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Abstract

In this paper we use simple new finite-sample methods to test
the empirical relevance of the New Keynesian Phillips curve (NKPC)
equation. Unlike generalized method of moments-based methods,
these generalized Anderson-Rubin tests are immune to the presence
of weak instruments, and allow, by construction, to assess the identi-
fication status of a model. Our results are illustrated using the Gali-
Gertler (1999) NKPC specifications and data, as well as a survey-
based inflation expectation series from the Philadelphia Fed.

Our test rejetcs the reported Gali-Gertler estimates, conditional
on their choice of instruments. Nevertheless, and in contrast to Ma
(2002), we do obtain relatively informative confidence sets. This pro-
vides support for NKPC equations and illustrates the usefulness of
using exact procedures in IV-based estimations. Finally, our results
also reveal that the least-well-identified parameter is w; namely the
proportion of firms that do not adjust their prices in period t.
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1. Introduction

The New Keynesian Phillips curve (NKPC) equation resulted from the ef-
forts of recent years to model the short-run dynamics of inflation starting
from optimization principles. In its benchmark form, this equation stipu-
lates that inflation a time ¢ is a function of expected future inflation and
current marginal costs. With its clearly-elucidated theoretical foundations,
the NKPC possesses a straightforward structural interpretation and there-
fore presents a strong theoretical advantage to the traditional reduced-from
Phillips curve (which is justified only statistically).

However, confronting the NKPC with the data has raised several issues'.
In particular, modeling the marginal cost variable is a fundamental problem.
Whereas, under some conditions, the output gap series is a natural proxy
for this variable, studies using gap measures revealed empirical puzzles; in
particular: (i) the coefficient on the output gap was estimated to be negative
when theoretically it should be positive, and (ii) adding lagged inflation to
the above model in an ad-hoc manner seemed to correct the estimated sign
problem; suggesting that, unlike what the theory predicts, past inflation
matters?.

These results spurred further research on both the theoretical and em-
pirical levels. For instance, Gali-Gertler(1999) modified the standard NKPC
theoretical formulation by allowing a proportion of firms to use a rule of
thumb when setting prices for their goods (rather than allowing all firms to
set prices in a rational manner). The latter modification provides a theoreti-
cal justification for the presence of an inflation lag in the first-order-condition.
Models which incorporate the above features are referred to as hybrid NKPC
models.

On empirical grounds, efforts focused on proposing improved proxies for

the marginal cost variable. For example, Gali-Gertler(1999) suggested us-

1See, for example, Gali-Gertler(1999), Gali-Gertler-Lopez-Salido(2001), and the refer-

ences cited therein.
2See, for example, Fuhrer-Moore(1995), Roberts(1997) and Fuhrer(1997).



ing measures of marginal cost derived from a production function instead
of relying on possibly-badly-measured output gaps. Generalized Method of
Moments (GMM) estimation of the hybrid NKPC having these new marginal
cost measures yielded the correct sign on that variable and the model was
not rejected according to Hansen’s J-test. Moreover, the choice for the
marginal cost proxy seemed to affect the estimated weight of the backward-
and forward-looking terms in the equation®.

While the above outcomes appear encouraging, it is important to note
that the recent literature on instrumental variable (IV) based inference casts
serious doubts on the reliability of standard inference procedures*. These
studies demonstrate that standard asymptotic procedures (i.e. procedures
which impose identification away without correcting for local-almost-identification)
are fundamentally flawed and lead to serious overrejections; these problems
are not small-sample related and occur with fairly large sample sizes, since
they are caused by asymptotics failures. In particular Dufour(1997) shows
that usual t-type tests, based on common IV estimators, have significance
levels that may deviate arbitrarily from their nominal levels since it is not
possible to bound their null distributions.

To circumvent weak-instruments related difficulties, the above-cited work
on IV-based inference has focused on three main directions: (i) refinements
in asymptotic analysis which include the local-to-zero or local-to-unity frame-
works (e.g. Staiger-Stock(1997), Wang-Zivot(1998), and Stock-Wright(2000)),
(ii) proposing asymptotic approximations which hold whether instruments
are weak or not (e.g. Kleibergen(2002), Moreira(2003)), and (iii) develop-
ing new finite-sample-justified procedures based on proper pivots — that is,
finding statistics whose null distributions are either nuisance-parameter-free
or are bounded by nuisance-parameter-free distributions (e.g. Dufour(1997),
Dufour-Jasiak(2001), Dufour-Khalaf(2002), and Dufour-Taamouti(2003b,c)).

