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Abstract

We propose a model-free omnibus statistical procedure to check whether the direction
of changes in an economic variable is predictable using the history of its past changes. A
class of separate inference procedures are also given to gauge possible sources of directional
predictability. They can reveal information about whether the direction of future changes is
predictable using the direction, level, volatility, skewness, and kurtosis of past changes. An
important feature of the proposed procedures is that they check many lags simultaneously,
which is particularly suitable for detecting the alternatives whose directional dependence is
small at each lag but it carries over a long distributional lag. At the same time, the tests
naturally discount higher order lags, which is consistent with the conventional wisdom that
financial markets are more influenced by the recent past events than by the remote past events.

We apply the proposed procedures to four daily U.S. stock price indices. We find over-
whelming evidence that the directions of excess stock returns are predictable using past excess
stock returns, and the evidence is stronger for the directional predictability of large excess
stock returns. In particular, the direction and level of past excess stock returns can be used
to predict the direction of future excess stock returns with any threshold, and the volatil-
ity, skewness and kurtosis of past excess stock returns can be used to predict the direction
of future excess stock returns with nonzero thresholds (i.e., large returns). The well-known
strong volatility clustering together with weak serial dependence in mean cannot completely
explain all documented directional predictability for stock returns. To exploit the economic
significance of the documented directional predictability for stock returns, we consider a class
of autologit models for directional forecasts and find that they have significant out-of-sample
directional predictive power. Some trading strategies based on these models and their com-
binations can earn significant out-of-sample extra risk-adjusted returns over the buy-and-hold

trading strategy.

Key words: Autologit models, Characteristic function, Combined forecasts, Directional pre-
dictability, Efficient market hypothesis, Generalized spectrum, Market timing, Sharpe Ratio,
Volatility clustering.
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1 Introduction

Predictability of asset returns has immediate interest for investment practitioners and far-
reaching implications for the efficacy of asset prices in allocating capitals. Focus in this litera-
ture has been on the predictability of the level or conditional mean of asset returns (e.g., Fama
1970, 1991, Jegadeesh 1990, Lo and MacKinlay 1999, Poterba and Summers 1988). In this
paper, we investigate the predictability of the direction of changes in economic variables, such
as interest rates, inflation rates, exchange rates and stock prices. The direction of changes
in economic variables may be a reasonable proxy for a utility-based measure of forecasting
performance. Leitch and Tanner (1991, 1995) find that the direction-of-change criterion is
the best proxy among several commonly used criteria for choosing forecasts of interest rates
on their ability to maximize expected trading profits. There exist important circumstances
under which the direction-of-change criterion is exactly the right one for maximizing the wel-
fare (e.g., profit) of the forecaster, as is nicely demonstrated in Granger and Pesaran (1999,
Sections 2-4) and Leitch and Tanner (1995) from a perspective of decision-making under un-
certainty. Macroeconomists and investment practitioners have been interested in forecasting
probabilities of important economic events (e.g., Diebold and Lopez 1996, Fair 1993), which,
in many cases, can be formulated as the probabilities of the direction of changes in underlying
economic variables. Central banks under pegged exchange rate systems, for example, are often
interested only in the direction of changes in the exchange rate. They might need to intervene
to support the currency if it is expected to depreciate, regardless of the size of the expected
depreciation. Over the past few years, some central banks, including the Bank of England,
have been setting the nominal interest rate according to their forecasts of the inflation rate,
increasing the interest rate if their forecast of the inflation rate exceeds a politically determined
threshold. In finance, directional predictability in asset returns has important implications for
market timing, which is crucial for active asset allocation management. In Merton’s (1981)
classical market timing model, mutual fund managers care about the direction of excess re-
turns, rather than their magnitude. Most commonly used technical trading rules in financial
markets are based on the prediction of the directions of financial returns. Profitable trading
strategies may result if one can predict return directions. Many financial institutions evaluate
forecast algorithms using the percentage of times that the algorithms predict the right-trend
(see Lequarre 1993).

The rationale behind directional forecasts is that the patterns in economic variables may
recur in the future so that the direction of changes in economic variables is predictable using
historical data. The main goal of this paper is to develop a mode-free omnibus test for di-

rectional predictability and apply it to document whether the direction of stock price changes



is predictable using the history of past stock price changes. Most, if not all, of the existing
works in this literature are concerned with directional predictability of various models, algo-
rithms, and investment strategies. There have been a number of popular tests for the market
timing ability of these models and trading strategies (Henriksson and Merton 1981, Cumby
and Modest 1987, Pesaran and Timmermann 1992). However, the directional predictability of
an underlying data generating process is not the same as the predictive ability of a directional
forecast model or a trading strategy. There has been no model-free test available in the liter-
ature that can check directional predictability of the data, which is the key to the success of
any directional forecast model or trading strategy.

Some economic and financial theory suggests that the direction of asset returns may be
predictable. For example, the naive overreaction theory predicts price reversals after investors
overreact to certain market events such as release of firm-specific information, which implies
a negative autocorrelation in direction. More sophisticated behavioral theory (e.g., Barberis,
Sheleifer and Vishny 1998, Hong and Stein 1999) predicts a short-horizon underreaction and
then a long horizon overreaction, implying positive autocorrelations in direction over a short
horizon and negative autocorrelations in direction over a long horizon. The market conta-
gion hypothesis, on the other hand, suggests that during a turmoil period, a large adverse
price movement in one market will be more closely followed by a large adverse price move-
ment in another market, regardless of market fundamentals. This implies a stronger positive
cross-correlation in direction between two markets during the turmoil period.! In the foreign
exchange markets, it is often argued that the exchange rate may follow long swings — it drifts
upward for a considerable period of time and then switches to a long period with downward
drift (e.g., Engle 1994, Engle and Hamilton 1990). As a consequence, there will tend to be
runs in one direction and then the other in the changes of the exchange rate. Such persistence
pattern in the direction of changes is thus predictable. From an econometric perspective, the
direction of asset returns is predictable using past returns if the conditional mean of asset
returns is time-varying (i.e., when the market is not efficient). Christoffersen and Diebold
(2002) show that even if the conditional mean is not predictable (i.e., the market is efficient),
directional predictability can be driven solely from volatility clustering, as long as the long-run
average asset return is nonzero. Breen, Glosten and Jagannathan (1989, p.1184) also point
out that given a positive expected excess return, the probability of an up market is a function
of both conditional mean and conditional variance. Some empirical works, based on various
models and technical trading rules, appear to suggest that it is easier to forecast the direction

of asset returns than the level of asset returns (e.g., Breen, Glosten and Jagannathan 1989,

'There has been no unified definition of market contagion (see, Stulz 2001). Here, we use the definition that

the link between two markets becomes stronger when contagion occurs.



Engle 1994, Kuan and Liu 1995, Larsen and Wozniak 1995, Leitch and Tanner 1991, 1995,
Pesaran and Timmermann 1995, 2000, Satchell 1995).

The purpose of this paper is three-folds. First, we propose a model-free omnibus statistical
test and a class of separate inference procedures to check whether the direction of asset returns
is predictable using currently available information, and if so, what are possible sources of
directional predictability. The proposed procedures are based on a generalized cross-spectrum,
which extends Hong’s (1999) univariate generalized spectrum. The generalized spectrum is
the synthesis of the characteristic function and spectral analysis. Because of the use of the
characteristic function, the generalized spectrum can capture both linear and nonlinear serial
dependence in the data. This is particularly suitable for testing directional predictability
because the probability of the direction of changes in an underlying variable generally depends
on the dynamics in every conditional moment and is a highly nonlinear function of the history
of past changes. At the meantime, the generalized spectrum maintains the nice feature of
conventional power spectrum. It can check many lags simultaneously. This is very useful
when directional dependence is small at each lag but carries over a very long distributional
lag. The omnibus directional predictability test can detect a wide range of alternatives, while
the separate inference procedures can check whether the direction of changes can be predicted
using the level, volatility, skewness, and kurtosis of past asset returns.

Second, we apply the proposed procedures to a variety of daily U.S. stock price indices—
Dow Jones Industrial Averages (DJIA), S&P 500, NASDAQ, and NYSE composite index. We
find overwhelming evidence on directional predictability for the excess stock returns. We then
explore possible sources of the documented directional predictability of excess stock returns. It
is found that the levels of past returns or their directions can be used to predict the direction of
future returns with any threshold (including zero). In addition, past volatility clustering can be
used to the predict direction of large returns, although not for returns with zero threshold. The
documented directional predictability cannot be completely explained by an MA(1)-threshold
GARCH(1,1) model.

Third, to show whether the documented directional predictability is useful in practice, we
consider a class of autologit models that forecast the 1-step-ahead direction in stock price
changes using the direction, level, volatility, skewness, and kurtosis of past price changes re-
spectively. We find that trading strategies based on the 1-step-ahead combined directional
forecasts of these autologit models have significantly higher Sharpe ratios than the buy-and-
hold trading strategy.

The plan of the paper is organized as follows. In Section 2 we describe the hypotheses of
interest and discuss the relationship between directional predictability and the efficient mar-

ket hypothesis, volatility clustering, as well as serial dependence in higher order conditional



moments such as skewness and kurtosis. Because directional predictability depends on the
conditional probability of asset returns exceeding a threshold, serial dependence in variance
and higher order moments may also lead to directional predictability even when the market is
efficient. In Section 3, we propose a generalized cross-spectral approach to develop a model-free
omnibus test for directional predictability and a variety of generalized cross-spectral derivative
tests to gauge possible sources of directional predictability. To assess the reliability of the
asymptotic distribution theory in finite samples, Section 4 presents a limited simulation study
on the finite sample performance of the proposed tests. In Section 5 we apply the tests to
a variety of daily stock price indices. In Section 6, we investigate out-of-sample directional
predictability of a class of autologit models and their economic significance in terms of extra
risk-adjusted trading profit over the buy-and-hold strategy. Section 7 concludes. All mathe-

matical proofs are collected in an appendix.

2 Hypotheses of Interest

Suppose {Y;} is a strictly stationary time series such as a sequence of asset returns. We are
interested in whether the directions of future asset returns are predictable using current and

past returns. Define the direction indicator function
Zi(c) =1(Y; >¢), —o0o<c< oo,

where 1(-) is the indicator function, and c¢ is a threshold constant. Without loss of generality,
we can define ¢ in terms of the multiples of the standard deviation oy = /var(Y;). When
¢ =0, Z(c) is an indicator for positive returns. When ¢ = 1 (say), Z(c) is an indicator for
“large” positive returns. Similarly we can define the directions for negative returns and large
negative returns respectively. The later are useful in characterizing large downside risk (e.g.,
Ang and Chen 2002). The serial dependence structures for small and large returns may be
different (Sonik 2001). It is sometime believed that the strength of serial dependence between
large returns is stronger than that between small returns, as is the case of market contagion.
Investors may be more interested in directional predictability of large asset returns. They may
perceive large shocks as containing significant informational contents and small shocks as mere
background noises. Consequently, their valuations and expectations react only to large shocks.
Moreover, the fact that the number of incorrect forecasts exceeds that of correct forecasts is
not necessary to rule out profitability of a trading strategy. A profitable trading strategy may
be marked by a small number of successful forecasts for which large profits are made, and
a large number of incorrect forecasts for which small losses are incurred (e.g., Cumby and

Modest 1987, Diebold and Lopez 1996). Some technical trading rules such as filters do involve



prediction of the direction of returns with certain threshold and their profitability depends on
the magnitude of the actual changes.
Let I;_1 = {Yi_1,Y;—2,...} be the information set of asset returns available at time ¢ — 1.

The hypotheses of interest are
Hoy : Pr{E[Zi(c)|i-1] = E[Zi(c)]} =1

vVersus

Hy : Pr{E[Zi(c)|i-1] = E [Z:(c)]} < 1.

Note that E [Z;(c)|It—1] = P(Y; > c|I;—1) and E[Z(c)] = P(Y: > ¢). Under Hy, the information
set I;_1 is useless in predicting the direction of returns with threshold c. In other words, past
returns cannot be used to predict the direction of future returns. Under Hy4, the direction of
returns with threshold c is predictable using the information set I;_;. Note that it is important
to specify the threshold constant ¢ because it is possible to predict the direction of returns
with some threshold but not with another threshold; see an example below.

The null hypothesis Hy differs from the efficient market hypothesis;? the latter is defined
as

E (Yi|I;—1) = p almost surely (a.s.) for some constant u € (—o0, 00).

When the market is efficient, the level or the conditional mean of future returns is not pre-
dictable using past returns. No systematic trading strategy can be more profitable in the
long-run than holding the market portfolio, though of course one can still temporarily beat
the market through sheer luck. Market efficiency however, does not necessarily imply that the
direction of returns is not predictable. Christoferssen and Diebold (2002) have an excellent
theoretic discussion on the relationships among market efficiency, directional predictability,
and volatility clustering in a framework where the threshold ¢ = 0 and the unconditional mean
1 # 0. They focus on directional predictability under market efficiency. We now provide some
related discussion in our framework.
2.1: Directional Predictability when the Market is Inefficient

When the market is not efficient, the conditional mean F(Y;|l;—1) is a function of I;_; and
the level of returns is thus predictable using past returns. In this case, it is generally possible

to predict the direction of returns. To see this, consider the following data generating process

Yi=p + \/h_tgta (21)

?Like Christoffersen and Diebold (2002) as well as the majority of the financial literature (e.g., Fama 1970,

Campbell, Lo and MacKinlay 1997), our definition of market efficiency differs from general equlibrium definitions
of market efficiency. The latter may be consistent with a predictable time-varying conditional mean due to the

presence of time-varying risk premium (e.g., Lucas 1978).



where p, = E(Y;|I;—1), hy = var(Y;|I;—1) and the innovation {e;} is an martingale difference
sequence with mean 0, variance 1, and conditional CDF F_(-|I;_1). Note that there may ex-
ist serial dependence in third order or other higher order moments of {e;}. This is called
the weak form volatility process in the literature.®> Example are Hansen’s (1994) autoregres-
sive conditional density model and Harvey and Siddque’s (2000) conditional skewness model
where ¢; follows an asymmetric Student’s ¢-distribution with time-varying degrees of freedom
and skewness. The functions p; and h; characterize serial dependence in the first two condi-
tional moments respectively, while F.(-|I;—1) characterizes serial dependence in higher order
conditional moments. As will be seen shortly, serial dependence in any moment may affect
directional predictability.
Under (2.1), the direction indicator Z(c) = 1[e; > (¢ — p;)/+v/ht). Thus, we have

E[Z(c)|Ii—1) =1 — F, (c|l-1) = 1 — F. (C\;h_‘:t |It_1> ,

where F,(-|I;—1) is the conditional CDF of Y; given I;_i. As long as p; is time-varying and
(¢ — py)/v/he is not constant for all t,* E[Z;(c)|l;_1] is a time-varying function no matter
whether the threshold ¢ = 0, h; is a constant, or {e;} is i.i.d. Thus, the direction of returns
with any threshold ¢ is predictable when g, is time-varying (i.e., when the market is not
efficient.) Many technical trading rules proposed in the literature, such as those based on
artificial neural network models, are based on the directional predictive ability of a conditional
mean model.
2.2: Directional Predictability Under Market Efficiency

We now investigate the relationship between the market efficiency and directional pre-
dictability. This is of practical importance because it is well-known that there exists little or
weak serial dependence in the conditional mean of high-frequency (e.g., daily) financial returns.
When the market is efficient (u, = p for all ), the direction of returns may or may not be
predictable using the information set I;_1, and both cases may be not inconsistent with the
efficient market hypothesis. Based on a Gram-Charlier expansion, Christoffersen and Diebold
(2002) show that directional dependence does not imply market inefficiency; directional depen-
dence can occur through the interaction between a nonzero unconditional mean p and volatility
clustering.
2.2.1: Threshold c differs from the long run average return p

First, we consider directional predictability with ¢ # u, i.e., the directional predictability

of returns with threshold ¢ different from the long-run average return p. This is the case

*Drost and Nijman (1993) call a GARCH with an i.i.d. noonvation sequence {e:} a “strong form GARCH,”
and a GARCH with non-i.i.d. innovations a “weak form GARCH”.

