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Abstract: I study preferences defined on the set of real valued random vari-
ables as a model of economic behavior under uncertainty. It is well-known that
under the Independence Axiom, the utility functional has an expected utility
representation. However, the Independence Aiom is often found contradictory
to empirical evidences. The purpose of this paper is to study risk averse utility
functionals without assuming the Independence Axiom.
The first part of the paper studies the relation between convexity of pref-

erence and risk aversion. If the utility functional does not have an expected
utility representation, then the equivalence between risk aversion and convexity
of preference breaks down. This paper shows that under appropriate continu-
ity conditions, risk aversion is equivalent to a weaker condition, which I call
”equal-distribution convexity”, that is a preference is risk averse iff convex com-
binations of random variables with the same distribution are preferred to the
random variables themselves.
Differential properties of risk averse utility functionals are studied. A rep-

resentation theorem for the form of the Frechet derivative of continuously dif-
ferentiable utility functionals is given. Characterization of monotonicity and
risk aversion in terms of the Frechet derivative of utility functionals are given.
Neccessary and sufficient condition of risk aversion in terms of the Frechet deriv-
ative of utility functionals is provided. I also provide a criteria of comparing
individual’s attitude toward risk by the properties of the Frechet differential of
the utility functions. This criteria, when applied to expected utility, reduces to
the usual Arrow-Platt measure of absolute risk aversion. I also studied the rela-
tion between the notion of differentiability developed here and that in Machina
(1982).

1 I thank my adviser Jan Werner for his guidance. I thank William Neilson, Andy Mclen-
nan, Marcel K. Richter, Fanchang Huang, Yuzhe Zhang participants of Midwest Economic
Theory Meeting 2004, and participants of Minnesota Micro/Finance workshop for their helpful
comments. All errors are mine.
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A Theory of Risk Aversion
without the Independence Axiom
The purpose of this paper is to study risk aversion without assuming the in-

dependence axiom, consequently the utility function may not have an expected
utility representation. I restrict my attention to preference orders that satify a
state-independence condition, that is random variables of the same distribution
are indifferent to each other. The approach taken in this paper differs from
most of the literature in that I focus on preference orders and utility functions
that defined on space of random variables, in stead of probability distributions.
The advantage of doing so includes the following: First, I give a simple charac-
terization of strongly risk aversion, which is stated as a property of preference
orderings defined on set of random variables. I will also give simple character-
izations of risk averse utility functions in terms of its derivatives with respect
to random variables. These characterizations, however, are not possible when
preference is defined on set of probability distributions. Second, the differential
properties of utility function that is derived in this paper is more convenient for
many application purposes. For example in studying consumer’s portfolio choice
problem in the financial market, One needs the derivative of utility functions
with respect to random variables to derive the first order condition of consumer’s
portfolio choice problem. Previous literatures have studied differential proper-
ties of utility functions defined on space of distribution functions, for example,
Machina ([12]), Chew, Karni and Safra ([4]). As will be shown in the last part of
the paper, their differentiability conditions can be used to derive the derivative
of utility functions with repect to random variables as well. However, In order
to use Machina ([12])’s notion of derivative, one needs assume that the random
variable has a compact support, while the results of this paper does not rely
on this assumption. Therefore, for purpose of application in asset pricing prob-
lem, the results of this paper allows one to keep the important tools developed
in those asset pricing models where securiy prices follow diffusion processes,
which is clearly unbounded.The independence Axiom, on which the expected
utility theory relies, is often found contradictory to empirical evidence. For a
comprehensive survey on this, see [25]. Many weakenings and generalizations
of the independence Axiom have been proposed as an alternative theoretical
foundation of study of economic behavior under unceratainty, for example, the
weighted utility theory [4], the anticipated utility theory [16],[17], the dual ex-
pected utility theory [30], among many others.
This paper studies properties of risk averse utility functionals2 without as-

suming the Independence Axiom, with and without differentiability assumption
of the utility functional. Preferences are assumed to satisfy the "state indepen-
dence" assumption, that is, two random variables are indifferent to each other

2Hereafter called strong risk aversion, to distinguish it from the following weaker notion of
risk aversion: A preference relation is risk averse if any random variable is less prefered to its
expectation.
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if they have the same distribution. Under this assumption, preference over set
of random variables can be modelled either by utility functions defined on set of
random varibles, denoted V (X), or as utility function defined on probability dis-
tribution functions, denoted U(F ) , where V and U are related by U(F ) = V (X)
if the distribution function of X is F . Most of the literature took the second
approach, i.e. studying the properties of the function U .
This paper takes a different point of view, i.e. studying utility functions

defined on set of random variables directly. The most important reason for this
is that in many applications, it is the properties of utility function as a function
of random variable that is of direct interest. To see this point, consider the a
model consumer’s portfolio choice problem:

max V (c)

s.t.
PJ

j=1 pjhj ≤ m

cs =
PJ

j=1 hjxj,s ∀s
Consumer’s preference over a random consumption c is represented by utility
function V (·). {xj,s}j=1,2,···J,s=1,2,···S is the pay-off matrix of the J securities in
the market. The first order condition of the above problem is

λpj =
X
s

∂V

∂cs
(c) · xj,s (1)

, which is the key equation underlying many asset pricing models. Note in or-
der to write down the first order condition, one need to know the derivative
of V with respect to the random variable c. It may well be argued that the
properties of the uitlity function U can be used to derive the property of V ,
thus equation (1) can be derived by using the properties of utlity function U .
This approach is taken by Machina (1982). Machina (1982) studies differential
properies of smooth uitlity functionals defined on set of probability distribution
functions. Machina (1982) showed that although linearity is lost if one aban-
don the independence axiom, smooth nonlinear (in the probability distribution)
utility functionals can be locally approximated by a linear functional. Under
appropriate assumptions, the Frechet derivative of a smooth utlity functions,
as a linear functional that maps probability distribution functions to the real
line, has an expected utility representation. That is to say, although the utility
functional may not have an expected utility representation, it can be locally
approximated by expected utility functions. Machina’s results can be applied
to study asset pricing implications of non-expected utility functions. However,
this approach does not always work. In particular, in establishing the existence
of the locally expected utility, one need the set of probability distribution under
consideration to have a compact support to invoke the Riesz theorem. As will
be shown, the approach developed here does not rely on this assumption. Con-
sidering the importance of asset pricing models that rely on asset prices driven
by diffusion processes, which is clearly unbounded, one implication of my result
is that applying non-expected utility analysis to asset pricing theory does not
neccessarily means one has to abandon the powerful tool that is developed in
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continuous time asset pricing models. In the last part of the paper, I study the
relationship between the differentiability of U as a function of probability distri-
bution function, and the differentiability of V as a function of random variables.
The general conclusion is the some the two notions of differentiability translate
into each other, some time not. For applications in which the differentiability
of V is of direct interest, it is desirable to study the properties of V function
directly.
A second reason to study utility functions defined on set of random variables

is that this alternative view leads to a deeper understanding of the notion of risk
aversion. Although the notion of monotonicity and risk aversion of preference is
defined as properties of preference over set of probability distribution functions,
it can be defined as properties of preference over set of random variables as well,
without any reference to the distributional properties of the random variables.
This second view leads to a deeper understanding of the relation between risk
aversion and convexity of preference.

1 Introduction
This paper studies preferences on the set of random variables that can be rep-
resented by some differentiable utility functional. Fomally, let (Ω,F , P ) be a
nonatomic probability space. We further assume Ω is a Polish space (com-
plete metric space with a countable dense subset), and let F be the Borel σ
field. Therefore (Ω,F , P ) is a standard Borel space3. Let ([0, 1],B,m) denote
the unit interval equipped with the Borel σ field, and the Lebesgue measure.
Since any standard Borel space is isomorphic to ([0, 1],B,m)4 , without loss of
generality, we will let (Ω,F , P ) = ([0, 1],B,m) whenever this specification sim-
plifies exposition. Preferences are defined on L1(Ω,F , P ), the vector space of
(R,B)−valued integrable random variables equipped with the L1 norm, where
B is the Borel σ field on R. For any X ∈ L1, let FX(·) be the distribution
function of X, that is FX : R → [0, 1], ∀x ∈ R, FX(x) = P ({ω : X(ω) ≤ x}).
The following stochastic order relations can be defined on L1:

Definition 1 (First Order Stochastic Dominace) Let X,Y ∈ L1,then the
distribution of X first order stochastically dominates that of Y , denoted X %FSD

Y , if ∀x ∈ R, FX(x) ≤ FY (x). If in addition, FX(bx) < FY (bx) holds for somebx ∈ R, then X is said to strictly first order stochastic dominate Y , denote
X ÂFSD Y .

Definition 2 (Second Order Stochastic Dominance) Let X,Y ∈ L1, then
the distribution of X second order stochastically dominates that of Y , denoted
X %SSD Y , if EX = EY , and

R x
−∞ FX(t)dt ≤

R x
−∞ FY (t)dt ∀x ∈ R.

3 See [9], Page 74
4That is, ∃T : (Ω,F , P )→ ([0, 1],B,m) such that 1) T is one-to-one and onto; 2) Both T

and T−1 are measurable fuctions. 3) T is measure preserving. This result is essentially due
to [21], see also the Isomorphism Theorem in [9](Theorem 17.41, Page 116).
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Let’s note the following facts about stochastic order relations:

Lemma 3 1) ∀X,Y ∈ L1, X %FSD Y iff ∃X̃, Ỹ ∈ L1,such that X ≈d X̃ and
Y ≈d Ỹ 5 , and X̃ ≥ Ỹ a.s.
2) ∀X,Y ∈ L1, X %SSD Y iff ∃X̃, Ỹ ∈ L1,such that X ≈d X̃ and Y ≈d Ỹ ,

and E[Ỹ |X̃] = X̃ a.s., and the conditional distribution QY |X=x is stochastically
increasing in x.