Clearly, the question of whether the NKPC is supported by the data begs

3For example, see Gali-Gertler-Lopez-Salido(2001) and Gagnon-Khan(2001).
4see for example Dufour(2003), Stock-Wright-Yogo(2002), and the references cited
therein.




re-examination using some of these more reliable econometric methods. Such
an excercise was undertaken recently by Ma (2002), who used the asymptotic
test statistics proposed in Stock and Wright (2000) to evaluate the empirical
relevance of the Gali-Gertler NKPC specifications. He concluded that weak
identification was a major concern in these models, and that there was an
unreasonably large set of parameter values that were compatible with these
models.

In this paper, we focus on the new finite-sample methods to test the
empirical relevance of the NKPC. The latter methods allow, by construc-
tion, to assess the identification status of a model. Another major advantage
they have is that they are valid in samples typical of macroeconomic data —
i.e. fairly small. Furthermore, they can provide fairly detailed information
regarding the nature of potential under-identification, suggesting useful the-
ory modifications. This is an advantage compared to the Stock and Wright
asymptotic methods because the latter do not provide such information di-
rectly.

Specifically, we apply the econometric methods presented in Dufour and
Jasiak (2001) which are generalizations of the Anderson-Rubin statistics.
Like Ma (2002), our results are illustrated using the Gali-Gertler NKPC
specifications and data. In the next section we reproduce the NKPC models
that were developed by Gali and Gertler (1999), as well as their and Ma’s
results. In Section 3, we present the generalized Anderson-Rubin (hereafter
AR) test. Section 4 documents and discusses the results of the AR test

applications to the above NKPC specifications. The last section concludes.

The Gali-Gertler NKPC models

In Gali-Gertler’s benckmark specification all price-setting firms are forward-
looking in a monopolistically-competitive environment. Thus, inflation, 7, is
a function of next period’s expected inflation, F;m;, 1, and real marginal costs,

s; (expressed in percent deviation with respect to its steady-state value).



Specifically, the model is given by:

T = M5y + BEm4, (1)
with 1 0)(1— 86
3= 02005 2)

and where @ is the proportion of firms that do not adjust their prices in period
t, [ is the subjective discount rate, and F;m; ., is the value of inflation for
next period that is expected at time t.

In contrast, Gali-Gertler’s hybrid specification assumes that some of the
firms use a rule-of-thumb when setting their prices. The proportion of such
firms (referred to as the backward-looking price setters) is given by w. In
this case, the model is written as:

T = XoSy + VBT + Vi1, (3)
with
1—w)(1-0)(1-p30
\, = (1=w)-6)1- 5 "
0+ w—wh+wsh
_ po
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and where 7, is the inflation lag, v, is the forward-looking component of
inflation, and +, is its backward-looking part.

The authors assume rational expectations and re-write the above NKPC
models in terms of orthogonality conditions to be estimated by standard
two-step GMM. Because of small-sample concerns, each re-written model is
normalized in two ways: (i) so as to minimize non-linearities (denoted spec-
ification (1)), and (ii) setting the inflation coefficient equal to one (denoted
specification (2)).

The data used is quarterly U.S. data, with 7, measured by the percentage
change in the GDP deflator, and real marginal costs given by the logarithm of



the labour income share®. The instruments used include four lags of inflation,
labour share, commodity-price inflation, wage inflation, long-short interest
rate spread, and output gap (measured by a detrended log GDP).