1The possibility that (¢ — ut)/h}/2 is constant for all ¢ may arise when p, = c+ ah}/Z for some constant a,
a specific ARCH-in-Mean process. For ARCH-in-mean model, see Engle, Lilian and Ng (1987).



thoroughly examined in Christoferssen and Diebold (2002) where they assume ¢ = 0 and
i # 0. As long as the gap 6 = ¢ — u # 0, the directional predictability F[Z;(c)|l;—1] depends

on [I;_; via volatility clustering:

E[Z(c)|[,_1] =1 - F. (%h?”“) .

Thus, Z;(c) is predictable using the information set I;_1, even if the innovation {&;} is i.i.d. so
that the conditional CDF F(:|I;—1) = F.(-) does not depend on I;_;. In this case, the sources
of directional predictability solely comes from volatility clustering. Of course, directional pre-
dictability can also arise from third order or higher conditional moments of {&;}, when {&;}
is not i.i.d. The fact that directional predictability comes from the conditional variance and
other higher order conditional moments may explain why it is easier to predict the direction
than the level of the change itself, as many empirical studies usually conclude.

2.2.2: Threshold c =

An interesting case arises when the gap d = ¢ — u = 0. Here, we have
FE [Zt(C)|It_1] =1- Fg (O’It_l) .

Suppose ¢¢ is i.i.d. so that F.(-|[;—1) = F(-) is not time-varying. Under market efficiency,
serial dependence of returns {Y;} is completely characterized by its conditional variance. In
this case, F'[Z;(c)|I;—1] is not predictable, because E[Z;(c)|I;—1] = 1 — F.(0) is constant for all
t. This is quite different from the case with § # 0, where volatility clustering alone can lead
to directional predictability via its interaction with a nonzero 6. In fact, even if {¢;} is not
iid. but has a conditional symmetric distribution (i.e., F.(—¢|li—1) = Fe(e|l;—1) for all ),
the direction of return Y; with threshold ¢ = p is not predictable using I;_1.

Next, suppose the gap 6 = 0 but F.(-|;—1) is time-varying and is not asymmetric about
zero. This suggests that there exists serial dependence in third order and/or higher order
conditional moments of {e;}. In this case, the direction of Z;(c) is predictable using I;_1 and
the source of predictability comes from higher order dependence rather than volatility clustering
(e.g., conditional skewness and kurtosis). Hansen (1994) and Harvey and Siddque (1999, 2000)
find that the conditional skewness of asset returns is time-varying and therefore predictable.
This can be another deriving force for the directional predictability of asset returns.

To sum up, (i) when the market is not efficient (i.e., there exists serial dependence in
conditional mean), the direction of returns with any threshold c is generally predictable using
past returns. (ii) When the market is efficient but there exists serial dependence in such higher
order conditional moments as skewness and kurtosis, the direction of returns with any threshold
¢ is also predictable using I;_;. (iii) When the market is efficient and serial dependence is

completely characterized by volatility clustering, the direction of return Y; is predictable using



1,1 except for threshold ¢ = u. As long as ¢ # pu, volatility clustering is a driving force for

directional predictability.

3 Tests for Directional Predictability

The above analysis shows that the dynamics of directional predictability of asset returns is
highly nonlinear, because it essentially depends on all time-varying conditional moments. We
now extend Hong’s (1999) generalized spectrum to construct a model-free test for directional
predictability. The generalized spectrum of Hong (1999) is particularly suitable for nonlinear
time series analysis, thanks to the use of the characteristic function.

Once predictability of the direction of asset returns is documented, it will be interesting
and important to gauge possible sources of directional predictability. In particular, one may
like to ask whether the direction, level, volatility, skewness, and kurtosis can be used to predict
the direction of asset returns. This will provide very useful information for modelling and
forecasting the direction of returns. The generalized spectrum can be differentiated to yield
such separate inference procedures. This is made possible because the characteristic function

can be differentiated to give various moments. We now discuss this econometric methodology.

3.1 Generalized Spectrum

To capture generic serial dependence of a strictly stationary process {Y;} and to explore the
pattern of serial dependence of {Y;}, Hong (1999), in an univariate time series context, proposes
a generalized spectrum as an analytic tool for linear and nonlinear time series. The basic idea

is to transform {Y;} via a complex-valued exponential function
Y; — exp(iuY;), u € (—00,00),i=+v—1,
and then consider the spectrum of the transformed series. Let
o(u)=FE (ei“Yt)
be the marginal characteristic function of {Y;} and let
oi(u,v) = E [e““Yt“Yt—m)} =041, ...

be the pairwise joint characteristic function of (Y, Y;_|;), where j is a lag/lead order. Define

the covariance function between the transformed variables Yt and evYt-lil

oi(u,v) = cov(e™ eVi-lil) | u v € (—o00,00). (3.1)



Straightforward algebra yields o (u,v) = ¢;(u,v) — @(u)@(v). Because o;(u,v) = @(u)p(v) for
all u,v € (—00,00) if and only if Y; and Y;_; are independent, oj(u, v) can capture any type of
pairwise serial dependence over various lags in {Y;}, including those with zero autocorrelation.
It is well-known that many high-frequency financial time series display little serial correlation
but persistent volatility clustering and other higher order dependence.
Under suitable conditions, the Fourier transform of o;(u,v) exists and is given by:
1 & .
frp(w,u,v) = Dy Z oj(u,v)e ¥, we|-mml, (3.2)

j=—o0

where w is frequency. Like o(u,v), f,,(w,u,v) can capture any type of pairwise serial depen-
dencies in {Y;} over various lags (i.e., dependence between Y; and Y;_; for any j # 0). Unlike
the power spectrum and higher order spectra (e.g., bispectrum),” the generalized spectrum
f,,(w,u,v) does not require any moment condition on {Y;}. In other words, {Y;} may not be
weakly stationary (e.g., when {Y;} is an integrated GARCH process; see Bollerslev and Engle
1986). This is appealing in finance because it is often argued (e.g., Pagan and Schwert 1990)
that certain moments like the unconditional variance of some high frequency financial time
series may not exist.
When var(Y;) = o3 exists, the conventional power spectrum of {¥;} can be obtained by
differentiating f,, (w, u,v) with respect to (u,v) at (0,0) :
1 : o

> Z cov(Yy, Y;5_|j|)€_i]w = _mfyy (w,u,v) |(u,v):(070) )

hyy (W)
j=—00
For this reason, f,, (w,u,v) is called a “generalized spectral density” of {Y;}.
When all the moments of {Y;} exist, we can decompose, by a Taylor series expansion, the

generalized spectrum as follows:
fyy (Wou,v) = — | = Z cov(Y}m,Ytlf‘j‘)e_’jw ™!,

where (u,v) is near (0,0). This indicates that f,, (w,u,v) can captures various correlations
between Y;" and YIL il for all m,l > 0. Of course, f,, (w,u,v) does not require existence of
moments of {Y;}.

The introduction of transform parameters (u,v) provides much flexibility for f, ., (w,u,v)
to capture serial dependence in {Y;}. For example, the supremum generalized spectrum

Syy (W) = SUP_ ey vcco | fyy (W, 1, v)| can be viewed as the maximum serial dependence of

For conventional power spectral analysis, see (e.g.) Priestley (1981). For bispectral analysis, see (e.g.) Sub
Rao and Gabr (1984).



{Y}} at frequency w. This can be used to identify business cycles, seasonalities (e.g., calen-
der effects), or other forms of periodicities caused by linear or nonlinear dependence (e.g.,
persistent volatility clustering).

The generalized spectrum is a synthesis of spectral analysis and the characteristic function.
Spectral analysis is not uncommon in economics and finance (e.g., Durlauf 1990, Granger
1969, Watson 1993). An advantage of spectral analysis is that it includes information of all
lags simultaneously in a natural manner. On the other hand, the characteristic function can
capture linear and nonlinear dependencies (including those with zero autocorrelation), thus
overcoming the drawback of the conventional power spectrum. As a consequence, generalized
spectrum is particularly suitable for analyzing complex and nonlinear economic and financial
systems. We note that there has been an increasing interest in using the characteristic function
in economics and finance. Among them are Hong and Lee (2003), Jiang and Knight (2002),
Knight and Yu (2002), Pinkse (1998), and Singleton (2001).

3.2 Generalized Cross-Spectrum

The generalized spectrum f,, (w,u,v) of {Y;} is useful in exploring how Y; depends on its
own past history I;_;. It cannot, however, be directly applied to investigate whether the
direction of returns, Z(c) = 1(Y; > ¢), is predictable using the information set I;_;. For this
purpose, we have to expend Hong’s (1999) univariate generalized spectral analysis to a bivariate
generalized cross-spectral analysis. Suppose {Z;, Y;} is a bivariate strictly stationary time series
process with marginal characteristic functions ¢ (u) = E(e™#) and ¢, (u) = E(e™**). In this
subsection, we permit but do not require Z; = Z;(c). Define the generalized cross-covariance
function

0 v (1, 0) = cov (4 V) = 0,4, (3.3)
Straightforward algebra shows

where ¢ i(u,v) = Ee'(Z:+vY-131)] is the joint characteristic function of (Z;, Y,_;|)- Because
0 4y.j(u,v) =0 for all u,v € (—o0,00) if and only if Z; and Y;_; are independent, o, ;(u,v)
can capture any type of cross-dependence between Z; and Y;_| ;).

Analogous to the univariate generalized spectrum f, , (w,u,v), we may call the Fourier

transform of o, ;(u,v),

1 ..
fay (W, u,0) 52_ Z T 4y e VY, we[-m 7l (3.4)
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the “generalized cross-spectral density” between {Z;} and {Y;_;,j > 0}. Like o, ;(u,v),
f,y (w,u,v) can capture any type of pairwise cross-dependence between Z; and Y, |j- It can
be used to explore how Z; depends on the entire past history of {Y;}. In particular, it can be
used to examine various linear and nonlinear Granger causalities from lagged variables {Y;,‘ j‘}
to Z;.% Note that no moment condition on {Y;} and {Z;} is needed for f,, (w,u,v).

We now consider a special case relevant to our interest of directional predictability. Suppose
Z; is independent of I;_;. Then the generalized cross-spectrum f,, (w,u,v) becomes a flat
generalized cross-spectrum:

1
%Uzy’o(u,v), w € [—m, 7. (3.5)

foyolw,u,v) =

Thus, one can test independence between Z; and {Y;_;,j > 0} by comparing f,, (w,u,v) and

fsy 0(w,u,v). Any significant difference between them will indicate the dependence of Z; on
the past history of {Y;}.

Just as the characteristic function can be differentiated to generate various moments (when

they exist), f,, (w,u,v) can be differentiated to capture various cross-dependencies between

Zy and {Y;—j,j > 0}. Consider the following generalized cross-spectral density derivative

aerl

FOmD (w,u,v) =

W, U, v) Z o ml) e Y m, 1> 0. (3.6)

ZY]

Oumov! Tov(

]—foo

Such a derivative exists provided E|Z;|*™ < oo and E|Y;|? < oco. To check E(Zy|I;_1) = E(Z;)
a.s., as is the hypothesis of interest Hy in testing directional predictability (with Z; = Z;(c)),

we can use the (1,0)-th order generalized cross-spectral derivative

ZY]

- :
(0,1,0) _ (1 0) —ijw
[y (w,0,0) = 7 g (0,v)e ™Y, we|[-m,mn], (3.7)

j=—00
where O'( 0 5(0,v) =cov(iZ, eYe-1il). This (1,0)-derivative essentially checks whether

because agy ]) (0,v) = 0 if and only if F(Z;|Y;_|;|) = E(Z;) a.s. under suitable conditions. The
latter is similar in spirit to the null hypothesis Hg when Z; = Z;(c).” Intuitively, o ( )(0 v)
can capture correlations between Z; and all moments of Y;_|;/, thus exploiting all 1mphcat10ns
of E(Z|Y;—|j|) = E(Z;). Therefore, with Z; = Z;(c), we can use [ (0,1.0)(, 0,v) to check the

directional predictability hypotheses Hy versus H 4.

SFor general Granger causality, see Granger (1980).
"See Bierens (1982) and Stinchcombe and White (1998) for related discussion and proof in a different context.

Bierens (1982) and Stinchcombe and White (1998) consider specification for regression models where Z; is the

regression model error and Y; is the regressor vector.

11



Once directional predictability is documented using f (0,1,0) ( ,0,v), one may like to further
explore possible sources for directional predictability. In particular, is directional predictability
caused by conditional mean dynamics? Or is it caused by volatility clustering? Or is it caused
by conditional skewness or other higher order conditional moment? Such information will be
very helpful for making inferences on the nature of directional predictability and providing
useful guidance in constructing directional forecast models.

To gauge possible reasons of directional predictability, we can use higher order generalized
cross-spectral derivative

0,1,l 1 — (1,0 —ijw
F(@,0,0) == 37 0,750,007, w e [-m,a], (3.8)

ZY J
j=—o0

where a( 4 ;;(0,0) =cov [th, (Y ,01>1.Forl=1,234, (171)(0 0) will be proportional to
cross-covariances cov(Zy, Y} | |) As a consequence, we can use f,> (0.L.1) (w,0,0) to check whether
Z is predictable using the level of past changes {Y;_;}, past volatility {Y,2 ;1> past skewness
{2 ;} and past kurtosis vt ;} respectively. Below, we will develop a unified framework that

includes all of these tests using various generalized cross-spectral derivatives.

