi)

. (1)

Thus, we can use the twin hypotheses of purposeful behavior and equilibrium,

to identify bidder i’s private value vi as function of his equilibrium bid and

the distribution of the highest bid of his opponents. Note that, when it is

possible to obtain the distribution of the highest of the opponent’s bids, no

reason exists to solve for the equilibrium strategies. Moreover, because all the

bids of participants and their identities are recorded, it is possible to estimate

the Hi function from observed data. The next proposition claims that under

our assumptions the underlying distributions are nonparametrically identified

from observables.

Proposition 3 Fi is identified nonparametrically on [r, v] from the observed

bids, the number of potential bidders, and the identities of the bidders.

Proof. See the proof of Proposition 2 in the next section.

3.2 Nonparametric Estimation

We now describe how to estimate the distributions of the underlying valu-

ations. The basic idea, which is due to Guerre et al. (2000), is simple, yet

elegant and powerful. Note that, while Hi and H
0
i are unknown, they can

be estimated from the observed bids as well as the bidders identities. Hav-

ing estimated Hi and H
0
i, we can use (1) to form an estimate of bidder i’s

valuation using the framework of Guerre et al. (2000).

As a description of the analysis would be, almost word-for-word, as in

Guerre et al. (2000), we direct the reader to their paper for specific details.
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Here, we simply outline enough of the approach to make clear our use of

their techniques, so that later we can illustrate how the methods of Guerre

et al. (2000) differ from those we propose to analyze data from asymmetric

Dutch auctions when the reserve price binds.

In the first step, we construct a sample of pseudo private-values from (1)

using the nonparametric estimates of Hi and H
0
i, while in the second step, we

use this pseudo sample to estimate nonparametrically the probability density

function of bidder i’s latent valuation. One estimator that can be used is the

following: In the first step, we estimate the distributions Hi and H
0
i from the

observed bids using, for example,

bHi(b) =
1

T

TX
t=1

1

µ
max
j 6=i

Bjt ≤ b
¶

bH 0
i(b) =

1

Th

TX
t=1

k

µ
b−maxj 6=iBjt

h

¶
where k is a kernel function and h is the bandwidth. From these estimates,

we construct the pseudo values

bVit = Bit + bHi(Bit)bH 0
i(Bit)

.

We then use these pseudo values to estimate the probability density function

of the latent valuations

efi (v) = 1

Th

TX
t=1

k

Ã
v − bVit
h

!
or, to avoid boundary problems, we use the empirical distribution function

eFi(v) = 1

T

TX
t=1

1
³bVit ≤ v´ .

The details of this approach can be found in Guerre et al. (2000), and

the generalizations of their basic framework (e.g., to admit the truncation

induced by a binding reserve price) can be applied to this model as well.
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4 Dutch Auctions

4.1 Nonparametric Identification

In this section, we demonstrate that the distributions of underlying valua-

tions are identified from observables at Dutch auctions. To understand the

results, it is important to note that, on the one hand, the bids now con-

tain information concerning actual competition but, on the other hand, less

information exists because only winning bids are observed. The practical

implication of these two facts is that the methods proposed for first-price,

sealed-bid auctions are no longer relevant.

In what follows, we assume that, in the presence of a binding reserve

price, more than one potential bidder attends the auction. From the first-

order condition, we know that

vi = yi +
Hi (yi|P )
H 0
i (yi|P )

(2)

where yi is the winning bid and the Hi functions are now conditioned on the

realized competition which involves P , the set of bidders whose valuations

have weakly exceeded the reserve price. With this observation, we claim that

the Fis are nonparametrically identified from observables.

Proposition 4 Fi is nonparametrically identified on [r, v] from the observed

winning bid, the number and identities of the potential bidders, the number

and identities of actual bidders, and the identity of the winner.

Proof. Denote the set of participating bidders by P . Define the random

variable Y to be the maximum of (B1, . . . , Bn) where n is the numbers of

participating bidders. Let I be the index of the winner; i.e., Y equals Bj

means I equals j. We observe the distribution of bids for winners, given
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P. Denote the population cumulative distribution function of the winning

bid Y at an auction won by bidder i by Wi (y|P ). Our task is to identify
{Fi}ni=1, from {Wi (y|P )}ni=1 . To do so, we need to find the distribution of
the bids Gi (y|P ) so we can apply the approach of Guerre et al. (2000), The
proof is similar to one by Prakasa Rao (1992) and is presented here because

it gives the reader some understanding concerning the estimation procedure

presented below.

Now Wi (y|P ) is the union of two disjoint events: Bi being the maximum
among (B1, ..., Bn) and Bi being less than or equal to y. Thus,

Wi (y|P ) = Pr(Y ≤ y|I = j)
=

Z y

−∞

Y
j 6=i
Gj (t|P ) dGi (t|P )

=

Z y

−∞

Qn
j=1Gj (t|P )
Gi (t|P ) dGi (t|P )

=

Z y

−∞

Pr(y ≤ t)
Gi (t|P ) dGi (t|P )

=

Z y

−∞

Pn
j=1Wj (t|P )
Gi (t|P ) dGi (t|P )

=

Z y

−∞

nX
j=1

Wj (t|P ) d logGi (t|P ) .

Therefore,

dWi (y|P ) =
nX
j=1

Wj (y|P ) d logGi (y|P )

or, equivalently,

Gi (y|P ) = exp

Z y

−∞

"
nX
j=1

Wj (t|P )
#−1

dWi (t|P )


=

"
nX
j=1

Wj (t|P )
#αi
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where αi is the probability that i wins the auction. As i was arbitrary, we

have identified the distributions of the bids. Now, from the distribution of

bids, we can find Hi (y|P ) via

Hi (y|P ) =
Y
j 6=i
Gj (y|P )

and the probability density function from

H
0
i (y|P ) =

d
hQ

j 6=iGj (y|P )
i

dy
.