For their benchmark model, Gali-Gertler find values of (,5) equal to
(0.83,0.93) and (0.88,0.94) for their specifications (1) and (2) respectively.
Constraining /3 to 1 yields similar results, namely # = 0.83 in (1) and 6 = 0.92
in (2). The implied slope coefficients on the marginal cost variable for all
these cases is positive and significant — based on the [V-based asymptotic
standard errors, and the overidentifying restrictions are not rejected accord-
ing to the J-test. For their hybrid model, the same normalizations and
instrument set are used. In this case, the obtained values for w, #, and f3
are (0.27,0.81,0.89) and (0.49,0.83,0.91) for specifications (1) and (2) respec-
tively. In the restricted cases, these are (0.24, 0.80,1.00) and (0.52,0.84,1.00)
respectively. Again, the implied slopes are all positive and found to be sig-
nificant.

Based on these, and some additional GMM estimations carried out for
robustness purposes, the authors conclude that there is good empirical sup-
port for the NKPC, and furthermore, that the forward-looking component
of inflation is more important than the backward-looking part.

Despite these significant outcomes, it is important to be wary of GMM-
based outcomes, as the severity of weak-instruments effects is now well-
understood in econometrics®. Given these concerns, Ma (2002) uses the test
statistics developed by Stock and Wright (2000) to re-evaluate the empirical
relevance of these NKPC specifications. These asymptotic methods account
for the presence of weak instruments and provide corrected confidence inter-

vals for the GMM-estimated parameters.

5They also report results for the case where inflation is measured by the non-farm

deflator. These yield similar outcomes to those based on the GDP total deflator measure.
6Examples include Dufour(1997), Staiger-Stock(1997), Wang-Zivot(1998), Stock-

Wright(2000), Dufour-Jasiak(2001), Stock-Wright-Yogo(2002), Kleibergen-Zivot(2003),
Khalaf-Kichian(2002), Dufour-Khalaf(2003), Dufour-Taamouti(2003b,c) and Du-
four(2003).



Ma first notes that the benchmark model presents a theoretical identifi-
cation problem; namely that there is an observational equivalence between
the sets (3, #) and (3, 1/56). Thus, there is more than one parameter com-
bination that satisfies the GMM minimization criterion. In other words, the
objective function being solved by GMM (and which is concentrated with
respect to @) is non-quadratic. Therefore, conventional tests, such as those
applied in Gali-Gertler, do not provide accurate information on the precision
of GMM estimates.

Turning to the estimates from the hybrid model, Ma calculates the cor-
rected confidence set according to the method proposed in Stock and Wright
(2000). He finds that the 90% S-set is particularly large, including all param-
eter values between [0,3] for two of the parameters, and [0,8] for the third.
That is, all parameter combinations derived from these value ranges are com-
patible with the model. This is a clear indication of weak identification in
this model.

Thus, the validity of the Gali-Gertler GMM-based estimates is in ques-
tion. But, the Stock and Wright intervals provide little concrete direction
in which theoretical research should be oriented. On the other hand, the
recently-advanced finite-sample methods that also deal with the possible
presence of weak instruments may be able to point to such directions. In
the next section, we present a test strategy belonging in the latter finite-
sample category. It is one proposed in Dufour and Jasiak (2001) and is a

generalization of the Anderson-Rubin (1949) technique.

The AR test

The Anderson-Rubin test has recently received renewed interest”. In its
generalized form — developed by Dufour and Jasiak (2001) — it is applicable

to univariate models using limited information, and where one or more of the

"See, for example, Dufour(1997), Staiger-Stock(1997), Dufour-Jasiak(2001), Dufour-
Khalaf(2003), and Dufour-Taamouti(2003b,c).



right-hand-side variables are possibly endogenous.
More formally, consider a limited information simultaneous equations sys-
tem
y=Y0+ X1k +u, (5)

where y is an n x 1 dependent variable, Y is an n x m matrix of endogenous
variables, X; is an n X k; matrix of exogenous variables, and « is an error
term which satisfies standard regularity conditions typical to IV regressions;
see Dufour-Jasiak(2001).