3.3 Generalized Cross-Spectral Tests for Directional Predictability

Suppose we have a random sample of asset returns {Yt}tT:l of size T. Define the empirical

generalized cross-covariance function between {Z;(c)} and {Y;}

UZY,] (U U) = ¢ZY (]7 u? U) - QASZY (.]? u’ 0)&)ZY (J? O’U)7 (39)
where
~ T .
Gy (Gru,v) = (T = [j))71 D AEOFYeoi) = 0,41, £(T - 1),
t=ljl+1

is the empirical joint characteristic function for {Z;(c),Y;_|;|}. To estimate the generalized

cross-spectral density f,, (w,u,v) in (3.4), we use a smoothed kernel estimator:

T-1

For s 0) = 5 3 (1= [51/T) 2K 0)6 s os, 0)e (3.10)
j=1-T

Here, k() is a kernel function that assigns weights to various lags. It can have bounded
support. An example is the Bartlett kernel k(z) = (1 — |z]) 1 (|z| < 1), which is popular in
econometrics (cf. Newey and West 1987). In this case, p is the maximum lag truncation
order. The kernel k() can also have unbounded support. An example is the Daniell kernel

k(z) =sin(mwz)/(7z), —00 < z < oo. In this case, p is no longer a lag truncation number but a
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smoothing parameter that governs the smoothness of the spectral estimator fZY (w, u,v). We
can view that p is an effective lag order because lags much larger than p receive little weights.
The factor (1 — [j|/T)Y? in (3.10) is a finite sample correction factor. It could be replaced
by unity without affecting consistent estimation of the generalized cross-spectrum f,, (w,u,v),
but it gives better finite sample performance for the proposed tests below. Under proper
conditions on the kernel k(-) and the lag order p, as well as on serial dependence of {Y;}, it
can be shown that the estimator f,, (w,u,v) is consistent for f,, (w,u,v).% The generalized
spectral approach has at least three appealing features: First, fZY (w, u,v) employs many lags
simultaneously because it is usually required that p = p(T') — oo as T — oo. In particular,
when k(-) has infinite support, all T'— 1 lags available in the sample are used. This is expected
to have good power in detecting cross-dependence that decays to zero slowly as the lag order
Jj increases. Second, the kernel function k(-) provides a natural weighting scheme for various
lags. Typically, higher order lags are discounted, which may enhance the power of the proposed
tests in practice because financial markets are more influenced by the recent events than by the
remote events remote past events. Third, one can choose a lag order p via suitable data-driven
methods. For example, we can select a data-driven p that minimizes the integrated mean
squared error of the generalized cross-spectral density estimator fZY (w,u,v). See Hong (1999)
for more discussion in the context of univariate generalized spectrum.

To check directional predictability and its possible sources, we shall compare the generalized

cross-spectral derivative estimators

2(0,1,1 ot .
Fo0(@,0,0) = 5= £ (@,0,0) (3.11)
and "
2(0,1,1
f;(:/:}o)( 0, 'U) Oudv leY7 (w7077})7 (3.12)

where f,, o(w,u,v) = (27) 76 ,, o(u,v) is a consistent estimator for f,, o(w,u,v); the latter
is a flat cross-spectrum implied by the null hypothesis Hy of no directional predictability. A
significant difference between f 0.1 (w,0,v) and f (0’1’1) (w,0,v) will indicate directional pre-

dictability. To measure the discrepancy between f O’I’Z (w,0,v) and f e (w

0 (@0, v), we can use

a convenient quadratic form

Ol = =T / / FOD(w,0,0) — PO (0,0, 0)2dwd iV (v)

Zk2 G/oT =3) [ 160 0.0 Pawe), (3.13)

8See Hong (1999, Theorem 1). Although the present context is a bivariate framework while Hong (1999)

considers a univariate process; the proof and regularity conditions are similar.
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where W (+) is a positive and nondecreasing weighting function with bounded total variation and
the unspecified integral is taken over the support of W(-). An example of W (-) is W (-) = ®(.),
the N(0,1) cdf, commonly used in the empirical characteristic function literature. Note that
there is no need to calculate the integration over frequency w, but we still need to calculate
the integration over v. The integral over v can be calculated using numerical integration meth-
ods, such as Gauss-Quadrature, available in most statistical software. For accurate numerical
integration, we can truncate the N(0,1) CDF on a bounded support, say [-3,3]. There is no
requirement that W (v) be integrated to 1.

Our test statistic is a standardized version of the cumulative sum of Q(1,1) :

~

. -1 . 1/2
My (1,0) = [QLD) = Cop (L) S K2G/D) | /[ Doy (1LD] (3.14)

7=1

where the integer [ > 0, the centering and scaling factors

Co(ll) = / 160 (0, ) 2dWV (),
T 2T—-2
D1 = 28— K26 /o2 /p) [ [ 1640, (0, o) PaW (w)dW (o),
SRR [f1e40,.

j T=

AMe) =T *S2I | Zi(c) is the sample proportion for {V; > ¢}, and &, ;(v,v') is the empirical

generalized autocovariance function of {Y;}; namely,

~ ~

UYY,](U v ) ¢yy j(U v ) ¢yy ](U 0)¢yy ](0 v )

and gbyyj( V) = (T — |i)~! ZtT:|j|+1 VY15 Note that the factors C,,(1,1) and
D, (1,1) have taken into account generic serial dependence within {Y;}, which is present
even when Hy holds. Intuitively, fzyjo(w, 0,v) is an efficient estimator for f,, (w,u,v) under
Hp, and fzy (w,u,v) is an inefficient but consistent estimator for f,, (w,u,v) under H,. Thus,
our test is similar in spirit to Hausman’s (1978) test.

Under suitable regularity conditions, we can show that as the lag order p = p(T) —
00, p/T — 0, M, (1,1) converges in distribution to N(0,1) under Hy and generally diverges to
positive infinity under H4 (see the appendix for the asymptotic theory). Appropriate critical
values are the upper-tailed N(0,1) critical values (e.g., 1.65 at the 5% level).

When [ = 0, M,,(1,0) is an omnibus test for Hp, because essentially check correlations
between Z;(c) and Ytl_m for all [ and j. On the other hand, the separate tests M, (1,1) with
[ > 1 and W'(v) = §(v), the Dirac delta function, can reveal useful information about possible

sources for directional predictability.” The use of the Dirac delta function implies that we focus

’The Dirac delta function §(-) is defined as follows: §(u) = 0 for all u # 0 and [ §(u)du = 1.
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all weight mass at v = 0. As noted earlier, for [ = 1,2, 3,4, agjl) (0,0) will be proportional to

the cross-covariances cov[Zt(c),)QC‘j‘]. Thus, we can use M, (1,1) to check whether Z;(c) is
predictable using the level of returns {Y;_;}, past volatility {Yf_]}, past skewness {Y2 ;1 and
past kurtosis {Y;* ;} respectively.

On the other hand, one may also like to check if the directions of past returns are helpful
in predicting the direction of future returns. This is of interest, for example, when one likes
to check if price reversals exist. To test this, we can use the univariate generalized spectral

density function of the direction indicator series {Z;(c)},

1 = —ijw
fZZ(w,u,v):% Z 0, v)e Ve, (3.15)

j=—00

where the generalized covariance function

0,,.i(u,v) = cov (eiuzﬁ(c),eivzt*\ﬂ(c)> . (3.16)

ZZ5]

Because Z;(c) is a Bernoulli random variable taking value 0 or 1, it is straightforward to show
that when Z;(c) is not predictable using I;_1, Z(c) is independent of I;_;. One important
implication of this is that the sequence of direction indicators, {Z;(c)}, is an i.i.d. Bernoulli
sequence. Thus, one could test directional predictability by testing i.i.d. for {Z;(c)}. If evidence
against i.i.d. is found for {Z;(c)}, one can conclude that the direction of returns is predictable
using the past history of the return directions {Z;_1(c), Z;_2(c), ...}

We can test i.i.d. for {Z;(c)} by using the generalized spectral density f,,(w,u,v) of
{Zi(c)}. Because {Z;} is an i.i.d. Bernoulli sequence under Hy, the generalized spectrum
f,,(w,u,v) becomes a flat spectrum with respect to frequency w:

1
_O-ZZ70(uav)a we [_7['777]- (317)

fzz,o(wv U, ’U) = o

To test whether the directions of past returns can be used to predict the directions of future
returns, we can compare a consistent kernel estimator for fZZ (w,u,v) and a consistent estima-
tor for f,, o(w,u,v), defined in the same way as fZY (w, u,v) and fzzy,o(w,u, v) in (3.10) and

(3.11) respectively. The associated test is

T-1 . T-1
M,,(0,0) = (T = 5)k*(i/p) / 16 2.5 (w 0)*dW (u)dW (v) = €, (0,0) Y K2(i/p)

j=1 =1

<

1/2
T-1 /

- QDZZ (0,0) Zk}4(j/p) ) (3.18)

1

e
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where the centering and scaling factors
C,,(0,0) = [ [i-16,0P] dw<v>r,
D0.0) = [[[ o040 0,000, 0)] awwaw]

and qAﬁz (v) = T2, €% is the empirical characteristic function of {Z(c)}. The test
statistic M, (0,0) is a special case covered in Hong (1999). It is asymptotically N(0,1) under
Hp. Also, the upper-tailed N(0,1) critical values should be used. A particularly appealing
feature of this test is that the validity of the asymptotic distribution of M, ,(0,0) does not
require stationarity of {Y;}. Even if {Y;} is not strictly stationary, {Z;} will be still a sequence
of i.i.d. Bernoulli random variables under H.

An important common feature of the M, (1,1) and M, ,(0,0) tests is that the lag order j
is weighted by k2(j/p). Typically, k(z) gives the largest weight at z = 0 and smaller weights as
|z| = oo. Thus, higher order lags are discounted. This is expected to enhance power when the
current returns are more affected by recent information than by remote information as economic
agents digest information available. Another important feature of our spectral approach is that
we consider many lags simultaneously by requiring p — oo as T' — oo. This is desirable when
the dependence of Z;(c) on Y;_; decays to zero slowly as the lag order j — oo. To implement
the test M, (1,1) or M ,,(0,0), one has to choose a lag order sequence p. Another advantage
of the spectral approach is that the lag order can be chosen via some data-driven methods.
Hong (1999) discusses how to choose p via an integrated mean squared error criterion, which
trades off between the variance and squared bias of the generalized spectral density estimator.
This method still involves the choice of a preliminary “pilot” lag order p, but the impact of
choosing p is much smaller. The sampling variation of the data-driven p unavoidably induces
additional noises into the test statistics. This adversely affects the size of the tests but it is
expected to enhance good power for the tests. We will use it tailored to the present context in
both our simulation and empirical applications. Simulation studies show that the performance

of the tests are more or less robust to the choice of p.

4 Finite Sample Performance

The asymptotic N(0,1) distribution of the proposed tests is convenient to use in practice.
Before real data applications, however, we need to make sure that it provides reasonable
approximations in finite samples. Any inference and conclusion based on a poor asymptotic
distribution theory will be misleading about directional predictability of financial time series.

For example, suppose a test rejects the correct null hypothesis too often at a given significance
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level. Then, when applied to a real data, a significant test statistic would be not reliable
because we do not know whether it is due to the poor performance of the test or the true
feature of the data.

To assess the finite sample performance, we consider two data generating processes (DGP).
DGP1 is an i.i.d.N(0,1) process, and DGP2 is a GARCH(1,1)-i.i.d.N(0,1) process,

Y, = hy/%ey,

hi = 0.05 + 0.8h4—1 + 0.15Y2
g ~ 1.1.d.N(0,1),

where the GARCH parameter values are the typically empirical estimates for high-frequency
financial series (e.g., Bollerslev 1987). Under DGP1, there is no serial dependence in every
conditional moment of {Y;}. Thus, the direction of returns with any threshold ¢ is not pre-
dictable. This allows us to examine the size performance of all the tests for the direction of
returns with any threshold ¢. Under DGP 2, serial dependence exists only in the conditional
variance of {Y;}. Thus, the direction of returns with threshold ¢ = 0 is not predictable using the
past returns. However, the directions of returns with nonzero thresholds are predictable under
DGP2, due to volatility clustering. Hence, our tests should have nontrivial power whenever ¢
is nonzero.

To compute the statistics M, (1,0) and M,,(0,0), we use the weighting function W () =
®(-), the N(0,1) CDF truncated on [-3,3]. We scale both {V;}_; and {Z;(c)}_; respectively
so that they have a unit sample standard deviation. We also use the Bartlett kernel for &(-).
To choose a lag order p, we use a procedure analogous to Hong’s (1999) plug-in method that
is based on the integrated mean squared error criterion of the generalized spectral density
estimator. This method also involves the choice of a kernel function and a preliminary lag
order p. We use the Bartlett kernel again. To examine the impact of the choice of preliminary
lag order p, we choose p from 11 to 61. This covers a rather wide range of lag orders.

Figures 1 and 2 reports the empirical rejection rates, as a function of p, of the tests for
the direction indicators Z;(0) = 1(Y; > 0),1(Y; > 1) and 1(Y; > 1) — 1(¥; < —1) respectively,
under DGP1. Two significance levels, 10% and 5%, with two sample sizes T' = 500, 1, 000,
are considered. Overall, the proposed tests perform reasonably well at both the 10% and
5% levels. There are some (but not excessive) overrejections at the 5% level, particularly for
Z:(0) = 1(Y; > 0) and 1(Y; > 1). The tests with Z; = 1(Y; > 1) — 1(Y; < —1) have slightly
better performance in many scenarios. In general, the sizes of the tests are robust to the choice
of p.

Figures 3 and 4 report the empirical rejection rates of the tests under DGP2 with T =
500, 1,000 respectively. First, we consider ¢ = 0. Under DGP2, there exists no directional

17



predictability when and only when ¢ = 0. The rejection rates of all the tests are close to
the nominal levels of 10% and 5% respectively in this case. We observe that there are more
overrejections than under DGP1, but these overrejections are not excessive, particularly in
views of our nonparametric time series testing approach with a data-driven lag order selection,
which induces additional noise into test statistics. For nonzero thresholds ¢, all the tests
are expected to have power under DGP2 for sufficiently large sample size T' because Z;(c)
has directional predictability via the interaction between time-varying volatility and nonzero
threshold c. This is indeed the case as shown in Figures 3 and 4. Note that both size and
power are relatively robust to the choice of the preliminary lag order p.

Overall, the simulation evidence shows that the proposed tests have reasonable sizes in

finite sample sizes, and have good power against directional predictability.