In the above lemma, the existence of the random varibles X̃, Ỹ defined on
some probability space, is well known. We show in Appendix I that such random
variables could be constructed on L1. It also follows from the lemma that if
X ÂFSD Y , then X̃ > Ỹ holds on a set of positive measure. The notion of
simple mean preserving spread (MPS) (Roschild and Stiglitz [22]) is very useful
in studying second order stochastic dominance. Let us repeat the key theorems
for later reference:

Definition 4 (Single Crossing Property) Let X,Y ∈ L1, let FX , FY be the
distribution functions of X and Y , respectively. Then FX single cross Y from
below if ∃x ∈ R such that ∀x ≤ x, FX(x) ≤ FY (x), and ∀x ≥ x, FX(x) ≥ FY (x).

Definition 5 (Differ by a simple MPS) Let X,Y ∈ L1, let FX , FY be the
distribution functions of X and Y , respectively. Then FY is said to differ from
FX by a simple MPS if FX single cross Y from below, and in additon EX = EY .

Proposition 6 6Let X,Y ∈ L1, then X %SSD Y iff ∃{Xn}∞n=1 such that X ≈d
X1, and for each n = 1, 2, · · · , the distribution of Xn+1 differ from that of Xn

by a simple MPS, and Xn =⇒ Y .

We are interested in studying preference ordering on L1, Formally, let < be
a complete preorder on L1, and let Â and ∼ be the assymmetric part and the
symmetric part of it, respectively. We will make frequent use of the following
assumptions:

A1 State Independence: ∀X,Y ∈ L1, X ≈d Y implies X ∼ Y

A2 Monotonicity: ∀X,Y ∈ L1, X ≥ Y a.s. implies X < Y .

A20 Strict Monotonicity: ∀X,Y ∈ L1, X ≥ Y a.s., and X > Y on a set of
strictly positive measure implies X Â Y.

A3 Strong Risk Aversion: ∀X,Y ∈ L1, E[Y |X] = X a.s. implies X < Y .

A30 Weak Risk Aversion: ∀X ∈ L1, E(X) < X.

A4 Convexity: If X < Y , then λX + (1− λ)Y < Y, ∀λ ∈ [0, 1].

A40 Equal-distribution Convexity: See definition below.
5Here and after ≈d is used to denote that two random variables have the same distribution.
6 See ([22]), see also ([14]), theorem 1.5.19.
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A5 Continuity: If Xn < Yn ∀n, and Xn → X in L1, Yn → Y in L1, then
X < Y .

Definition 7 (Equal-distribution Convexity) Let X ∈ L1, let EX = {Y ∈
L1 : Y ≈d X}, then < is said to be equal-distribution convex with respect to
EX if ∀Y1, Y2 ∈ EX , ∀λ ∈ [0, 1], λY1 + (1− λ)Y2 < X. < is said to satisfy the
equal-distribution convexity property (A40) if it is equal-distribution convex with
respect to EX for every X ∈ L1.

Note under the state independence assumption (A1), ∀Y ∈ EX , Y ∼ X,
equal-distribution convexity means convex combinations of elements in EX are
weakly preferred to X. Therefore under state independence (A1), convexity
implies equal distribution convexity. Note by lemma 3, under A1, the above
definition of monotonicity (A2) is equivalent to "X %FSD Y implies X < Y ",
and strong risk aversion (A3) is equivalent to X %SSD Y implies X < Y ".
The rest of the paper is organized as follows, in the second part, we study

the relationship between strong strong risk aversion (A3) and convexity (A4).
We argue that under (A1), and (A5), strong risk aversion is equivalent to equal-
distribution convexity (A40). It then follows immediately that under (A1), and
(A5), convexity implies strong risk aversion. We give an example to show that
the converse is not true. The rest of the paper focus on the differential prop-
erties of the utility function representation. The third part gives neccessary
and sufficient conditions of the state independence property(A1), and shows
that under condition (A1), the Frechet derivative of the utility function can be
represented by a real valued Borel measurable function. We maintain the as-
sumptions (A1) and explore the properties of the this representation function.
Part four provides neccessary and sufficient conditons of monotonicity (A2) and
strong risk aversion(A3). We also present a second characterization of strong
risk aversion that directly relates to the equal-distribution convexity property.
Part five compares individual’s attitudes toward risk. Part six compares the no-
tion of differentiability developed here and that in Machina (1982), part seven
concludes.

2 Strong Risk Aversion and Convexity
It is well known that if < satisfies the Independence Axiom, then strong risk
aversion is equivalent to the cocavity of the von-Neuman Morgenstern utility
function. However, what if the Independence Axiom is not assumed? The rest
of this section is devoted to this question. We argue that convexity is strictly
stronger than strong risk aversion, in fact strong risk aversion can be viewed
as ”equal-distribution convexity” as we defined above(A40). This also gives a
equivalent characterization of strong risk aversion.
We will first need a conditional version of the strong law of large numbers:

Lemma 8 (Conditional Strong Law of Large Numbers) Let X1,X2, · · ·
be a sequence of random variables that is conditionally i.i.d. give Y, where
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Y ∈ L1, and Xi ∈ L1 for each i. Suppose also E[X1|Y ] = Y a.s.. Then
1
n

Pn
i=1Xi → Y a.s. and in L1.

Proof. See Appendix II.
Given any X ∈ L1, the following lemma provides a neccessary and sufficient

condition for Y %SSD X to hold:

Lemma 9 7∀X ∈ L1, the set of distributions that second order stochastically
dominate the distribution of X is precisely the set of distributions that can be
obtained through convex combinations of random variables that have the same
distribution with X, or as L1 limit of it8 .

Proof. First, suppose Y %SSD X, we need to show the distibution of Y could be
obtained as the distribution of convex combinations of random variables that has
the same distribution with X. Since only the distribution of random variables
matter, by lemma 3, we can assume without loss of generality E[X|Y ] = 0
a.s.. Let R0 be the distribution of Y , and for each x ∈ R, let QX|Y=x(·)
be the conditional distribution of X given Y = x. Then one can construct a
sequence of random variables eX1, eX2, · · · , and a random variable eY on L1 such
that the distribution of Ỹ is R0, eXi’s are conditional i.i.d. given eY , and the
conditional distribution of eXi given eY is QX|Y . 9 Consider 1

n

Pn
i=1

eXi, sinceeXi’s all have the same distribution with eX, for each n, 1n
Pn

i=1
eXi is a convex

combination of random variables that have the same distribution with X. Note
1
n

Pn
i=1

eXi → E[ eX1|eY ] = eY a.s. and in L1 by lemma 8, as needed.
Next, need to show the reverse inclusion. Take any X1,X2, such that X1 ≈d

X2 ≈d X, need to show ∀λ ∈ [0, 1], λX1 + (1− λ)X2 %SSD X. It is enough to
show for any concave function u such that the expectations of u (λX1+(1−λ)X2)
and u (X) both exist, then

R
u (λX1 + (1 − λ)X2)dP ≥

R
u (X)dP . This is

7A similiar result in [11](theorem 15.6, page 137) implies that ∀X ∈ Lp, the set of random
variables that second order stochastic dominate X is the σ(Lp, Lq)−closed convex hull of all
random variables Y satisfying Y ≈d X. The probabilistic proof we give here, however, is
completely different from that in [11]. The reader will also see that Luxemberg’s theorem is
not enough to prove proposition 10, in fact it needs a stronger continuity assumption than
A6, namely, continuity in the σ(Lp, Lq) topology.

8The proof can be easily adapted to show that the statement is also true if one replace L1

limit in the lemma with a.s. limit.
9Let R0 be the distribution of Y , and for each x ∈ R, let R1(x, ·) = (QX|Y=x(·))∞ be a

conditional probability distribution. Then it follows from lemma 1 on page 430 in Fristedt
and Gray (1997), that there exist random variables eX, and eY defined on some probability
space, such that the distribution of eY is R0, the conditional distribution of eX given σ(eY ) is
R1. Note eX = ( eX1, eX2, · · · ) is a sequence of conditional i.i.d. random variables. Note also
since (eY , eX) takes values in (R × R∞,B), which is a standard Borel space, it follows from
?? in Appendix I that ∃ random variables (hY , hX) define on (Ω, F, P ), such that (hY , hX) and
(eY , eX) have the same distribution. Therefore hX = ( hX1, hX2, · · · ) is the sequence of random
variables that is needed.
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immediate, since Z
u(λX1 + (1− λ)X2)dP

≥ λ

Z
u(X1)dP + (1− λ)

Z
u(X2)dP =

Z
u(X)dP

Therefore it follows that any finite convex combination of random variables
with the same distribution second order stochastically dominate X. Now sup-
pose Y is the L1 limit of a sequence of random variables Xn, where for each
n, Xn is a convex combination of random variables that have the same distri-
bution with X. Need to show Y %SSD X. Since Xn → Y in L1, we have
EY = limn→∞E(Xn) = E(X). Therefore only need to show

R x
−∞ FY (t)dt ≤R x

−∞ FX(t)dt for all x ∈ R, where FY and FX are the distribution functions of Y
and X, respectively. For each n, let Fn be the distribution function of Yn. Note
convergence in L1 implies convergence in distribution, we have Fn(t)→ FY (t),
for all continuity ponits of FY . Note also there can be at most countably many
ponits of discontinuities, therefore Fn → FY a.s.. By Fatau’s lemma,∀x ∈ R,Z x

−∞
FY (t)dt ≤ lim

n→∞[
Z x

−∞
Fn(t)dt] ≤

Z x

−∞
FX(t)dt

the second inequality is true because ∀n, Yn %SSD X. This gives the desired
result.

Proposition 10 Let <satisfies A1 and A5 then < is strongly risk averse (A3)
if and if it satisfies the equal-distribution convex property(A40).

Proof. First strongly risk averse implies equal-distribution convexity (A40)
follows directly from the above lemma. To see the reverse implication, note if <
satisfies the equal-distribution convexity assumption, then take any X ∈ L1, if
Y %SSD X, then in the prove of the above lemma, we showed ∃eY ∈ L1, eY ≈d Y ,
such that eY could be obtained as the L1 limit of a sequence of random variables
that are convex combinations of elements in EX , by the continuity assumption
(A6), we have Y < X.
Note if V is the utility function that represents <, then the equal-distribution

convexity property of < implies that V resembles the property of concave func-
tions on the set EX for every X ∈ L1, namely

∀X1,X2 ∈ EX , V (λX1 + (1− λ)X2) ≥ λV (X1) + (1− λ)V (X2) (2)

In fact, the above proposition implies that (2) provides an equivalent definition
of strong risk aversion under assumptions (A1), and (A5). The reader will see
a differential version of condition (2) in part four of the paper.
It follows immediately from the above proposition that under A1, and A5,

convexity of < implies strong risk aversion. Hence we obtain the following
Corollary:
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Corollary 11 Suppose <satisfies A1, and A5, then convexity (A4) implies
strong risk aversion (A3).