In this context, consider hypotheses of the form
Hy:6 =0 (6)
Define § = y — Y6 so that under the null hypothesis, (6) implies
7= X1k + u. (7)

In view of this, the AR test is based on assessing the exclusion of X, (of
size n X ky) in the regression of § on X; and X, which can be conducted
using the standard F-test or its chi-square asymptotic variant; see Dufour-
Jasiak(2001). Let X = (X, X3), and define

M = J- X(X’X)’IX’
M, = I-X,(X|X)"'X]
then the statistic takes the form

[(y = Y0 My (y = V6%) — (y = V) M (y = Y'3")] /s

A= (s - YO M(y—Y&) [ (n— k1 — ko)

(8)

Under the null hypothesis and imposing strong exogeneity and i.i.d. nor-
mal errors, AR ~ F'(ko,n — ki — k3); the normality and i.i.d. hypotheses can
be relaxed so under standard regularity conditions and weakly exogenous
regressors, (ko x AR) < x? (k).

The test can be readily extended to accommodate additional constraints
on the exogenous variables coefficients; see Maddala(1974), Dufour-Jasiak(2001),

8



Dufour-Taamouti(2003b,c) and Dufour(2003). Specifically, consider a hy-
pothesis of the form:
Hy:6=16° k= K/(l)a (9)

where k; is a subset of k, i.e. k = (s}, })’. Partition the matrix X; (into

Xi1 and X5 sub-matrices) accordingly and let
j=y—-Y - Xy, (10)
so the restricted model becomes
§ = Xiok12 + u, (11)

and the test may be carried out as above.

While the test in its original form was derived for the case where the
first stage regression is linear, Dufour-Taamouti(2003b,c) have shown that
it is in fact robust to: (i) the specification of the model for Y, and (ii)
excluded instruments; in other words, the test is valid whether the first stage
regression is linear or not, or whether the matrix X, includes all available
instruments or not. As argued in Dufour(2003), since one is never sure
that all instruments have been accounted for, the latter property is quite
important. Most importantly, this test (and several variants discussed in
Dufour(2003)) is the only truly pivotal statistic whose properties in finite
samples are robust to the quality of instruments.

Of course, despite the latter desirable statistical properties, the test as
presented provides no guidance for practitioners regarding the choice of in-
struments. However, simulation studies reported in the above cited refer-
ences show that the power of AR-type tests may be affected by the number
of instruments. To see this, consider the case of (5)-(6): here, the AR test
requires assessing (in the regression of § on X; and X3) the exclusion of the
n X ko variables in X5, even though the number of structural parameters un-
der test is m (k is m x 1). On recalling that identification implies ky > m, we
see that over-identification (or alternatively, the availability of more instru-

ments) leads to degrees-of-freedom losses with obvious implication on power.

9



To circumvent this problem, Dufour-Taamouti(2003b,c) have shown that for
the problem at hand, an optimal instrument (in the sense of point-optimal

power) may be derived as follows
7 - X2H2

where Il is the coefficient of Xy in the first-stage regression, i.e. the re-
gression of Y on X; and X,. Clearly, the latter optimal instrument involves
information reduction, for the associated AR-test amounts to testing for the
exclusion of the n x m variables in Z, which preserves available degrees-
of-freedom even if the model is highly over-identified. In other words, the
optimal test can reflect the informational content of all available instruments
with no statistical costs.

Unfortunately of course, II, is unknown so the optimal instruments needs
to be estimated, with obvious implications on feasibility and exactness. Du-
four(2003) shows that if the OLS estimator of II, in the unrestricted reduced

form multivariate regression

[vv]=[x x|

Uy 2

+[uv] (12)

is used in the construction of Z, then the associated AR-test coincides with
the LM procedure defined by Wang-Zivot(1998). In addition, Dufour and
Khalaf (2003) show that Kleibergen’s K-test may be obtained as an optimal
AR-test based on Z where II, is replaced by it OLS estimates using the

reduced form (12) constrained by the structural identification condition
o = HQ(S

Dufour and Khalaf (2003) provide simple analytical formula (applying e.g.
Berndt-Savin(1977) and Dufour-Khalaf(2002b)) to derive this estimate.
Both tests so obtained are not exact, but their asymptotic validity does
not impose identification away. Split sample estimation techniques (where
the first sub-sample is used to estimate II, and the second to run the opti-

mal AR-test based on the latter estimate) may be easily applied to obtain

10



exact optimal AR tests, as suggested by Dufour-Taamouti(2003b,c) and Du-
four(2003); see also Dufour-Jasiak(2001) regarding split-sample procedures.