5 Directional Predictability of Stock Returns

5.1 Data

We now apply our generalized cross-spectral tests to examine directional predictability of a
variety of U.S. daily stock price indices, which is essential for macroforecasting and market
timing. The stock price indices include Dow Jones average index (DJIA), S&P 500 index
(S&P500), NASDAQ composite index (NASDAQ), and NYSE composite index (NYSE). We

mainly focus on the directional predictability of excess stock return series:
Y;g = 1001H(Pt/Pt,1) — T,

where P; is the daily closing stock price, and 74, a re-scaled risk-free daily interest rate, is the
3-month treasury bill rate divided by 252, the average trading days in a year. All the stock
data are obtained from Datastream, and the 3-month T-bill rates are downloaded from the
website www. fed.org. Table 1 summarizes some basic statistics for the excess returns of all
stock indices, which have the same ending date, December 31, 2001, but may have different
starting dates for the samples. DJIA and S&P 500 have the largest samples (from February
1, 1962), with 10,043 observations. The sample means of the excess returns of all the indices
are nonnegative, but they are very small or close to zero. All excess returns have excessive

kurtosis, indicating non-Gaussian features.

5.2 Directional Predictability of Stock Returns
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We first check whether the directions are predictable for excess stock returns. Specifically, we

consider the predictability of each of the following direction indicators:
Z1i(c) 1(Y; > o),

Zu(c) = 1(Y; < —o),
Zy(c) = sign(Ye,c) = 1(Y; > ¢) — 1(Y; < —¢),

for ¢ =0,0.5,1, 1.5, in units of sample standard deviation of {Y;}. The dynamics of directional
predictability can be different between up and down stock markets, and between large and
small changes. ¥

Table 2 reports the test statistics M, (1,1) for I = 0,1,2,3,4 and M, ,(0,0). For the results
in all test statistics, we use the Bartlett kernel and a preliminary lag order p = 21.'! First, the
omnibus test M, (1,0) examines whether the sign (two-sided) direction, positive direction and
negative direction respectively, using past excess returns {Y;_;}, are predictable. For sign,
positive and negative directions, M, (1,0) is very large for all threshold ¢ (including ¢ = 0),
essentially implying a zero p-value. There exists overwhelming evidence on the directional
predictability for the four indices. For the sign direction, there seems no clear evidence that
the direction of large excess returns is easier to predict than the direction of small excess returns.
For one-sided (i.e., positive or negative) directions, however, there does exist stronger evidence
on the directional predictability of large excess returns than small excess returns (particularly
for NASDAQ index), although the M, (1,0) statistic value is not monotonically increasing in
threshold c. This suggests that the serial dependence between returns with nonzero thresholds
is stronger than the serial dependence between returns with zero threshold. On the other
hand, there seems to be a weak evidence that the direction of large positive returns is easier
to predict than the direction of large negative returns, using past returns.

We also consider the directional predictability of gross stock returns (i.e., daily price changes
100In(P;/P;—1) without demeaned by the interest rate r;); the results (not reported) are very

similar to those for the excess returns.

5.3 Sources of Directional Predictability

The finding that the direction of the excess returns of stock indices is predictable using past
excess returns is important. However, the omnibus M, (1,0) statistic does not provide any

constructive information about possible sources of directional predictability. For this purpose,

'"Mecqueen, Pinegar and Thorley (1996, p.892), for example, find evidence of different autocorrelation in

returns between up and down stock markets.
1We also use preliminary lag orders p from 11 to 61. The results, which are available from the authors upon

request, are similar.
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we can use M,,(0,0) and the derivative tests M, (1,1) for | = 1,2,3,4. These tests check
whether the direction of future excess returns can be predicted using the direction, level,
volatility, skewness and kurtosis of past excess returns.

The M, (1,1) statistic examines whether the direction of excess returns can be predicted
by the level of past excess returns Y;_ ;. For all four indices, the direction of excess returns
with any threshold c is predictable using the level of past excess returns. Among other things,
the fact that the direction of excess returns with zero threshold can be predicted using the
level of past excess returns suggests that a driving force for directional predictability may be
a possibly time-varying conditional mean. This is consistent with Lo and MacKinlay (1988)
finding that there exists weak serial dependence in the level of stock returns.

There is no clear evidence that large excess returns are easier to predict than smaller ones
in direction, using the level of past excess returns. In fact, as threshold ¢ increases, the sign
direction of NASDAQ becomes harder to predict when using the level of past excess returns.
On the other hand, there exists some evidence that it is easier to predict the direction of large
negative excess returns than the direction of large positive excess returns, using the level of
past excess returns.

The results of M, (1,2) examines whether past volatility can be used to predict the di-
rection of future excess returns. For all indices, the direction of the excess returns with zero
threshold is not predictable using past volatility. For the excess returns with large thresholds
(¢ =1,1.5), however, past volatility can be used to predict the direction in most cases. These
results are consistent with stylized fact that there exists persistent volatility clustering for
stock returns, while there exists little or weak serial dependence with very small unconditional
mean.'? Except for NASDAQ index, M 4y (1,2) is monotonically increasing in threshold level
c. The larger the threshold, the more predictable the direction of excess returns using past
volatility. There exists strong evidence that one-sided directions are easier to predict than the
sign direction using past volatility. Furthermore, the direction of positive excess returns are
easier to predict than that of negative excess returns, using past volatility.

The statistic M, (1,3) examines whether skewness of past excess returns is useful in pre-
dicting the direction of future excess returns. Table 6 reports the values of statistic M, (1,4),
which examines whether kurtosis of past excess returns can be used to predict the direction
of future excess returns. The results for M,, (1,3) and M, (1,4) are similar to those for
M, (1,2). For all four indices, there exists strong evidence that the direction of positive ex-
cess returns with large thresholds (¢ = 1 or 1.5) is predictable using skewness and kurtosis of

past excess returns. It is easier to predict the direction of large positive returns than of large

2Recall that volatility clustering can generate directional predictability when § = ¢ — p is nonzero. Table 1

shows that for most stocks, the long-run average return p is very small.
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negative returns, using past skewness and kurtosis.

Finally, the statistic M, ,(0,0) checks whether the direction of past excess returns can be
used to predict the direction of future excess returns. This can tell us to what extent the
direction of past returns contains useful information about the direction of future returns. For
all four indices, the direction of future excess returns, with any threshold ¢, is predictable using
the direction of past excess returns. The statistic M, (0,0) is very large in most cases. This
striking evidence differs from Christoffersen and Diebold’s (2002) conjecture that directional
dependence may not be likely to be found via analysis of directional autocorrelation for high-
frequency (e.g., daily) financial data. This suggests that the directional dynamics of stock
returns may be more complicated than the model considered in Christoffersen and Diebold’s
(2002). In general, it is easier to predict the direction of large one-sided excess returns than
that of small one-sided ones, using the direction of past excess returns. And it is easier to
predict the direction of large negative excess returns using the direction of past negative excess
returns than to predict the direction of large positive returns using the directions of past large
positive excess returns.

We have found that the directions of excess returns with any threshold is predictable. The
level, volatility, skewness, and kurtosis and direction of past excess returns can be used to
predict the direction of excess returns. It is well-known that there exists persistent volatility
clustering in stock returns, and there may also exist weak serial dependence in the level of
stock price changes, which violates the efficient market hypothesis. These well-known stylized
facts may contribute to the directional predictability of stock returns. To check whether the
directional predictability can be solely explained by persistent volatility clustering and mild
serial dependence in mean, we fit the following MA(1)-Threshold GARCH(1,1) model via

maximum likelihood estimation (MLE) to each excess stock return series:

Y, = ap + aqup—1 + uy,
Uy = h%/zé‘t,
hy = 51 + Bth71 + u%_ll(ut,l < 0) + ﬁgru?_ll(ut,1 > 0)

(e} ~ 11.d.N(0,1).

Here, the MA(1) component is the commonly used model to capture weak serial dependence
in mean for daily stock returns. It is well-known that the GARCH model can capture per-
sistent volatility clustering. The different coefficients 85 and B; allow to capture asymmetry
in volatility, such as the leverage effect. This is the well-known threshold GARCH model,
introduced in Glosten et al. (1993).

We use our tests to check the directional predictability for the fitted standardized residuals

{&:}, and find that the directions of sign, positive and negative & are significantly predictable
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for most thresholds ¢ (including zero), although the test statistic values are much smaller than
those based on the raw return series. This indicates the MA(1)-Threshold GARCH model

cannot completely explain the directional predictability of excess stock returns.

6 Out-of-Sample Forecasts and Trading Profit

We now examine whether the documented directional predictability can be exploited to yield
significant out-of-sample economic outcomes via a class of autologit forecast models. Out-
of-sample evaluation is important to alleviate the problem of overfitting the data and obtain
spurious results.

We use two out-of-sample evaluation measures for the directional forecast models—directional
forecast accuracy and risk-adjusted profitability of model-based trading rules. For the former,
we consider two statistical measures—the Quadratic Probability Score (Brier 1950, QPS) and
the ratio of correct forecast directions. For the latter, we consider model-based trading rules
against the most commonly used benchmark— the buy-and-hold strategy; we compare their

risk-adjusted returns, including Sharpe’s (1966) ratios.

6.1 Forecast models and Combined Forecasts

For comparison, we use four stock indices—DJIA, NYSE, SP500 and NASDAQ), with the same
sample period from 01/02/1973 to 12/31/2001. To examine robustness of our results, we
consider three sample periods—the whole sample, and two sub-sample periods: the pre-Black
Monday period (from 01/02/1973 to 10/16/1987) and the post-Black Monday period (from
10/19/1987 to 12/31/2001). Each sample is divided into two subsets: the in-sample data,
used to estimate model parameters; and the out-of-sample data, used to evaluate forecast

performances. Table 3 lists each sample horizon and sample sizes for four stock indices.

Table 3. The horizon and total observations of three sample periods

Total observation

In-sample Out-of-sample
(In/Out)
from 01/02/1973 from 01,/03/1994 7324
Whole Sample
to 12/31/1993 to 12/31/2001 (5309/2015)
from 01/02/1973 from 01/03/1984 3738
Pre-Black Monday
to 12/30/1983 to 10/16/1987 (2779/959)
from 10/19/1987 from 01,/02/1998 3584
Post-Black Monday
to 12/31/1997 to 12/31/2001 (2580,/1004)

22



We use a class of auto-logistic models, first introduced in Cox (1958) and considered in
Rydberg and Shephard (2003). The autologit model extends the logit model to allow lagged
dependent variables as explanatory variables. For the zero threshold (¢ = 0), we model the
binary dependent variable Z;(c) by incorporating the sources of directional predictability doc-
umented earlier. We assume that Z;(c) depends on m most recent history of some explanatory

variables:

1

P [Zt(C) = 1‘It_1] = m,

(6.1)

where 6 is a parameter vector and X; = (1, X;_1, X¢—2, ..., Xt—m) € I;—1. This model directly
yields a probability forecast for the event Z;(c). A probability forecast for the event ‘Z;(0) = 1’
issues a likelihood that the stock price will rise, while a probability forecast for the event
‘Z1(0) = 0 issues a likelihood that the stock price will fall.

For a nonzero threshold ¢, we need to define a new direction indicator Z(c):

2, ifY;>e,
Zie)= {1, if —e<Y, <e,
0, ifY; < —c,
and use an auto-multinomial logit model:
exp(0sXy)

PZi(c) = s|[i—1] = s=0,1,2. (6.2)

> amo exp(0:X1)’
Based on the results of directional predictability documented in Section 5, for both (6.1)

and (6.2), we consider the following five models:

9&)) + ZT:1 HS) Zi—j if k=1 (using past directions)
95(2)) +>00 eg)ypj if k = 2 (using past levels),

0% X, = 9236) +>00 GS’-) Yf_j if k =3 (using past volatilities),
92%) + ZT:I eg)iff’,j if k =4 (using past skewness),
9218) + Z;nzl QS)Yt{j if k =5 (using past kurtosis),

where s = {0,1} for ¢ = 0 and s = {0, 1,2} for ¢ = 0.5. All models are estimated via MLE
using the in-sample observations {Yt}tTél of size T}. For each model, we first set a maximal lag
order 30 for m and then use the BIC criterion to select a suitable m.

For each ¢, we also consider a probability forecast procedure by combining all five forecast

models:

5
PEP(e) = wpiPra(c),
k=1
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where Pjy(c) is the 1-step-ahead probability forecast for event Z;(c) using model k, and the
weights {wy} are selected using the rule: (i) equal weighting wy = % for all k and ¢, or
(i) time-varying weighting wy; = 1[Cre(c) = 1]/ Sg_; 1[Cre(c) = 1] Here, Cis(c) is the
correct directional forecast indicator, which equals 1 when model k at ¢t — 1 correctly forecasts
the direction of changes at ¢, and equals 0 otherwise. This gives a penalty when a model
performs poorly. On the other hand, equal weighting is simple and most commonly used in
practice. Like a portfolio, a combined forecast procedure is expected to yield more robust
forecast results than a single forecast model (see Bates and Granger 1969 and Granger 2001
for more discussion.)

In order to determine C’kt(c), we need to use some decision rule to translate Pkt(c) for event
Zy(c) into an event forecast. We use the following simple rule: if the forecast probability Py (c)
is higher than a prespecified probability threshold, then we predict that event Z;(c) will occur.
Because we consider different thresholds ¢, we use the in-sample proportion for the event Z;(c)
as the probability threshold.

We consider two event forecasts:

Do) = { 1 if P(Y: > c|1) > T (e),

0 otherwise,

and

Do) = { 1 if Po(Y; < —c|li-1) > T (o),

0 otherwise,
where ft(c) = Ty, 1(Y; > ¢) and fr(c) = Ty, 1(Y; < —¢) are the in-sample
proportions for the events Z;(c) = 1(Y; > ¢) and Zi(c) = 1(Y: < —c) respectively.
Given the event forecast indicators D,jt(c) and D,;(c), we can define the correct forecast

indicator

Crale) = 1 if DE1(Y; > ¢) =1or D, 1(Y; < —¢) =1
& 0 otherwise.

The benchmark—the buy-and-hold trading strategy, is a commonly used long-term invest-
ing strategy without revising one’s asset position until the end of the investment horizon. This

trading strategy is equivalent to a constant probability forecast over time:
PBH(Y} > c|l;—1) =1 and ]SBH(}/} < —c|l;—1) =0 for all ¢, ¢.

As a result, D, (c) = 1 and ﬁgm(c) =0 for all ¢ and all c.

"*When the denominator in the time-varying weighting rule is zero, (i.e., >5_, 1[Cri(c) = 1] = 0), we use

equal weighting to each model instead.
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6.2 Model Evaluation Measures

We consider both statistical and economic evaluation measures for our forecast models. A
popular quantitative measure for out-of-sample probability forecast accuracy is the Quadratic

Probability Score (QPS), which is analogous to the Mean Squared Error:

1 & .
QPS; = 7 t:%jﬂ 2[Pye(c) — Zy(c))?,

where Py(c) is the ex ante probability forecast for event Z;(c) using model k, Z;(c) is the
ex post observed direction indicator, and T = T — T3 is the size of the out-of-sample data.
QPS ranges from 0 to 2, and becomes closer to zero when a model gives a more accurate
directional forecast (see Diebold and Rudebusch 1989 for more discussion). Corresponding to
events Z;(c) = 1(Y; > ¢) and Zi(c) = 1(Y: < —c), we compute QPS for probability forecasts
for both positive (+) and negative (-) changes. We also report directional forecast correctness
ratio, which is the ratio of correct directional forecasts for event Z;(c) to the total number of
occurrence of event Z;(c). Specifically, we consider positive and negative directional correctness
ratios, and the overall directional correctness ratio which includes forecasts of both directions.