The following example shows that the converse of the above corollary is not
neccessarily true.

Example 12 Let (Ω, F, P ) = ([0, 1],B,m). Let < be a preference order on L1

that is represented by V (X) = −E[X+] · E[X−], where x+ = max{0, x}, and
x− = max{0,−x}. Note V satisfies A1, A6 and A3. To verify A3, suppose
X %SSD Y , without loss of generality assume E[Y |X] = X a.s.. Then

V (Y ) = −E[Y +] ·E[Y −] = −E[E(Y +|X)] ·E[E(Y −|X)] (3)

Note x+ and x− are both convex. Therefore E[Y +|X] ≥ (E[Y |X])+ = X+,
similarly, E[Y −|X] ≥ X− by conditional Jensen’s inequality. Therefore one has
(3)≤ −E[X+] ·E[X−] = V (X), i.e. < is strongly risk averse.
However, < is not convex, to see this, enough to show V fails to be quasi-

concave. Consider

X(ω) =

½
3 if ω ∈ [0, 1/2]
1 if ω ∈ (1/2, 1] Y (ω) =

½
−1 if ω ∈ [0, 1/2]
−3 if ω ∈ (1/2, 1]

Then it is straightforward to verify V (X) = V (Y ) = 0, yet V ( 12X + 1
2Y ) =

−1 < min{V (X), V (Y )}, i.e. V is not quasiconcave.

The choice of topology in this setting deserves some comment. In studying
preference defined on set of probability distribution, it seems always desirable to
use the weak convergence topology, and require the preference to be continuous
in this topology. For example, Machina ([12]) studies probability distributions
defined on a compact set [0,M ]. Machina ([12]) worked with L1 norm on the
set of distribution functions on [0,M ], the topology of which is equivalent to the
weak topology. However, as argued in Allen ([1]), sometimes it is desirable to
embed the consumption set in a Hilbert space especially when one is concerned
about using smooth utility functions to obtain smooth demand functions. How-
ever, Allen ([1]) pointed out the general difficulty in embedding a general class
of probability measures into a Hilbert manifold for the topology of weak conver-
gence of probability measures. The topology we use here is stronger than the
weak convergence topology, therefore the continuity assumption here we use is
strictly weaker than requiring continuity in the weak topology. Allen ([1]) be-
lieved it is desirable to give up the weak topology in favor of the Hilbert manifold
structure. Here we give another reason for giving up the weak topology, when
one is interested in risk aversion. That is the strongly risk averse property (A3)
is closed in the topology we use here, but not closed in the weak topology. In
general, one cannot require a preference to be strictly monotone (A20), strongly
risk averse(A3) and continuous in the weak topology at the same time. Consider
the following example: Let P (X = −1) = 1, and ∀n, let P (Yn = 0) = 1 − 1

n
and P (Yn = −n) = 1

n . Then X %SSD Yn for all n. Therefore X < Yn for all n.
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Yet Yn ⇒ Y , with P (Y = 0) = 1. And Y ÂFSD X. If < satisfies A20, we have
Y Â X. But by continuity in the weak topology, we should have X < Y , which
is a contradiction.
In the last part, we showed that without the expected utility assumption, risk

aversion is equivalent to equal-distribution convex, which when (A1) is assumed,
in general, is strictly weaker than convexity. For comparison and completeness,
we also point out here that if the preference relation has an expected utility
representation, then strong risk aversion does imply convexity, as is summerized
in the following proposition.

Proposition 13 Suppose < satisfies A1, and V represents <. Suppose also V
has an expected utility representation, i.e. ∃u : R −→ R such that V (X) =R
Ω
u(X(ω))dP (ω) Then the followings are equivalent:
1) < is convex.
2) < is equal-distribution convex.
3) < is strongly risk averse.
4) < is weakly risk averse.

Proof. Note 1) obviously implies 2), and 2) implies 3) by proposition 10. 3)
implies 4) is straight forward. It is enough to show that 4) implies 1).
Consider the expected utility representation V (X) =

R
Ω
u(X)dP . Note 4)

implies the u is concave, this implies V is concave since

V (λX + (1− λ)Y ) =

Z
u(λX + (1− λ)Y )dP

≥
Z
[λu(X) + (1− λ)u(Y )]dP

= λV (X) + (1− λ)V (Y ) (4)

Therefore the proposition is proved.

3 Representation Function of the Frechet Deriv-
ative

>From this section on, we assume that< can be represented by a utility function
V that is continuously Frechet differentiable, and study the differential proper-
ties of V . This section is devoted to investigate the form of the Frechet derivative
of V . ∀X ∈ L1, let DV (X) denote the Frechet derivative of V evaluated at X,
then DV (X) is a continuous linear functional on L1 = L1(Ω,F , P ). Then by
Riesz representation theorem, DV (X) has a representation in L∞(Ω,F , P ). If
we assume the state indepence condition(A1), then it is possible to obtain a
sharper characterization of the form of DV (X). The rest of this section is de-
voted to this question and we also give a neccessary and sufficient condition for
state independence (A1) under continuous differentiability assumptions.
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Lemma 14 Suppose V represents < that is defined on L1. Suppose that < satis-
fies condition (A1) and (A2) and V is continuously Frechet differentiable. Then
∀X ∈ L1, the Rieze representation of DV (X), as an element of L∞(Ω,F , P ), is
σ(X) measurable, where σ(X) denote the P−completion of the σ field generated
by X.

Proof. In the proof, without any confusion, I use DV (X) to denote both the
continuous linear functional, and the representation of it. By the above lemma,
we have the following identity:∀h ∈ L1, DV (X)(h) =

R
Ω
DV (X)(ω) · h(ω)dP .

It is the measurability part that needs to be shown.
First, assume X is a simple function, i.e. X =

Pn
i=1 ciICi , where I is the

indicator function, ci ∈ R, Ci ∈ F ∀i = 1, 2, · · ·n, and {Ci}ni=1 is a partition
of Ω. To show DV (X) is measurable with respect to σ(X) , enough to show
DV (X) is constant a.s. on Ci for each i such that P (Ci) > 0.
Let us first prove the following result: Fix 1 ≤ j ≤ n, let Tj be any measure

preserving (m.p. hereafter) transformation on Cj (that is, Tj : (Cj ,Fj , P ) →
(Cj ,Fj , P ) is measure preserving. where Fj = F|Cj for j = 1, 2, · · · , n). Define
T : (Ω,F , P )→ (Ω,F , P ) such that

T (ω) =

½
ω if ω ∈ CC

j

Tj(ω) if ω ∈ Cj
(5)

then DV (X) = DV (X ◦ T ).
Note T defined above is m.p. .Note also the fact that V is Frechet differ-

entiable implies the Gateaux derivative exists and they are equal. Therefore
∀h ∈ L1,

DV (X ◦ T )(h) = lim
α→0

1

α
{V (X ◦ T + αh)− V (X ◦ T )}

= lim
α→0

1

α
{V (X + αh)− V (X)} = DV (X)(h) (6)

The second equality above needs some justification. T is m.p. implies X and
X ◦ T has the same distribution, therefore V (X ◦ T ) = V (X). One can also
prove that X ◦T +αh and X +αh have the same distribution, because ∀r ∈ R,

P ({ω : X ◦ T (ω) + αh(ω) < r}) = P (∪ni=0{ω : X ◦ T (ω) = ci; ci + αh(ω) < r})
= P (∪ni=0[{ω : X ◦ T (ω) = ci} ∩ {ω : ci + αh(ω) < r}])
= P (∪ni=0[{ω : X(ω) = ci} ∩ {ω : ci + αh(ω) < r}])
= P ({ω : X(ω) + αh(ω) < r})

The next-to-last line is true since {ω : X(ω) = ci} = {ω : X ◦ T (ω) = ci} for all
i = 1, 2, · · ·n by the definition of T .
Now let us prove that DV (X) is constant a.s. on Ci ∀i such that P (Ci) > 0.

Suppose this is not true, then ∃ Ci with P (Ci) = δ > 0 and r ∈ R such
that ε = P ({ω ∈ Ci : DV (X)(ω) > r}) < δ for some 0 < ε < δ. Let’s
assume ε ≤ δ − ε (The case where ε > δ − ε can be proved analogously). Let
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B = {ω ∈ Ci : DV (X)(ω) > r}, and let us define the m.p. transformation
Ti : Ci → Ci such that T−1i (B) ⊆ Ci\B10 . Let the transformation T be
defined as in (5). Note T is m.p. and by the result in the last paragraph,
DV (X ◦ T ) = DV (X) a.s.. This implies

∀h ∈ L1,

Z
Ω

DV (X ◦ T )(ω) · h(ω)dP =
Z
Ω

DV (X)(ω) · h(ω)dP (7)

Particularly, let h = IT−1(B), then the above implies
R
DV (X ◦ T )(ω) ·

h(ω)dP =
R
T−1(B)DV (X)(ω)dP . Note however, T−1(B) ⊆ Ci\B implies

DV (X)(ω) ≤ r on T−1(B). Hence
R
T−1(B)DV (X)(ω)dP ≤ rP (T−1(B)) = rε.