Applications of the AR test

The econometric models that we use for the AR applications are the Gali-
Gertler benchmark and hybrid models in equations (1) and (3) respectively,
with Fymq given by a survey measure of inflation expectations, 7;,;. The
Federal Reserve Bank at Philadelphia publishes quarterly mean forecasts of
the next quarter US GDP implicit price deflator, which we first difference
to obtain our inflation expectations series®. A measurement error term u, is
added to the equation to reflect the fact that the expectations variable is a

proxy. Thus, our econometric equivalents of the Gali-Gertler models are:
T = A1S + BT + w, (13)

and

e = NSy + Vg1 + WT—1 + Uy, (14)

where Ay, Ay, 7f, and ~, are defined as previously (see equations (2) and (4)).
In this framework, and for both the benchmark and hybrid models, y = 7,
Y = (s4,7T41)", and X, is the 24-variable set of instruments used by Gali-
Gertler. In addition, X; is zero in the benchmark case, and equal to 7, ; in
the hybrid case.
We test the Gali and Gertler (1999) estimates for the benchmark and
hybrid models, and for both specifications, using their instrument set each

9 An illustration is as follows: say we want to test their benchmark

time
model specification (1) estimates. We impose 6 = 0.83, 3 = 0.93, and calcu-
late the corresponding slope value, which is A\g = 0.05. The null hypothesis
for the AR test is then given by: Hy : Ay = 0.05 and 5y, = 0.93. Constructing

y, we regress it on all the Gali-Gertler instruments. We also obtain the M

8Source: http://www.phil.frb.org/econ/spf/index.html.
9Due to the presence of the expectations variable our sample starts in 70:1.
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and M; matrices as in equations (8). With these, we compute the value of
the AR statistic according to equation (8). We have n = 112 observations
and ko = 24 instruments. The statistic is therefore compared to the F(24,88)
distribution, and in the case where the normality and i.i.d. hypotheses are
relaxed, 24X AR is compared to a x*(24).

The results are reported in Table 1. From there, we can see that all of the
Gali-Gertler GMM estimates are decisively rejected at the 5% level. In other
words, given the instrument set that was used by Gali and Gertler, both their
benchmark and hybrid models are strongly rejected by the data, whether
specification (1) or (2) estimates are used, and whether the 3 parameter is
restricted to equal 1.

Next we ask whether, for the same instrument set, there are any param-
eter combinations for which the models are not rejected. Thus, we conduct
such a grid search for each of the benchmark and hybrid models, allowing the
range (0,1) as the admissible space for w, #, and /3, and varying these values
with increments of 0.1. We find that all parameter combinations reject the
model at the 5% level, whether it is the benchmark or the hybrid equation
that’s being tested.

This conclusion is in striking contrast with the findings of Ma (2002), al-
though both our results highlight the weak-instrument problem emphatically.
That is, while the Stock-Wright asymptotic test finds that all parameter com-
binations do not reject the model, we find that all of them actually reject
it. Therefore, it appears that the AR-test has more power compared to the
Stock-Wright methodology.

Selected Instrument Sets

It is evident that whether a model is rejected or not depends on the in-
struments that are used to specify it. The issue of which instruments to

use is quite difficult and beyond the scope of this study. However, an easy

10 Although, we note that there is a slight difference in our two instrument sets: Ma’s
set includes a constant and has no 4th lag for each of the three variables in levels.
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way to understand the relevance of various instrument sets is to specify the
model with each and then test it. We consider seven different instrument
sets, each comprised of 4 lags of a variable amongst the following: GDP
deflator inflation, wage inflation, commodity price inflation, labor income
share, long-short interest rate spread, quadratically-detrended output gap,
and cubically-detrended output gap''. For each of these sets, we conduct
grid searches for the benchmark and hybrid models again, always admitting
a (0,1) range for each of w, #, and 3, and still varying the parameter values
by increments of 0.1.

The results are tabulated in Table 2-6b. Table 2 shows, for the seven
instrument sets, those combinations of S and @ values that do not reject the
tested specification. The remaining Tables are results for the hybrid model.
Tables 3a-3b show the outcomes for estimations over the full sample, while
Tables 4a-4b, 5a-5b, and 6a-6b in the Appendix tabulate results for non-
intersecting sub-samples (70:1-79:4, 80:1-89:4, 90:1-97:4). In each case, we
report the results with four of the instrument sets'2.