Our ultimate goal is to examine profitability of our forecast models. For this purpose, we

define two trading rules based on model k:

1 (= “buy”) if Dfy(c) =1,
Se)= { —1 (=“Sell") if D, (c) = 1,
0 (= “no action”) otherwise,

and

. 1 (= “buy”) if Df, =1,
S}g) (c) = { kt

0 (= “no action”) otherwise,
t="T1+1,...,T —1, where lA),‘:t(c) and ﬁ,;t(c) are the event forecasts. The first trading rule
allows short sales but the second one does not.!* The out-of-sample trading return generated

from model k£ using trading rule r is

T
. 1 .
R = > Sy, r=12
t=T1+1
While most studies on technical trading rules (e.g., Allen and Karjalainen 1999, Brock,
LaKonishok and LeBaron 1992, Lo, Mamaysky and Wang 2000, Sullivan, Timmermann and
White 1999) generally evaluate raw excess returns, Brown, Goetzmann and Kumar (1998) and

Neely (2003) emphasize that it is important to consider risk-adjusted returns in comparing the

" Note that, for the ‘buy and hold’ strategy, we have S(Bll){t(c) = 5'}(32}“(6) =1 for all t and c, respectively.
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usefulness of trading rules, because different rules involve different levels of risk. To take this
into account, we use two risk-adjusted return measures: one is the mean/standard deviation
ratio, and the other is the most commonly used Sharpe’s (1966) ratio, which is the uncondi-
tional expected return per unit of risk and is usually expressed in annual terms (See Sharpe

1994 for a survey):

—(r) 5
SP]&T):w’ r=1,2,
R

(r)

where Ekr is the average returns of model £ using trading rule r, Ff is the average of risk-free

)

rates, and & A is the sample standard deviation of the returns Rl(; . This measure is higher
with a higher return and/or a lower volatility. Like most studies using the Sharpe ratio, we
ignore transaction costs, which are a complicated issue.

To assess statistical significance of the difference of risk-adjusted returns between a model
and the buy-and-hold strategy, we use the popular Diebold and Mariano’s (1995) test. Sup-
pose dr,, denotes the difference in out-of-sample average risk-adjusted returns between a fore-
cast model/trading strategy and the benchmark. Then under the null hypothesis that the
model/strategy performs the same as the buy-and-hold strategy, Diebold and Mariano’s (1995)
test statistic DM = /Ty dr, /+/ 27 fa(0) — N(0,1) in distribution, where 27 f4(0) is a Bartlett

kernel-based estimator of the asymptotic variance of \/Tadr,.

6.3 Empirical Findings

Tables 4-7 report the out-of-sample results of various forecast models for DJIA, SP500, NYSE
and NASDAQ. Each table includes three sample periods—two sub-sample periods and the
whole sample. The top and bottom panels in each period correspond to the results of the
autologit model (for ¢ = 0) and the auto-multinomial logit model (for ¢ = 0.5) respectively.
The first two sections in Tables 4-7 report directional forecast accuracy measures—QPS(+),
QPS(-) and forecast correctness ratios for positive direction (+), negative direction (—) and
both directions (overall). In terms of QPS, all forecast models perform more or less similarly.
The combined forecast models, with either time-varying weighting or equal weighting, consis-
tently give the smallest or close to the smallest QPS for both thresholds (¢ = 0,0.5), all the
sample periods, and all stock indices. This indicates the merit of combined forecasts. Inter-
estingly, for all forecast models, the magnitudes of QPS are closer to zero at ¢ = 0.5 than at
¢ = 0, except for NASDAQ in some periods. This is consistent with the earlier findings using
the generalized cross-spectral tests that there is stronger evidence for directional predictability
with nonzero thresholds. The QPS results also suggest that the directions of stock indices re-

turns are more predictable during the pre-Black Monday period than the post-Black Monday
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period.

In terms of directional forecast correctness ratios, the forecast model using the directions
of past returns have consistently high overall correctness rations in all scenarios. The forecast
model using the levels of past returns also perform well. Models using past volatilities, skewness
and kurtosis do not have robust overall correctness ratios, which can be the highest or lowest
among all individual forecast models. The combined forecast models generally do not have the
highest correctness ratio, but they are robust and have relatively high correctness ratios. Like
QPS, there is evidence that the direction of stock returns with threshold ¢ = 0.5 is easier to
predict than the direction of stock returns with threshold ¢ = 0.

We now turn to the risk-adjusted returns—the mean/standard deviation ratio and the
Sharpe ratio, which is our ultimate goal of comparing our forecast models and the buy-and-hold
strategy. Consistent with the patterns for overall directional correctness ratios, the forecast
models using the directions and levels of past returns have relatively robust and high risk-
adjusted returns in many cases, while the forecast models using past volatilities, skewness
and kurtosis do not have robust risk-adjusted returns. Interestingly, the combined forecast
models, with either time-varying weighting or equal weighting, yield robust and high (sometime
highest) risk-adjusted returns in all scenarios. The combined forecast model with time-varying
weighting performs a bit better than the combined forecast model with equal weighting. In
all scenarios the combined forecast models outperform the but-and-hold strategy, and the
differences in the magnitudes of risk-adjusted returns between the combined forecast models
and the buy-and-hold strategy are significantly at the 5% level in many cases.

Although the forecast model with highest directional correctness ratio does not necessarily
give the highest risk-adjusted returns, the forecast models with low direction correctness ratios
always give low risk-adjusted returns, and the forecast models with relatively high risk-adjusted
returns usually have high directional correctness ratios. There is some evidence that directional
forecast correctness and risk-adjusted returns are positively related to certain degree, indicating
a positive relationship between directional forecast accuracy and performance of trading rules
in many cases, as Leitch and Tanner (1991) argue. Moreover, all forecast models usually have a
higher risk-adjusted returns during the pre-Black Monday period than the past-Black Monday
period.

Figures 5-8 depict the out-of-sample cumulative daily returns of the combined forecast
models with time-varying weighting for each threshold ¢, each trading rule, and each sample
period, relative to the buy-and-hold strategy. These equity curves can better describe compet-
itive positions of our model-based trading rules over time against the buy-and-hold strategy.
In all scenarios, the combined forecast model with time-varying weighting achieves not only

a higher cumulative return at the terminal time but also a noticeably smoother increase of
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returns than the buy-and-hold strategy. The differences in cumulative returns between the
combined forecast model and the buy-and-hold strategy are economically significant in many
cases, particularly for the whole sample period and the post-Black Monday period. On the
other hand, a roughly linear rise of the equity curve indicates that the combined forecast model
can continue to earn a positive return even in a bear market, which is in sharp contrast to
the buy-and-hold strategy, as can be easily seen in Figures 5-8 (E) and (F). Relatively to the
buy-and-hold strategy, the combined forecast model performs better in the post-Black Monday
period than the pre-Black Monday period. There is evidence of out-of-sample predictive ability
of the trading rules based on directional forecast models. We also note that in most cases, the
trading rule with short sales gives a higher cumulative return at the terminal time than the
trading rule with no short sales. All of these graphical features are more or less consistent with
the Sharp ratio results.

To sum up, we have found that combined forecast models yield robust and significantly
higher risk-adjusted returns than the buy-and-hold strategy in all cases. There is significant
evidence that the combined directional forecast models have some out-of-sample predictive

power for the directions of stock returns.

7 Conclusion

We have proposed a rigorous model-free statistical procedure to check whether the direction
of the changes of an economic time series variable is predictable using the past history of its
changes. A class of separate inference procedures are also given to gauge possible sources
for directional predictability. In particular, they can reveal information about whether the
direction of future asset returns is predictable using the direction, level, volatility, skewness,
and kurtosis of past asset returns. The proposed procedures provide reasonable references in
finite samples. They have good power because they employ many lags simultaneously and
discount higher order lags via the kernel function, which is consistent with the conventional
wisdom that financial markets are more influenced by the recent events than by the remote
events.

We have applied the proposed procedures to four daily U.S. stock price indices. We find
overwhelming evidence that the direction of excess stock returns is predictable using the past
history of excess stock returns. The evidence is stronger for the predictability of the direc-
tional predictability of large excess stock returns—both positive and negative. In particular,
the direction and level of past excess stock returns can be used to predict the direction of
future excess stock returns with both zero and nonzero thresholds, and the volatility, skewness

and kurtosis of past excess stock returns can be used to predict the direction of future excess
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stock returns with nonzero thresholds. The well-known weak serial dependence in mean and
persistent volatility clustering in stock returns cannot explain all documented directional pre-
dictability. We finally examine the out-of-sample profitability of a class of autologit models for
directional forecasts. Trading rules based on these forecast models, particularly their combi-

nations, can earn significantly higher risk-adjusted returns than the buy-and-hold strategy.
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Table 1. Summary statistics for sample data.

Tickets Description Starting date Obs. Mean Std. dev. Skew. Kurt. ry (1) ry2(1)
Stock Index
DJIA Dow Jones Avg. 1962/02/01 10,047 0.002 0.962 -1.971 58.123 0.079 0.095
SP500 S&P 500 1962/02/01 10,047 0.004 0.932 -1.621 44.407 0.090 0.120
NYSE NYSE Comp 1966,/10/28 8,851 0.005 0.889 -1.732 45.119 0.140 0.092
NADQ Nasdaq Comp 1973/01/02 7,324 0.027 1.393 -0.359 13.452 0.081 0.312

Notes: (1) Starting date, the first available date which stock price is continously recorded in data files. Ending date for all indices and stocks is
Dec 31, 2001. Obs., sample size(T), No change is that the closing price of sample data at ¢ does not change from the closing price at ¢ — 1. This is
represented as the percentage of T

(2) Std. Dev., Standard deviation, Skew., Skewness, Kurt., Kurtosis.

(3) 7y(1) is the first order sample autocorrelation in change of excess returns. 7,2(1) is the first order sample autocorrelation in square of excess
returns.



TABLE 2 GS test statistics on excess return (p = 21)

Two-sided direction One-sided (Positive) One-sided (Negative)
Tickets c=0 ¢=05 c¢=10 =15 c=0 ¢=05 ¢c=10 c=1.5 c=0 ¢=05 ¢c=10 c=15
M..(1,0)
DIJIA 16.21 31.90 24.79 19.76 16.21 53.52 111.67 111.63 16.20 64.43 98.84 103.14

SP500 26.98 45.16 31.29 28.12 26.93 94.71 15792 172.12 27.01 91.61 136.93 145.58
NYSE 3880 6219 4539 3264 3882  50.66 10571 12146 3896  73.56  98.93  97.62
NADQ 8052  87.55 4254 1616  81.13 203.94 421.50 44890  80.65 193.52 332.79  373.95
M., (1,1)
DJIA 10.66 24.79 19.39 16.90 10.66 8.14 8.84 18.92 10.66 19.68 24.66 21.83
SP500 19.60 33.31 22.67 24.04 19.58 13.23 13.29 25.22 19.61 26.57 30.46 35.40
NYSE 34.78 54.70 44.59 34.32 34.73 18.98 17.11 21.61 34.82 46.70 43.94 43.81
NADQ 5529 6223 4303 2127 5560 13.15 1007 2647 5533 5956  58.10  45.48

M., (1,2)
DJIA 0.12 1.69 710 20.31 012 975 3602 6524 012 360 1731  29.29
SP500 006  2.37 755  21.48 007 1533 5111  95.33 006 640 2376  50.43
NYSE -0.01 1.80 6.72  19.48 001 1014 4074 8249 -0.01 311 1773 35.72
NADQ 2.82 1.01 456 7.09 280 100.79 391.50 628.33 281 112.89 312.67 466.47
M.,(1,3)
DJIA 0.03 1.19 660  20.06 0.03 1.08 550 17.02 003 007 164  6.06
SP500 0.10 1.40 700 2237 0.10 123 594 1831 0.10  -0.02 1.58 7.10
NYSE -0.09 1.01 6.12  20.60 -0.09 113 563 1858 009  -0.14 156  6.90
NADQ 043 238 797 17.91 044 058 311  10.64 043 251 583  7.89
M., (1,4)
DJIA 0.01 1.32 6.70  10.84 0.01 109 548 1643 0.01 003 102 668
SP500 -0.03 1.36 6.87 2251 -0.03 112 573 17.80 003 006  1.80 7.81
NYSE -0.05 1.24 6.47 2147 -0.05 112 570 1895 005 006  1.78 7.36
NADQ 127 204 962  15.39 128 916 5925 126.12 127  14.87 4646  75.32
M. (0, 0)
DJIA 1254 7153 20403 34253 1252 1456  51.97 5254 1256 4995 11382 122.26

SP500 28.34 126.01 39893  505.71 28.29 29.25 64.75 74.02 28.38 70.28 139.37  190.16
NYSE 42.43 71.17  250.18  352.49 42.31 21.19 43.00 64.56 42.54 63.08 101.60 134.59
NADQ 78.85 319.96 1455.98 2031.23 82.48 154.65 442.35 523.61 78.94 184.31 399.73 525.54

Notes : (1) GS tests are asymptotically one-sided N (0, 1) tests and thus upper-tailed asymptotic critical values may also be used, which are 1.65
and 2.33 at the 5% and 1% levels, respectively. M., (1,1) represents test statistics on the martingale test, the serial correlation test, ARCH-in-mean
test, Skewness-in-mean test and Kurtosis-in-mean test for [ = 1,...4, respectively. M., (0,0) represents test statistics on I.LD test.

(2) Excess return is defined by 100 X In{P;/P;_1) — ry.

(3) A preliminary bandwidth, p is crucial to run GS tests. We have computed GS test statistics for p = 11, ..., 60, but reported only for the value
of p = 21 to save space.

(4) A threshold value ¢ is introduced to forecast bigger changes. Higher threshold value of ¢ implies bigger change in price.