On the other hand,Z
DV (X)(ω) · h(ω)dP = lim

α→0
1

α
{V (X ◦ T + αh)− V (X ◦ T )}

= lim
α→0

1

α
{V (X ◦ T + αIT−1(B))− V (X ◦ T )}

= lim
α→0

1

α
{V (X ◦ T + αIB ◦ T )− V (X ◦ T )}

= lim
α→0

1

α
{V (X + αIB)− V (X)}

=

Z
DV (X)(ω) · IB(ω)dP (8)

But DV (X)(ω) > r on B implies thatZ
DV (X ◦ T )(ω) · h(ω)dP =

Z
DV (X)(ω) · IB(ω)dP > εr

which is a contradiction to (7).
Finally, suppose X is any measurable function, define Xn in the following

way: for k, n ≥ 1, let

A+k,n = {ω : (k − 1)/2n ≤ X+(ω) < k/2n}, B+
k,n = {ω : X+(ω) ≥ n}

A−k,n = {ω : (k − 1)/2n ≤ X−(ω) < k/2n}, B−k,n = {ω : X−(ω) ≥ n}

Xn = n · IB+
n
+
1

2n

n·2nX
k=1

(k − 1)IA+
k,n
− n · IB−n −

1

2n

n·2nX
k=1

(k − 1)IA−k,n

10To see such measure preserving transformation exists, let’s take any Borel subset A of
Ci\B with P (A) = ε. Let B(B) and B(A) denote the Borel subsets of B and A, respectively.
Note (A,B(A), P |A) and (B,B(B), P |B) are standard Borel spaces (see Corollary 13.4 on
page 82 in [9]) and P |A and P |B are nonatomic measures. Therefore (A,B(A), P |A) and
(B,B(B), P |B) are isomorphic probability spaces and there exist an Borel isomorphism T∗ :
(A,B(A), P |A) → (B,B(B), P |B) that is measure preserving. Define T : Ci → Ci such that

T (ω) =

 T∗(ω) if ω ∈ A
T∗−1(ω) if ω ∈ B

ω if ω ∈ C\(A ∪B)

It is then straightforward to verify that T is a measure preserving transformation and
T−1(B) = A ⊆ Ci\B.
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Note Xn’s are simple functions and are all measurable with respect to σ(X).
Note also∀n, |Xn| ≤ |X|, therefore, {|Xn|}∞n=1 are dominated by |X|. It
then follows that {|Xn|}∞n=1 is a uniformly integrable sequence, therefore, the
fact that Xn → X a.s implies Xn → X in L1. Hence by the assumption
of continuously Frechet differentiability, this implies DV (Xn) → DV (X) in
L∞ norm (Note the operator norm: kDV (Xn)−DV (X)k coincides with the
L∞ norm: kDV (Xn)−DV (X)k∞). Since Xn’s are all simple, DV (Xn) is
σ(Xn) measurable for all n, therefore DV (Xn) ∈ L∞(Ω, σ(X), P ) for all n.
Also note L∞(Ω, σ(X), P ) is a complete metric space (if we identify functions
with the equivalence class modulo the relation:” a.s. equal”), therefore one has
DV (X) ∈ L∞(Ω, σ(X), P ). This completes the proof.
In view of the above lemma, if V (X) is Frechet differentiable, then the

representation of DV (X), viewed as an element of L∞(Ω,F , P ), is a measurable
function of X, it follows that there exist a measurable function RX : (R,B) −→
(R,B), such that DV (X)(ω) = RX ◦ X(ω) a.s. This motivate the following
definition:

Definition 15 (Representation Function of the Frechet Derivative) Let
V : L1 −→ R be a continuously Frechet differentiable utility functional that satis-
fies the state independence condition (A1). ∀X ∈ L1, let RX : (R,B) −→ (R,B)
be the measurable function such that DV (X)(ω) = RX(X(ω)) a.s.. Then RX is
called the representation function of DV (X).

Note RX is not neccessarily unique; in particular, it can take any value
outside the range of X. However, RX is unique on the set X(Ω) except on a set
of P measure 0, where X(Ω) is the range of the random variable X, that is RX

is unique QX a.s., where QX denote the distribution of X. The above lemma
shows that for preferences that satisfies the state independence assumption,
and that is represented by a continuously Frechet differentiable utility function,
the Frechet derivative can be represented by a function that is defined on the
real line. This brings us a lot of convenience, because in stead of studying
the properties of functions that is defined on the probability space (Ω,F , P ),
we now only need to study the properties of functions defined on the real line
to characterize the derivatives of the utility function V . Functions of a real
variable is a lot easier to work with, in fact, as we will see shortly, positivity
and monotonicity of the representation function corresponds to assumptions
(A2) and (A3), respectively. Before we give the equivalent characterizations of
these assumptions, let’s first observe the following propety of the representation
function, which is very useful, namely, random variables that differ by a measure
preserving transformation have the same representation function.

Lemma 16 Let V : L1 −→ R be continuous Frechet differentiable utility func-
tion which represents a preference order that satisfies condition (A1). Let
T : (Ω,F , P ) → (Ω,F , P ) be a measure preserving transformation. Let RX ,
RX◦T be representation function of X and X ◦T , respectively, then RX = RX◦T
QX a.s.

13



Proof. Condition (A2) implies that ∀h ∈ L1

DV (X ◦ T )(h ◦ T ) = lim
α→0

1

α
[V (X ◦ T + αh ◦ T )− V (X ◦ T )]

= lim
α→0

1

α
[V (X + αh)− V (X)] = DV (X)(h)

That is, ∀h ∈ L1,Z
Ω

[RX(X(ω))] · [h(ω)]dP =

Z
Ω

[RX◦T (X ◦ T (ω))] · [h ◦ T (ω)]dP

=

Z
Ω

[RX◦T (X(ω))] · [h(ω)]dµ (9)

where µ is a probability measure on (Ω,F , P ) defined by ∀A ∈ F , µ(A) =
P ({ω : T (ω) ∈ A}). Note that fact that T is measure preserving implies P = µ.
Let h be the set of indicator functions, then (9) implies ∀F ∈ F ,Z

F

[RX(X(ω))]dP =

Z
F

[RX◦T (X(ω))]dP

It follows thatRX = RX◦T a.s. onX(Ω). (For example let F = {ω : RX > RX},
then above implies P (F ) = 0. Similarly, P ({ω : RX > RX}) = 0.)
As is in the case of utlity functions defined on real numbers, integration of

the derivative of the utility functions gives back the value of the utility function
up to a constant, and this relates the properties of the derivatives of the utility
function and that of the utility function itself. In this case, we will frequently use
the following relation to calculate V (Y )− V (X) through the Frechet derivative
of V : given X,Y ∈ L1, for t ∈ [0, 1], one can define f(t) = V (tY + (1 − t)X),
then11:

V (Y )− V (X) = f(1)− f(0) =

Z 1

0

f 0(t)dt

=

Z 1

0

DV (tY + (1− t)X)(Y −X)dt

Now we are ready to give a neccessary and sufficient conditions for the state
independence condition(A2) in terms of the Frechet derivative of the utility
functional V :

Proposition 17 Proposition 2.2 Suppose V is continuously Frechet differ-
entiable. Then the following are equivalent:

1)V satisfies state independence (A1).
2)∀X,Y ∈ L1, if X and Y has the same distribution, then RX = RY

QX − a.s.

11For an excellent treatment of the integration theory of nonlinear operators, see [28]
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Proof. First show 1) ⇒ 2), the existence of the representation function is
implied by lemma 14. We need to show X,Y ∈ L1, and X ≈d Y implies RX =
RY . Define X∗ = inf{x ∈ R : F (x) ≥ ω}, where F is the common distribution
function of X and Y . Then X,Y, and X∗ have the same distribution, and
there exist measure preserving transformations TX : (Ω,F , P )→ (Ω,F , P ), and
TY : (Ω,F , P ) → (Ω,F , P ), such that X = X∗ ◦ TX , and Y = X∗ ◦ TY 12 .
Therefore by lemma 16,RX = RX∗ = RY .
Next, suppose 2) is true, take any X,Y ∈ L1, and X ≈d Y , need to show

V (X) = V (Y ). Define X∗ as in the preceeding paragraph, it is enough to show
V (X) = V (X∗). Let θ denote the random variable that equals 0 a.s.. Note
X = X∗ ◦ T for some measure preserving transformation T by Ryff’s theorem.
Then we have:

V (X) = V (X∗ ◦ T ) = V (θ) +

Z 1

0

DV (t ·X∗ ◦ T )(X∗ ◦ T )dt

= V (θ) +

Z 1

0

[

Z
Rt·X∗◦T (t ·X∗ ◦ T )(X∗ ◦ T )dP ]dt

= V (θ) +

Z 1

0

[

Z
Rt·X∗(t ·X∗ ◦ T )(X∗ ◦ T )dP ]dt

= V (θ) +

Z 1

0

[

Z
Rt·X∗(t ·X∗)(X∗)dP ]dt

= V (X∗)

where the third to last line uses the fact that ∀t ∈ [0, 1], t ·X∗ ◦ T and t ·X∗
have the same distribution, and the second to last equality is true because T is
measure preserving.
The above proposition says under continuous Frechet differentiability condi-

tions, state independence (A1) is equivalent to the condition that random vari-
ables with the same distribution have the same representation function. This
implies that under A1, to characterize the property of the Frechet derivative
of V , one can without loss of generality assume that the random variable X
is weaky increasing on [0, 1]. This simplification is possible since for any real
valued random variable X, there exists a random eX variable defined on [0, 1],
such that X and eX have the same distribution and eX is weakly increasing (One
can take for example, X = inf{x ∈ R : FX(x) ≥ ω}, where FX is the distri-
bution function of X). By the above proposition, if X and eX have the same
distribution, we can take RX = RX , then the properties of RX can be easily
translated into properties of RX .

12This is sometimes called Ryff ’s Theorem, see [23], see also Theorem 7.5, page 82 in [2]. [2]
also contains an example showing that X ≈d Y does not imply X = Y ◦ T for some measure
preserving transformation T . See example 7.7 on Page 89 in [2].
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4 Characterization of Monotonicity and Risk-
aversion

In this section, we will assume < satisfies state independence (A1), and is rep-
resented by a continuously Frechet differentiable utility function V : L1 → R.
Neccessary and sufficient conditions for < satisfying (A2) and (A3) will be pro-
vided. Roughly, under the above assumptions, Monotonicity (A2) is equivalent
to the nonnegativity of the representation function RX , and strong risk aversion
is equivalent to the representation function RX being nonincreasing. lemma 18,
lemma 22, lemma 24, and lemma 25 study the properties of almost surely non-
negative and almost surely nonincreasing functions defined on X(Ω). Proof of
these lemmas are relegated to Appendix III. The main results of this section are
proposition 20,proposition 26, and proposition 27.