First and foremost, the overall results show that there are parameter
combinations for which a given model is rejected, and others for which it
is not. Second, some instrument sets appear to have more informational
content than others (i.e. they yield a smaller set of parameter combina-
tions that do not reject the model). These results are somewhat positive
for macroeconomic theorists because they indicate that the NKPC models
are not rejected outright. But while the scope of the identification issue

is slightly less dramatic with our results than with those suggested by the

"For our output gap measure, and for all the tests we conduct, rather than detrending
the log of GDP using the full sample, n, we proceed iteratively: to obtain the value of the
gap at time ¢, we detrend GDP with data ending in ¢. We then extend the sample by one
more observation and re-estimate the trend. This is then used to detrend GDP and yields
a value for the gap at time ¢t + 1. And so on till the end of the sample. In this fashion,
our gap measures at time ¢ do not use information beyond that period and can therefore

be used as valid instruments.
12This is to save space. The remaining tables are available upon request.
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Stock-Wright method, our various tables do indeed indicate the presence of
pervasive identification problems. For instance, in the benchmark model, the
instrument sets in columns 1-4 and in column 6 show that there are many
parameter combinations for which the model is valid. Similarly, in the hybrid
model case, there are numerous parameter combinations that do not reject
the NKPC specification.

However, an important fact is that additional information can be gained
from the examination of these tables regarding the direction in which theo-
retical research should be oriented. In particular, with the hybrid model case
(Tables 3a-6b), some patterns emerge: (i) as the value of § increases, the val-
ues for [ decrease, and (ii) results are more restrictive when w is not too
high or too low. Based on these, we can see that if one is willing to assume a
range for the subjective discount rate that is economically meaningful (say,
values ranging from 0.8 to 1), then the space of admissible parameter values
is greatly reduced: thus 6 is almost never above 0.4, and it is lower when w
is either high or low. That is, the w parameter is less well-identified than 6,
which implies that research needs to find better ways of characterizing the
inertia in inflation dynamics.

The information in the above tables has been summarised in a number of
graphs. For each model, we show the graphs for the parameter combinations
that do not reject the model when the latter is specified using four different
instrument sets. Figure 1 presents the graphs for the benchmark model for
the instrument sets: lags 1 to 4 of inflation, lags 1 to 4 of wage inflation,
lags 1 to 4 of the long-short spread, and lags 1 to 4 of labor income share.
Figure 2 depicts graphs for the hybrid model with the same instrument sets.
Column 1 shows the graphs for # and S for all values of w considered, while
the subsequent columns show # and  for w = 0.2, w = 0.5, and w = 0.8
respectively. Figures 4, 6 and 8 in the Appendix depict each similar graphs
to Figure 2, but for the subsamples 1970:1-1979:4, 1980:1-1989:4, and 1990:1-
1997:4 respectively. In these cases, however, we show results with lags 1 to

4 for the quadratically-detrended output gap rather than lags 1 to 4 for the

14



labor income share as the former are more interesting. Finally, Figures 3, 5,
7, and 9 depict the graphs corresponding to figures 2, 4, 6 and 8 respectively,
but with £ constrained to be equal to or above 0.8 which are economically
more meaningful.

The graphs show more clearly the patterns in the results that were ob-
served from the tables. Furthermore, it is clear from the sub-sample graphs
that there is evidence of parameter instabillity. In particular, whereas the
quadratically-detrended output instrument set results show all parameter
combinations to reject the model in the seventies, results with the same in-

strument set show non-rejections for the eighties and nineties.