Table 4. Evaluation Measures of Directional Probability for Dow Jones
Whole sample period (1973.1.2-2001.12.31) (c = 0.0)

QPS Correctness Trading Rulel Trading Rule2

Estimation Models + - + - Overall mwmﬁ.@m Retumn mwmw.@m Return
Ratio oR1 Ratio OR2

Buy and Hold 0.2589 0.2575 1.0000 0.0000 0.5306 0.4512 0.7391 0.4512 0.7391
Autologistic with
Sign 0.1372 0.1371 0.5657 0.4571 0.5147 0.4681 0.7560 0.6248 1.0160
Level 0.1378 0.1377 0.5235 0.5101 0.5172 0.9042 1.1927 0.9349**  1.3327**
Volatility 0.1373 0.1373 0.7598 0.2556 0.5231 0.3482 0.6360 0.4891 0.8413
Skewness 0.1370 0.1370 0.7683 0.2630 0.5311 0.4975 0.7854 0.5622 0.9034
Kurtosis 0.1378 0.1377 0.9287 0.0901 0.5351 0.4792 0.7670 0.4973 0.8050

Combined Prob. With
Time varying weighting 0.1370 0.1370 0.5788 0.4496 0.5182 0.9973 1.3108 1.0416***  1.4477***

Equal weighting 0.1371 0.1370 0.5553 0.4719 0.5162 0.6853 0.9735 0.8002* 1.2059**
Whole sample period (1973.1.2-2001.12.31) (¢ =0.5)
QPS Correctness Trading Rulel Trading Rule2
: : mwu@&@mu Return Mmeﬁm Return
Estimation Models + - + - Overall Ratio R Ratio R
Buy and Hold 0.3859 0.1305 1.0000 0.0000 0.5570 0.4512 0.7391 0.4512 0.7391
Automultinomial with
Sign 0.1166 0.1001 0.3095 0.7364 0.4986 0.2310 0.5187 0.6839 1.2609*
Level 0.1165 0.0993 0.5474 0.5105 0.5310 0.6317 0.9272 0.9116**  1.3580**
Volatility 0.1147 0.0999 0.4576 0.4268 0.4439 -0.0695 0.5909 0.4933 0.8787
Skewness 0.1160 0.0999 0.3810 0.3410 0.3633 -0.5188**  -0.1881** -0.1140** 0.3389*
Kurtosis 0.1159 0.0995 0.2130 0.1674 0.1928 -0.7992%**  0.4652 0.0648 0.6373
Combined Prob. With
Time varying weighting 0.1157 0.0993 0.3710 0.6967 0.5153 0.7900 1.1409 1.1851**  1.6717***
Equal weighting 0.1157 0.0993 0.3894 0.7092 0.5310 0.6556 0.9977 1.0806**  1.5500***

Notes: (1) Trading Rule 1 is defined by: ‘Buy’ if Pr(Yri: > &vw+ (e), ‘sell’ if Pr(Yz.s < —c)>f (c), and ‘no action’ otherwise; Trading Rule 2 is
defined by: ‘Buy’ if Pr(Yr.; > ovvw.,. (c) and ‘no action’ otherwisc (where N.,. (c) and f (c) refer to the sample frequency in positive changes and
negative changes for in-sample period, respectively). During the whole sample period, Dow Jones Index has QLA&“N\ (¢)) = (0.5100, 0.4900) when
e =0 and (0.2624,0.2519) when ¢=0.5.

(2) : *** ** and * indicatc significance at the 1%, 5% and 10% level, respectively for the forecast comparison statistic of Dicbold and Mariano (1995)
with a Bartlett kernel and a truncation lag of 10. Each model is compared with ‘the buy and hold” model.



Table 4. (Continued) Evaluation Measures of Directional Probability for Dow Jones
Pre Black Monday (1973.1.2-1987.10.16) (¢ = 0.0)

QPS Correctness Trading Rulel Trading Rule2

Estimation Models 1 - 1 - Overall  SPATPC  Retum Sharpe  peturn
Ratio TRl Ratio TR2

Buy and Hold 0.2456 0.2434 1.0000 0.0000 0.5231 0.6881 1.1986 0.6881 1.1986
Autologistic with
Sign 0.1291 0.1290 0.6152 0.4110 0.5178 0.7754 1.2859 0.9427 1.6006
Level 0.1282 0.1281 0.5351 0.5187 0.5273 0.5812 1.0911 0.8928 1.6109
Volatility 0.1288 0.1289 0.5912 0.3473 0.4748 -0.3297*  0.1790* 0.2281* 0.8792
Skewness 0.1280 0.1281 0.7234 0.3209 0.5314 0.8513 1.3623 0.9214 1.5332
Kurtosis 0.1283 0.1283 0.8717 0.1648 0.5346 0.7570 1.2678 0.7794 1.3303

Combined Prob. With
Time varying weighting 0.1283 0.1282 0.5531 0.3846 0.4727 0.9924 1.5561 1.0742 1.7999*

Equal weighting 0.1281 0.1280 0.6052 0.4527 0.5325 0.9101 1.4208 1.0507 1.7225*
Pre Black Monday (1973.1.2-1987.10.16) (¢ = 0.5)
QPS Correctness Trading Rulel Trading Rule2
Estimation Models + - + - Overall mwmﬁ.@m Retumn mwmw.@m Return
Ratio oR1 Ratio OR2
Buy and Hold 0.3735 0.1150 1.0000 0.0000 0.5474 0.6881 1.1986 0.6881 1.1986
Automultinomial with
Sign 0.1021 0.0912 0.9462 0.2326 0.6232 0.6992 1.2502 0.9226* 1.4601**
Level 0.1013 0.0924 0.6346 0.4651 0.5579 0.3303 0.8517 0.7698 1.4260
Volatility 0.1015 0.0923 0.9346 0.2000 0.6021 0.6609 1.2055 0.8114 1.3406
Skewness 0.1013 0.0917 0.4769 0.4279 0.4547 -0.2173 0.3375 0.3119 1.1067
Kurtosis 0.1016 0.0926 0.9423 0.1349 0.5768 0.7643 1.2963 0.7235 1.2495

Combined Prob. With
Time varying weighting 0.1015 0.0920 0.9269 0.2372 0.6147 0.9767 1.5412 1.0986***  1.6454***
Equal weighting 0.1015 0.0918 0.9192 0.2093 0.5979 0.8918 1.4424 1.0019**  1.5482**

,sell’ if Pr(Yros < —c)>f (c)
defined by: ‘Buy’ if Pr(Yri: > QVVML. (¢) and ‘no action’ otherwise (where M+ (c) and f (c) refer to the sample frequency in positive changes and
negative changes for in-sample period, respectively). During the Pre Black Monday period, Dow Jones Index has Q+AQV“N|@V = (0.4941,0.5059)
when ¢ = 0 and (0.2854,0.3001) when c=0.5S,.

(2) : **** and * indicatc significance at the 1%, 5% and 10% level, respectively for the forecast comparison statistic of Dichold and Mariano (1995)
with a Bartlett kernel and a truncation lag of 10. Each model is compared with ‘the buy and hold” model.

Notes: (1) Trading Rule 1 is defined by: ‘Buy’ if Pr(Yr ¢ > &vwi&. and ‘no action’ otherwise; Trading Rule 2 is



Table 4. (Continued) Evaluation Measures of Directional Probability for Dow Jones
Post Black Monday (1987.10.19-2001.12.31) (¢ = 0.0)

QPS Correctness Trading Rulel Trading Rule2

Estimation Models 1 - 1 - Overall  SPTPC  Retum Sharpe  peturn
Ratio TRl Ratio TR2

Buy and Hold 0.2740 0.2729 1.0000 0.0000 0.5115 0.0779 0.3155 0.0779 0.3155
Autologistic with
Sign 0.1397 0.1397 0.5234 0.5419 0.5325 0.8000 1.0380 0.5857* 0.9032**
Level 0.1402 0.1401 0.5293 0.5419 0.5355 0.6821 0.9200 0.4906* 0.7977*
Volatility 0.1411 0.1410 0.4414 0.6074 0.5225 0.5781 0.8159 0.5196 0.8962*
Skewness 0.1404 0.1403 0.4902 0.5624 0.5255 0.8964 1.1347 0.6825**  1.0163**
Kurtosis 0.1419 0.1418 0.2949 0.6933 0.4895 0.0736 0.3111 0.1270 0.5253

Combined Prob. With
Time varying weighting 0.1396 0.1404 0.5430 0.5358 0.5395 1.2196**  1.4841** 0.6741** 0.9821**

Equal weighting 0.1397 0.1396 0.5488 0.5297 0.5395 1.2656**  1.5042**  0.8703*** 1.1794***
Post Black Monday (1987.10.19-2001.12.31) (¢ = 0.5)

QPS Correctness Trading Rulel Trading Rule2

Estimation Models + - + - Overall mwmﬁ.@m Beturn mwmw.@m Return
Ratio TR1 Ratio OR2

Buy and Hold 0.3672 0.1735 1.0000 0.0000 0.5259 0.0779 0.3155 0.0779 0.3155
Automultinomial with
Sign 0.1277 0.1244 0.9217 0.5916 0.7652 0.3167 0.6467 0.2178 0.4707
Level 0.1289 0.1253 0.5014 0.4920 0.4970 0.4983 0.7403 0.3552 0.7041
Volatility 0.1316 0.1247 0.5188 0.4823 0.5015 0.1525 0.5276 0.1430 0.4798
Skewness 0.1293 0.1250 0.1217 0.1897 0.1540 0.0179 0.4472 -0.0230 0.6723
Kurtosis 0.1312 0.1246 0.1768 0.2508 0.2119 -0.0587 0.3021 -0.0773 0.4995

Combined Prob. With
Time varying weighting ~ 0.1287  0.1244  0.7014  0.5145  0.6128 0.7581  1.0427 0.4192  0.7188
Equal weighting 0.1291 0.1243 0.6783 0.5209 0.6037 0.8055 1.0788 0.3727 0.6774

Notes: (1) Trading Rule 1 is defined by: ‘Buy’ if Pr(Yr ¢ > &vw.,. (¢),

‘sell’ if Pr(Yr.: < —c)>f (c), and ‘no action’ otherwise; Trading Rule 2 is
defined by: ‘Buy’ if Pr(Yri: > QVVML. (¢) and ‘no action’ otherwise (where M+ (c) and f (c) refer to the sample frequency in positive changes and
negative changes for in-sample period, respectively). During the Post Black Monday period, Dow Jones Index has Q+@“N| (c)) = (0.5384,0.4616)
when ¢=0 and (0.2729,0.2186) when ¢=0.5.

(2) : ***** and * indicate significance at the 1%, 5% and 10% level, respectively for the forecast comparison statistic of Diebold and Mariano (1995)
with a Bartlett kernel and a truncation lag of 10. Each model is compared with ‘the buy and hold’ model.



Table 5. Evaluation Measure of Directional Probability for S&P500
Whole sample period (1973.1.2-2001.12.31) (c = 0.0)

QPS Correctness Trading Rulel Trading Rule2

Estimation Models + - + - Overall mwmﬁ.@m Retumn mwmw.@m Return
Ratio oR1 Ratio OR2

Buy and Hold 0.2567 0.2565 1.0000 0.0000 0.5335 0.3815 0.6638 0.3815 0.6638
Autologistic with
Sign 0.1371 0.1371 0.5447 0.5122 0.5296 0.8936 1.1764 0.9488** 1.3694***
Level 0.1380 0.1380 0.5261 0.5389 0.5320 1.1736**  1.4569**  1.1255*** 1.5353***
Volatility 0.1374 0.1374 0.6201 0.4100 0.5221 0.1279 0.4101 0.3466 0.7307
Skewness 0.1381 0.1381 0.6769 0.3344 0.5171 0.1599 0.4421 0.3413 0.6972
Kurtosis 0.1377 0.1377 0.8799 0.1448 0.5370 0.3083 0.5905 0.3820 0.6947

Combined Prob. With
Time varying weighting 0.1367 0.1371 0.5149 0.4281 0.4744 0.8648 1.1794 0.8313* 1.2515**

Equal weighting 0.1370 0.1370 0.5484 0.5176 0.5340 0.8659 1.1487 0.8763** 1.2734**
Whole sample period (1973.1.2-2001.12.31) (¢ =0.5)
QPS Correctness Trading Rulel Trading Rule2
. . mwu@&@mu Return Mmeﬁm Return
Estimation Models + - + - Overall Ratio BT Ratio T
Buy and Hold 0.3837 0.1360 1.0000 0.0000 0.5501 0.3815 0.6638 0.3815 0.6638
Automultinomial with
Sign 0.1170 0.1021 0.3005 0.7369 0.4968 0.4374 0.7220 0.7399 1.2988**
Level 0.1176 0.1032 0.5468 0.5060 0.5285 0.8175 1.1162 0.9415** 1.3725***
Volatility 0.1151 0.1019 0.5008 0.4679 0.4860 -0.5533**  0.1553 0.3620 0.7329
Skewness 0.1168 0.1025 0.8670 0.8614 0.8645 -0.3362*  0.2003 0.2080* 0.5089
Kurtosis 0.1168 0.1024 0.9885 0.1687 0.6197 0.1960 0.5112 0.2860** 0.5708**

Combined Prob. With
Time varying weighting 0.1164 0.1021 0.4581 0.6546 0.5465 0.8068 1.1418 1.2337***  1.6815***
Equal weighting 0.1163 0.1019 0.4778 0.6827 0.5700 0.9602 1.2873 1.3237***  1.7517***

Notes: (1) Trading Rule 1 is defined by: ‘Buy’ if Pr(Yri: > &vw+ (e), ‘sell’ if Pr(Yz.s < —c)>f (c), and ‘no action’ otherwise; Trading Rule 2 is
defined by: ‘Buy’ if Pr(Yr.; > ovvw.,. (c) and ‘no action’ otherwisc (where N.,. (c) and f (c) refer to the sample frequency in positive changes and
negative changes for in-sample period, respectively). During the whole sample period, S&P500 Index has QLA&“N\ (c)) = (0.5139,0.4861) when c¢=0
and (0.2649,0.2479) when ¢=0.5.

(2) : *** ** and * indicatc significance at the 1%, 5% and 10% level, respectively for the forecast comparison statistic of Dicbold and Mariano (1995)
with a Bartlett kernel and a truncation lag of 10. Each model is compared with ‘the buy and hold” model.