Lemma 18 Let V : L1 −→ R be continuously Frechet differentiable. ∀X ∈ L1,
let RX be the representation function of DV (X). Suppose ∃A,B ∈ F , and real
numbers c, d > 0, such that for some X ∈ L1,

c

Z
A

RX(X(ω))dP > d

Z
B

RX(X(ω))dP

then ∃δ > 0, such that kY −Xk < δ implies

c

Z
A

RY (Y (ω))dP > d

Z
B

RY (Y (ω))dP

Proof. See Appendix III.

Corollary 19 Let V : L1 −→ R be continuously Frechet differentiable. Suppose
for some A ∈ F, and X ∈ L1,

R
A
RX(X(ω))dP < 0, then ∃δ > 0, such that

kY −Xk < δ implies
R
A
RY (Y (ω))dP < 0.

Proof. Take c = 0, and d = 1 in lemma 18.
The following propositions give equivalent conditions to monotonicity (A3)

in terms of the properties of the Frechet derivative of the utility function.

Proposition 20 Suppose also V : L1 → R represents < and is continuously
Frechet differentiable then < satisfies monotonicity (A2) iff ∀X ∈ L1, RX ≥ 0
QX a.s..

Proof. First suppose RX ≥ 0 QX a.s., need to show ∀X,Y ∈ L1, Y %FSD X
implies V (Y ) ≥ V (X). Because of condition (A2) and lemma 3, we can assume
Y ≥ X a.s.. ∀t ∈ [0, 1], let Y t = tY + (1− t)X, and Rt = RtY+(1−t)X . Then,

V (Y )− V (X) =

Z Y

X

DV (ξ)(Y −X)dξ =

Z 1

0

DV (Y t)(Y −X)dt

=

Z 1

0

[

Z
Ω

Rt(Y
t(ω)) · (Y (ω)−X(ω))dP ]dt
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Rt ≥ 0 a.s. and Y −X ≥ 0 a.s. implies that V (Y ) ≥ V (X), as needed.
Next, Suppose < is monotone, yet ∃X ∈ L1 such that RX(X) < 0 on A,

where A ∈ F and P (A) > 0. By the previous lemma, ∃δ > 0, such that ∀Y ∈ L1,
kY −Xk < δ implies

R
A
RY (Y (ω))dP < 0. Define Y : (Ω,F , P )→ (R,B) by

Y (ω) =

½
X(ω) if ω ∈ AC

X(ω) + δ
2 if ω ∈ A

Let Y t and Dt be as defined in the first part of the proof, then ∀t ∈ [0, 1]°°Y t −X
°° =

Z
|Y t −X|dP =Z

A

|Y t −X|dP =
1

2
δt[P (A)] < δ

Therefore, ∀t ∈ [0, 1],
R
A
Rt(Y

t(ω))dP < 0 implies

V (Y )− V (X) =

Z 1

0

{
Z
Ω

[Rt(Y
t(ω))] · [Y (ω)−X(ω)]dP}dt

=

Z 1

0

{
Z
A

[Rt(Y
t(ω))] · δ

2
dP}dt < 0

Yet Y %FSD X by construction, a contradiction.

Corollary 21 In the setting of the above theorem, suppose ∀X ∈ C,RX > 0
QX a.s., then < satisfies A20.

Next, let’s assume that < is monotone, and investigate the differential prop-
erties of V that satisfies the strong risk aversion condition (A3). To prepare for
the proof of the main theorem, i.e. proposition 26 and proposition 27, lemma
22 gives a simple way of constructing mean preserving spreads of a random
variable, lemma 24 and lemma 25 characterize almost surely weakly decreasing
functions:

Lemma 22 Let X ∈ L1, suppose ∃A,B ∈ F such that P (A), P (B) > 0, and
∀ω ∈ A, ∀ω0 ∈ B, for a > 0, b > 0, define Y : (Ω, F, P )→ (R,B) such that

Y (ω) =

 X(ω) if ω ∈ (A ∪B)C
X(ω) + b if ω ∈ B
X(ω)− a if ω ∈ A

Then the distribution function of X cross that of Y from below.

Proof. See Appendix III.

Corollary 23 In the above setting, if P (A) = P (B), and a = b, then the
distribution function of Y differs from that of X by a simple MPS.
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Lemma 24 Take (Ω,F , P ) = ([0, 1],B,m), let f : L1×(R,B)→ (R,B) be such
that ∀X ∈ L1, fX is a measurable function. Let X ∈ L1, then fX is almost
surely weakly decreasing iff for any two disjoint nontrivial intervals A, B, ∃ a
null set N , such that ∀ω ∈ A\N , ∀ ω0 ∈ B\N ,

[X(ω)−X(ω0)] · [fX(X(ω))− fX(X(ω
0))] ≤ 0. (10)

Proof. : See Appendix III.

Lemma 25 Take Take (Ω,F , P ) = ([0, 1],B,m), let f : L1 × (R,B) → (R,B)
be such that ∀X ∈ L1, fX is a measurable function. Let X ∈ L1, and suppose
X is weakly increasing on [0, 1], then fX is not almost surely weakly decreasing
on [0, 1] iff ∃ sets of positive measure A,B ∈ F, such that

∀ω ∈ A, ∀ω0 ∈ B, X(ω) < X(ω0) (11)

and

∃α ∈ R, such that ∀ω ∈ A, ∀ω0 ∈ B, fX(X(ω)) ≤ α < fX(X(ω
0)) (12)

Proof. See Appendix III.
Note in the above lemma, one can take sets A, B to be of the same measure.

Now we are ready to chracterize strong risk aversion in terms of the Frechet
derivative of the utility functional.

Proposition 26 Suppose V represents < and is continuously Frechet differen-
tiable. Then < is risk averse iff ∀X ∈ L1, RX weakly decreasing QX a.s.. That
is, ∀X ∈ L1, (x− x0) · [RX(x)−RX(x

0)] ≤ 0 for every x, x0 ∈ R, QX − a.s.

Proof. First suppose RX is weakly decreasing for all X ∈ C. Let X %SSD Y ,
need to show V (X) ≥ V (Y ). By A2 and lemma 3, we can assume Y = X + Z
and E[Z|X] = 0 a.s.. Then

V (Y )− V (X) =

Z Y

X

DV (ξ)(Y −X)dξ =

Z 1

0

DV (X + tZ)(Y −X)dt

=

Z 1

0

[

Z
Ω

Rt(X(ω) + tZ(ω)) · Z(ω)dP ]dt13

=

Z 1

0

E[E[Rt(X + tZ) · Z|σ(X)]]dt (13)

Let FX be the distribution function of X, and let FZ|X=x be the d.f. of Z
conditional on X = x, then the above is written as:

=

Z 1

0

[

Z
R

Z
R

Rt(x+ tz)zdFZ|X=x(z)dFX(x)]dt (14)

Note Rt ≥ 0 by (A3) and Proposition 20. Therefore ∀t ∈ [0.1],∀x ∈ R, Rt(x+
tz)z ≤ Rt(x)z. (There are two cases, if z ≥ 0, Rt(x + tz) ≤ Rt(x), since Rt is
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decreasing. If z < 0, Rt(x + tz) ≥ Rt(x) and Rt(x + tz)z ≤ Rt(x)z, therefore
the result holds as well). Therefore:

(14) ≤
Z 1

0

[

Z
R

Z
R

Rt(x)zdFZ|X=x(z)dFX(x)]dt

=

Z 1

0

[

Z
R

Rt(x)

Z
R

zdFZ|X=x(z)dFX(x)]dt = 0

The last equality is true since ∀x ∈ R, E[Z|X = x] = 0.
To see the reverse implication, let us assume < is risk averse, yet ∃X ∈ L1,

such that RX does not satisfy the almost sure decreasing property. Assume,
without loss of generality, (Ω,F , P ) = ([0, 1],B,m), and X is weakly increasing
on [0, 1]. By lemma 25, ∃A,B ∈ F , such that P (A) = P (B) = m > 0, and
∀ω ∈ A, ∀ω0 ∈ B, X(ω) ≤ X(ω0) and RX(X(ω)) < RX(X(ω

0)). Note this
implies Z

A

RX(X(ω))dP <

Z
B

RX(X(ω))dP

By lemma 18, ∃δ > 0, such that kY −Xk < δ implies
R
A
RY (Y (ω))dP <R

B
RY (Y (ω))dP .
Now define:

Y (ω) =

 X(ω) if ω ∈ (A ∪B)C
X(ω) + δ if ω ∈ B
X(ω)− δ if ω ∈ A

and let Y t = tY + (1− t)X, then ∀t ∈ [0, 1],°°Y t −X
°° = Z (Y t −X)dP = tδ

√
2m < δ

Therefore, ∀t ∈ [0, 1], Z
A

Rt(Y
t(ω))dP <

Z
B

Rt(Y
t(ω))dP

This implies

V (Y )− V (X) =

Z 1

0

[

Z
Ω

Rt(Y
t(ω)) · (Y (ω)−X(ω))dP ]dt

= δ ·
Z 1

0

{
Z
B

Rt(Y
t)dP −

Z
A

Rt(Y
t)dP}dt > 0

However, corollary 23 implies Y differs from X by a simple MPS, this contrdicts
< being risk averse.
We showed that strong risk aversion (A3) can be defined as equal-distribution

convexity. The following proposition gives an alternative characterization of
strong risk aversion(A3) using Fechet derivatives, which can be viewed as a
differential version of the equal-distribution convexity property(A40).
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Proposition 27 Suppose V represents < and is continuously Frechet differen-
tiable. Then < is risk averse iff

∀X,Y ∈ L1, X ≈d Y implies [DV (X)−DV (Y )](X − Y ) ≤ 0 (15)

.

Proof. First suppose < is strongly risk averse, let X,Y ∈ L1, and X ≈d Y ,
then by proposition 17, RX = RY , therefore,

[DV (X)−DV (Y )](X − Y )

=

Z
[RX(X(ω))−RX(Y (ω))] · [X(ω)− Y (ω)]dP ≤ 0 (16)

The last inequality is true because by proposition 26,

[RX(X(ω))−RX(Y (ω))] · [X(ω)− Y (ω)] ≤ 0a.s.