Optimal Instrument Sets

Conclusion

15



Table 1: AR test results on Gali-Gertler models - US Data
Tested model spec. restr data sample D.F. Fstat (p-value) Chi-stat (p-value)

Benchmark (1) - 70:1-97:4 88 8.77 (<) 210.54 (<)
Benchmark — (2) - 70:1-97:4 88 9.31 (<) 223.61 (<)
Benchmark (1)  yes 70:1-97:4 88 11.57 (<) 277.59 (<)
Benchmark  (2)  yes 70:1-97:4 88 11.55 (<) 277.27 (<)
Hybrid (1) - 70:1-974 87 7.98 (<) 199.42 (<)
Hybrid (2) - 701974 87T 1355 (<) 338.83 (<)
Hybrid (1)  yes  70:1-97:4 87 1105 (<) 276.26 (<)
Hybrid (2)  yes 70:1-97:4 87 1741 (<) 435.28 (<)
Hybrid (1) - 70:1-894 55 4.73 (<) 118.21 (<)
Hybrid (1)  yes 70:1-89:4 55 8.19 (<) 204.72 (<)
Hybrid (2) - 80:1-974 47 7.01 (<) 175.29 (<)
Hybrid (2)  yes  80:1-97:4 47 1413 (<) 353.19 (<)

Note: Table abreviations are: D.F. is degrees of freedom, spec is specification, restr is
restricted, and the symbol ” < ” indicates values that are less than 107°.

Table 2: Benchmark Model - Parameter Grid Search Results - US Data
Parameter Combinations that Do Not Reject Hy - Full Sample

dw; - dwy  sp;-sps  dpi - dps S1 -S4 g - gqs  dcy - deg  geq - gey

#=00 (0-08) (0-1) (0-0.5) - - 0-1) -

=01 (0.3-0.6) (0.6-1) (0.3-0.6) - - (0-1) -
=02 (05-06) (0.7-1) (0.5-06) (0-0.1) - (0-1) -
0 =0.3 0.6 (0.7 -0.9) 0.6 (0-0.3) - (0-1) -
0 =0.4 0.6 (0.7 -0.8) 0.6 (0 - 0.5) - (0-1) -
0 =0.5 0.6 (0.7 -0.8) 0.6 (0 - 0.5) - (0-1) -
0 = 0.6 0.6 (0.7 -0.8) 0.6 (0 - 0.6) - (0-1) -
0 =0.7 0.6 (0.7 -0.8) 0.6 (0-0.7), 1 - (0-1) -
0 =08 - (0.7 -0.8) - (0-1) - (0-1) -
0 =0.9 - (0.7 -0.8) - (0-1) - (0-1) -
0 = 1.0 - (0.7 -0.8) - (0-1) - (0-1) -

Note: Reported values are for the parameter f. Instrument sets are lags 1 to 4 of
wage inflation (dw), long-short interest spread (sp), inflation (dp), labor income share
(s), quadratically-detrended output gap (gq), commodity price inflation (dc), cubically-
detrended output gap (gc).
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Benchmark Model - Full Sample

Figure 1

beta

beta

0.84

0.72

0.60

0.24

0.12

0.00

0.56

0.48

0.32

0.24

0.16

0.08

0.00

dwl - dw4

0.00 0.16 0.32 0.48 0.64
theta
dpl-dp4
s o

s

s
o

s

s

s

T T T

0.00 0.16 0.32 0.48 0.64

theta

beta

beta

0.96

0.80

0.32

0.16

0.00

0.96

0.80

0.64

0.48

0.32

0.16

0.00

spl-sp4
o s
‘_u o o
_o s s s s s o
o s s s s s o
o
o
o
=1
o
o
N , , ,
0.00 0.25 0.50 0.75 1.00
theta
sl-s4
s s s
] o o
| s s
s s s
N o o o o
| s s s s s s
s s s s s s
- o o o o o o o
s s s s s s s
N o o o o o o o
e = e e o e -
0.16 0.32 0.48 0.64 0.80 0.96 112
theta

19



dw1 - dw4, omega = (0,1) dw1 - dwa, omega = 0.2

beta

beta
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Hybrid Model - Full Sample
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Constrained Hybrid Model - Full Sample

(no parameter combinat
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Figure 4: Hybrid Model - 1970:1-1979:4
(all parameter combinations reject with the gq instruments.)
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4

1-1989:

Hybrid Model - 1980

Figure 6
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4

1-1989:

Constrained Hybrid Model - 1980:

Figure 7
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1-1997:

Hybrid Model - 1990
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4

1-1997:

Constrained Hybrid Model - 1990:

Figure 9
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