Table 5. (Continued) Evaluation Measure of Directional Probability for S&P500
Pre Black Monday (1973.1.2-1987.10.16) (¢ = 0.0)

QPS Correctness Trading Rulel Trading Rule2

Estimation Models 1 - 1 - Overall  SPATPC  Retum Sharpe  peturn
Ratio TRl Ratio TR2

Buy and Hold 0.2424 0.2413 1.0000 0.0000 0.5282 0.6611 1.1998 0.6611 1.1998
Autologistic with
Sign 0.1295 0.1295 0.5366 0.4856 0.5126 0.5338 1.0720 0.8272 1.5728
Level 0.1279 0.1279 0.5485 0.4989 0.5251 0.9018 1.4409 1.0612 1.7932**
Volatility 0.1278 0.1278 0.8099 0.2395 0.5408 1.1201 1.6604 0.9896* 1.5894**
Skewness 0.1273 0.1273 0.7208 0.3304 0.5366 0.9573 1.4970 0.9562 1.5936*
Kurtosis 0.1282 0.1282 0.9030 0.1153 0.5314 0.6860 1.2248 0.7070 1.2726

Combined Prob. With
Time varying weighting 0.1277 0.1278 0.5327 0.4523 0.4948 0.6510 1.2041 0.8429 1.5971

Equal weighting 0.1275 0.1275 0.5545 0.4767 0.5178 0.5803 1.1186 0.8587 1.6038
Pre Black Monday (1973.1.2-1987.10.16) (¢ = 0.5)
QPS Correctness Trading Rulel Trading Rule2
Estimation Models + - + - Overall mwmﬁ.@m Beturn mwmw.@m Return
Ratio oR1 Ratio OR2
Buy and Hold 0.3724 0.1166 1.0000 0.0000 0.5458 0.6611 1.1998 0.6611 1.1998
Automultinomial with
Sign 0.1022 0.0907 1.0000 0.0734 0.5792 0.9012* 1.4617** 0.6611***  1.1998***
Level 0.1022 0.0909 0.5534 0.5092 0.5333 0.5562 1.1224 0.6993 1.4434
Volatility 0.1020 0.0918 0.3740 0.2752 0.3292 -0.5530**  0.9432 -0.2467**  0.6130*
Skewness 0.1017 0.0909 0.8397 0.4541 0.6646 1.2520 1.8557 1.1376**  1.7509***
Kurtosis 0.1021 0.0918 0.9962 0.1422 0.6083 0.9191* 1.4922** 0.6427 1.1817

Combined Prob. With
Time varying weighting 0.1018 0.0910 0.7366 0.3394 0.5563 0.8092 1.4243 0.9140 1.5679
Equal weighting 0.1018 0.0908 0.7366 0.3349 0.5542 0.8263 1.4415 0.9098 1.5637

Notes: (1) Trading Rule 1 is defined by: ‘Buy’ if Pr(Yr; > &vw.,. (c),

‘sell’ if Pr(Yr.: < —c)>f (c), and ‘no action’ otherwise; Trading Rule 2 is
defined by: ‘Buy’ if Pr(Yri: > QVVML. (¢) and ‘no action’ otherwise (where M+ (c) and f (c) refer to the sample frequency in positive changes and
negative changes for in-sample period, respectively). During the Pre Black Monday period, S&P500 Index has Q+AQV“N|@V = (0.4991, 0.5009) when
¢=0 and (0.2875,0.2832) when ¢=0.5.

(2) : ***** and * indicate significance at the 1%, 5% and 10% level, respectively for the forecast comparison statistic of Diebold and Mariano (1995)
with a Bartlett kernel and a truncation lag of 10. Each model is compared with ‘the buy and hold’ model.



Table 5. (Continued) Evaluation Measure of Directional Probability for S&P500
Post Black Monday (1987.10.19-2001.12.31) (¢ = 0.0)

QPS Correctness Trading Rulel Trading Rule2
Estimation Models 1 - 1 - Overall  OPATPC  Retum Sharpe  porum
Ratio TRl Ratio TR2

Buy and Hold 0.2768 0.2768 1.0000 0.0000 0.5055 -0.0125 0.2141 -0.0125 0.2141
Autologistic with

Sign 0.1405 0.1405 0.5325 0.5383 0.5354 1.0818**  1.3092**  0.6890** 0.9819***
Level 0.1414 0.1414 0.5385 0.5403 0.5394 1.0760**  1.3032**  0.6896** (.9845**
Volatility 0.1426 0.1426 0.6174 0.4093 0.5145 0.8494*  1.0766* 0.5296**  0.8171**
Skewness 0.1413 0.1413 0.5444 0.4899 0.5174 0.3490 0.5758 0.2168 0.5091
Kurtosis 0.1440 0.1440 0.4556 0.5504 0.5025 0.3903 0.6170 0.2889 0.6358
Combined Prob. With

Time varying weighting 0.1410 0.1406 0.6252 0.4819 0.5543 1.1745**  1.4257**  0.6658**  (.9421***
Equal weighting 0.1405 0.1405 0.5917 0.4597 0.5264 0.8456*  1.0728* 0.5218**  0.8063**

Post Black Monday (1987.10.19-2001.12.31) (¢ = 0.5)
QPS Correctness Trading Rulel Trading Rule2
Estimation Models + - + - Overall mwmﬁ.@m Retumn mwmw.@m Return
Ratio oR1 Ratio TR2

Buy and Hold 0.3566 0.1881 1.0000 0.0000 0.5193 -0.0125 0.2141 -0.0125 0.2141
Automultinomial with

Sign 0.1316 0.1298 0.9286 0.9080 0.9187 0.3460 0.8998 0.1793* 0.4147*
Level 0.1332 0.1348 0.5247 0.4570 0.4922 0.0569 0.3217 0.1323 0.4264
Volatility 0.1298 0.1325 0.7527 0.6083 0.6833 0.5742 0.9804 0.5921***  (.8483"**
Skewness 0.1358 0.1343 0.3709 0.3116 0.3424 -0.0062 0.3095 -0.0653 0.2956
Kurtosis 0.1337 0.1341 0.3077 0.6409 0.4679 0.3982 0.6367 0.3263 0.7166
Combined Prob. With

Time varying weighting 0.1314 0.1321 0.7995 0.7359 0.7689 0.6129 0.9658 0.5427***  0.7931***
Equal weighting 0.1315 0.1320 0.7802 0.7033 0.7432 0.6004 0.9192 0.4413**  0.6940**

Notes: (1) Trading Rule 1 is defined by: ‘Buy’ if Pr(Yr ¢ > &vw.,. (¢),

‘sell’ if Pr(Yr.: < —c)>f (c), and ‘no action’ otherwise; Trading Rule 2 is

defined by: ‘Buy’ if Pr(Yri: > QVVML. (¢) and ‘no action’ otherwise (where M+ (c) and f (c) refer to the sample frequency in positive changes and
negative changes for in-sample period, respectively). During the Post Black Monday” period, S&P500 Index has QLA&“NAQVV = (0.5438,0.4562)
when ¢=0 and (0.2698,0.2132) when ¢=0.5.

(2) : ***** and * indicate significance at the 1%, 5% and 10% level, respectively for the forecast comparison statistic of Diebold and Mariano (1995)

with a Bartlett kernel and a truncation lag of 10. Each model is compared with ‘the buy and hold’ model.



Table 6. Evaluation Measures of Directional Probability for NYSE
Whole sample period (1973.1.2-2001.12.31) (c = 0.0)

QPS Correctness Trading Rulel Trading Rule2

Estimation Models + - + - Overall mwmﬁ.@m Retumn mwmw.@m Return
Ratio oR1 Ratio OR2

Buy and Hold 0.2592 0.2581 1.0000 0.0000 0.5299 0.3753 0.7037 0.3753 0.7037
Autologistic with
Sign 0.1363 0.1362 0.5418 0.5376 0.5398 1.3345**  1.6643**  1.3216***  1.8309***
Level 0.1371 0.1370 0.5418 0.5249 0.5338 1.0456* 1.3747* 1.0477***  1.5327***
Volatility 0.1370 0.1370 0.6732 0.3608 0.5264 0.0572 0.3853 0.2761 0.6953
Skewness 0.1376 0.1376 0.7549 0.2751 0.5294 0.0592 0.3873 0.2576 0.6469
Kurtosis 0.1373 0.1372 0.9183 0.0921 0.5299 0.2971 0.6254 0.3626 0.7166

Combined Prob. With
Time varying weighting 0.1366 0.1364 0.5136 0.4582 0.4876 1.0327* 1.3855* 1.0631***  1.5975***

Equal weighting 0.1364 0.1364 0.5624 0.5111 0.5383 1.1364* 1.4659* 1.1460™**  1.6449***
Whole sample period (1973.1.2-2001.12.31) (¢ =0.5)
QPS Correctness Trading Rulel Trading Rule2

: : mwu@&@mu Return Mmeﬁm Return
Estimation Models + - + - Overall Ratio R Ratio R
Buy and Hold 0.3960 0.1229 1.0000 0.0000 0.5562 0.3753 0.7037 0.3753 0.7037
Automultinomial with
Sign 0.1123 0.0970 0.2376 0.7867 0.4813 0.5949 0.9347 1.1316™*  1.8926***
Level 0.1117 0.0960 0.5142 0.5089 0.5118 0.7820 1.1388 0.7885*  1.2703**
Volatility 0.1101 0.0953 0.3830 0.3822 0.3826 -0.3928* 0.7170 0.2339 0.7188
Skewness 0.1111 0.0958 0.8209 0.6378 0.7396 -0.0609 0.3749 0.3578 0.7236
Kurtosis 0.1108 0.0955 0.1862 0.1933 0.1893 -1.5082***  -0.3355** -0.3145**  0.3462
Combined Prob. With
Time varying weighting 0.1107 0.0953 0.2926 0.7756 0.5069 0.5159 0.8739 0.8778*  1.5435***
Equal weighting 0.1107 0.0953 0.3191 0.8022 0.5335 0.6247 0.9677 0.9929**  1.5949***

Notes: (1) Trading Rule 1 is defined by: ‘Buy’ if Pr(Yri: > &vw+ (e), ‘sell’ if Pr(Yz.s < —c)>f (c), and ‘no action’ otherwise; Trading Rule 2 is
defined by: ‘Buy’ if Pr(Yr.; > ovvw.,. (c) and ‘no action’ otherwisc (where N.,. (c) and f (c) refer to the sample frequency in positive changes and
negative changes for in-sample period, respectively). During the whole sample period, NYSE index has an@“N\@v = (0.5168, 0.4832) when ¢ =0
and (0.2645,0.2406) when ¢=0.5.

(2) : *** ** and * indicatc significance at the 1%, 5% and 10% level, respectively for the forecast comparison statistic of Dicbold and Mariano (1995)
with a Bartlett kernel and a truncation lag of 10. Each model is compared with ‘the buy and hold” model.



Table 6. (Continued) Evaluation Measures of Directional Probability for NYSE

Pre Black Monday (1973.1.2-1987.10.16) (¢ = 0.0)

QPS Correctness Trading Rulel Trading Rule2
Estimation Models 1 - 1 - Overall  SPATPC  Retum Sharpe  peturn
Ratio TRl Ratio TR2
Buy and Hold 0.2381 0.2354 1.0000 0.0000 0.5383 0.6595 1.2433 0.6595 1.2433
Autologistic with
Sign 0.1280 0.1281 0.5692 0.4841 0.5299 0.9385 1.5229 1.0956 1.8969**
Level 0.1269 0.1270 0.5497 0.4977 0.5257 0.7479 1.3317 0.9781 1.7899*
Volatility 0.1279 0.1279 0.8129 0.2045 0.5320 0.5003 1.0836 0.6506 1.3056
Skewness 0.1273 0.1272 0.6667 0.3955 0.5414 1.2613 1.8480 1.2226* 1.9686**
Kurtosis 0.1286 0.1286 0.9006 0.1273 0.5435 0.7357 1.3198 0.7406 1.3606
Combined Prob. With
Time varying weighting 0.1273 0.1270 0.5361 0.4364 0.4900 0.8783 1.4930 0.9812 1.8037*
Equal weighting 0.1270 0.1270 0.5731 0.4818 0.5310 0.8217 1.4057 1.0074 1.8018*
Pre Black Monday (1973.1.2-1987.10.16) (¢ = 0.5)
QPS Correctness Trading Rulel Trading Rule2
Estimation Models + - + - Overall mwmﬁ.@m Beturn mwmw.@m Return
Ratio oR1 Ratio TR2
Buy and Hold 0.3777 0.1134 1.0000 0.0000 0.5431 0.6595 1.2433 0.6595 1.2433
Automultinomial with
Sign 0.0995 0.0903 0.2897 1.0000 0.6142 -1.6105**  -0.9254**  -0.2452** 0.8645
Level 0.1000 0.0884 0.5595 0.5425 0.5517 0.9948 1.6056 1.0583 1.8750*
Volatility 0.0997 0.0897 1.0000 0.2217 0.6444 1.0047* 1.6547**  0.6623 1.2461
Skewness 0.0996 0.0889 0.6944 0.4528 0.5841 1.1772 1.7764 0.9793 1.7017*
Kurtosis 0.0998 0.0900 0.9960 0.1085 0.5905 0.8408 1.4551* 0.6419 1.2261
Combined Prob. With
Time varying weighting 0.0994 0.0889 0.5714 0.5660 0.5690 1.5393 2.1666 1.3741**  2.1988***
Equal weighting 0.0995 0.0889 0.5794 0.5660 0.5733 1.5452 2.1705 1.3440**  2.1625***

Notes: (1) Trading Rule 1 is defined by: ‘Buy’ if Pr(Yr ¢ > &vw.,. (¢),

‘sell’ if Pr(Yr.: < —c)>f (c), and ‘no action’ otherwise;

Trading Rule 2 is

defined by: ‘Buy’ if Pr(Yri: > QVVML. (¢) and ‘no action’ otherwise (where M+ (c) and f (c) refer to the sample frequency in positive changes and

negative changes for in-sample period, respectively). During the Pre Black Monday period, NYSE index has (f

¢ =0 and (0.2872,0.2735) when ¢=0.5.
(2) : ***** and * indicate significance at the 1%, 5% and 10% level, respectively for the forecast comparison statistic of Diebold and Mariano (1995)

with a Bartlett kernel and a truncation lag of 10. Each model is compared with ‘the buy and hold’ model.