To see the reverse implication, suppose condition (15) is true, yet< is not risk
averse, therefore ∃X ∈ L1, such that RX does not satisfy the weakly decreasing
property, by lemma 25, ∃A,B ∈ Ω, with P (A) = P (B) = m > 0, and ∃α ∈ R
such that ∀ω ∈ A,∀ω0 ∈ B, X(ω) < X(ω0) , ans RX(X(ω)) ≤ α < RX(X(ω

0)).
Using the same construction as in footnote 10, one can define a measure pre-
serving transformation T : (Ω, F, P ) → (Ω, F, P ) such that ∀ω ∈ A, T (ω) ∈ B,
∀ω0 ∈ B, T (ω0) ∈ A, and T (ω) = ω if ω ∈ (A ∪B)C . Consider

[DV (X)−DV (X ◦ T )](X −X ◦ T )

=

Z
[RX(X(ω))−RX(X ◦ T (ω))] · [X(ω)−X ◦ T (ω)]dP

=

Z
A

[RX(X(ω))−RX(X ◦ T (ω))] · [X(ω)−X ◦ T (ω)]dP

+

Z
B

[RX(X(ω))−RX(X ◦ T (ω))] · [X(ω)−X ◦ T (ω)]dP

> 0

The last inequality is true since on A, X(ω) < X ◦ T (ω) and RX(X(ω)) <
RX(X ◦ T (ω)), and on B, X(ω) > X ◦ T (ω) and RX(X(ω)) > RX(X ◦ T (ω)),
this gives the desired contradiction.
The statement of the above proposition immediately remind one of a char-

acterizing property of differentiable concave functions, namely V : C → R is
concave iff ∀X,Y ∈ L1, [DV (X) − DV (Y )](X − Y ) ≤ 0. Note instead of re-
quiring equation (15) holds for all X,Y ∈ L1, strong risk aversion only requires
it holds for X, Y such that X and Y have the same distribution. Corollary 11
established that under (A1) and (A5), quasiconcavity of the utility functional
implies strong risk aversion. This can also be easily derived from proposition 27
if V is continuously Frechet differentiable.
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Example 28 (Quasiconcavity Implies Strong Risk-aversion) Suppose the
preference order < satisfies A1, and is represented by a continuously Frechet
differentiable utility function V 14 . If V is qusiconcave, then it is strongly risk
averse. To see this note continuously Frechet differentiable quasiconcave func-
tions satisfy the following condition15 :

∀X,Y ∈ L1, V (Y ) ≥ V (X) implies that DV (X)(Y −X) ≥ 0

Therefore if X ≈d Y , by (A2), V (X) = V (Y ). If V is quasiconcave, then
DV (X)(Y − X) ≥ 0, and DV (Y )(X − Y ) ≥ 0, which implies [DV (X) −
DV (Y )](X − Y ) ≤ 0.

5 Comparison of Attitudes toward Risk
Definition 29 (Differ by a Simple Compensated Spread) Let X, Y ∈ L1,
let FX and FY be the distribution function of X and Y , respectively, and let <
be a preference order on L1 that satisfies A1−A3. Then Y is said to differ from
X by a simple compensated spread with respect to <, if X ∼ Y , and ∃x ∈ R
such that ∀x ≤ x, FX(x) ≤ FY (x), and ∀x ≥ x, FX(x) ≥ FY (x).

Definition 30 (More Risk-averse than (Machina 1982)) Let <1 and <2
be two preference orders on L1, then <1 is said to be more risk-averse than <2if
∀X, Y ∈ L1, Y differs from X by a simple compensated spread with respect to
<2implies X <1 Y .

Proposition 31 Let <1 and <2 be two preference orders on L1 that satisfies
A1, A2, and A3, suppose also, <1 and <2 are represented by continuously Frechet
differentiable utility functions V1, and V2, respectively. For each X ∈ L1, let
R1X and R2X be the representation function of DV1(X) and DV2(X) respec-
tively. Suppose further ∀X ∈ L1, R2X > 0 a.s. on X(Ω). Then <1 is more
risk-averse than <2if and only if ∀X ∈ L1,

R1X
R2X

is weakly decreasing QX a.s..

That is, ∀X ∈ L1, [x− x0] · [R1X
R2X

(x)− R1X
R2X

(x0)] ≤ 0 for every x, x0 QX a.s..

Proof. First let us assume
R1X
R2X

is weakly decreasing QX a.s.. ∀X ∈ L1,

Suppose Y differ from X by a simple compensated spread from the point of
view of <2, need to show X <1 Y .
Without loss of generality, let’s take (Ω,F , P ) = ([0, 1],B,m), and let FX ,

FY be the distribution function of X and Y , respectively. If one define

eX(ω) = inf{x : FX(x) ≥ ω}, for every ω ∈ Ω
14Note Frechet differentiability implies continuity, therefore, < also satisfies A5.
15To see this is true, note V (Y ) ≥ V (X) implies V (X + t(Y −X)) ≥ V (X) for all t ∈ [0, 1],

therefore V 0(X)(Y −X) = limα→0
1
α
[V (X + α(Y −X)− V (X)] ≥ 0.
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and eY (ω) = inf{x : FY (x) ≥ ω}, for every ω ∈ Ω

Enough to show V1(X) ≥ V1(Y ). Without any confusion, let write X,Y for eX
and eY , respectively. If X = Y a.s., then the conclusion is trivial, therefore let’s
also assume X differ from Y on a set of positive measure.
Note FY differ from FX by a simple compenstated spread implies that ∃ω

such that for ω < ω, X(ω) ≥ Y (ω), and for ω > ω, X(ω) ≥ Y (ω). (For
example, one can take ω = FY (x). ). For each t ∈ [0, 1], η ∈ [0, 1], define
Y (t, η) : (Ω,F , P )→ (R,B) by

Y (t, η)(ω) =

½
tY (ω) + (1− t)X(ω) if ω ≤ ω
tY (ω) + (1− t)X(ω) if ω > ω

Then ∀t ∈ [0, 1], there exist a unique η∗ such that V2(X) = V2(Y (t, η
∗)). To

see this is true, first note since R2X > 0, corollary 21 implies <2 is strictly
monotone. Therefore V2(Y (t, η)) is continuous in (t, η), strictly decreasing in t
and strictly increasing in η16. Note also for each t ∈ [0, 1], X %FSD Y (t, 0) and
Y (t, 1) %FSD Y , therefore V2(Y (t, 0)) ≤ V2(X) = V2(Y ) ≤ V2(Y (t, 1)). By the
mean value theorem, ∃η∗ ∈ [0, 1] such that V2(X) = V2(Y (t, η

∗)). Uniqueness
of η∗ follows from the strict monotonicity of V2(Y (t, η)) with respect to η.
Therefore one can define η : [0, 1] → [0, 1] such that for each t ∈ [0, 1],

V2(Y (t, η(t))) = V2(X). η(t) such defined is also continuously differentiable. To

see this, it is enough to show
∂

∂t
V2(Y (t, η)) and

∂

∂η
V2(Y (t, η)) both exist and

is continuous. Using the chain rule,

∂

∂t
V2(Y (t, η)) = DV2(Y (t, η))(

∂

∂t
Y (t, η)) (17)

to justify (17), need to show
∂

∂t
Y (t, η) is a Frechet derivative. Note

∂

∂t
Y (t, η)

exists in the Gateaux sense:

lim
α→0

1

α
[Y (t+ α, η)− Y (t, η)] = Z− (18)

where

Z−(ω) =
½

Y (ω)−X(ω) if ω ≤ ω
0 otherwise

The limit in (18) is, of course in L1. It is straightforward to verify this is indeed a
Frechet derivative, and Y (t, η) is continuously differentiable in t. Similarly, one

16To see this true, note for a fixed η, t1 < t2 implies Y (t1, η) ÂFSD Y (t2, η), and for a fixed
t, η1 < η2 implies Y (t, η1) ≺FSD Y (t, η2). To see V2(Y (t, η)) is continuous in t and η. Note
(tn, ηn) → (t, η) implies Y (tn, ηn) → Y (t, η) pointwise, note also Y (tn, ηn)’s are dominated
by the Lp bounded random variable (X+ ∨ Y +)− (X− ∨ Y −), therefore Y (tn, ηn)→ Y (t, η)
in Lp. Hence V2(Y (tn, ηn))→ V2(Y (t, η)) by continuity.
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can show Y (t, η) is continuously differentiable in η as well, and
∂

∂η
Y (t, η) = Z+,

where

Z+(ω) =

½
0 if ω ≤ ω

Y (ω)−X(ω) otherwise

Therefore, the implicit function theorem (for functions of real numbers) implies
η(t) is continuously differentiable and

η0(t) = −
∂

∂t
V2(Y (t, η(t)))

∂

∂η
V2(Y (t, η(t)))

= −
DV2(Y

t)(
∂

∂t
Y (t, η(t)))

DV2(Y t)(
∂

∂η
Y (t, η(t)))

= −
R
R2t(Y

t(ω)) · Z−(ω)dPR
R2t(Y t(ω)) · Z+(ω)dP > 0 (19)

where we wrote Y t for Y (t, η(t)), and Rit for the representation function of
DVi(Y

t), i = 1, 2, respectively.
Now consider f(t) = V1(Y (t, η(t))), then f(t) is continuously differentiable,

note f(0) = V (X), and f(1) = V (Y ). Therefore V (Y ) − V (X) =
R 1
0
f 0(t)dt,

where

f 0(t) =
∂

∂t
V1(Y (t, η(t))) +

∂

∂η
V1(Y (t, η(t)))η

0(t)

= DV1(Y
t)(Z−) +DV1(Y

t)(Z+)η0(t)

=

Z ω

0

R1t(Y
t(ω)) · Z−(ω)dP +

Z 1

ω

R1t(Y
t(ω)) · Z+(ω)dP · η0(t)

=

Z ω

0

R1t(Y
t)

R2t(Y t)
R2t(Y

t) · Z−dP

+

Z 1

ω

R1t(Y
t)

R2t(Y t)
R2t(Y

t) · Z+dP · η0(t) (20)

Note on [0, ω), R1t(Y
t)

R2t(Y t) is decreasing and Z− ≤ 0, and on (ω, 1], R1t(Y
t)