The remainder of the argument follows Guerre et al. (2000).

4.2 Nonparametric Estimation

In this section, we demonstrate how to estimate the distributions of latent

valuations. The idea is to use consistent estimators of Wj (t|P ) and W 0
j (t|P )

as well as αi to define the estimator

bGi(y|P ) = " nX
j=1

cWj(t|P )
#Ti

T

and then to form estimators of Hi (y|P ) and H 0
i (y|P ) via

bHi (y|P ) =Y
j 6=i

bGj (y|P )
and

bH 0
i (y|P ) =

d
hQ

j 6=i bGj (y|P )i
dy

.

At this point, we can use the estimation strategy developed for first-price,

sealed-bid auctions; i.e., form the pseudo values

bVit = Yit + bHi(Yit|P )bH 0
i(Yit|P )
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and then use these pseudo values to estimate the truncated probability den-

sity function of the latent valuations

f ∗i (v) =
fi(v)

[1− Fi(r)]

via ef ∗i (v) an estimate of f ∗i (v) based on the pseudo values. The main result
of this section is given in the next theorem:

Theorem 5 Given that

cW 0
i (y|P ) a.s.→ W 0

i (y|P )cWi(y|P ) a.s.→ Wi(y|P )

ef ∗i (v) is a consistent estimator of fi(v)
[1−Fi(r)] .

Proof. We seek to show that ef ∗i (v) is a consistent estimator of fi(v)
[1−Fi(r)] .

To do this, we invoke results from Guerre et al. (2000). However, we first

need to show that bHi (y|P ) and bH 0
i (y|P ) are consistent estimates of Hi (y|P )

and H 0
i (y|P ) . Consider

bGi(y|P ) = " nX
j=1

cWj(t|P )
#Ti

T

.

To show that this is a consistent estimator of Gi(y|P ), we note that, by the
continuous-mapping theorem, the term on the right-hand side of the equal

sign below

¯̄̄ bGi(y|P )−Gi(y|P )¯̄̄ =
¯̄̄̄
¯̄
"

nX
j=1

cWj(t|P )
#Ti

T

−
"

nX
j=1

Wj(t|P )
#Ti

T

¯̄̄̄
¯̄

goes to zero, so bGi(y|P ) is consistent estimator of Gi(y|P ). To see thatbG0i(y|P ) is a consistent estimate of G0i(y|P ), we again apply the continuous-
mapping theorem. Consistency of bHi (y|P ) and bH 0

i (y|P ) then follows from
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the continuous-mapping theorem. The remainder of the proof of the theorem

follows from Guerre et al. (2000), so we do not repeat it here. Two estima-

tors that satisfy the conditions are the empirical distribution function and a

kernel estimator of the densities where an appropriate choice of the kernel

and bandwidth has been made. Thus,

cWi(y|P ) =
1

T

TiX
t=1

1 (Yt ≤ y)

cW 0
i (y|P ) =

1

Th

TiX
t=1

k

µ
y − Yt
h

¶
.

5 Finite-Sample Properties

In this section, we present some experimental evidence documenting the

finite-sample behavior of the estimator for Dutch auctions without a reserve

price. We begin by noting the well-known fact that, when the bidders are

asymmetric, it is only possible to find closed-form solutions to the equi-

librium bid strategies in a few special case. Because we are interested in

the finite-sample properties of our estimator, we do not want any errors,

which might arise due to numerical approximations of the equilibrium bid-

ding strategies, to influence the results concerning the estimator. Therefore,

we use a previously-solved example from Maskin and Riley (2000). In this

example, bidder 1 draws his valuation from a uniform on
£
0, 4

3

¤
, while bid-

der 2 draws from
£
0, 4

5

¤
. In the notation of Krishna (2002), the equilibrium

bidding strategies then have the following closed-form solutions:

β1 (v) =
1

v

³√
1 + v2 − 1

´

15



and

β2 (v) =
1

v

³
1−
√
1− v2

´
.

Given this setup, we conducted a Monte Carlo experiment involving sam-

ples of 250 observations which we then replicated 5,000 times. We employed

the estimator described above using the biweight kernel

k (x) =

 15
16
(1− x2)2 for |x| < 1;
0 otherwise;

where the bandwidth was 0.0826; (0.25×T−1
5 ) where T is the sample size, in

this case 250. The results are depicted in the graphs below where the medianbFi,med, the 97.5 and 2.5 percentiles are reported as well as the truth F 0i . The
first figure is for type 1 bidders, while the second is for type 2 bidders.
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These results are quite promising. In particular, the median of the esti-

mators and F 0i are virtually the same. Of some concern is the poor behavior

at the upper bound of support. This finding is, however, consistent with the

sort of behavior that Guerre et al. (2000) encountered.

6 Conclusion

We have illustrated how the pioneering work of Guerre et al. (2000) can

be extended to identify and to estimate nonparametrically the distributions

of latent valuations using data from single-unit, first-price, sealed-bid auc-

tions when potentially all bidders are asymmetric; i.e., have valuations which

are draws from different distributions. We have also demonstrated that, in

the presence of a binding reserve price, strategic behavior at Dutch auctions
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is different from that at first-price, sealed-bid auctions because actual par-

ticipation is typically observed at Dutch auctions and reasonably assumed

unobserved at first-price, sealed-bid auctions. The additional information

in the identities of those present at Dutch auctions changes the economet-

ric analysis substantially. We have illustrated the differences by comparing

the kernel-smoothed nonparametric estimators for each auction format. A

small-scale Monte Carlo experiment confirms that the finite-sample behavior

of the estimator is, by and large, good.
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