-+

(c), f (¢)) = (0.4977,0.5023) when



Table 6. (Continued) Evaluation Measures of Directional Probability for NYSE
Post Black Monday (1987.10.19-2001.12.31) (¢ =0)

QPS Correctness Trading Rulel Trading Rule2

Estimation Models 1 - 1 - Overall  SPTPC  Retum Sharpe  poturn
Ratio TRl Ratio TR2

Buy and Hold 0.2785 0.2785 1.0000 0.0000 0.5025 -0.0536 0.2148 -0.0536 0.2148
Autologistic with
Sign 0.1408 0.1408 0.5655 0.4950 0.5304 1.2917**  1.5612** 0.8119***  1.1656***
Level 0.1414 0.1414 0.5238 0.5251 0.5244 0.8305* 1.0997* 0.5041** 0.8534**
Volatility 0.1416 0.1416 0.4484 0.5812 0.5145 -0.0119 0.2565 -0.0486 0.3496
Skewness 0.1423 0.1423 0.6865 0.3086 0.4985 -0.1175 0.1509 -0.1057 0.2260
Kurtosis 0.1416 0.1416 0.3294 0.7134 0.5204 0.5162 0.7849 0.3627 0.7840

Combined Prob. With
Time varying weighting 0.1407 0.1412 0.5536 0.4489 0.5015 1.0551**  1.3536** 0.5859**  0.9405**

Equal weighting 0.1407 0.1407 0.5992 0.4689 0.5344 1.3932**  1.6630**  0.8502***  1.1929***
Post Black Monday (1987.10.19-2001.12.31) (¢ = 0.5)

QPS Correctness Trading Rulel Trading Rule2

Estimation Models + - + - Overall mwmﬁ.@m Beturn mwmw.@m Return
Ratio oR1 Ratio OR2

Buy and Hold 0.3694 0.1752 1.0000 0.0000 0.5206 -0.0536 0.2148 -0.0536 0.2148
Automultinomial with
Sign 0.1292 0.1228 0.3900 0.7675 0.5710 0.6377 0.9426 0.4545* 0.8819**
Level 0.1290 0.1274 0.4399 0.5127 0.4748 0.4784 0.7963 -0.0025 0.3882
Volatility 0.1269 0.1258 0.5953 0.5510 0.5740 -0.3892 0.4257 0.6272**  0.9744**
Skewness 0.1292 0.1283 0.3548 0.3248 0.3405 0.0031 0.3309 0.5774*  1.0174**
Kurtosis 0.1281 0.1277 0.3343 0.2834 0.3099 0.1927 0.6771 0.1576 0.6043

Combined Prob. With
Time varying weighting 0.1278 0.1257 0.5337 0.7134 0.6198 0.7592 1.1028 0.8735**  1.2435***
Equal weighting 0.1277 0.1254 0.5513 0.7452 0.6443 0.9693 1.3167* 0.8463**  1.2089***

Notes: (1) Trading Rule 1 is defined by: ‘Buy’ if Pr(Yr; > &vw.,. (c),

‘sell’ if Pr(Yr.: < —c)>f (c)
defined by: ‘Buy’ if Pr(Yri: > QVVML. (¢) and ‘no action’ otherwise (where M+ (c) and f (c) refer to the sample frequency in positive changes and
negative changes for in-sample period, respectively). During the Post Black Monday” period, NYSE index has Q+AQV“N|@V = (0.5457, 0.4543) when
¢=0 and (0.2667,0.2054) when ¢=0.5.

(2) : ***** and * indicate significance at the 1%, 5% and 10% level, respectively for the forecast comparison statistic of Diebold and Mariano (1995)
with a Bartlett kernel and a truncation lag of 10. Each model is compared with ‘the buy and hold’ model.

and ‘no action’ otherwise; Trading Rule 2 is



Table 7. Evaluation Measure of Directional Probability for NASDAQ
Whole sample period (1973.1.2-2001.12.31) (c = 0.0)

QPS Correctness Trading Rulel Trading Rule2

Estimation Models + - + - Overall mwmﬁ.@m Retumn mwmw.@m Return
Ratio oR1 Ratio OR2

Buy and Hold 0.2455 0.2453 1.0000 0.0000 0.5539 0.2429 0.4106 0.2429 0.4106
Autologistic with
Sign 0.1363 0.1363 0.5677 0.5334 0.5524 1.0335* 1.2016* 1.0491***  1.3253***
Level 0.1519 0.1518 0.5973 0.5156 0.5609 0.9041 1.0722 0.9027**  1.1672***
Volatility 0.1409 0.1408 0.4951 0.4844 0.4903 0.0985 0.2662 0.2634 0.5222
Skewness 0.1488 0.1488 0.6296 0.4310 0.5410 0.6954 0.8633 0.6519* 0.8851**
Kurtosis 0.1421 0.1420 0.7193 0.3007 0.5325 0.7365 0.9043 0.6463* 0.8679**

Combined Prob. With
Time varying weighting ~ 0.1366  0.1381  0.5211  0.4510  0.4808  1.0568*  1.2416*  1.1210"** 1.4252***

Equal weighting 0.1361 0.1360 0.5776 0.5234 0.5534 0.9275* 1.0956* 0.9664***  1.2438***
Whole sample period (1973.1.2-2001.12.31) (¢ =0.5)
QPS Correctness Trading Rulel Trading Rule2
: : mwu@&@mu Return Mmeﬁm Return
Estimation Models + - + - Overall Ratio T Ratio R
Buy and Hold 0.3253 0.1723 1.0000 0.0000 0.5660 0.2429 0.4106 0.2429 0.4106
Automultinomial with
Sign 0.1519 0.1190 0.2697 0.9319 0.5571 0.1581 0.3429 0.8098**  1.1856***
Level 0.1505 0.1310 0.5541 0.4945 0.5282 1.0480* 1.2263**  0.8526**  1.1090***
Volatility 0.1605 0.1275 0.6488 0.5658 0.6128 0.0327 0.2639 0.1535 0.3350
Skewness 0.1444 0.1276 0.4228 0.3645 0.3975 0.3780 0.6111 0.2095 0.4604
Kurtosis 0.1402 0.1226 0.8591 0.1791 0.5640 0.3938 0.5626 0.4033 0.6059

Combined Prob. With
Time varying weighting 0.1394 0.1188 0.5784 0.7322 0.6451 0.8345 1.0592* 0.4934 0.6990*
Equal weighting 0.1373 0.1183 0.5723 0.7464 0.6479 0.7097 0.9368 0.4124 0.6164

Notes: (1) Trading Rule 1 is defined by: ‘Buy’ if Pr(Yri: > &vw+ (e), ‘sell’ if Pr(Yz.s < —c)>f (c), and ‘no action’ otherwise; Trading Rule 2 is
defined by: ‘Buy’ if Pr(Yr.; > ovvw.,. (c) and ‘no action’ otherwisc (where N.,. (c) and f (c) refer to the sample frequency in positive changes and
negative changes for in-sample period, respectively). During the whole sample period, Nasdaq Index has an@“N\@v = (0.5686,0.4314) when ¢=0
and (0.2946,0.2182) when ¢=0.5.

(2) : *** ** and * indicatc significance at the 1%, 5% and 10% level, respectively for the forecast comparison statistic of Dicbold and Mariano (1995)
with a Bartlett kernel and a truncation lag of 10. Each model is compared with ‘the buy and hold” model.



Table 7.(Continued) Evaluation Measure of Directional Probability for NASDAQ
Pre Black Monday (1973.1.2-1987.10.16) (¢ = 0.0)

QPS Correctness Trading Rulel Trading Rule2

Estimation Models 1 - 1 - Overall  SPATPC  Retum Sharpe  potuen
Ratio TRl Ratio TR2

Buy and Hold 0.2285 0.2279 1.0000 0.0000 0.5549 0.4203 1.1514 0.4203 1.1514
Autologistic with
Sign 0.1193 0.1194 0.6290 0.6127 0.6217 3.8313***  4.5901***  3.0418*** 4.1261***
Level 0.1185 0.1184 0.6591 0.5610 0.6155 37791 4.5367*  2.9501***  4.0256***
Volatility 0.1276 0.1275 0.8663 0.1221 0.5350 -0.3686 0.3602 0.0290* 0.8674
Skewness 0.1264 0.1263 0.8983 0.1596 0.5695 1.5340™*  2.2714**  1.0780***  1.8900***
Kurtosis 0.1270 0.1269 0.8569 0.1455 0.5402 0.0996 0.8297 0.2784 1.0612

Combined Prob. With
Time varying weighting 0.1219 0.1204 0.6667 0.5516 0.6155 4.0111%**  4.7893***  3.0176*** 4.0672***

Equal weighting 0.1219 0.1218 0.6685 0.5657 0.6228 3.9989***  4.7604***  3.0826™** 4.1430***
Pre Black Monday (1973.1.2-1987.10.16) (c = 0.5S,)
QPS Correctness Trading Rulel Trading Rule2
Estimation Models + - + - Overall mwmﬁ.@m Retumn mwmw.@m Return
Ratio TR1 Ratio T R2
Buy and Hold 0.3735 0.0963 1.0000 0.0000 0.5909 0.4203 1.1514 0.4203 1.1514
Automultinomial with
Sign 0.0997 0.0908 0.0000 0.9111 0.3727 0.4022 1.2805 -71.4338***  N/A
Level 0.0957 0.0735 0.6962 0.6333 0.6705 4.1458***  4.9478*** 3.1800***  4.2851***
Volatility 0.1006 0.0789 0.2423 0.1778 0.2159 -2.2055***  0.1543 -0.0358 1.3785
Skewness 0.1017 0.0781 0.9385 0.1722 0.6250 1.2564***  2.0063*** 0.9125"**  1.6911***
Kurtosis 0.1021 0.0794 0.1077 0.0778 0.0955 -2.3378***  (.9231 - 1.1795** 0.9324
Combined Prob. With
Time varying weighting 0.0974 0.0772 0.4423 0.9167 0.6364 2.6741**  3.4314** 2.9116***  4.2908***
Equal weighting 0.0981 0.0774 0.4231 0.9222 0.6273 2.6906**  3.4518** 2.9082***  4.3292***

‘sell’ if Pr(Yr.: < —c)>f (c)
defined by: ‘Buy’ if Pr(Yri: > QVVML. (¢) and ‘no action’ otherwise (where M+ (c) and f (c) refer to the sample frequency in positive changes and
negative changes for in-sample period, respectively). During the Pre Black Monday period, Nasdaq Index has Q.,. (e), f (c)) = (0.5703,0.4297) when
¢=0 and (0.3080,0.2353) when ¢=0.5.

(2) : *** ** and * indicate significance at the 1%, 5% and 10% level, respectively for the forecast comparison statistic of Diebold and Mariano (1995)

with a Bartlett kernel and a truncation lag of 10. Each model is compared with ‘the buy and hold’ model.

Notes: (1) Trading Rule 1 is defined by: ‘Buy’ if Pr(Yr.; > ovvw.,.@.

and ‘no action’ otherwise; Trading Rule 2 is



Table 7.(Continued) Evaluation Measure of Directional Probability for NASDAQ
Post Black Monday (1987.10.19-2001.12.31) (¢ =0)

QPS Correctness Trading Rulel Trading Rule2

Estimation Models 1 - 1 - Overall  SPATPC  Retum Sharpe  peturn
Ratio TRl Ratio TR2

Buy and Hold 0.2595 0.2595 1.0000 0.0000 0.5364 0.0316 0.1552 0.0316 0.1552
Autologistic with
Sign 0.1418 0.1418 0.5353 0.5333 0.5344 0.7141 0.8378 0.5954* 0.7930*
Level 0.1595 0.1595 0.5539 0.5226 0.5394 0.5806 0.7042 0.4593 0.6449*
Volatility 0.1433 0.1433 0.5242 0.4753 0.5015 0.2963 0.4198 0.2219 0.3892
Skewness 0.1662 0.1662 0.5465 0.4774 0.5145 0.1627 0.2863 0.1351 0.3069
Kurtosis 0.1607 0.1607 0.4758 0.5032 0.4885 0.0405 0.1641 0.0570 0.2521

Combined Prob. With
Time varying weighting 0.1408 0.1456 0.4740 0.4968 0.4845 0.8120 0.9531 0.8471**  1.0530**

Equal weighting 0.1420 0.1420 0.4907 0.5548 0.5204 0.5334 0.6571 0.4422 0.6358
Post Black Black Monday (1987.10.19-2001.12.31) (c = 0.5)
QPS Correctness Trading Rulel Trading Rule2
‘ ‘ mwu@&@mu Return mwu@&@mu Return
Estimation Models + - + - Overall Ratio S Ratio S
Buy and Hold 0.3092 0.2081 1.0000 0.0000 0.5462 0.0316 0.1552 0.0316 0.1552
Automultinomial with
Sign 0.1581 0.1356 0.2673 0.7748 0.4976 0.4884 0.6121 0.5703 0.8416*
Level 0.1599 0.1501 0.5256 0.5147 0.5207 0.4685 0.5941 0.3368 0.5346
Volatility 0.1540 0.1432 0.7617 0.7453 0.7543 0.2085 0.4632 0.2151 0.3528
Skewness 0.1657 0.1562 0.4878 0.4960 0.4915 0.5018 0.6438 0.0707 0.2697
Kurtosis 0.1577 0.1537 0.6169 0.6434 0.6290 -0.0509 0.1801 0.4097 0.5717

Combined Prob. With
Time varying weighting 0.1540 0.1391 0.4744 0.7453 0.5973 0.5819 0.7261 0.4771 0.6773
Equal weighting 0.1529 0.1365 0.4811 0.7721 0.6131 0.6841 0.8253 0.4997 0.6998*

Notes: (1) Trading Rule 1 is defined by: ‘Buy’ if Pr(Yri: > &vw+ (c), ‘sell’ if Pr(Yz.s < —c)>f (c), and ‘no action’ otherwise; Trading Rule 2 is
defined by: ‘Buy’ if Pr(Yr; > ovvw.,. (¢) and ‘no action’ otherwise (where N.,. (c) and f (c) refer to the sample frequency in positive changes and
negative changes for in-sample period, respectively). During the Post Black Monday period, Nasdaq Index has Q+@“ f () = (0.5733,0.4267) when
¢=0 and (0.2961,0.2163) when c=0.5.

(2) : *** ** and * indicate significance at the 1%, 5% and 10% level, respectively for the forecast comparison statistic of Diebold and Mariano (1995)
with a Bartlett kernel and a truncation lag of 10. Each model is compared with ‘the buy and hold’” model.
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Figure 1: Rejection Rates of GS test statistics Under DGP1 (T = 500)

(A) Onesided Positive C = 0.0 at 10% Level

(B) One-sided Positive C' = 1.0 at 10% Level

(C) SignC = 1.0 at 10% Level
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Figure 2: Rejection Rates of GS test statistics Under DGP1 (7 = 1000)

{A) Onesided Pogitive C' = 0.0 at 10% Level

(B) One-sided Positive C = 1.0 at 10% Level

(C) SignC = 1.0 at 10% Level
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Figure 3: Rejection Rates of GS test statistics Under DGP2 (7" = 500)

(A) One-sided Pogitive C = 0.0 at 10% Level

(B) One-sided Positive C' = 1.0 at 10% Level

(C) SignC = 1.0 at 10% Level
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Figure 4: Rejection Rates of GS test statistics Under DGP2 (7 = 1000)

(A) Onesided Positive C' = 0.0 at 10% Level

(B) One-sided Positive C = 1.0 at 10% Level

(C) SignC = 1.0 at 10% Level
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Figure 5: Cumulative Daily Returns (%) of Dow Jones

(A) Whole sample period (¢=0.0)

(B) Whole sample period (¢ = 0.5)
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Figure 6: Cumulative Daily Returns (%) of S&P500

(A) Whole sample period (c=0.0) (B) Whole sample period (¢ = 0.5)
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Figure 7: Cumulative Daily Returns (%) of NYSE

(A) Whole sample period (c=0.0) (B) Whole sample period (¢ = 0.5)
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Figure 8: Cumulative Daily Returns (%) of Nasdaq

(A) Whole sample period (c=0.0) (B) Whole sample period (¢ = 0.5)
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