R2t(Y t) is
decreasing and Z+ ≥ 0. Therefore,

(20) ≤ R1t(Y
t(ω))

R2t(Y t(ω))
{
Z ω

0

R2t(Y
t(ω)) · Z−(ω)dP

+

Z 1

ω

R2t(Y
t(ω)) · Z+(ω)dP · η0(t)}

=
R1t(Y

t(ω))

R2t(Y t(ω))
· d
dt
V2(Y (t, η(t))) = 0

It then follows V (Y ) ≤ V (X), as needed.
To see the reverse implication, suppose <1 is more risk averse than <2, yet

for some X ∈ C, R1X

R2X
does not satisfy the almost sure decreasing property.
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Without loss of generality, assume X is weakly increasing on [0, 1]. Then by
lemma 25, ∃A,B ∈ F , such that P (A) = PB) = m > 0 and ∀ω ∈ A, ∀ω0 ∈ B,
X(ω) ≤ X(ω0), and ∃α ∈ R, such that

R1X
R2X

(X(ω)) ≤ α ≤ R1X
R2X

(X(ω0)) (21)

Define the following random variable:

Y (ω) =

 X(ω) if ω ∈ (A ∪B)C
X(ω) + 1 if ω ∈ B
X(ω)− γ if ω ∈ A

where γ is chosen such that V2(Y ) = V2(X). Again, by continuity and strict
monotonicity of V2, γ exists and is unique, furthermore, 0 ≤ γ ≤ 1. For t ∈ [0, 1],
one can define:

Y (t, η(t))(ω) =

 X(ω) if ω ∈ (A ∪B)C
X(ω) + t if ω ∈ B

X(ω)− η(t) if ω ∈ A

such that ∀t ∈ [0, 1], V2(Y (t, η(t))) = V2(X). Lemma 22 then implies for each
t ∈ [0, 1], Y (t, η(t)) differs from X by a simple compensated spread from the
point of view of <2. Note also for t ∈ [0, 1],

d

dt
V2(Y (t, η(t))) = DV (Y t)(Y −X)

=

Z
B

R2t(Y
t(ω))dP − γ

Z
A

R2t(Y
t(ω))dP = 0

where at t = 0 the derivative is taken from the right. One hasZ
B

R2X(X(ω))dP − γ

Z
A

R2X(X(ω))dP = 0

Therefore Z
B

R1X(X(ω))dP − γ

Z
A

R1X(X(ω))dP

=

Z
B

R1X(X)

R2X(X)
·R2X(X)dP − γ

Z
A

R1X(X)

R2X(X)
·R2X(X)dP

> α{
Z
B

R2X(X(ω))dP − γ

Z
A

R2X(X(ω))dP} = 0

Now using lemma 18, ∃δ > 0, such that kY −Xk < δ implies
R
B
R1Y (Y )dP−

γ
R
A
R1Y (Y )dP > 0. Note for t ≤ δ

2 ,

kY (t, η(t))−Xk =
Z
|Y t −X|dP ≤ t < δ
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Therefore let bY = Y ( δ2 , η(
δ
2 )), then

bY differ from X by a simple compensated
spread w.r.t. <2, yet

V1(bY )− V1(X) =

Z δ
2

0

DV1(Y
t)(Y −X)dt

=

Z δ
2

0

{
Z
B

R1t(Y
t)dP − γ

Z
A

R1t(Y
t)dP}dt > 0

Since
R
B
R1t(Y

t)dP − γ
R
A
R1t(Y

t)dP > 0 for all t ∈ [0, δ2 ], which is a contra-
diction.

6 Conclusion
We studied preferences defined on L1. If the utility functional that represents
the preference has an expected utility representation, then under (A1) and (A5)
strong risk aversion, equal-distribution convexity, and convexity are equivalent.
In the nonexpected utility case, the equivalence of equal-distribution convexity
and convexity breaks down, however, strong risk aversion is still equivalent to
equal-distribution convexity. Since convexity is a very attractive property in
many cases, for example, in establishing the existence of general equilibrium.
The above arguement has the implication that without the Indepence Axiom,
strong risk aversion alone does not provide enough ground for assuming convex-
ity.
We also study the differential properties of the utility functional. For a

differentiable utility functional V , we charaterize the Rieze representation of
DV (X) under (A2). We then characterize differentiable utility functionals that
satisfies monotonicity and strong risk aversion, respectively. We also provide a
means for comparing individual’s attitude toward risk by differential properties
of the Frechet derivative of their utility functionals.
It is worth noting that in a one-period general equilibrium asset pricing

model, an economy where the representative consumer have an expected utility
functional and an economy with the representative consumer having a non-
expected utility functional are observationally equivalent. The reason is that
difference between differentiable expected utility functional and nonexpected
utility functional is that when the distribution of the random consumption (de-
noted X) changes, for expected utility functional, the representation function
of DV (X) does not change, while for nonexpected utility functional, the repre-
sentation function of DV (X) does change. However, in the one period general
equilibrium model, information on asset prices only yields information on DV (·)
evaluated at the equilibrium consumption. Comparison of DV (X) at different
X 0s is not possible. Thus to study the different implications of expected and
nonexpected utility functional on asset prices in a general equilibrium model, it
is neccessary to move to the multiperiod or infinite horizon setting, and this is
left to future research.
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7 Appendix

7.1 Appendix I. Construction of sequence of RandomVari-
ables on (Ω,F , P )

This section shows that given any sequence of random variables,X = (X1,X2, · · · ),
where for each i, Xi takes values in (R,B), then one can contruct at the random
variables X̃ = ( eX1, eX2, · · · ), where eX is defined on (Ω,F , P ) and eX and X have
the same distribution. This result is used in various places in the paper. The
following two lemmas are standard and are stated without proof:

Lemma 32 Let Ψ =
N∞

j=1Ψj be product space, where for each j, (Ψj , ρj) is
a Polish space, with the metric ρj. Then Ψ is a Polish space with the metric

given by ρ(x, y) =
P∞

j=1

ρj(xj , yj) ∧ 1
2j

. The topology generated by this metric

coincides with the product topology.

Lemma 33 Let {(Ψj , Tj)}∞j=1 be a sequence of second countable topological
spaces, then

B(
∞O
j=1

Ψj) =
∞O
j=1

B(Ψj)

That is, the Borel σ field of the product topology coincides with the product Borel
σ field.

Lemma 32 says the product of countably many copies of Polish spaces is
Polish. Lemma 33 says for such spaces, the Borel σ field of the product topology
coincides with the product Borel σ field. Note the product Borel σ field is the
Borel σ field generated by the projectionn mappings and X : (Ω,F , P ) →
(Ψ,

N∞
j=1 B(Ψj)) is measurable iff For each i, Xi is B(Ψi) measurable. It then

follows from lemma 33 that X : (Ω,F , P ) → (Ψ,B(Ψ)) is Borel measurable iff
for each i = 1, 2, · · · , the coordinate function X(i) is B(Ψi) measurable. Now
we ready to prove the main proposition of this section:

Proposition 34 Let Q be any probability distribtution on (R∞,B∞), where
R∞ is the product space of countably many copies of the real line and B∞ is the
product σ field. Then there exist a stochastic process {Xn}∞n=1, where for each
n, Xn : (Ω,F , P ) → (R,B) is Borel measurable, and the joint distribution of
{Xn}∞n=1 is Q.

Proof. Let (Ψ,G, Q) = (R∞,B∞, Q) be the probability space. Let Y : (Ψ,G, Q)→
(R∞,B∞) be the identity function, then Y has distribution Q.
By lemma 32, Ψ is a Polish space. By lemma 33, B∞ is the associated

Borel σ field, therefore it is a standard Borel space. Since Q is a probability
measure, it can has at most countably many atoms. Enumerate these atoms by
ψ1, ψ2, · · · , and let B = {ψj}∞j=1. Let Ψ0 = Ψ\B. let G0 = G|Ψ0 , then (Ψ0,G0)
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is a standard Borel space as well(See [9], Corollary 13.4, Page 82). Assume for
now Q(Ψ0) 6= 0. Define Q0 on (Ψ0,G0) such that

∀G ∈ G0, Q0(G) = Q(G)

Q(Ψ0)

Take A1, A2, · · · ∈ F such that A0is are disjoint, and P (Ai) = Q({ψi}) for
i = 1, 2, · · · . Let A = ∪∞j=1Aj . Let Ω0 = Ω\A, and F 0 = F|Ω0 . Similarly, Define
P 0 on (Ω0,F 0) such that

∀F ∈ F 0, P 0(F ) = Q(F )

Q(Ω0)

Note (Ψ0,G0, Q0) and (Ω0,F 0, P 0) are standard Borel spaces, and Q0, P 0 are
nonatomic probability measures. Let T : (Ω0,F 0, P 0)→ (Ψ0,G0, Q0) be the one-
to-one and onto, bimeasurable and measure preserving transformation17. Define
X : (Ω,F , P )→ (R∞,B∞) by:

X(ω) =

½
Y ◦ T (ω) if ω ∈ Ω0
Y (ψj) if ω ∈ Aj , for j = 1, 2, · · ·

It is straightforward to check that the distribution ofX isQ. For each n, ∀ω ∈ Ω,
let Xn(ω) = X(ω)(n) be the coordinate functions. Then each Xn : (Ω,F , P )→
(R,B) is Borel measurable by the comment after 33, and {Xn}∞n=1 has the
desired distribution. It is easy to see from the above proof that if Q(Ψ0) = 0,
then we do not need to construct the measure preserving transformation T , and
the rest of the proof goes through without change.
Now we briefly sketch the proof of lemma 3. The lemma we have here is

exactly the same as Theorem 1.2.4. and Theorem 1.5.20 in [14], except that in
addition we claimed that the random variable eX and eY can be constructed on
L1. We refer the reader to [14] for a detailed proof. Here we show that the proof
could be adapted to show that eX and eY can be constructed on L1. Without
loss of generality, we take (Ω,F , P ) = ([0, 1],B,m).
For the first part of the lemma, the construction is straightforward. Suppose

X %FSD Y , let FX be the distribution function ofX, and FY be the distribution
function of Y . Let X̃(ω) = inf{x ∈ R : FX(x) ≥ ω} for every ω ∈ Ω.
Similarly, let Ỹ (ω) = inf{x ∈ R : FX(x) ≥ ω}. It is straightforward to check
that X ≈d X̃ and Y ≈d Ỹ and X̃ ≥ Ỹ .
In the proof of the second part of the lemma, [14] showed that the construc-

tion of eX, eY could be done in the following way: Fix X, construct a Markovian
martingale sequence of random variables {Xn}∞n=1 according to a certain se-
quence of transition kernels {Qn}∞n=1. Use the martingale convergence theorem
to show that the sequence {Xn}∞n=1 converge to some random variable eY , fi-
nally, show that eY and Y has the same distribution. In order to show eY could

17Such measure preserving transformation exists because (Ω0,F 0, P 0) and (Ψ0,G0, Q0) are
isomorphic measure spaces. See for example [9], Theorem 17.41, page 116.
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be constructed on ([0, 1],B,m), and eY ∈ L1. Note that the distribution of X
and the sequence of transition kernels {Qn}∞n=1 uniquely define a distribution on
(R∞,B∞) by Komogorov’s consistency theorem. Hence the sequence of random
variables {Xn}∞n=1 could be defined on (Ω,F , P ). The martingale convergence
theorem implies that the limit of {Xn}∞n=1 namely, eY is a random variable on
(Ω,F , P ). eY is L1 bounded since it has the same distribution with Y , therefore,eY ∈ L1, as needed.

7.2 Appendix II. Conditional Strong Law of Large Num-
bers

Proof of 8:
One can adapt the proof of Strong Law of Large Numbers. A review of

Example 6.1 and Exercise 6.1 on page 266-267 in [6] shows that we only need to
prove the following version of "Conditional" Hewitt-Savage 0-1 law and apply
the reversed martigale theorem in the same way as in the example to conclude
the proof:

Proposition 35 (Conditional Hewitt-Savage 0-1 Law) The exchangeable
σ field of conditionally i.i.d. sequences is conditionally trivial.

Proof. Since the exchangeable σ field of an exhangeable sequence is contained
in the completion of the tail σ field, it is enough to show that the tail σ field
of conditionally independent sequence is conditionally trivial, i.e. a conditional
version of the Komogorov 0-1 law. The proof of the Komogorov 0-1 law can be
easily adapted to show that this is indeed the case.

7.3 Appendix III. Almost surely Nonnegative Functions
and Almost Surely Nonincreasing Functions

Proof of lemma 18:
Let ε = c

R
A
RX(X(ω))dP − d

R
B
RX(X(ω))dP > 0, then

c

Z
A

RY (Y (ω))dP = c

Z
A

[RY (Y )−RX(X) +RX(X)]dP

≥ c

Z
A

RY (Y )dP − c

Z
A

|RY (Y )−RX(X)|dP

Similarly, d
R
B
RY (Y (ω))dP ≤ d

R
B
RX(X)dP+d

R
A
|RY (Y )−RX(X)|dP . There-

fore,

c

Z
A

RY (Y (ω))dP − d

Z
B

RY (Y (ω))dP

≥ c

Z
A

RX(X)dP − d

Z
B

RX(X)dP − (c ∨ d)
Z
Ω

|RY ◦ Y −RX ◦X|dP(22)
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Note V is continuously differentiable, therefore one can choose δ > 0, such that
kY −Xk < δ implies kDV (X)−DV (Y )k < ε

2(c ∨ d) in the operator norm, i.e.,

kRX(X)−RY (Y )k <
ε

2(c ∨ d) in the L
q norm. Hence

Z
Ω

|RY (Y )−RX(X)|dP = kRX(X)−RY (Y )k <
ε

2(c ∨ d)

Therefore (22)≥ ε− ε
2 > 0, as needed

Proof of lemma 22:
Let x = sup{X(ω) : ω ∈ A}, then ∀x ≤ x,

FY (x) = P ({ω : Y (ω) ≤ x}) = P ({ω ∈ BC : Y (ω) ≤ x})
≥ P ({ω ∈ BC : X(ω) ≤ x}) = FX(x)

Similarly, ∀x ≥ x,

FY (x) = P ({ω : Y (ω) ≤ x}) = P (A ∪ {ω ∈ AC : Y (ω) ≤ x})
≤ P (A ∪ {ω ∈ AC : X(ω) ≤ x}) = FX(x)

Proof of lemma 24:
"Only if" is obvious. To see the "if" part is true, consider a sequence of

partitions of the unit interval:

Pn = {[(m− 1)2−n,m2−n)}2
n

m=1 for n = 1, 2, · · ·

For n = 1, by (10), ∃ a null set N1 such that on Ω\N1, if

[X(ω)−X(ω0)] · [fX(X(ω))− fX(X(ω
0))] > 0 (23)

then either ω, ω0 ∈ [0, 12), or ω, ω0 ∈ [
1
2 , 1), in any case we must have |ω−ω0| ≤

1
2 .

Similarly, for n = 2, ∃ a null set N2 such that on (N1 ∪ N2)
C , if (23) holds,

then |ω − ω0| ≤ 1
4 , · · ·Continuing this way, we can find a sequence of null sets

{Ni}∞i=1, such that on (∪∞i=1Ni)
C , if (23) holds, then |ω − ω0| ≤ 2−n for all n,

i.e. ω = ω0, which contradicts (23). Note N = ∪∞i=1Ni is null as a countable
union of null sets. This shows the "only if" part of lemma 24 is true.

Proof of lemma 25:
Again, ”only if” part is trivial. To prove the ”if” part, let’s assume fX is not

almost surely weakly decreasing. Note condition (12) implies condition (11),
since fX(X(ω)) < fX(X(ω

0)) implies X(ω) 6= X(ω0), the fact that X is weakly
increasing implies X(ω) < X(ω0). Therefore only need to find sets A, and B
such that condition (12) is satisfied. Let’s suppose this is not true and derive a
contradiction.
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Proof. Note by lemma 24, if fX is not almost surely weakly decreasing on [0, 1],
then ∃ nontrivial disjoint intervals E,F,such that

∀null set N,∃ω ∈ E\N,ω0 ∈ F\N, such that

[X(ω)−X(ω0)] · [fX(X(ω))− fX(X(ω
0))] > 0 (24)

Without loss of generality, one can assume E is to the left of F , i.e. ∀ω ∈ E,
∀ω0 ∈ F , ω < ω0.
Let

E0 = {ω ∈ E : ∃ω0 ∈ F, such that [X(ω)−X(ω0)]·[fX(X(ω))−fX(X(ω0))] > 0}

and let

F 0 = {ω0 ∈ F : ∃ω ∈ E, such that [X(ω)−X(ω0)]·[fX(X(ω))−fX(X(ω0))] > 0}

Let p = P (E0), and q = P (F 0), then condition (24) implies p, q > 0. ∀r ∈ R,
one can define

P1(r) = P ({ω ∈ E0 : fX(X(ω)) > r})
and

P2(r) = P ({ω ∈ F 0 : fX(X(ω)) > r})
then ∀r ∈ R, there are six cases:
Case 1: P1(r) < p, P2(r) > 0. This is not possible because if one define

A = {ω ∈ E0 : fX ◦X(ω) ≤ r}, and B = {ω ∈ F 0 : fX ◦X(ω) > r}, then A,B
are of positive measure and condition (12) is satisfied with α = r.
Case 2: P1(r) = p and P2(r) = 0. This is contradicts condition (24).
Case 3: 0 < P1(r) < p, and P2(r) = 0. To derive a contradiction, let’s

define br = inf{r : P2(r) = 0} then we have P2(br) = 0. If P1(br) = p, we
already have a contradiction since we are back to Case 2. If 0 < P1(r̂) < p,
there are two subcases: if one can find ε > 0 such that P1(r̂ − ε) < p and
P2(br − ε) > 0, then we are in case 1. If not, i.e. ∀ε > 0, P1(r̂ − ε) = p, then we
have P ({ω ∈ E0 : fX ◦X(ω) ≥ r̂}) = p. Define

G = {ω ∈ E0 : fX ◦X(ω) < r̂}

and
H = {ω0 ∈ F 0 : fX ◦X(ω0) > br}

then both H and G are null sets. Note

∀ω ∈ E\G, fX ◦X(ω) ≥ r̂

and
∀ω0 ∈ F\H, fX ◦X(ω) ≤ r̂

therefore ∀ω ∈ E\G, ∀ω0 ∈ F\H,

[X(ω)−X(ω0)] · [fX(X(ω))− fX(X(ω
0))] ≤ 0
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this contradict (24).
Case 4: P1(r) = p, and 0 < P2(r) < q. In this case, we define br = sup{r :

P1(r) = p}. Then P1(r̂) = p. If P2(r̂) = 0, then we are in case 2. If not,
again, there are two subcases: if one can find ε > 0 such that P1(r̂+ ε) < p and
P2(br + ε) > 0, then we are in case 1. If not, i.e. ∀ε > 0, P2(br + ε) = 0, we have
P ({ω ∈ F 0 : fX ◦X(ω) ≤ r̂}) = q. Define

G = {ω ∈ E0 : fX ◦X(ω) ≤ r̂}

and
H = {ω0 ∈ F 0 : fX ◦X(ω0) > br}

then both G and H are null sets, we have

∀ω ∈ E\G, fX ◦X(ω) > r̂

and
∀ω0 ∈ F\H, fX ◦X(ω) ≤ r̂

hence ∀ω ∈ E\G, ∀ω0 ∈ F\H,

[X(ω)−X(ω0)] · [fX(X(ω))− fX(X(ω
0))] ≤ 0

again this contradict (24).
Therefore we are left with only two possible cases, i.e., either

Case5: P1(r) = p and P2(r) = q

or
Case 6: P1(r) = 0 and P2(r) = 0

Let r∗ = inf{r ∈ R : P1(r) = 0}, then one has

P ({ω ∈ E0 : fX(X(ω)) = r∗}) = p

P ({ω0 ∈ F 0 : fX(X(ω0)) = r∗}) = q

But then for almost every ω ∈ E0, and for almost every ω0 ∈ F 0, one has

[X(ω)−X(ω0)] · [fX(X(ω))− fX(X(ω
0))] = 0

which is again a contradiction.
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